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Nucleation of second phase on an edge dislocation
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Malmö University, SE-205 06 Malmö, Sweden
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A model for nucleation of second phase at or around dislocation in a crystalline solid is
considered. The model employs the Ginzburg-Landau theory of phase transition comprising
the sextic term in order parameter (η6) in the Landau free energy. The ground state solution of
the linearized time-independent Ginzburg-Landau equation has been derived, through which
the spatial variation of the order parameter has been delineated. Moreover, a generic phase
diagram indicating a tricritical behaviour near and away from the dislocation is depicted. The
relation between the classical nucleation theory and the Ginzburg-Landau approach has been
discussed, for which the critical formation energy of nucleus is related to the maximal of the
Landau potential energy. A numerical example illustrating the application of the model to
the case of nucleation of hydrides in zirconium alloys is provided.

Keywords: heterogeneous nucleation, edge dislocations, Ginzburg-Landau theory

1. Introduction

Nucleation of second phase in the vicinity of elastic defects such as dislocations
occurs in many alloys [1, 2]. For example, in Al-Zn-Mg alloys, dislocations not only
induce and enhance nucleation and growth of the coherent Laves phase MgZn2
precipitates, but also produce a spatial precipitate size gradient around them [3–
5]. Another example is formation of a new phase in ammonium bromide (NH4Br),
namely β → γ phase transition, which is observed to occur in the vicinity of crystal
dislocations [6]. In titanium and zirconium alloys, used in aerospace and nuclear
industries, the presence of hydrogen leads to hydride formation (TiHx, ZrHx) close
to and on dislocations, causing embrittlement of the alloy, thereby reducing its
performance during service [7, 8].
Cahn [9] provided the first quantitative model for nucleation of second phase

on dislocations in solids using classical nucleation theory. Cahn’s model assumes
that a cross-section of the nucleus is circular, which is valid for a screw dislocation.
Moreover, it posits that the nucleus is incoherent with the matrix. The issue of the
formation of coherent nucleus on or near an edge dislocation has been studied theo-
retically by Lyubov & Solovyev [10] and Dollins [11]. These theoretical approaches
have been thoroughly appraised by Larché [12]. In a recent study, Hin and cowork-
ers [13] studied heterogeneous precipitation of FeC particles on dislocations in the
iron-carbon binary system using kinetic Monte Carlo technique.
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Here, we present a generic model for nucleation of a new phase near edge dis-
locations in crystals. The model rests on the Ginzburg-Landau theory of phase
transition in which an order parameter designates the symmetry of the system.
Moreover, the elastic property of the solid is taken into consideration by the stric-
tion term in the free energy, which accounts for the interaction between the order
parameter and deformation [14, 15]. The model is in line with earlier approaches
by Nabutovskii & Shapiro [16] and Boulbitch & Toledano [1]; where herein note
the case of phase transition near edge dislocations has been elaborated. The model
is pertinent to systems in which second phase nucleation is accompanied by a
preferred orientation of nuclei under external force. This includes α′′-phase pre-
cipitation in Fe-N alloys [17], θ′-phase nucleation in Al-Cu alloys [18], δ-hydride
formation in Zr-alloys containing hydrogen [19]. We should, however, point out
that in this note, we only treat the details of the ordering (orientation) aspect of
the problem, which is characterized by a non-conserved order parameter. That is,
the effect of composition field is decoupled from the Ginzburg-Landau model. A
more general formulation with coupled non-conserved order parameter, conserved
variable (concentration) and elastic field was presented elsewhere [20], see also [18].
The paper is organized as follows. The model set up and the basic equations

are described in section 2. The ground state solution of the linearized steady-state
Ginzburg-Landau equation, in the vicinity of edge dislocation, is derived in section
3 using the method of Dubrovskii [21]. The phase diagram ensued from the model
is presented in section 4. Section 5 discusses the relation between the present model
and the classical nucleation theory. That section also includes a numerical example
pertinent to nucleation of hydrides in zirconium alloys. Finally, in section 7, we end
the paper with some concluding remarks. Some mathematical details are presented
in the appendices.

2. Model description

We consider an edge dislocation, the line of which coincides with the 0z axis and the
Burgers vector with components by = −b, bx = bz = 0, see Fig 1. In an elastically
isotropic crystal, such a dislocation creates a deformation potential [22]

V (r, θ) = B cos θ

r
, (1)

where (r, θ) are the polar coordinates at the point of observation in a plane perpen-
dicular to the dislocation line. Here B is a material dependent parameter denoting
the strength of the potential. It is related to the basic constants of the metal,
namely, B = bεF (1− 2ν)/[3π(1− ν)], where εF is the Fermi energy and ν is Pois-
son’s ratio.
The considered phase transformation is the nucleation of second phase in a solid

solution. It is characterized by an order parameter accounting for the symmetry
of the structure (system) under consideration. In general, it is defined by a vector
field η(r, t) being a function of space r and time t. We write the total free energy
for the system

F = Fst + Fel + Fint, (2)

where Fst is the structural free energy, Fel the elastic strain energy, and Fint is
the interaction energy between the structural order parameter and the strain field.
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r cosΘ

r sinΘ

Figure 1. Equipotentials of an edge dislocation with interaction energy given by Eq. (1). The downward
arrow indicates the Burgers vector.

The structural free energy is

Fst =
∫ [g

2
(∇η)2 + V(η)

]
dr. (3)

where the space integral is within the volume of the system. Here g(∇η)2 accounts
for the spatial dependence of the order parameter, g is a positive constant, and
V(η) = 1

2r0η
2 + 1

4u0η
4 + 1

6v0η
6 is the Landau type potential energy, where r0 and

u0 are, in general, functions of temperature and external field, here stress. The
coefficient v0 is taken to be a positive constant. Its role is to insure stability. Also,
we wrote η2 = η · η and so on. The elastic free energy is

Fel =
∫ [K

2

(
∇ · u

)2
+M

∑
ij

(
uij −

δij
d
∇ · u

)2]
dr, (4)

where K and M are the bulk and shear modulus, respectively, uij = (∇jui +
∇iuj)/2 is the strain tensor with ∇i ≡ ∂/∂xi, d the space dimensionality, and i, j
stand for x, y, z in d = 3 (x, y in d = 2). Finally, the interaction energy is

Fint = κ

∫
η2∇ · u dr, (5)

where η2∇ · u accounts for the interaction between deformation and the order pa-
rameter and the constant κ, referred to as the striction factor, denotes the strength
of this interaction. For structural orientation of the second phase, the order pa-
rameter may supposed to be a two-component vector field η = (η1, η2), where
(η1, η2) = (±η0, 0) would denote one preferred orientation of nuclei (precipitates)
and (η1, η2) = (0,±η0) another, where η0 is a non-zero constant [18]. Furthermore,
η = (0, 0) would describe the solid solution with no precipitates present. Here, for
the sake of simplicity, as assume that the order parameter is a scalar field (an Ising
model), taking values of η = 0 (solid solution) or η ̸= 0 (nucleus).
The evolution of the order parameter is described by the time-dependent

Ginzburg-Landau (GL) type equation

∂η

∂t
= −La

δF
δη
, (6)
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where La is the mobility; also the effect of the background random thermal
(Langevin) noise is ignored. This is the basic kinetic equation for a non-conserved
field, and it corresponds to the model A in the classification of Hohenberg &
Halperin [23]. Moreover, defects in a crystal such as dislocations give rise to internal
strains in the solid affecting the mechanical equilibrium condition. The equilibrium
condition in the presence of an edge dislocation and the force field generated by
the order parameter is expressed as (see Appendix A and [24])

M∇2u+ (Λ−M)∇∇ · u+ κ∇η2 = −Mbeyδ(x)δ(y), (7)

where Λ ≡ K +2M(1− 1/d), b is the magnitude of the Burgers vector, ey denotes
the unit vector along the y axis, and δ(•) is the Dirac delta. Equation (7) is used
to solve u in terms of η2 and the displacements of the dislocation; thereafter, we
eliminate the elastic field u from the expression for the Euler-Lagrange condition
on free energy (Appendix A). Hence, the total energy can be expressed as [20]

F [η] = F0 +

∫ [g
2
(∇η)2 + 1

2
r1η

2 +
1

4
u1η

4 +
1

6
v0η

6
]
dr, (8)

where F0 = F [0] is a function of temperature and stress, r1 = r0 − B cos θ/|r|,
r0 = α(T/Tc − 1) ≡ ατ , α is a positive constant, T the temperature, Tc the phase
transition temperature in the absence of elastic coupling, u1 = u0 − κ2/Λ for an
edge dislocation embedded in the matrix, u0 can be both positive and negative,
and dr = rdrdθdz. Also, B = κA and A = (2b/π)M/Λ ≡ (b/π)(1 − 2ν)/(1 − ν).
We regard F [η] to have dimensions of energy [ML2T−2]. By considering η to have
dimensions of inverse area [L−2], the variable r1 gets dimensions [ML3T−2], and so
on. Some of the constants appearing in the coefficients of the powers of η, such as Tc,
the elasticity constants, the Burgers vector, are directly measurable for a particular
system. Other parameters, such as g, α0, v0, κ, if not directly measurable, may be
determined from ab initio type methods; see also section 6.
Let us first express Eq. (8) in dimensionless form

F [ψ] = F0

∫ [
(∇ρψ)

2 +
1

2

(
U(ρ)− E

)
ψ2 +

1

2
ψ4 +

1

6
ψ6

]
dρ, (9)

with dρ = ρdρdθdζ and the introduced dimensionless parameters

ρ = r/ℓ, ψ = −η√u1g/2B, ζ = z/ℓ, U(ρ) = − cos θ/ρ, (10)

E = −r0g/2B2, ℓ = g/2B, F0 = Bg/u1, v0 ≡ gu21/8B
2. (11)

Here, we treat nucleation in the presence of the edge dislocation in thermal-
mechanical equilibrium. Furthermore, we suppose that there is no Langevin noise
in the system. Hence Eq. (6), using Eq. (9), reduces to

∇2ψ =
(
U(ρ, θ)− E

)
ψ + 2ψ3 + ψ5, (12)

where ∇2 =
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂θ2
, (13)

and the boundary conditions: ψ(ρ = ∞, θ) = 0 and ψ(ρ = 0, θ) ̸= ∞.
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One can show that for a certain E < 0, i.e. T > Tc, Eq. (12) has a nontrivial
solution for E > E0 (T < T0). In the next section, we shall specify and calculate
E0 and obtain the bound state solutions of Eq. (12) as E → E0.

3. Bound states

The value of E = E0 is found from Eq. (12) at which a solution would first emerge.
This value is determined from the solution of the linearized Ginzburg-Landau equa-
tion, viz.

∇2ψ =
(
U(ρ, θ)− E

)
ψ, (14)

which is the lowest “level” of Eq. (12), and it corresponds to the Gaussian approxi-
mation of the Ginzburg-Landau free energy functional. Equation (14) is equivalent
to the Schrödinger equation in two dimensions. The bound state solution ψE to
this equation exists if F [ψE ] < 0 and that occurs at E = E0 [25].
The variables in Eq. (14) with U(ρ, θ) defined in Eq. (10) do not separate. To solve

Eq. (14) we chose the method proposed by Dubrovskii [21] outlined in Appendix
B. Recall that the eigenfunctions of the equation must satisfy the aforementioned
boundary condition on ψ. So we may write Eq. (B8) in Appendix B, expressed in
terms of cosine-elliptic Mathieu function cem(a, ϑ, q), cf. Appendix C, as

ψnm =
Anm√
π
cem(a, ϑ, q)ρ

µ exp(−βnρ)1F1(−n, 2µ+ 1, 2βnρ), (15)

where Anm is the normalization constant, µ =
√
a+ α1/2, ϑ = (θ − π)/2, a is

a separation constant, q, α1 are variational constants to be determined, βn is a
certain function of q, n is an integer, m is an even integer, and 1F1(•, •, •) is the
confluent hypergeometric function of the first kind. We should point out that for
each q, the separation constant a = am assumes an infinite set of discrete values
depending on the parity and the index of the function cem(a, ϑ, q), cf. Appendix
C.
The composite ground state eigenfunction corresponding to Eq. (15) is then

ψ00(ρ, ϑ, q) =
A00√
π
ce0(a0, ϑ, q)ρ

µ exp(−βρ), (16)

where we put 1F1(0, 2µ+1, 2βρ) = 1 and β ≡ β0. We should note that β and µ are
functions of q, α1 and α2 (see below). The normalization constant is evaluated to
be

A00 =

√
2(2β)2+2µ

Γ(2 + 2µ)
. (17)

The ground state eigenvalue of the total Hamiltonian operator Ĥ = ∇2 − U(ρ, ϑ),
to be minimized, is expressed as (E00 ⇔ E0)

E00 5 ⟨00|Ĥ|00⟩ ≡
∫ ∞

0
ρdρ

∫ π/2

−π/2
ψ00(ρ, ϑ)Ĥψ00(ρ, ϑ)dϑ. (18)
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Next, the integration of the right hand side of Eq. (18) over the variable ϑ yields

E00 5
(2β)2+2µ

Γ(2 + 2µ)

∫ ∞

0
ρµ+1 exp(−βρ)K̂ρµ exp(−βρ)dρ, (19)

with K̂ = − d2

dρ2
− 1

ρ

d

dρ
+
K0

4ρ2
− K2

0 − a0(q)

2qρ
, (20)

where a0(q) < 0 is the eigenvalue of Eq. (B3) in Appendix B, corresponding to the
eigenfunction ce0(a, ϑ, q) and

K2
0 = − 2

π

∫ π/2

−π/2
ce0(a0, ϑ, q)

d2

dϑ2
ce0(a0, ϑ, q)dϑ. (21)

Now, K̂ϕ(ρ) = E00ϕ(ρ) with ϕ(ρ) = ρµ exp(−βρ) leads to

β =
K2

0 − a0(q)

2q(K0 + 1)
, µ =

K0

2
, E00 = −β2. (22)

Additional analysis [21] yields (cf. Appendix B)

α1 = K2
0 − a0, α2 =

α1

2q
. (23)

where α2 is an additional variational constant related to α1. Figure 2 depicts E00(q)
as a function of q. The obtained numerical values for the parameters, upon min-
imization of E00(q), are listed in Table 1. And in Figure 3, we depict the radial
dependence of ψ00(ρ, ϑ) at q = qmin. The eigenfunction ψ00(ρ, ϑ), corresponding
to the normalized order parameter in the vicinity of the dislocation, is shown in
Figure 4 on the xy-plane.

5 10 15 20
q

-0.10

-0.08

-0.06

-0.04

-0.02

E00

Figure 2. The ground state energy of the total Hamiltonian, Eq. (19), versus q. The minimum occurs at
qmin = 3.918 and E00(qmin) = −0.105, cf. Table 1.

4. Phase equilibria

Let us study the phase diagram for the system under consideration. To first ap-
proximation, as in [1], the equilibrium field parameter ψ is taken to be the ground
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5 10 15 20
Ρ

0.002
0.004
0.006
0.008
0.010
0.012
0.014

Ψ00

z=0

5 10 15 20
Ρ

0.02

0.04

0.06

0.08

Ψ00

z=Π�4

5 10 15 20
Ρ

0.05

0.10

0.15

0.20

0.25

Ψ00

z=Π�2

5 10 15 20
Ρ

0.002
0.004
0.006
0.008
0.010
0.012
0.014

Ψ00

z=Π

Figure 3. The ground state eigenfunction ψ00(ρ, z, qmin) with qmin = 3.918, cf. Eq. (16) and Table 1.

Figure 4. The distribution of the ground state eigenfunction ψ ≡ ψ00(ρ, ϑ, qmin) with qmin = 3.918, cf.
Eq. (16) and Table 1, corresponding to the spatial variation of order parameter near the edge dislocation.
Here x = ρ cosϑ and y = ρ sinϑ.

state solution of linearized Eq. (12), i.e., ψ = ψ00(ρ, ϑ, qm). We then express the
order parameter for the system in the form

η(ρ, ϑ) = m
A′

00√
π
ce0(a0, ϑ, q)

( ρ
ρ0

)µ
exp(−ρ/ρ0) +O(m2), (24)

where we used Eq. (16), m is an amplitude, ρ0 ≡ 1/β and A′
00 ≡ A00ρ

µ
0 . Note that

if m is considered to be dimensionless, then the right-hand side of Eq. (24) needs to
scaled by the factor

√
u1g/2B to make η to have dimensions of inverse area

[
L−2

]
.

Now substituting Eq. (24) into (8), using the data in Table 1, and integrating
over the volume (0 ≤ ρ ≤ ∞, 0 ≤ ϑ ≤ π, 0 ≤ z ≤ L) yield the equilibrium free
energy of an ordered nucleus around the dislocation. So the free energy is expressed
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Table 1. Numerical values for the parameters obtained by min-

imization of E00(q), Eq. (18), where qm = qmin.

qm = 3.918 E00(qm) = −0.105 K0(qm) = 1.284

A00(qm) = 0.428 β(qm) = 0.3245 a0(qm) = −4.159

µ(qm) = 0.642 α1(qm) = 5.808 α2(qm) = 0.741

in the form

F(m) = F0 + ℓ2L
[1
2
(r0 − r∗0)m

2 +
1

4
(u0 − u∗0)⟨ψ4⟩m4 +

1

6
v0⟨ψ6⟩m6

]
, (25)

where F0 is the free energy of the defect in the parent phase (m = 0), L is the size
of the crystal in the z-direction, u∗0 = κ2/Λ, and

r∗0 =
[2B
ℓ
c3 −

g

ℓ2
µ
(
1 +

c2
2µπ

)] ρ−2
0

µ(1 + 2µ)
, (26)

⟨ψ2n⟩ =
∫ ∞

0

∫ π

0

[A′
00√
π
ce0(a0, ϑ, q)

( ρ
ρ0

)µ
exp(−ρ/ρ0)

]2n
ρdρdϑ, (27)

where c2 = 2.5903 and c3 = 1.1642 are obtained by appropriate integrations carried
over the angle (0 ≤ ϑ ≤ π). Also integrations in Eq. (27) can readily be evaluated,
viz.

⟨ψ2⟩ = 1, (28)

⟨ψ4⟩ = 0.1842
41−2µ

ρ20

Γ(2 + 4µ)

Γ(2 + 2µ)2
, (29)

⟨ψ6⟩ = 0.0791
27 × 3−2−6µ

ρ40

Γ(2 + 6µ)

Γ(2 + 2µ)3
. (30)

Equation (25) is a kind of a mean field variant of the Landau free energy [26] with
the order parameter m. The parameter v0 in Eq. (25) is taken to be a positive fixed
constant, but r̄ ≡ (r0 − r∗0) and ū ≡ (u0 − u∗0) are varying parameters, assuming
both positive and negative values. The system has a phase transition at r̄ = 0,
which can be either of first order or second order depending on sign of ū. If ū > 0,
then r0 > r∗0 gives m = 0, i.e. a situation with no nucleus. At r0 = r∗0, nucleation
occurs by second order transition; and for 0 < r0 < r∗0, m ̸= 0, implying that the
nuclei grow continuously. On the other hand, if ū < 0, the transition is second
order and the nuclei form on the coexistence line of the phase diagram, see below.
The value of m can be determined by the equilibrium condition F(m) = F0, and

at the same time dF/dm = 0, which give

m2 = −3

4

⟨ψ4⟩
⟨ψ6⟩

(u0 − u∗0
v0

)
. (31)
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Substituting this in F(m) = F0, we find

r0 = r∗0 +
3

16

⟨ψ4⟩2

⟨ψ6⟩
1

v0
(u0 − u∗0)

2, (32)

with r∗0 =
2

1 + 2µ

[c3
µ

−
(
1 +

c2
2πµ

)]
r00. (33)

This is the equation for first order phase transition line with r00 denoting the
ground state value of r0. Next minimizing F(m), i.e. dF/dm = 0 and d2F/dm2 ≥ 0,
then for r0 < r∗0 and u0 < u∗0, we can calculate the resulting m (with admissible
solutions); thereby leading to

r0 5 r∗0 +
1

4v0

⟨ψ4⟩2

⟨ψ6⟩
(u0 − u∗0)

2, (34)

where the equality marks the line of instability, i.e. the onset of nucleation. Note
that for r0 < r∗0 and u0 < u∗0, one solution (m+) gives two minima while another
(m−) gives the maximum of the free energy. Also, (r0 − r∗0) = const. and u0 > u∗0
(and v0 > 0) mark out the second order phase transition line. To illustrate this, we
rewrite Eqs. (32) and (34) in a more concise form

r̄ =
3

16v0

⟨ψ4⟩2

⟨ψ6⟩
ū2, r̄ 5 1

4v0

⟨ψ4⟩2

⟨ψ6⟩
ū2. (35)

Recalling that in the crystal bulk r0 = α(T/Tc − 1), Eq. (35) together with the
line r̄ = 0 (or r̄ = const.) and ū > 0, define the phase diagram for the system in
the (ū, r̄) coordinates. Figure 5 shows such a diagram. Note that for a defect free
crystal r̄ = r0, while for a rigid crystal ū = u0. The point at which the first order
transition turns to second order is the tricritical point designated by open circle
in Fig. 5. Figure 6 shows a generic sextic Landau potential with coefficients u < 0
and v > 0 describing a first order phase transition between the parent-phase and
the second-phase, denoted by I and II, respectively.

5. Connection to classical nucleation theory

Classical nucleation theory (CNT) has been used in the past to study the problem
of the formation of coherent embryo on or near an edge dislocation [10–12]. In this
framework, the free energy of the formation can be expressed as [12]

∆F = −2π

3
KAR2 + 4πγR2 − 4π

3
µeffR

3, (36)

where R is the radius of the nucleus, K is the bulk modulus, γ is the surface tension
of the nucleus in the absence of dislocation, and µeff is the free energy difference
per unit volume between the metastable and stable phases. The parameter A was
defined earlier, i.e. after Eq. (8). Now, ∆F takes a maximum at R = Rc given by

∆Fc =
4π

3

(
γ − KA

6

)
R2
c , (37)

with Rc =
2

µeff

(
γ − KA

6

)
. (38)
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0
 u

 r

crystal bulk

near dislocation

(u
0
,r

0
)

(ū,r̄)

Figure 5. Phase diagram of nucleation in the bulk of rigid crystal (u0, r0) and near the edge dislocation
(ū, r̄) obtained from Landau’s potential (see figure 6). The dashed line describes the first order transition,
the solid line the border of instability, and the open circles are the tricritical points.

Note that A has dimension of length and γ that of energy per unit area. It is seen
that the dislocation simply shifts the surface tension to an effective surface tension
γeff = (γ −KA/6); and so we may write ∆Fc = (4π/3)γeffR

2
c and Rc = 2γeff/µeff .

The surface tension of the nucleus γ is the excess energy stored in the ma-
trix/nucleus interface region per unit area. It can be expressed in terms of the
coefficients of the Ginzburg-Landau free energy, cf. Eq. (8). Let us for the sake
of simplicity ignore the positive stabilizing terms η6 and put A = 0. Moreover,
consider r0 < 0 and a planar interface whose normal direction is in the x-direction.
The Ginzburg-Landau equation becomes

g
d2η

dx2
− r0η − u1η

3 = 0. (39)

Then we have a well-known solution for the interface profile

η(x) =
( |r0|
u1

)1/2
tanh

( x
2ξ

)
, (40)

where ξ = (g/2|r0|)1/2 is a characteristic length (the correlation length) for the
formation of the new phase. The surface tension is given by

γ =

∫ ∞

−∞

[g
2
(∇η)2 + V(η)

]
dx. (41)

Here ∇η = dη/dx and

V(η) = u1
4

(
η2 − r0

u1

)2
, (42)

where the free energy density −r20/4u1 at x = ±∞ has been deducted from the
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 η

 V

 

 

  r < 3u2/16v

  r = 3u2/16v

  r = u2/4v

Figure 6. The Landau potential energy V = r
2
η2 + u

4
η4 + v

6
η6, with v > 0, u < 0, r > 0, and η scalar.

The curves determine the lines plotted in figure 5. The dashed curve marks the emergence of metastable
second-phase II (two local minima) in the parent phase I (global minimum); the dotted line indicates that
phases I and II are equally stable; and the solid line infers to when phase I is less stable than phase II,
which remains in that state until r ≤ 0.

total energy density. Utilizing now Eq. (12), after some manipulation, we can write

γ = g

∫ ∞

−∞
(∇η)2dx, (43)

Next, substituting the interface profile solution Eq. (40) in (41), then evaluating
the integral, we obtain

γ =
2

3
g
|r0|
u1

ξ−1 = g1/2
|2r0|3/2

3u1
. (44)

Thus, we can express the maximal free energy of formation

∆Fc =
4π

3

[2
3
g
( r0
u1

)
ξ−1 − KA

6

]
R2
c , (45)

with Rc =
2

µeff

[2
3
g
( r0
u1

)
ξ−1 − KA

6

]
. (46)

On substitution of Eq. (46) in (45) using the formula for ξ, the maximal energy
of formation can be expressed in the form

∆Fc =
212

√
2π

34
(g3r0)

1/2

u1
(1− ϱ)3

(Vmax

µeff

)2
, (47)

with ϱ =
1

4

u1
r0

KA√
2g|r0|

, (48)
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and Vmax = r20/4u1 is the maximum value for the Landau potential (42). Therefore,
the maximal value of the formation energy, in CNT setting, is proportional to the
square of the maximum of V(η). Note also that in the absence of defect ϱ = 0.

6. Discussion

Let us first discuss the characteristic length of the system under consideration. We
recall the radial part of the bound state solution, Eq. (16), namely,

ϕ(ρ) = ρµe−ρ/ρ0 , (49)

where ρ0 = β−1, or more explicitly

ρ0 =
1√

−E00
=

(2B2

r00g

)1/2
. (50)

To obtain Eq. (50), we utilized the relations in (22) and (11), with the ground state
value of r0, i.e. r00 ∝ E−1

00 . Scaling ρ0 with ℓ to attain dimension of length, we get

ξ0 ≡ ℓρ0 =
( g

2|r00|

)1/2
. (51)

The characteristic length ξ0 may be interpreted as the ground state size of the
embryo; and since r0 = ατ , we may write r00 = α0τ0, where τ0 = T0/Tc−1; thereby
ξ0 = (g/2α0)

1/2|τ0|−1/2, with T0 being the ground-state nucleation temperature.
Thus the size of the nucleus at the onset of nucleation is finite [1].
A point worth noting is that the Landau mean field theory of phase transition

is valid so long as the fluctuations of the order parameter in a volume with linear
dimension of order ξ is small compared with the characteristic equilibrium value
η̄ = (|r0|/u1)1/2. The applicability of the mean field thermodynamics to describe
the fluctuations at the onset of nucleation may be checked through the Levanyuk-
Ginzburg criterion (see e.g., [27]), which states

k2BT
2
c u

2
1

α0g3
<< |τ0| << 1. (52)

The ratio on the left-hand side of Eq. (52) is dimensionless (kB is the Boltzmann
constant) and is referred to as the Ginzburg number Gi. This number can be
expressed in terms of characteristic lengths in the system, i.e. Gi = (ξG/ξ0)

6,
where

ξG =
( k2BT

2
c u

2
1

8α0|r00|3
)1/6

. (53)

So for the mean field theory to be valid ξG << ξ0. We may also express the surface
tension in terms of the Ginzburg number in the manner

γ =

√
2

3
kBTcξ

−2
0

( |τ0|
Gi

)1/2
. (54)

Thus, in this formulation, γ is meaningful so long as |τ0| >> Gi.
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Now to make the concepts more tangible, we give a numerical example relevant
to precipitation of hydrides in zirconium alloys with a terminal solid solubility for
precipitation of about 2 weight parts per million hydrogen at room temperature
[28]. Typical values for Poisson’s ratio ν = 0.37, Young’s modulus Y = 100 GPa
[29], and the magnitude of the Burgers vector b = 0.25 nm [30] can be used.
Furthermore, taking κ/Y = 0.1 m4, g = 10−8 Jm3, α0/Tc = 2.2 × 105 JmK−1,
we find T0 − Tc ≈ 10 K. With these numerical values, the critical radius for the
formation of embryo nucleus, according to Eq. (51), turns out as ξ0 ≈ 50 nm.
Next, the surface tension of the nucleus can be estimated by using Eq. (44). If
u1 ≈ 106 Jm5, then γ ≈ 0.3 Jm−2. Finally, with the aforementioned numerical
values Gi = 2.6× 10−13.
For an application of the model to a particular material, such as precipitation

of second phase ZrHx in Zr matrix, the chemical free energy functional, expressed
in terms of the concentration of hydrogen in the matrix, should be coupled to
the system of the governing equations. In this context, an additional basic equa-
tion, namely the diffusion equation or the Cahn-Hilliard equation, should be solved
together with the Ginzburg-Landau equation [20]. Moreover, the effect of appre-
ciable plastic work done by the hydride under stress through volume expansion
(Tr(ϵhij) ≈ 0.16) needs to be taken into account. Consequently, even more model
parameters will appear in the equations, where their values need to be determined.
As noted in section 2, some of the parameters, such as the elasticity constants, the
Burgers vector, etc, are directly measurable. Other parameters, such as the coeffi-
cients of the Landau expansion may be calculated by ab initio type methods. For
example, for the precipitation of θ′ phase in defect free Al-Cu alloys such analysis
has successfully been carried out [31]. For the aforementioned numerical example,
the determination of the parameters α0, g, u1, and κ would be worthy.

7. Concluding remarks

In this paper we have presented a model for nucleation of second phase at or
around dislocation in a crystalline solid. The model employs the Ginzburg-Landau
approach for phase transition comprising the sextic term in order parameter (η6)
in the Landau potential energy. The asymptotically exact solution of linearized
time-independent Ginzburg-Landau equation has been found, through which the
spatial variation of the order parameter in the vicinity of dislocation has been de-
lineated. Moreover, a generic phase diagram indicating a tricritical behaviour near
and away from the dislocation is depicted. The relation between the classical nu-
cleation theory and the Ginzburg-Landau approach has been evaluated, for which
the critical formation energy of nucleus is related to the maximal of the Landau
potential energy. In a numerical example, a number of model parameters is fixed to
certain numerical values to obtain plausible results, namely, the shift in the phase
transition temperature due to the presence of the dislocation, the critical radius
for the formation of embryo nucleus, and the surface tension of the nucleus. The
numerical values for the model input constants need to be determined by detailed
experiments and/or ab initio computations for the system under consideration.
Numerical calculations applicable to the time-dependent Ginzburg-Landau equa-

tion with the nonlinear terms will be presented elsewhere. Subsequent steps in our
study are an extension of the calculations to a two-component field structural or-
der parameter, the space-time evolution of the order parameter in the vicinity of
defects, and the coupling of the composition and the structure order parameters.
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Appendix A. Elimination of elastic field

The procedure of eliminating the elastic field appearing in the expressions of the
system free energy has been discussed by many authors in the literature, e.g. [2,
32, 33]. Here, we outline a simple procedure applicable to our case. The total
free energy functional, Eq. (2), is expressed in terms of two field variables, the
order parameter η and the displacement field vector u. In equilbrium, the spatial
distribution of the order parameter and the displacement are determined by the
Euler-Lagrange equation:

δF
δη

= 0, (A1)

δF
δui

= Qi, (A2)
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where Qi on denotes the force field due to the presence of an elastic defect in
the solid. It has been shown in [24] that this force per unit volume element dV is
Q/dV =Mτ ×b δ(ξ), where ξ is a two-dimensional radius vector perpendicular to
τ with origin at the dislocation line, τ is a vector parallel to the dislocation line, b
is the Burgers vector, and δ(•) is the Dirac delta. Thus, by virtue of Eqs. (2)-(5),
Eqs. (A1) and (A1), respectively, yield

r0η + u0η
3 + v0η

5 + 2κη∇ · u = g∇2η, (A3)

M∇2u+ (Λ−M)∇∇ · u+ κ∇η2 =Mτ × bδ(ξ), (A4)

where Λ ≡ K + 2M(1− 1/d). For an edge dislocation, τ = −ez is constant along
the dislocation line, while the Burgers vector is in the x direction b = ex. Here,
ei denotes the unit vector along the i axis. Hence the right hand side of Eq. (A4)
for an edge dislocation becomes −Mbeyδ(x)δ(y), which gives Eq. (7). Solving now
Eq. (7) the two components of the displacement vector are

ux =
b

2π

[
D

xy

x2 + y2
− arctan

(x
y

)]
− κ

Λ
∇x∇−2η2, (A5)

uy =
b

2π

[
D

y2

x2 + y2
− M

2Λ
log

(x2 + y2

b2

)]
− κ

Λ
∇y∇−2η2, (A6)

where D = (K+M/3)/Λ and ∇−2 is the inverse Laplacian operator. The dilatation
strain ∇ · u = ∇xux +∇yuy is (cf. with relations in [24])

∇ · u = − b

2π

2M

Λ

( y

x2 + y2

)
− κ

Λ
η2. (A7)

Inserting Eq. (A7) into Eq. (A3), we write

g∇2η = r1η + u1η
3 + v0η

5, (A8)

where renormalized parameters are

r1 = r0 − κA
cos θ

r
, u1 = u0 −

κ2

Λ
, (A9)

with A = (2b/π)M/Λ, θ = arctan(y/x) and r2 = x2 + y2.

Appendix B. Eigenfunctions and eigenvalues of Ĥ: Variational and
perturbative method

We use the method proposed by Dubrovskii [21] to solve Eq. (10). In this method

one first writes Eq. (14) in the operator form Ĥψ = Eψ, where Ĥ = Ĥ0+ Ĥ1, and

Ĥ0 = −∇2 +
α1 − 2q cos θ

4ρ2
− α2

ρ
, (B1)

Ĥ1 =
sin θ

ρ
− α1 − 2q cos θ

4ρ2
+
α2

ρ
, (B2)

where q, α1 and α2 are variational parameters to be determined. Now the variables
in the equation Ĥ0ψ = E0ψ are separable. Hence we write ψ(ρ, θ) = R(ρ)Φ(θ),

Page 15 of 19

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

June 10, 2011 9:28 Philosophical Magazine manuscript

16 REFERENCES

then the following equations are obtained

d2Φ

dz2
+ (a− 2q cos 2z)Φ = 0, (B3)

d2R

dρ2
+

1

ρ

dR

dρ
+
[(
E0 +

α2

ρ

)
− l2

ρ2

]
R = 0. (B4)

Here, θ = 2z + π, l2 = (a + α1)/4 and a is a separation constant. Equation
(B3) is Mathieu’s equation [34, 35]; whereas Eq. (B4) is the 2-dimensional radial
Schrödinger equation, and its solution depends only on |l| [36]. The periodicity
condition of θ with a period 2π is satisfied by the Mathieu functions cem(z, q) and
sem(z, q) where m is the order of the functions assuming even integers here; hence
solution to Eq. (B3) can be expressed as

Φm =

{
cem(a, z, q), m = 0, 2, 4, . . . ,
sem(a, z, q), m = 2, 4, 6, . . . ,

(B5)

where the notation ce and se comes from cosine-elliptic and sine-elliptic, respec-
tively. One should note that for each q, the separation constant a assumes an infinite
set of discrete values depending on the index and the parity of the functions; see
Appendix C.
The normalized eigenfunction of the radial equation (B4) is well known, e.g. ref.

[36], and can be expressed in the form

Rnl(ρ) =
2βn
(2|l|)!

[
(n+ |l| − 1)!

(2n− 1)(n− |l| − 1)!

]1/2

(2βnρ)
|l| exp(−βnρ)

×1F1(−n+ |l|+ 1, 2|l|+ 1, 2βnρ), (B6)

where 2βn ≡ α2/(n−1/2), n = 1, 2, 3, . . . , and 1F1(a, b, z) is the confluent hyperge-
ometric function of the first kind [34]. Also in this setting, l = 0, 1, 2, 3, . . . , n− 1.
The bound state energy levels are

E(0)
n = − α2

2

4(n− 1/2)2
= −β2n. (B7)

Thus the composite eigenfunction for the system under consideration is

ψmnl = Φm(z, q)Rnl(ρ). (B8)

In general, the eigenfunctions and the eigenvalues of the Hamiltonian Ĥ0, see
Eq. (B1), can be classified by three characteristic numbers {n, p,m}, where n =
0, 1, 2, . . . is the radial solution index, p = 0, 1 the parity index, determing the
inversion symmetry with respect to variable z, and m is the index of the Mathieu
function, taking up only even integers, viz., m = 0, 2, 4, . . . for p = 0 and m =
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2, 4, 6, . . . for p = 1. The eigenfunctions of Ĥ0 can be expressed in the form

ψnpm =
Anpm√
π
ρµ exp(−βnpmρ)1F1(−n, 2µ+ 1, 2βnpmρ)Φnpm, (B9)

where Φnpm = δp,0cem + δp,1sem, (B10)

βnpm =
α2

2µ+ 2n+ 1
, (B11)

µ =
1

2
(a+ α1)

1/2, (B12)

a = δp,0am + δp,1bm, (B13)

Anpm =

√
2(2βnpm)

1+µ

Γ(2µ+ 1)

√
Γ(2µ+ n+ 1)

n!(2µ+ n+ 1)
, (B14)

and E(0)
npm = −β2npm, (B15)

where E
(0)
npm define the energy eigenvalues for the Hamiltonian [21, 25]. Considering

the ground state ψ000 with β = β000 = α2/(2µ + 1) and µ = (a0 + α1)
1/2/2, and

comparing with the relations in Eq. (22), the relations in Eq. (23) follow.
Next, using standard perturbation technique, the first (non-zero) shift is calcu-

lated through (B15)

E
(2)
000 = E

(0)
000(q0) +

(
⟨000|Ĥ1|002⟩

)2
E

(0)
000(q0)− E

(0)
002(q2)

(B16)

with

⟨000|Ĥ|002⟩ ≡
∫ ∞

0
ρdρ

∫ π/2

−π/2
ψ000(q0, ρ, z)Ĥψ002(q2, ρ, z)dz. (B17)

Here, q0 and q2 are the the minima of E
(0)
000(q) and E

(0)
002(q), respectively, calculated

through Eq. (B15) with numerical values listed below

State qmin α1 α2 E
(0)
npm(qmin)

|000⟩ 3.91792 5.80765 0.741165 -0.105288
|002⟩ 2.76301 3.77263 0.682702 -0.0277153

Hence, Eq. (B17) gives ⟨000|Ĥ|002⟩ = 0.0221 and Eq. (B16) yields E
(2)
000 = −0.112.

Our calculated numerical values agree well with those reported by Dubrovskii [21]
for the ground state, but differ somewhat for the first excited state.

Appendix C. Angular Solutions

The angular solutions Φm(z, q), Eq. (B5), expressed in terms of the Mathieu func-
tions cem(a, q, z) and sem(a, z, q) have subtle properties. The value of a in Eq. (B3)
form the eigenvalues of the equation; for cem they are commonly denoted by am(q),
whereas for sem by bm(q). Hence we write: a ⇒ a(p,m) = δp,0am + δp,1bm with
p = 0, 1 and δp,q denoting the Kronecker δ. The index m takes up even integers
starting from zero for p = 0 and from 2 for p = 1. The Mathieu functions form a

Page 17 of 19

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

June 10, 2011 9:28 Philosophical Magazine manuscript

18 REFERENCES

complete set of functions in the interval 0 < z < 2π, namely∫ 2π

0
cem cendz =

∫ 2π

0
sem sendz = πδm,n (C1)

Finally, since the Mathieu functions cem and sem are periodic, they can be ex-
panded by Fourier series

ce2r(a, q, z) =

∞∑
k=0

A2k(q) cos(2kz) (C2)

se2r+2(a, q, z) =

∞∑
k=0

B2k+2(q) sin[(2k + 2)z] (C3)

where r = 0, 1, 2, . . . . The recursion relations between the coefficients are obtained
by substituting these series into Eq. (B3). For example, for ce2r, we obtain

qA2 = aA0 (C4)

qA4 = (a− 4)A2 − 2qA0 (C5)

qA2k+2 = (a− 4k2)A2k − qA2k−2 (C6)

with k ≥ 2. More on Mathieu functions is found in [34, 37].
In Fig. C1, for the sake of illustration, we have plotted cem(am, q, z) for several

even values of m over the plane (z, q), and Fig. C2 shows the variation of the
corresponding eigenvalues am(q) as a function of q.

Figure C1. The Mathieu function cem(am, q, z) for several even values of m over the plane (z, q).
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Figure C2. The eigenvalues of am(q) of the Mathieu function cem versus q.
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