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SUMMARY

‘Mean-field’ models have been proposed as falsifiable hypotheses for the acceleration in
earthquake rate and other geophysical parameters prior to laboratory rock failure and volcanic
eruptions. Importantly, such models may permit forecasting failure or eruption time. However,
in existing retrospective analyses it is common to find examples of inappropriate techniques for
fitting these models to data. Here we test the two main competing hypotheses—exponential and
power-law acceleration—using maximum likelihood techniques and an information criterion
for model choice, based on a Poisson process with variable rate. For examples from the
laboratory and Mt Etna, the power law is clearly the best model, both in terms of the fit
and the resulting error structure, which is consistent with the Poisson approximation. For
examples from Kilauea and Mauna Loa the results are less clear-cut and the confidence
interval underestimates the number of outliers. Deviations from the models most likely reflect
local interactions and/or non-stationary loading processes not captured by the mean-field
approach. In addition, we use simulations to demonstrate an inherent problem with model
preference, in that a power-law model will only be preferred if failure or eruption occurs
close to the singularity. Although mean-field models may well provide valuable insight into
the physical process responsible for precursory accelerations in earthquake rate, our findings
highlight major difficulties that must be overcome to use such models for forecasting.

Key words: Time series analysis; Creep and deformation; Volcano seismology; Statistical
seismology.
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acceleration take the form of either a power law (¢ # 1) or an
exponential (@ = 1) increase in the rate of precursory signals with

1 INTRODUCTION

Accelerations in the rate of volcano-tectonic (VT) earthquakes, and
other geophysical proxies for deformation, are frequently reported
before volcanic eruptions (Tokarev 1971; Voight 1988; Voight &
Cornelius 1991; McGuire & Kilburn 1997; Kilburn & Voight 1998;
Chastin & Main 2003; Collombet et al. 2003; Sparks 2003; Smith
et al. 2007). Modelling such accelerations may determine the pro-
cesses controlling the approach to eruption and allow forecasting of
future activity. Using observations of deformation, Voight (1988)
proposed and applied an empirical relation to describe accelera-
tions preceding volcanic eruptions. As the eruption approaches, the
acceleration in a geophysical signal 2 is related to its rate by

d?Q d\“
— =K|— 1
dr? (dt) ’ M

where « and K are constants. Solutions to eq. 1 involving positive
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time (Voight 1988; Kilburn & Voight 1998; Main 1999). Solutions
with ¢ > 1 involve a singularity at a finite time, correspondingly
to an instantaneously infinite rate, and frequently interpreted as
the likely eruption onset. Although several different measurements
have been used for 2 (Voight 1988; McGuire & Kilburn 1997),
the number of VT earthquakes is most frequently employed, both
because this is a reasonable proxy for the accumulation of brittle
deformation in the volcanic edifice, and because the data sets are
readily available for processing during a crisis.

Although it has been argued that robust accelerating rates of VT
earthquakes prior to basaltic eruptions are only observed when many
pre-eruptive sequences are averaged (Chastin & Main 2003; Col-
lombet et al. 2003), several studies present convincing evidence for
accelerating precursors before individual eruptions and intrusions
(Vinciguerra 2002; Lengliné et al. 2008). Where they are observed,
accelerating sequences before volcanic eruptions resemble those
in the rate of acoustic emissions (AE) prior to failure in labora-
tory rock-physics experiments. Consequently, eq. 1 has been inter-
preted as generally reflecting the approach of bulk or mean-field
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properties to brittle failure (Voight 1989; Anifrani et al. 1995;
Garcimartin et al. 1997; Guarino et al. 1998), with models proposed
to explain its origin in terms of fracture growth and interaction un-
der a constant or steadily increasing stress (Kilburn & Voight 1998;
Main 2000; Kilburn 2003). Alternative mean-field models have
been proposed to describe the approach to eruption on the basis of
different stress regimes (e.g. Lengliné ef al. 2008). However, these
commonly also predict an exponential or power-law increase in the
acceleration of VT earthquake rate.

Inherent uncertainty is involved when choosing between plau-
sible models on the basis of their goodness-of-fit to observations,
even when employing the most rigorous techniques. It is generally
assumed that earthquake occurrence is a Poisson process whose
mean rate varies in time and space (Marsan & Nalbant 2005) and
whose rate uncertainties in relatively short time intervals should
therefore be approximately Poisson distributed. That is, the vari-
ance of the random uncertainty about the mean rate in each time
interval, o2(d$2/dt), is equal to that mean rate d$2/d¢. However,
it is common to find analyses based on inappropriate model-fitting
techniques such as (i) least-squares regression on discrete data and
(ii) regression of any kind on cumulative data (Voight 1988; De la
Cruz-Reyna & Reyes-Davila 2001; Lengliné et al. 2008). Model
parameters and statistics derived from such analyses are invalid and
potentially misleading (Vere-Jones et al. 2001; Hardebeck et al.
2008; Greenhough et al. 2009), regardless of the suitability of the
models themselves. Consequently, there are clear implications for
the accuracy of any subsequent forecasts.

In this paper we demonstrate how established techniques for
model-fitting and preference can be applied to accelerations in
volcanic earthquake and laboratory AE data. We discriminate ret-
rospectively between power-law and exponential models for ac-
celerations in event rate. We show that the Bayesian Information
Criterion (BIC) is a useful pragmatic measure of model preference,
using simulated earthquake sequences from both models. We then
apply these techniques to illustrative examples from basaltic vol-
canoes and laboratory brittle-creep experiments. We highlight the
difficulty in choosing between models unless the final few data
points are available, and that in some accelerating earthquake rates
prior to volcanic eruptions, there are systematic departures from the
model with time. Our findings indicate that quantitative forecasting
on the basis of mean-field models will be associated with significant
challenges.

2 SIMULATED ACCELERATIONS
TO FAILURE

Fig. 1(a) shows a simulated accelerating sequence of earthquakes
whose mean rates are proportional to [y — ¢]~?,where p = 0.7, with
tr, the failure time, fixed before fitting. Note that for this model #¢
is defined by a singularity. We use the maximum likelihood code
of Ogata (2006), to fit a power-law acceleration and an exponen-
tial acceleration of form exp (—A|# — ¢]) to the observed event
times (note, not to the cumulative event number); these are plotted
in Fig. 1(b). As the simulated data consist of a series of discrete
events, the observed rates will vary about the modelled mean rates
according to Poisson distributions. Given most rates lie scattered
within the 95 per cent confidence interval, the data might be consid-
ered consistent with both models; how then can we choose between
them? On one hand, there are suggestions of systematic deviations
from the wrong-model fits, which may be sufficient grounds for
their rejection. On the other hand, if we decide these deviations
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Figure 1. (a) Daily and cumulative numbers of events in a simulated earth-
quake sequence with an underlying power-law acceleration in mean rate
with p = 0.70. (b) Maximum likelihood estimated power-law (solid dark
grey; p = 0.71) and exponential (solid light grey; A = 0.04), fits to event
rates for entire sequence along with the 95 per cent confidence intervals for
the observed rates (dashed). (c) As for (b) but for sequence truncated 20
days before power-law singularity (p = 0.22, A = 0.015).

are insignificant and have no prior model preference, then the BIC

provides a simple means of choosing the best model based on the

likelihood of the observations, with a bias towards the model with

fewer parameters. The BIC has been used widely for pragmatic de-

cision making, as supporting (though not sufficient) evidence for a

model; see Kass & Raftery (1995) for a comprehensive review.
The BIC is given by

BIC = —2InL + Pln(n), )

where L is the likelihood of the observations given the model, P
is the number of free parameters and » is the number of observa-
tions. In making an inference, the preferred model is more likely to
have the lower BIC. Where ABIC is the positive difference in BIC
between the two models, the difference in likelihood is given by
exp(ABIC/2) in the case where both models have the same number
of parameters. Attaching conventional confidence levels to BIC dif-
ferences is difficult (Kass & Raftery 1995) though it is possible to
estimate the expected number of false-positives via simulations (i.e.
in how many simulations does the true model have a higher BIC),
with the caveats that (i) fits to simulations need to be validated in
terms of both visual scatter and parameter plausibility and (ii) sim-
ulations are unlikely to capture the complexity of the real system.

NO Ad 062129/ 2/Z/58 1 /e01ue/1[6/woo dno-ojwepeoe//:sdiy wolj pepeojumoqd

1202 JoquIsAON 80 UO Jo



720  A. Bell et al.

Note that we are not considering the parameter estimates per se,
for which significant bias and uncertainty may exist for the small
sample sizes routinely available. In addition, it is important to try
different data selection criteria and initial estimates of parameters
to assess the robustness of the results.

For the data in Fig. 1(b), we have BIC equal to —120 and —7
for the power-law and exponential models, respectively. Since both
models have two parameters (exponent and multiplicative constant),
the BIC difference is equal to twice the log of the ratio of the
models’ likelihoods. As expected, the lower BIC (—120) corresponds
to the model used for simulation, and this difference is considered
‘decisive’ evidence in favour of that model (Raftery 1993). As a first-
order guide to its reliability for this specific scenario, we simulate
500 exponential and 500 power-law accelerating sequences, each
of 100 events, and each fitted by both models. The lower BIC
identifies the correct model in 90 per cent of cases. This success
rate is dependent on the total number of observations; the same
simulations of 20 events returned the correct model in 70 per cent
of cases and for 1000 events the success rate was 99 per cent.

Models predicting a power-law acceleration in the rate of earth-
quakes generally associate macroscopic failure or the onset of erup-
tion with the singularity, where the rate theoretically tends to infinity.
As no singularity is defined for an exponential model, such events
must be associated with fulfilment of a critical strain or strain rate
criterion. However, it is also possible that such a criterion may apply
for the power-law model, with failure or eruption occurring before
the singularity is reached; such a possibility has important implica-
tions for model-fitting and preference. To demonstrate this, Fig. 1(c)
shows the same simulated power-law accelerating earthquake se-
quence as in Fig. 1(b), but with the hypothetical eruption time 20 d
earlier. We now refit both power-law and exponential functions to
this truncated power-law sequence, maintaining the assumption that
the eruption time corresponds to the power-law singularity. Interest-
ingly, in this scenario ABIC = 1, indicating a marginal preference
for the exponential model (1.6 times more likely), even though the
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data were generated by a power law, with similar results obtained
for multiple simulations.

3 EXAMPLES OF ACCELERATION TO
FAILURE FROM NATURAL SYSTEMS

We now consider examples of accelerating rates of VT earthquakes
from basaltic volcanoes Kilauea and Mauna Loa, Hawaii and Mt
Etna, Sicily and AE data from laboratory brittle-creep experiments.
Lengliné et al. (2008) present examples of accelerating VT earth-
quake sequences preceding the 1983 eruption at Kilauea, 1984
eruption at Mauna Loa, and fit both power-law and exponential
models to cumulative earthquake numbers. However, they use an
inappropriate statistic, R* derived from least-squares regression on
cumulative data (see Section 1), to support a preference for the
exponential model. Here we reanalyse these sequences, applying
the same spatial, temporal and magnitude data selection criteria as
Lengliné ez al. (2008) to enable direct comparison. To perform the
model fits, we again apply the maximum likelihood code of Ogata
(2006) with a known failure time. We then validate the resultant fits
by considering the rates, which should be randomly scattered within
some confidence interval.

Figs 2(a) and (b) show the daily earthquake rate and total num-
ber of earthquakes as a function of time, and best-fit power-law
and exponential models of the earthquake rates, preceding the 1983
eruption at Kilauea and the 1984 eruption at Mauna Loa. Due to
the large number of observed rates outside the 95 per cent confi-
dence intervals, many more than the expected one in 20, the data
from Kilauea are not consistent with either model and hence de-
rived statistics, and any forecasts that could be issued using them,
are not valid. In contrast, the fluctuations in earthquake rates in the
Mauna Loa sequence are consistent with the Poisson confidence
intervals of both models. However, they are not randomly scat-
tered along the sequence for the power-law model, instead lying
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Figure 2. Accelerating rates of earthquakes preceding the (a) 1983 eruption at Kilauea and (b) 1984 eruption at Mauna Loa. Data have been selected according
to the criteria of Lengliné et al. (2008). Top panel: daily and cumulative numbers of events. Bottom panel: rates, maximum likelihood power-law (solid dark
grey) and exponential models (solid light grey) and 95 per cent confidence limits (dashed). Estimated model parameters are (a) p = 0.26, » = 0.001 and

(b) p = 0.46, A = 0.002.
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systematically below and above the fit, and hence the exponential
model is preferred.

The two accelerating sequences in Figs 2(a) and (b) evolve over
timescales in excess of 5 yr. The sequence from Kilauea covers a
period during which many smaller eruptions and dyke intrusions
occurred, themselves commonly associated with accelerating rates
of earthquakes on shorter timescales (Klein ef al. 1987). We now
analyse two such accelerations preceding the 1981 August and 1982
June dyke intrusions (Figs 3a and b), along with accelerating rates of
magnitude >2.5 earthquakes preceding the 1989 September erup-
tion of Mt Etna (Vinciguerra 2002, Fig. 4). These sequences evolve
over timescales between 120 and 500 d. In all three cases, the ob-
served earthquake rates are consistent with expected random varia-
tion around both models. For the two examples for Kilauea, ABIC
= 11 and 14 in favour of the exponential with respective likeli-
hood ratios of exp(ABIC/2) ~10% and 103. For the example from
Mt Etna, it is the power law that is preferred (ABIC = 21, likeli-
hood ratio ~10%). However, in all three cases the earthquake rates
show signs of small temporally correlated deviations above and be-
low these models, suggesting the influence of additional factors not
captured by a mean-field approach, such as material heterogeneities
that affect bulk properties disproportionately.

Laboratory brittle-creep experiments have been proposed as
an analogy for macroscopic failure preceding volcanic eruptions
(Voight 1989; Main 2000). Like VT earthquakes, AEs are generated
by brittle failure (Benson et al. 2008), consequently both phenom-
ena are considered to reflect the progression of damage towards
macroscopic failure. Here we analyse AE data from a previously
published laboratory brittle-creep experiment to illustrate appropri-
ate model-fitting and preference techniques in a potentially related
scenario, but on a vastly smaller scale. Fig. 5 shows the number of
AE events per minute and total number of AE events as a function
of time recorded during a brittle-creep experiment on a sample of
Darley Dale sandstone. The sample was held at a constant stress of
125 MPa (a high proportion of its short-term failure stress) until
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Figure 4. Accelerating rates of earthquakes preceding the 1989 September
eruption at Mt Etna. Top panel: daily and cumulative numbers of events.
Bottom panel: rates, maximum likelihood power-law (solid dark grey) and
exponential models (solid light grey) and 95 per cent confidence limits
(dashed). Estimated model parameters are p = 0.6, A = 0.009.

acceleration to failure, after approximately 3600 min, promoted by
stress corrosion reactions. During secondary creep the sample de-
formed at a steady-rate creep strain rate of 1.3 x 1078 s=!. Details of
the experiment are published in Heap ef al. (2009). We take the final
800 min of the experiment which involve the acceleration to failure,
and cut the AE catalogue according to a completeness magnitude
of 1.5 log(energy) units. The power-law and exponential best-fit
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Figure 3. Accelerating rates of earthquakes preceding the (a) 1981 August and (b) 1982 June intrusions at Kilauea. Data have been selected according to the
criteria of Lengliné et al. (2008). Top panel: daily and cumulative numbers of events. Bottom panel: rates, maximum likelihood power-law (solid dark grey)
and exponential models (solid light grey) and 95 per cent confidence limits (dashed). Estimated model parameters are (a) p = 0.33, A = 0.016 and (b) p =

0.19, A = 0.006.
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Figure 5. Accelerating rates of acoustic emissions preceding sample failure
during a brittle-creep experiment (Heap et al. 2009). Top panel: daily and
cumulative numbers of events. Bottom panel: rates, maximum likelihood
power-law (solid dark grey) and exponential models (solid light grey) and
95 per cent confidence limits (dashed). Estimated model parameters are
p=0.9, 1 =0.016. Inset shows exaggerated y-axis for clarity.

models are again determined using the maximum likelihood code
of Ogata (2006). The data show a rapid acceleration just before fail-
ure that is consistent only with the power-law model (with p = 0.9)
and there are no obvious systematic fluctuations about this model
on the scale of the bin widths.

4 DISCUSSION

We have demonstrated appropriate techniques for fitting and distin-
guishing between power-law and exponential models for accelera-
tions in volcanic earthquake and laboratory AE data. Our intention
is not to suggest one model is preferred in all cases. Indeed, on
the basis of model validity and/or the BIC, although the power-law
model is preferred for the examples from Mt Etna and the lab-
oratory, the exponential model is preferred for the examples from
Mauna Loa and the two intrusions at Kilauea. Analysis of a far more
extensive set of sequences would be required to establish whether
either model, or an alternative model altogether, is most likely in
general. It is possible that such a data set does not yet exist.

Much of the difference between the power-law and exponential
models appears close to the ends of the sequences. Even in the
case of retrospective model evaluation, Fig. 1(c) demonstrates that
a power-law acceleration can only be identified if eruption or sam-
ple failure approximately coincide with the power-law singularity.
Consequently, it is possible that the volcanic sequences for which
an exponential model is preferred are actually power-law accelera-
tions, but with the onset of eruption determined by a critical strain or
strain-rate criterion that is satisfied significantly before the power-
law singularity. Such a criterion could correspond to a sufficient
local reduction of the minimum principal stress to permit dyke in-
jection, for example. Theoretical considerations also suggest that
it may be possible for a sequence to evolve with time from an ex-
ponential to power law (McGuire & Kilburn 1997; Kilburn 2003).
Such a transition will be difficult to confirm in a forecasting scenario

until close to the eruption unless there are strong prior constraints
on parameters and timescales.

This observation raises a fundamental difficulty with forecasting
on the basis of such models. An exponential model requires failure
to occur before an effectively infinite earthquake rate is reached, but
a power-law model with such a criterion will be indistinguishable
from an exponential. Consequently, without prior constraints on pa-
rameter values, we suggest it is unwise to use data fitting to prefer an
exponential model. Hence in a forecasting scenario, where analysis
can only be carried out on the early part of the sequence, model
preference based solely on the available data could be highly mis-
leading. Reliable forecasting might be possible only where strong
prior constraints exist on eruption criteria or parameter values.

In real data, model-fitting and preference will be further compli-
cated by the existence of earthquake clustering. Given an underlying
acceleration in the mean rate of earthquakes, earthquake triggering
will lead to greater temporal clustering than in a Poisson process
(Gardner & Knopoff 1974; Huc & Main 2003). The presence of
clustering will only make the best model and parameters even more
uncertain. Although there is little research on earthquake cluster-
ing in volcanic data sets, in future both retrospective analysis and
prospective forecasting will require the use of declustering tech-
niques or models which account for earthquake triggering (Helm-
stetter & Sornette 2003). In addition, earthquake data could be
combined with additional independent sources of information, such
as ground deformation or geochemical signals, to provide improved
forecasting schemes.

In all the volcanic sequences, we identify systematic deviations
from the simple power-law and exponential models. Volcanoes
and laboratory rock samples are complex systems that comprise
many interacting processes but whose bulk behaviour may be cap-
tured by comparatively simple models. Although certain processes
may be dominant at small scales, at large scales these may be
modelled as stochastic fluctuations around a deterministic trend.
However, depending on the relative scales and amplitudes of the
processes involved, certain processes may appear as systematic de-
viations from simple models. Therefore, earthquake rate data is
insufficient to distinguish between models. Analysis of larger data
sets than are currently available, and of other properties such as
magnitude—frequency distributions and spatial and temporal clus-
tering, may eventually allow this distinction to be made.

In the laboratory, relatively homogeneous rock samples are cho-
sen with a grain size an order of magnitude smaller than the sample.
This selection imposes a minimum relative scale difference between
the bulk sample behaviour and that of individual grains, allowing the
data to be modelled as a simple deterministic trend with stochastic
(Poisson) fluctuations as seen in Fig. 5. However, the relative hetero-
geneity of volcanic settings introduces multiple processes on scales
comparable to the whole system. Depending on the volcano and on
the model considered, these may include failure of large material
asperities, changes in regional stress conditions [e.g. due to flank
instability, Brooks et al. (2006)] or changes in magma pressure due
to small eruptions or intrusions. Such processes give rise to system-
atic deviations from simple model predictions for the bulk system
and hence degrade the forecasting power.

5 CONCLUSIONS

Accelerating rates of earthquakes are frequently observed before
volcanic events and failure in laboratory analogues. However, such
sequences are routinely modelled using inappropriate techniques,
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particularly least-squares regression on cumulative quantities. In
this paper we show how volcanic and laboratory data sets can be
analysed using (1) a maximum likelihood technique to fit power-law
and exponential rate models to sequences of earthquake times, and
(2) the BIC for model preference where the data are consistent with
both. We find that for different volcanic and laboratory sequences
the power-law or exponential models may be preferred, but that in
volcanic data there frequently exist significant systematic devia-
tions that invalidate these mean-field models. Consequently, even
in retrospect, it is only possible to identify a power-law model if the
culmination of the accelerating sequence is close to the singularity.
The deviations from the model trends, coupled with the sensitivity
of model preference to the final few points of the sequence, imply
that the uncertainties in forecasts from exponential or power-law
models are currently very difficult to quantify. Hence in a forecast-
ing scenario, model preference and predicted eruption times are
likely to only be reliable a short time in advance.
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