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PPolystyrene-based nanocomposite films containing up to 20 wt% laponite clay have been
prepared by emulsion polymerization. Significant increases in the storage and tensile mod-
uli were observed in both the glassy and rubbery state on laponite addition. However,
whereas in the glassy state these increases were correlated with the extent of exfoliation
of the laponite, in the rubbery state they were more dependent on the overall laponite con-
tent. These results are discussed in terms of the observed morphologies and micromechan-
ical models for the reinforcing effect of rigid nano-sized filler particles.

� 2009 Published by Elsevier Ltd.
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1. Introduction [9,21–23] and emulsion polymerization [14,24–26]. In this
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RRemarkable mechanical property improvements have
been reported in polymer nanocomposites, but the effect
of filler size and the role of the high specific interfacial area
associated with nanofillers remain unclear [1–4]. In poly-
mer/clay nanocomposites, maximum reinforcement is
generally obtained with exfoliated rather than intercalated
structures [5,6]. Stiffness reinforcement is already appar-
ent at low clay contents [7–9], so that further increases
in concentration might be expected to lead to even more
marked effects [2,10–13]. However, clay contents are typ-
ically limited to 5–10 wt% [13–15] owing to difficulties in
obtaining adequate dispersions and/or the high melt vis-
cosity of the nanocomposites and their precursors [16].
Polystyrene (PS)/clay nanocomposites have been prepared
by melt blending [12,17–20], bulk in situ polymerization
70

71

72

y Elsevier Ltd.

.E. Månson).

rone R. et al., Highly fil
008.12.032
work, PS/synthetic laponite clay nanocomposites were ob-
tained by an improved emulsion process, in which the
interactions between the laponite and the PS are reinforced
by modifying the laponite surface with a macromonomer.
Such use of coupling agents has been described previously
for a range of materials and preparation techniques
[27–29]. Here, the styrene radicals react with the function-
alized laponite as shown previously for polymer/silica
nanocomposites [26,30,31]. This leads to a colloidal disper-
sion of PS particles with laponite platelets attached to their
surfaces, which may be used to prepare PS films with lap-
onite contents of up to at least 20 wt%. The morphology of
these films and the effect of the laponite on their stiffness
and strength are discussed in the light of micromechanical
models and fractography.

2. Experimental section

The characteristics of the emulsions are given in Table 1.
The laponite (Laponite RD, Rockwood Additives Ltd. UK)
led polystyrene–laponite nanocomposites prepared ..., Eur
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Table 1
Formulations and characteristics of the emulsions.

Latex Laponite content (g/L) SDS content (g/L) Laponite/monomer (wt%) Solids content (%) Conversion (%) Dp (nm)

L0 0 2 0 16.6 97.8 82
L5 10 2 5 17.5 99.2 86
L10 20 2 10 17.5 94.1 78
L20 40 2 20 18.1 89.1 72

Fig. 1. Double edge-notched tensile (DENT) specimen geometry used for
the tensile tests.
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was dispersed in water with a peptizing agent (sodium
pyrophosphate, Aldrich, 10% by weight of laponite) and a
surfactant (sodium dodecyl sulphate (SDS), Acros Organics)
and stirred for 1–2 h. 5% macromonomer (poly(ethylene
oxide) 1000 monomethyl ether methacrylate, Polysciences)
by weight of laponite was added to promote attachment of
the laponite to the PS [26,30,31]. The functionalized lapo-
nite suspension was introduced to a reactor and stirred un-
der N2. After degassing, styrene (Aldrich, 300 g/L) and the
initiator (2,20 azobis(cyanopentanoic acid), Wako Chemi-
cals, 0.5% with respect to the monomer) were added to
the suspension and polymerization allowed to proceed at
70 �C for 4 h. Latexes containing 0 wt% laponite (L0), and
approximately 5 wt% laponite (L5), 10 wt% laponite (L10)
and 20 wt% laponite (L20) with respect to the PS were pre-
pared in this way. The particle diameters (Dp) from dynamic
light scattering (DLS) are given in Table 1. Solid films were
obtained by compression molding the dried latexes (Fon-
tijne Holland Press) at 160 �C to give transparent films of
0.3 mm in thickness. The weight average PS molar mass,
Mw, was determined by gel permeation chromatography
(GPC) to be 1.2 � 106 g/mol. The polydispersity was 3.23.

To evaluate PS particle size distributions by scanning
electron microscopy (SEM, Philips XL30), the latexes were
spin coated onto a steel substrate at 1460 rev/min for
180 s and then carbon coated. The distribution of the lapo-
nite in the latexes was investigated by transmission elec-
tron microscopy (TEM, Philips CM20), by either (i) spin
coating the diluted latex (20 times in water) onto carbon
covered copper grids or (ii) embedding the latex in a water
soluble resin (Nanoplast FB 101 kit, Polysciences Inc., ratio
2 parts of resin to 1 part of latex by weight, following the
supplier’s protocol); the resulting solid blocks were then
sectioned with an ultramicrotome (Reichert-Jung Ultracut
E) equipped with a diamond knife (Diatome). The size dis-
tribution of the as-received laponite particles was deter-
mined by TEM of a 0.1 wt% aqueous suspension deposited
on a carbon covered copper TEM grid and stained with
ammonium molybdate and bacitracine. The film morphol-
ogies were investigated by TEM of microtomed sections
and X-ray diffraction (XRD) (Siemens Kristalloflex 805, Cu
Ka, k = 1.54 Å).

Dynamic mechanical analysis (DMA, TA instruments
Q100)) temperature scans were made on 10 � 20 �
0.3 mm3 rectangular specimens cut from the films (10
K/min, 1 Hz). Differential scanning calorimetry (DSC, TA
instruments Q100) was used to measure the glass transi-
tion temperature, Tg (5 mg, 15 K/min). Tensile tests were
carried out at room temperature on double edge-notched
tensile (DENT) specimens cut from the films as shown in
Fig. 1, using a miniature tensile test machine (Minimat,
Polymer Labs) at a speed of 0.1 mm/min. The ligament
Please cite this article in press as: Ruggerone R. et al., Highly fil
Poly J (2009), doi:10.1016/j.eurpolymj.2008.12.032
C
T
E
Dlength, l (see Fig. 1) was varied from 2 to 5 mm following

the essential work of fracture (EWF)-based protocol for
the study of thin film fracture properties [32].

3. Results

The mean PS particle diameter was determined by SEM
to be 80 ± 30 nm for all the latexes, consistent with the DLS
results (Table 1). The form of the as-received laponite
platelets was irregular, and a mean effective particle diam-
eter of 54 nm was therefore defined from measurements of
the mean minimum and maximum lateral dimensions of
80 individual particles determined by TEM. Figs. 2 and 3
show TEM images of latexes L10 and L20 obtained using
the embedding technique, and of the dried latexes (L0,
L10 and L20), respectively. Although laponite platelets
were occasionally encountered in the aqueous phase of
the latex, they showed the expected strong tendency to ad-
here to the surface of the PS particles.

Given that the laponite platelets are extensively bound
to the polymer particle surfaces, they are expected to re-
main at, or close to the original inter-particle boundaries
during the compaction step, implying a cellular arrange-
ment of the laponite particles to persist in the absence of
extensive matrix flow. Fig. 4 shows TEM images of sections
from pressed films prepared from latexes L5, L10 and L20.
The dispersion of the laponite in the PS matrix was rela-
tively uniform at the scale of these micrographs. However,
as shown in Fig. 4(d–f), the laponite was only partially
exfoliated, even at the lowest concentrations (L5). This
was confirmed by XRD, all the nanocomposite films show-
ing a diffraction peak at 2H of approximately 6�, i.e. a layer
spacing, d001, of about 1.48 nm, which compares with
about 1 nm for the unmodified laponite, and 1.32 nm for
led polystyrene–laponite nanocomposites prepared ..., Eur
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Fig. 2. TEM images of thin sections of (a) L10 and (b) L20 latexes embedded in melamine resin. Laponite particles are indicated by the arrows.

Fig. 3. TEM images of latexes deposited on carbon films by spin coating: (a) L0; (b) L10; (c), L20.
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Cthe laponite treated with the macromonomer, regardless of
the surfactant and laponite concentration, suggesting sig-
nificant intercalation by the PS. The lower magnification
TEM images confirmed the cellular arrangement of the lap-
onite particles in L10 and L20 (Fig. 4(b–c)), with a cell size
corresponding closely to the original latex particle
diameter.

As shown in Fig. 5, changes in the storage modulus, E0,
were observed in both the glassy and rubbery states on
laponite addition, along with small shifts in Ta, the temper-
ature corresponding to the peak in tan d associated with
the a transition (Table 2). However, although E0 increased
Please cite this article in press as: Ruggerone R. et al., Highly fil
Poly J (2009), doi:10.1016/j.eurpolymj.2008.12.032
strongly and monotonically with laponite content in the
rubbery state, the films containing 5 wt% laponite (L5)
showed higher E0 in the glassy state than both the unmod-
ified latex (L0) and films containing higher laponite con-
centrations (L10 and L20). Moreover, Ta also showed the
largest increase in the films prepared from L5. Consistent
results were obtained by DSC, with the largest increase in
Tg again being observed in the films prepared from L5
(Table 2).

Typical stress (force normalized with respect to the lig-
ament cross-sectional area) displacement curves from
DENT specimens with a ligament length of 3 mm are
led polystyrene–laponite nanocomposites prepared ..., Eur
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Fig. 4. TEM micrographs of thin sections from consolidated films prepared from (a) L5; (b) L10 and (c) L20. (d–f) show higher magnification images of the
films in (a–c), respectively.
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Oshown in Fig. 6. Failure was brittle in all cases, and full sec-

tion yielding was not observed prior to crack onset, inval-
idating the EWF approach. Moreover, the scatter in the
data made it impossible to identify any systematic depen-
dence of the effective tensile strength, defined as the max-
imum force divided by the ligament cross-sectional area,
on l and hence, for the purposes of comparison, results
are given in Table 3 for the mean tensile strength for all
l, the mean elongation at break (maximum total specimen
strain) and the apparent stiffness (initial slope of the force
normalized with respect to the ligament cross-sectional
area vs. the total specimen strain). According to these def-
initions, films containing 10 and 20 wt% laponite (L10 and
L20) showed reduced tensile strength and elongation at
break compared with the unmodified films (L0), although
Please cite this article in press as: Ruggerone R. et al., Highly fil
Poly J (2009), doi:10.1016/j.eurpolymj.2008.12.032
their apparent stiffness increased. On the other hand, films
containing 5 wt% laponite (L5) showed not only the highest
stiffness, consistent with the DMA results, but also the
highest tensile strength.
4. Discussion

Increases in stiffness on clay addition to styrenic poly-
mers obtained using the synthetic techniques referred to
in the introduction, with different types of clay and clay
modification, have been widely reported [14,18,19,21,22,-
24,25]. Relatively small increases in E0 in the glassy state
in the presence of the clay coupled with very large in-
creases in the rubbery state are also reported in many of
led polystyrene–laponite nanocomposites prepared ..., Eur
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Fig. 5. (a) E0 and (b) tan d in consolidated films prepared from L0, L5, L10 and L20.

Table 3
Tensile properties of DENT specimens from the consolidated films.

Latex Tensile strength
(MPa)

Elongation at break
(%)

Nominal stiffness
(GPa)

L0 26 ± 7 2.54 ± 0.73 1.49 ± 0.42
L5 42 ± 13 1.21 ± 0.46 3.55 ± 1
L10 16 ± 8 0.83 ± 0.32 2.02 ± 0.60
L20 12 ± 5 0.68 ± 0.23 1.98 ± 0.62

Table 2
E0 in the glassy and rubbery state (160 �C) and transition temperatures for
the consolidated films.

Latex E0 (glassy state)
(GPa)

E0 (rubbery state)
(MPa)

Ta

(�C)
Tg

(�C)

L0 1.4 0.8 116 103
L5 3.4 3.1 121 114
L10 1.9 10.2 118 106
L20 2.0 102 119 111

Fig. 6. Stress–displacement curves from tensile tests on DENT specimens
from consolidated films prepared from L0, L5, L10 and L20 with a
ligament length of 3 mm.
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creased stiffness has been explained in terms of both clas-
sical mechanical reinforcement by the relatively rigid clay
platelets, and restricted mobility in the polymer matrix, of-
ten associated with an interphase at the clay platelet sur-
faces and/or to chain confinement effect in the interlayer
galleries of intercalated clay stacks [14,15]. However,
quantitative explanations for the very different degrees of
reinforcement in the glassy and rubbery states are gener-
ally lacking.
Please cite this article in press as: Ruggerone R. et al., Highly fil
Poly J (2009), doi:10.1016/j.eurpolymj.2008.12.032
C
T
EThe relationship between the clay content and Tg also

remains unclear. In general, the higher the clay concentra-
tion, the higher Tg, [14,21,24,33] but decreases in Tg have
also been reported, which may result from a plasticizing
effect, e.g. due to the presence of surfactants in the mod-
ified clays or reduced matrix molar masses [22,25,34]. In
the present case, the effective surfactant content was
constant throughout (see Table 1) and the molar masses
were high, consistent with the observed increases in Tg

with laponite content, which were therefore assumed to
be essentially due to restricted mobility near the tran-
sition.

The observed storage moduli obtained from DMA were
compared with values calculated using the Halpin–Tsai
and Mori–Tanaka models and estimates of the morpholog-
ical parameters associated with the laponite particles.
Rather than consider single laponite platelets as the rein-
forcing elements, which is unrealistic in view of the TEM
and XRD observations, the mean dimensions and aspect ra-
tios (diameter/thickness) of the laponite aggregates were
estimated from TEM micrographs for each type of compos-
ite film comprising images of 120 aggregates, assuming
these to represent diametral sections. Mean aspect ratios
of 21.77, 6.45 and 5.46 were determined in this way for
L5, L10 and L20, respectively. A mean aggregate volume,
Vaggr, and the volume of polymer matrix per aggregate, Vaggr,
were also estimated as described elsewhere [35]. The aggre-
gate volume fraction was determined from

/ ¼ Vaggr

Vaggr þ Vpol
ð1Þ
led polystyrene–laponite nanocomposites prepared ..., Eur
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Fig. 7. SEM micrographs of the fracture surfaces from DENT specimens of
(a) a consolidated film prepared from L0 and (b) and a consolidated film
prepared from L20.

Fig. 8. Comparison of experimental E0 at room temperature with values
calculated from the Halpin–Tsai (H–T) and Mori–Tanaka (M–T) models.

Fig. 9. Comparison of experimental E0 at 160 �C with values calculated
from the Halpin–Tsai (H–T) and Mori–Tanaka (M–T) models.
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The modulus of the laponite aggregates was calculated
following Sheng et al. [36] assuming the properties of the
polymer in the interlayer galleries to be isotropic and iden-
tical to those of the matrix. The Young’s modulus of the
laponite, Ef, was taken to be 178 GPa and the Poisson’s ra-
tios of the laponite and the polymer were 0.15 and 0.33,
respectively [37–39]. The Halpin–Tsai equations

E1 ¼ Em
1þ fg/
1� g/

� �
; with f ¼ 2a; and g ¼

Ef

Em
� 1

Ef

Em
þ f

0
@

1
A
ð2Þ

where Em is the matrix modulus, were then used to evalu-
ate the elastic modulus of the nanocomposites as follows:
Eq. (2) gives the in-plane aggregate modulus, E1, and the
out-of-plane modulus, E3, may be obtained by substituting
f ¼ 2 in Eq. (2). Assuming an isotropic orientation distribu-
tion for the aggregates, the overall modulus E is then esti-
mated to be 0.49E1 + 0.51E3 [40]. The Mori–Tanaka model
was applied using the simplified Hui–Shia formulation
[41], assuming the same aggregate aspect ratio and com-
position as for the previous calculations. The resulting pre-
dictions for E in the glassy state are shown in Fig. 8,
indicating order of magnitude agreement with the data
Please cite this article in press as: Ruggerone R. et al., Highly fil
Poly J (2009), doi:10.1016/j.eurpolymj.2008.12.032
O
O

F

in this regime. Moreover, the model calculations repro-
duced qualitatively the peak in modulus at 5 wt% laponite,
which was ascribed to the relatively high degree of exfoli-
ation in this case, and hence the high effective particle as-
pect ratios.

At T > Tg, simple geometrical models were inadequate,
underestimating the reinforcing effect of 20 wt% laponite
by about 2 orders of magnitude, as shown in Fig. 9 (the
Poisson’s ratio of the matrix was taken to be 0.48 in the
rubbery state [42]). The large increases in the E0 might in
principle be accounted for by the presence of a filler or fil-
ler-polymer network [43–49]. The existence of a supramo-
lecular structure has been inferred previously from
rheological studies of PS/monmorillonite composites ob-
tained by emulsion polymerization [46]. In the present
case, rheological studies were inconclusive owing to the
relatively high matrix molar mass, which made it difficult
to access the terminal zone experimentally. However, as
described in the results section, TEM provided some direct
evidence of a cellular arrangement of the laponite aggre-
gates arising from their tendency to adhere to the surfaces
of the latex particles in the precursor suspensions. In the
led polystyrene–laponite nanocomposites prepared ..., Eur
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Fig. 10. Values of Ef and Em required to fit the experimental data for the
rubbery modulus via the foam model as described in the text.
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dried latexes, the laponite may therefore be considered to
form a more or less complete shell around the latex parti-
cles, depending on its concentration and dispersion. By
considering a laponite platelet (or agglomerate) to be
equivalent to a flexible disc of 54 nm in diameter, complete
coverage may be shown to correspond to a uniform distri-
bution of about 9 platelets per latex particle. Individual
laponite platelets are approximately 1 nm thick, so taking
the density of PS to be 1.05 g cm�3 and that of laponite
to be 2.08 g cm�3, there would be roughly 3, 6 and 12
platelets per particle for latexes L5, L10 and L20, respec-
tively, in the event of full exfoliation. Thus, at the parti-
cle–particle interfaces in the films, which are shared by
adjoining particles, an average of about 6, 12 and 24 plate-
lets is predicted to be associated with each original parti-
cle. It follows that whereas a fully exfoliated morphology
is at least possible in films cast from latex L5, the total
interfacial area is insufficient to accommodate a single
layer of laponite platelets in films cast from latexes L10
and L20, and stacking of the platelets is inevitable, regard-
less of the initial state of exfoliation of the laponite.

In practice, complete exfoliation was not achieved, even
in the L5-based films, as shown by TEM and XRD, and the
observed agglomerate sizes in all the films were greater
than required by the above packing considerations, with
number average thicknesses of 8.4 and 9.9 nm being esti-
mated from TEM for L10 and L20, respectively, i.e. agglom-
erates of 6–7 laponite layers, or an effective particle
thickness of 6–7 nm. Under these conditions, full coverage
of the latex particles is unlikely, and indeed it is not clear
that percolation of inter-particle contacts was achieved at
any concentration. The percolation threshold for contacts
between (overlapping) discs placed randomly on a 2D sur-
face corresponds to a surface coverage uc = 0.676 and a to-
tal disc area per unit surface of 1.12 [50,52]. For an
effective particle aspect ratio of 9 (= 54/6), the total volume
fraction of laponite corresponding to percolation would be
about 25%, i.e. greater than the concentrations under con-
sideration here. It is therefore proposed that the nanocom-
posites be modeled as a closed-cell PS/laponite foam
whose wall thickness, t, is of the order of the mean aggre-
gate thickness, and whose cell diameter, D, is equal to the
latex particle diameter. All the laponite present in any gi-
ven nanocomposite is assumed to be concentrated in the
cell walls, and the cells are filled with pure PS matrix,
which is taken to behave as an incompressible solid in
the rubbery state, with modulus Em. For E >> Em, the overall
stiffness is then approximated by

E � t
D

� �2

1þ t
D

� �2
( )

Ef þ OðEmÞ �
t
D

� �2

Ef þ Em ð3Þ

where Ef is the modulus of the cell walls [52]. The Halpin–
Tsai model was used to predict Ef, from the local concentra-
tion of laponite in the cell walls and assuming a homoge-
neous dispersion of the laponite platelets with a = 54
(t = 2.5, 8.4 and 9.9 nm for L5, L10 and L20, respectively,
leading to laponite concentrations of approximately 27,
17 and 30 vol%). However, if the matrix modulus in the cell
walls is taken to be that of the unmodified PS in the rub-
bery state, i.e. Em = 0.8 MPa (see Table 2), E is estimated
Please cite this article in press as: Ruggerone R. et al., Highly fil
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Rto remain of the order of Em for all the overall laponite con-

centrations, consistent with Eq. (2), but clearly inconsis-
tent with the data. On the other hand, although the small
measured shifts in Tg suggested little influence of the lap-
onite on the global matrix properties, this may not be true
of the cell walls. Indeed, at 30 vol% laponite (the estimated
concentration in the cell walls for L20), the mean platelet
spacing is inferred to be of the order of 2 nm locally, which
is comparable with independent calorimetric estimates of
the thickness of immobilized layers in semicrystalline
polymers and polymer–clay nanocomposites in which
there is a strong interaction between the matrix and the
clay [53,54]. The effect of any such immobilization on the
local matrix stiffness is difficult to quantify a priori, but it
is possible to back-calculate the values of Ef and the corre-
sponding values of Em required to account for the experi-
mental values of E in terms of Eq. (3) for the different
nanocomposites. As shown in Fig. 10, this implies the aver-
age local matrix modulus to increase by approximately 2
orders of magnitude in the cell walls, whilst remaining be-
low its value for T < Tg, which appears reasonable, given
that the presence of an immobilized layer is not necessary
to account for the elastic response below Tg.

4.1. Tensile strength

As indicated in Table 3, addition of 5 wt% laponite re-
sulted in a small increase in the tensile strength of the
notched specimens, but there was a progressive reduction
as the laponite content was raised further. The peak in frac-
ture resistance at 5 wt% laponite was consistent with the
trends in E0 in the glassy state, and it was therefore inferred
that exfoliation is also an important factor for the high strain
properties. Previous observations of a decrease in elonga-
tion at break and the tensile strength with clay content in
styrenic polymer-based nanocomposites, have been ac-
counted for in terms of poor adhesion between the clay
and the polymeric matrix [14,17,19,23]. It follows that
where improvements in matrix clay adhesion have been
achieved by suitable surface functionalization of the clay
platelets, the tensile strength is increases in well-dispersed
led polystyrene–laponite nanocomposites prepared ..., Eur
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systems at low clay contents [21]. A possible explanation for
the present non-monotonic behavior might therefore be
weaknesses associated with the relatively large laponite
agglomerates observed at high laponite contents. SEM
images showed fibrillation during failure of the unmodified
matrix (Fig. 7(a)), consistent with crazing and/or locally
ductile behaviour, whereas a network of well defined ‘‘tufts”
was visible at the fracture surfaces of the highly filled films
(Fig. 7(b)). It was not possible to identify the locus of failure
unambiguously from such images, but preliminary in situ
observations by TEM of microdeformation in thin films pre-
pared from the different nanocomposite have indicated the
onset of failure in the nanocomposites with high laponite
contents to be associated with the formation of localized
deformation zones containing cavities with diameters com-
parable with those of the original PS latex particles [55].
Based on the foam model invoked in the previous section,
it is inferred that the initial damage mechanism at high lap-
onite contents is plastic growth of cavities within the PS-rich
regions. Crack advance is then assumed to proceed by rup-
ture of the intervening ligaments corresponding to the cell
walls, accounting for the residues on the fracture surface
visible in Fig. 7(b). The decrease in fracture resistance in
L10 and L20 may be at least in part due to reduced plasticity
in these ligaments with respect to that of unmodified PS. In
the relatively highly exfoliated L5-based films, in which the
cellular structure was less in evidence, crazing remained the
dominant deformation mode, as in the pure PS matrix, so
that the laponite was presumably able to act as a reinforce-
ment e.g. by introducing local stress concentrations to the
vicinity of the crack tip, resulting in delocalization of the
crack-tip damage zone and increased energy dissipation.
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5. Conclusion

An emulsion polymerization route has been used to ob-
tain loadings of up to 20 wt% of well-dispersed laponite
clay in solid PS films. DMA indicated the laponite to result
in modest stiffness reinforcement for T < Tg, whereas for
T > Tg, the stiffness reinforcement was significantly greater.
The behavior in the rubbery state has been modeled
assuming a continuous foam-like cellular arrangement of
regions relatively rich in laponite particles, corresponding
to the original particle surfaces. It is argued that the local
matrix modulus in the vicinity of the laponite particles
must be significantly higher than that of the PS, implying
local restrictions on the matrix mobility. At high laponite
contents, the local reduction in matrix mobility associated
with the increases in rubbery modulus may also lead to de-
creased ductility, accounting for the observed decreases in
fracture resistance. Future work will focus on the microde-
formation mechanisms associated with to fracture at dif-
ferent laponite loadings, and the range of laponite
contents will be extended to higher concentrations in or-
der to provide better defined cellular morphologies and a
basis for more detailed investigation of the foam model.
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