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CARLEMAN ESTIMATES FOR SEMI-DISCRETE PARABOLIC
OPERATORS AND APPLICATION TO THE CONTROLLABILITY
OF SEMI-LINEAR SEMI-DISCRETE PARABOLIC EQUATIONS

FRANCK BOYER' AND JEROME LE ROUSSEAU#¥

Abstract. In arbitrary dimension, in the discrete setting of finite-differences we prove a Car-
leman estimate for a semi-discrete parabolic operator, in which the large parameter is connected
to the mesh size. This estimate is applied for the derivation of a (relaxed) observability estimate,
that yield some controlability results for semi-linear semi-discrete parabilic equations. Sub-linear
and super-linear cases are considered.

Key words. Parabolic operator — semi-discrete Carleman estimates — observability — null
controllability — semilinear equations

AMS subject classifications. 35K10; 35K58; 656M06; 93B05; 93B07.

1. Introduction and notation. Letd > 1, Lq,..., Ly be positive real numbers,
and Q = ] (0,L;). We set & = (z1,...,24) € Q. With w € Q we consider the
1<i<d

following parabolic problem in (0,7") x Q, with 7" > 0,
Oy — Vg - (vay) =1,vin (03T) x €, Yoo = 0, and Yit=0 = Yo, (11)

where the diagonal diffusion tensor I'(x) = Diag(yi(x),...,va(x)) with v (x) > 0
satisfies

+ \vm%(mn) < +oo. (1.2)

def 1
reg(l’) = ess sup <%, x) +
" @ @)

xze
i=1,....d

The distributed null-controllability problem consists in finding v € L?((0,7T) x 2) such
that y(T) = 0. This problem was solved in the 90’s by G. Lebeau and L. Robbiano
[LR95] and A. Fursikov and O. Yu. Imanuvilov [FI96]. By a duality argument the
null-controllability result for (1.1) is equivalent to having the following observability
inequality

9(0)[72() < CobsllallF2 (0,1 xw)» (1.3)

for ¢ solution to (0; + Vg - (T'Vay))q =0 and gjpq = 0.
Let us consider the elliptic operator on 2 given by

A= _vm . (Pvm) = - Z aﬂb’z (’Ylasz)

1<i<d

with homogeneous Dirichlet boundary conditions on 0€2. We shall introduce a finite-
difference approximation of the operator A. For a mesh 9t that we shall describe
below, associated with a discretization step h, the discrete operator will be denoted
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by A™. Tt will act on a finite dimensional space R™, of dimension |9|, and will be
selfadjoint for the standard inner product in R™. Our main result is the derivation
of a Carleman estimate for the operators 9; + A™, i.e., a weighted energy estimate
with a localized observation term, which is uniform with respect to the discretization
parameter h. The weight function is of exponential type.

There is a vast literature on Carleman estimates going back from the original
work of T. Carleman [Car39] and the seminal work of L. Hormander [H6r58] (see also
[Ho6r63, Chapter 8] and [H6r85, Chapter 28]). These estimates were first introduced for
the purpose of proving and quantifying unique continuation (see [Zui83] for manifold
references). In more recent years, the field of applications of Carleman estimates has
gone beyond the original domain they had been introduced for. They are also used
in the study of inverse problems and control theory for PDEs. For an introduction to
Carleman estimates and their applications to controllability of parabolic equations,
as we shall use them here, we refer for instance to [FCG06] and [LL11].

From the semi-discrete Carleman estimates we obtain, we deduce an observation
inequality for the operator d; — A™ + a, where a is a bounded potential function:

|Qh(0)|2L2(Q) < CObS”qh”%Z((O,T)Xw) + Ch|Qh(T)|2L2(Q)7

for ¢ (semi-discrete) solution to (9; — A™ + a)gn, = 0. Special care is placed in
the estimation of the observability constant Cyps and the constant C}, in particular
in their dependency upon ||al|s. The observability inequality is weak as compared
to that one can obtain in the continuous case; compare with (1.3). Here, there is
an additional term in the right-hand-side of the inequality. In fact, because of the
presence of this term we shall speak of a relazed observability inequality. Earlier work
[BHL10a, BHL10b] showed that this term cannot be removed and is connected to an
obstruction to the null-controllability of the semi-discrete problem in space dimension
greater than two, as pointed out by a counter-example due to O. Kavian (see e.g. the
review article [Zua06]). Still, by duality, the relaxed observability estimate we derive is
equivalent to a controllability result. Because of the aforementioned counter-example
we do not achieve null-controllability, yet we reach a small target, which size goes to
zero exponentially as the mesh size h — 0. We speak of a h-null controllability result,
a notion that should not be confused with approximate controllability: the size of the
neighborhood of zero reached by the solution of the parabolic equation at the final
time t = T is not fixed; it is a function of the discretization step.

The dependency of the observability constant with respect to the norm |al|
allows one to tackle controllability questions for parabolic equations with semi-linear
terms, in particular cases of super-linear terms. In the continuous case, this was
achieved in [Bar00, FCZ00]. To our knowledge, in the discrete case this question
were only discussed in [MFC12]. Here, we shall consider such questions in the case of
semi-discretized equations and we shall be interested in proving h-null controllability
results. Some of the results we give are uniform with respect to the discretization
parameter: h-null controllability is achieved with a (semi-discrete) control function
whose L2-norm is bounded uniformly in h.

Precise statements of the results we obtain require the introduction of the settings
we shall work with.

For1<i<d,ieN,weset Q; = T[] (0,L;). For T > 0 we introduce

1<5<d
J#i

Q:(O,T)XQ, Qi:((),T)XQZ‘, 1§z§d
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We also set boundaries as (see Figure 1)
0; =TI [0,L;]x {0} x [T [0,L;], ofQ= TI [0,L;]x{Li}x II [0,L],
1<<i i<j<d 1<<i i<j<d

90 =0QU0 Q, 9= U 9.
1<i<d

o0
Lo
o7 Q orQ
0 95 Q Ly

Fic. 1. Notation for the boundaries in the 2D case

1.1. Discrete settings. We shall use uniform meshes, i.e., meshes with constant
discretization steps in each direction. The introduction of more general meshes is
possible. We refer to [BHL10b] for some families of regular non uniform meshes that
one can consider.

The notation we introduce will allow us to use a formalism as close as possible
to the continuous case, in particular for norms and integrations. Then most of the
computations we carry out can be read in a very intuitive manner, which will ease
the reading of the article. Most of the discrete formalism will then be hidden in the
subsequent sections. The notation below is however necessary for a complete and
precise reading of the proofs.

We shall use the notation [a,b] = [a,b] N N.

1.1.1. Primal mesh. For i € [1,d] and N; € N*| we set h; = L;/(N; + 1) and
x;.; = jhi, j € [0, N; + 1], which gives
O0=a40<win <- - <N, <Tin,+1 = Li.
We introduce the following set of indices,
Ni={k=(ki,....ka); ki €[1,N;], i€[1,d]}

For k = (k1,...,kq) € M we set T = (T14y5.--,Tdky,) € Q. We refer to this
discretization as to the primal mesh

N = {wk; ke 9’1}, with 9] := [ N
i€[1,d]

We set h = max;e[y,q4) hi and we impose the following condition on the meshes that
we consider: there exists C' > 0 such that

C™'h<h; <Ch, i€[l,d]. (1.4)



4 F. BOYER AND J. LE ROUSSEAU

1.1.2. Boundary of the primal mesh. To introduce boundary conditions in
the ith direction and related trace operators (see Section 1.1.5) we set 9;91 = 9, N U
9;"M with

Oy N={k=(ki,...,ka); kj € [1,N;], j € [1,d], j #1i, ki =0},
N ={k=(ki,....ka); kj € [L,N;], 5 € [1,d], j#4, ki=N; +1},
and

MN= [Hdﬂ@i‘ﬂ, oM = {zy; k€ N}, 9M={zx; k€N
el

1.1.3. Dual meshes. We will need to operate discrete derivatives on functions
defined on the primal mesh (see Section 1.1.6). It is easily seen that these derivatives
are naturally associated to another set of staggered meshes, called dual meshes. In
fact there will be two kinds of such meshes: the ones associated to a first-order discrete
derivation and the ones associated to a second-order discrete derivation. Let us define
precisely these new meshes (see Figure 2).

For i € [1,d] and N; € N*, we set z; ; = jh; for j € [0, N;] + %, which gives

0= Tio <T;1 <x1 < $i71+% <<y N, < xi,NH»% < TjN;+1 = L;.

1
2
For i € [1,d], we introduce a second type of sets of indices
—i 1
N = {k = (k1,... ka); kj € [1,N;] j € [1,d], j # i,and k; € [0, N;] +§}.
For j € [1,d], j # i, we also set Bjﬁi = 8;% U afﬁi with
o7 = {k= (k... ka)s ko € [LNG], &' € [Ld), 7 #i, £,
1
ki € [0,Ni]+ 5, and k; = 0},
o = {k: (k1 ... ka); ko € [1,No], ¢ € [1,d], ¢ #i, i # ],

1
ki € [0, N+ 5, and k; = N; + 1},

and ON = Uje.al @ﬁi. We moreover introduce &ﬁi =0; Nu 8;' N with
i

. 1
o = {k::(kl,...,kd); k; € [L,N;], e, d], j#4, kizg},
OFW = {ko = (k. cka)s by € [LNL, g€ [l j # i ki = Ni+ 5 |-
Remark that @W C M whereas @ﬁi (4 N for j # .
For i,j € [1,d], i # j, we introduce a third type of sets of indices

ﬁij = {k = (kla-..7k.d); kz” S [LN’L"]]a i/ € [Ld]]v i/ #Z’ i/ 7&']

1 1
and k; € [0, NV;] + 5 k; € [0,N;] + 5}
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For 1 € [1,d], I # 4, 1 # j, we also set oM’ = Bfﬁ” U 8?%“ with
oM = {k: (k1,... k) ko € [L,No], @ € [1,d], & #4, i’ #3, @ #1,
ki € [0, N:] + % k; € [0, N;] + % and k = 0},
o = {k: (k1 ... k) ko € [LNo], ¢ € [Ld], ¢ #i, @ #j, @ #1,
ki € [0, Ni] + % k; € [0,N,] + % and k = N + 1},

and oM = U le1,d] 8lﬁ”. Moreover we set 81-%” =0; n’u 8{" N with
173,07

o7 = {k = (k1,. . ka)s b € [LNGD, @ € [Ldl, 7 44, 1 5,
1 1
k; = 2 k; € [0, N;] + 5}7
ofm’ = {k: (i, ka); ko € [L,Ny], ' € [1,d], @ #1, i’ # ],
1 1
k; = N; + 57 kj € [[07NJ]] + 5}

Fork = (ky,...,kq) € M or ON (resp. N~ or N”) we also set xj, = (T4 ks Tdky)s
which gives the following dual meshes

M= {aw; kM), M = {ow ke, 95N = {aw ke N},
frosp. T o= (s ke T}, G {ans k€ ),
8?%“ = {azk; k € 8#%”})

X M
X X o
e O ] ) N--- o m
m 0
0) X 0) X [0}

»
o)

©)
=

FiGg. 2. Primal and dual meshes in the 2D case.
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1.1.4. Discrete functions. We denote by R™ (resp. R™ or R™") the sets of
discrete functions defined on 9 (resp. M or ﬁj) respectively. If u € R™ (resp. R™
or Rﬁ”), we denote by ug its value corresponding to x for k € 9 (resp. k € N or
keMN’). For u e R™ we define

= > 1p up € L®(Q), withby= T]] [xiki—lvxiki+l]7 ke MN. (1.5)
ken e[, 2 T2

Since no confusion is possible, by abuse of notation we shall often write u in place of
u™. For u € R™ we define

ffu _ffu x)dx = Z |bk| uk, where |bg| = T[] i

i1€[1,d]
For some u € R™, we shall need to associate boundary values
= {uk; ke 6‘51},

i.e., the values of u at the point &g € 9. The set of such extended discrete functions
is denoted by R¥Y9”  Homogeneous Dirichlet boundary conditions then consist in
the choice uy, = 0 for k € M, in short u?™ = 0 or even ujpq = 0 by abuse of notation
(see also Section 1.1.5 below).

Similarly, for u € R™ (resp. R™”) we shall associate the following boundary
values

omt _ {ur; k€ 8%1} (resp. w7 = {ur; k€ (‘3&”}).
The set of such extended discrete functions is denoted by R¥'Y9™" (resp, R VO™,
For u € R™ (resp. R™"”) we define

Z 1b1 U S LOO(Q) Wlth B;C = H [{L‘l’klfl,xl,lir;L k EﬁL,
kent' lefiagp T C ’
(resp.uDﬁ j — Z 1BijUk S LOO(Q) with B;: = H [l’hkl_%,xl’kl_,’_%}, ke ﬁ”)
kem? " lE[1,d]
As above, for u € R™" (resp. R™"), we define
ffu = ffu z)de= Y |bp|uk, where [b|= TI hi,
keﬁi le[1,d]

(resp ffu —ffum” yde = 3 by | ug, where ’5Z| = ] hl).

ken® le[1,d]

REMARK 1.1. Above, the definitions of by, by, and by look similar. They are
however different as each time the multi-index k = (ki,...,kq) is chosen in a different
set: M, M and N respectively. v -

In particular we define the following L?-inner product on R™ (resp. R™ or R™")

(u,v) r2(0) = ffuv = ffug” v (x) de, (1.6)
(resp. (u, ) 12(0) ff uv = ff ™ (x)o™ (@) da,

or (u,v)r2(q) ff uv = ff W™ ()™ (z )daz)
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The associated norms will be denoted by |u|z2(q)-

For semi-discrete function u(t) in R™ (resp. R™ or R™), t € (0,T), we shall
write [[[ Qudt= I f I, u(t) dt, and we define the following L*-norm

lu(®)1Z2q) = fff( 0)’dt

Endowing the space of semi-discrete functions L2(0, T;R™) (resp. L?(0,T;R™") or
L?(0,T;R™")) with this norm yields a Hilbert space. »

Definition of a space of semi-discrete functions like L>°(0, 7, R™) (resp. L (0, T; R™)
or L>(0,T;R™")) can be done similarly with the norm

lu(t)|| Lo (@) = ess sup sup |ug(t)|.
te(0,T) keN

We shall also use mixed norms of the form

1wl Lo 0,72 (02)) = ess sup |u(t)|p2(q)-
te(0,T)
Similarly we shall use such norms for spaces of semi-discrete functions defined on
(or restricted to) (0,7) X w

1.1.5. Traces. Let i € [1,d]. For u € R™Y™ (resp. R™ Y™ j £ ) its trace
on 9;Q, corresponds to k € 9;"0 (resp. 9;"N), i.e., ki = N; + 1 in our discretization
and will be denoted by u|x,—n,+1 or simply uy, 1. Similarly its trace on 9; €2, corre-
sponds to k € 9; N (resp. 9; M), i.e., k; = 0 and will be denoted by U, —o Or simply
ug. The latter notation will be used if no confusion is possible, that is if the context
indicates that the trace is taken on 9; €.

By abuse of notation, we shall also use 9;€2, 7 € [1,d], to denote the boundaries
of 2 in the discrete setting. For homogeneous Dirichlet boundary condition we shall
write

Voo = 0 & Vig;Q = 0, i€ ﬂl,d]]
o ove Rmzu&mz
0 .

For v € RO (resp. R™VUOMY 5 £ ) its trace on 9; (), corresponds to
k € 90 (resp. N, ie., ki = N; + % in our discretization and will be denoted
by Vjg,=N,+1 OF simply ’UN 41 Similarly its trace on 0; €, corresponds to k € 8;%1

(resp. O; M), d.e., k; = 5 and will be denoted by vy, — 1 oor simply v1. The latter
notation will be used if no confusion is possible, if the confext indicates that the trace
is taken on 0; ).

For such functions u € R™9 (resp. R™ 9™  j -£ ;) we can then define surface

integrals of the type

f Ugra = f Ulky=N;+1 = Z |6lbk{ Uk
afa ‘ Q; keoj o,
(resp. kea )
where [0;be| = [ i, k € 99T (resp. o),

1e[1,d]
I#i
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and for v € R™"VI (pegp. R™7VIMY 5 £ )

/ Vgra = f”\kj,:zvﬁg = > |9iby | Ve,
o Qs keo ot
(resp. kea; i)
where |8i5;c| = p : hi, k€ 9F N (resp. 97 MN).
lefl,d
143

Observe that if k € 9;9 (vesp. 9/ 9') and k' € 99N (resp. O M) with k; = k] for
l # i then |8ibk| = |8i5;c/ . We thus have
J

J Yora = hf Ulk;=N;+31 = Qf(fi_v)wci:Nﬁ-l =/ (ﬂ'_U)\a;rQ
;" Q2 i i

afa

where 7~ v € R™99 ™ (resp. R™ Y9 ™) with the translation operator 7;~ defined
in Section 1.1.6. It is then natural to define the following integrals

f uNi+1,UN7’,+% = f u|ki=Ni+1v|ki:Ni+% = f(“ff”)lkFNﬁl = f u(’fiiv)wlﬂ'ﬂ'
Qi Qi Qi RN

Such trace integrals will appear when applying discrete integrations by parts in the
following sections.

Similar definitions and considerations can be made for integrals over 9, (2.

For u € R™Y9™ (resp. R™Y9™ 5 - ) we can then introduce the following
L?-norm for the trace on 9;Q:

2 2
|U|L2(am) = |u|3¢Q‘L2(3iQ /

) = (U\ki:N,-+1)2+ Ik (u‘kizo)z‘
Q a,

i

For v € R™Y9™ (resp. RV i —£ i) we can then introduce the following
L?-norm for the trace on 9;Q:

2 2
|U\%2(0i9) = |v|3i52|%2(8i9) :hf (u|ki:Ni+%) +§{ (u\ki:%) .

1.1.6. Translation, difference and average operators. Let i,5 € [1,d],
j #i. We define the following translations for indices:

+ .y
T

N (resp. M) = NUIEN (resp. W UGN,

ki 7k,
with

k ifl £
+ l 5
(k) {kl +1 ifi=q.

Translations operators mapping R™Y9” — R™ and R™ Y™ _y R™" are then given
by

(Eu), = Uty k€ N (resp. N7).
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A first-order difference operator D; and an averaging operator A; are then given by
(D = (h) ™M (/ we — (77 i), k€T (resp. ),
s 1 _ —i —ij
(Aju)g = Uy, = 5(( Fu) + (17 W), k€N (resp. N).

Both map R™Y9™ jnto R™ and R™Y9™ into R™” .
We also define the following translations for indices:
7N (resp. W) — N (resp. N°),
k— 75k,
with

! kL ifl=i

Translations operators mapping R™ — R™ and R™’ — R™ are then given by
(ﬂ-iv)k =Vr+K), keMN (resp. ﬁj).

A first-order difference operator D; and an averaging operator A; are then given by

(Div)ie = (he) " ((FT0)k — (7 0)k), k€N (resp. M),
(Aiv) =7}, = %((fm)k + (7 0)k), k€N (resp. MN).

Both map R™ into R” and R™” into R™ .

~1.1.7. Sampling of continuous functions. A continuous function f defined
on ) can be sampled on the primal mesh f™ = {f(zg); k € DN}, which we identify to

=3 Ly fe, fo=[f(xx), kN,
ke

with by, as defined in (1.5). We also set

Fom — {f(xw); k€ oN}, froom — {f(zr); k € NUIMN}.

- The function f can also be sampled on the dual meshes, e.g. m, fr = {f(zr); k €
N'} which we identify to

™= Lifes fio=flze), ke n

ken’

with similar definitions for fO™ f™9%" and sampling on the meshes 9, M~ U
om”.

In the sequel, we shall use the symbol f for both the continuous function and its

sampling on the primal or dual meshes. In fact, from the context, one will be able to

deduce the appropriate sampling. For example, with u defined on the primal mesh,

91, in the following expression, D;(yD;u), it is clear that the function v is sampled
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on the dual mesh M as D;u is defined on this mesh and the operator D; acts on
functions defined on this mesh. B B
To evaluate the action of multiple iterations of discrete operators, e.g. D;, D;, A;, A;
on a continuous function we may require the function to be defined in a neighborhood
of €. This will be the case here of the diffusion coefficients in the elliptic operator
and the Carleman weight function we shall introduce. For a function f defined on a
neighborhood of 2 we set
h
Tlif(x) = f(:c:l:éei), ei:((Sﬂ,...,cSid),
_ _ i 1 B
Dif == (hi) 1(7'i+ -7 ), Af=f= 5(7';_ +7,)f

For a function f continuously defined in a neighborhood of Q, the discrete function
D;f is in fact equal to D;f sampled on the dual mesh, 90", and D, f is equal to D, f
sampled on the primal mesh, 2. We shall use similar meanings for averaging symbols,

f, f, and for more general combinations: for instance, if i # j, D;f, D;D;f , D;D;f'

will be respectively the functions Ijj\f sampled on 971”, m sampled on 9, and
D/iD]\-fZ sampled on 9
1.2. Statement of the main results. With the notation we have introduced,

the usual consistent finite-difference approximation of the elliptic operator A with
homogeneous Dirichlet boundary conditions is

.AW’LL:— Z Di('yiDiu), (17)
i€[1,d]
for u € R™Y9™ gatisfying Upo = u9™ = 0. Recall that, in each term, 7; is the

sampling of the given continuous diffusion coefficient ; on the dual mesh ﬁi, so that
for any u € R™Y9™ and k € N, we have

(A" uw)w) == 2 hf2<%(wﬂ+(k))<(ﬂ+7f“)<k) ’“(’”)

i€[1,d]
— (@7 ) (U(k) - (ﬂ'ﬂ‘_“)w)))'

In 2D, this operator is nothing but the standard 5-point discretization. Note however
that other consistent choices of discretization of v; on the dual meshes are possible,
such as the averaging on the dual mesh M of the sampling of +; on the primal mesh.

The semi-discrete forward and backward parabolic operators are then given by
P =0, £ A™.

1.2.1. Carleman estimate. For the Carleman estimate and the observation/control
results we choose here to treat the case of a distributed observation in w € 2. The
weight function is of the form r = e*? with ¢ = e*¥, with ¢ fulfilling the following
assumption. Construction of such a weight function is classical (see e.g. [F196]).

ASSUMPTION 1.2. Let wy € w be an open set. Let Q bea smooth open and con-
nected neighborhood of Q in R, The function 1 = ¢ (z) is in €P(, R), p sufficiently
large, and satisfies, for some ¢ > 0,

Vv>0inQ, |V >cinQ\wo,
On, P(x) < —c <0 and aﬁiw(m) >0 in V.
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where Vp,q is a sufficiently small neighborhood of 0,2 in Q, in which the outward unit
normal n; to 2 is extended from 0;€).
Let K > |||l and set

o(z) = M (@) _ K 0, ox)= e’\'/’(g”), (1.8)
r(t,z) = e p(tx) = (r(t,2)

with
s(t)=70(t), 7>0, 0(t) = (({t+6T)(T+6T 1)) ",

for 0 <9 < % The parameter § is introduced to avoid singularities at time ¢ = 0 and
t =T. Further comments are provided in Remark 1.4 below.

We have
T2 <mind,  —— ~ maxf=0(0)=0(T) = = < (19)
~ o1’ 126 60 [0,T) T25(1+6) — T2
We note that
040 = (2t — T)6?. (1.10)

To state the Carleman estimate for the semi-discrete operator P, we introduce
the following discrete gradient Y = (Dy, ..., Dy)" and the following notation

t
. A= Y vl f

i€[1,d]

Vo = (V310 foe s aeaf )
In the discrete setting we also introduce D; , f = /7 D;f, i € [1,d], and

Y’yf = (\/’Wlew..,\/’%Ddf)t = (Dl,vfw"?Dd,’Yf)t'

The enlarged neighborhood € of © introduced in Assumption 1.2 allows us to
apply multiple discrete operators such as D; and A; on the weight functions. In
particular, this then yields on 0;{2

(rDip )jk,=0 <0, (rDip )jg,=n,41 >0, i € [1,d]. (1.11)
We now state our first result, a uniform Carleman estimate for the semi-discrete
parabolic operators P* = 0, + A™.

THEOREM 1.3. Let reg® > 0 be given and let a function 1 satisfy Assumption 1.2.
We then define the function ¢ according to (1.8). For the parameter X > 1 sufficiently
large, there exist C, 7o > 1, hg > 0, g9 > 0, depending on w, wy, T, reg®, such that
for any T, with reg(T") < reg® we have

— -1 T 00Ty ¢
T 1||0 2e 0908,5’11”%2(@) +7 Z (||9€ Q‘PDzuH%z(Q) + ||9€ G@Diu H%?(Q))
i€[1,d]
c 3T T b 3 r
+730ze ‘9“’u||2Lz(Q) <C(Jle G”PmuH%Q(Q) +730%e 0¢u||%2((O,T)><w))

+ Ch_2<‘6T0¢U‘t:0|%2(Q) + |679¢U|t:T|%2(Q)), (112)
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for all T > 79(T +T?%), 0 < h < hg, 0 < & < 1/2, Th(0T?)"" < &y, and u €
EL([0, T], RVO™) - satisfying u)0,1yx00 = 0.
REMARK 1.4 (Choice of the parameter ¢).

In the present Carleman estimate the parameter ¢ is introduced to avoid the singularity
of the weight function at times t = 0 and t = T. Such singularities, corresponding
to the case § = 0, are exploited in the continuous case as originally introduced in
[FI96]. Here the parameter ¢ is taken different from 0 and yet connected to the other
parameters: Th(0T?)~! < 9. Many choices are possible for 6. For the controllability
results we shall choose & proportional to the discretization parameter h.

1.2.2. Relaxed observability estimate. The adjoint system associated with
the controlled system with potential

Oy + A"y +ay = 1,v, t€(0,T), ypa =0, (1.13)
is given by
*atq + Amq +aqg=0, te (O,T), Qo0 = 0. (114)

With the Carleman estimate we proved in Theorem 1.3 we have following relaxed
observability estimate for the solutions to (1.14):

O Pa)|w
19(0)[72() < CobsllalZz(0.ryxw) + € 7 el 19(T)[72 (0

2
with Cops = eC2(+T+Tllallotllall) if the discretization parameter is chosen suffi-
ciently small. A precise statement and a proof are given in Section 4.1.

1.2.3. Controllability results. From the relaxed observability estimate given
above we obtain a h-null controllability result for the linear operator P™. This result
can be extended to classes of semi-linear equations:

(O + A™)y +G(y) = 1,v, te(0,7), Yoo =0, y(0) = vo,

with G(x) = zg(x). The equation is linearized yielding a bounded potential and a
control can be built. Then a fixed-point argument allows one to obtain a control
function for the non-linear equation.

First we consider the sublinear case, i.e., we assume that ¢ is bounded. We then
prove a h-null controllability result with a control that satisfies

[vllz2(@) < Clyolr2(a)

were the constant C' is uniform with respect to the discretization parameter h; see
Section 5.1 for a precise statement and a proof.

Second we consider classes of superlinear equations. Following [FCZ00] we assume
that we have

3
lg(z)] < KIn"(e + |z|), =z €R, With0§T<§.

Here the precise dependency of the observability constant upon the norm of the po-
tential ||a||~ allows one tackle such nonlinearities.
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In arbitrary dimension we obtain a h-null controllability result; see Section 5.2.2
for a precise statement and a proof. However, the size of the control function is not
proven uniform with respect to the discretization parameter h:

lv]lz2(@) < Crlyolr2(),

In fact a boundedness argument is needed and here we exploit the finite-dimensional
structure to achieve it. The constants are however not uniform. A refined treatment of
this question require further analysis of the semi-discrete heat kernel; see remark 5.6.
In one space dimension, this difficulty can be circumvented and the uniformity of the
control function is recovered; see Section 5.2.3

1.3. Outline. In Section 2 we present discrete calculus results and estimates for
the Carleman weight function in preparation for the proof of Theorem 1.3. Section 3
is devoted to the proof of Theorem 1.3. In Section 4 we prove the relaxed observability
estimate and a h-null controllability results in the linear case. In Section 5 we study
h-null controllability in the semi-linear case. Some technical proofs are gathered in
appendices.

2. Some preliminary discrete calculus results. This section aims to provide
calculus rules for discrete operators such as D;, D; and also to provide estimates for
the successive applications of such operators on the weight functions.

2.1. Discrete calculus formulae. We present calculus results for the finite-
difference operators that were defined in the introductory section. Proofs are similar
to that given in the one-dimension case in [BHL10a].

LEMMA 2.1. Let the functions f1 and fy be continuously defined in a neighborhood
of Q. Fori € [1,d], we have

Di(f1f2) = Di(f1) fa + f1 Dilf2).

Note that the immediate translation of the proposition to discrete functions f1, fo €
R™ (resp. R™, j #1i), and g1, g2 € R™ (resp. R™" | j # i)

Di(f1f2) = Di(f1) fo+ [ Di(fa), D;(g9192) = Di(g1) g5 + 71 Di(g2).

~ LEMMA 2.2. Let the functions fi and f2 be continuously defined in a neighborhood
of Q. Fori € [1,d], we have

— i ad 2
fife = f1fa+ %Di(fl)Di(fz)-

Note that the immediate translation of the proposition to discrete functions fi, f2 €
R™ (resp. R™ j # i), and g1, g2 € R™ (resp. R™", j # i)

T o h? -
fife =f1f2+ZDi(f1)Di(f2), 192" =919§+1Di(91)Di(92)-

Some of the following properties can be extended in such a manner to discrete
functions. We shall not always write it explicitly.
Averaging a function twice gives the following formula.
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LEMMA 2.3. Let the function f be continuously defined over R. For i € [[1,d] we
have

by F N
Af=f =f+ZDiD¢f-

The following proposition covers discrete integrations by parts and related for-
mulae. v
PROPOSITION 2.4. Let f € R™Y9™ gnd g € R™'. Fori € [1,d] we have

{fo(Dig) = _g(Dif)g + ({(fNiﬂgNﬁi = Jog1),
g =JFa- % J (fN19n,41 + fogr)
Q Q Q

LEMMA 2.5. Leti € [1,d] and v € R™99™ (resp. R™ Y™ for j =£ i) be such
that vjp,0 = 0. Then [[qv= [[,7".

LEMMA 2.6. Let f be a smooth function defined in a neighborhood of Q. For
i €[1,d] we have

hi 1 1
TEf=f+ gfaif(. +oh;/2)do, Alf=f+Cih? [(1—|o])d?f(.+ lioh;)do,
0 —1
1
Dif =0l f +Coh? [ (1 — o)) o2 f(. +leohi)do, £=1,2, [ = % ly =1,

—1

with hi = hiei.
Fori,je[l,d], i # j, we have

g
DiD; f = 0} +C" 50 J - 0)? fO(+oh /2", T do
illy —
e i 0 b i) d
h’Lh’j ) o Z o 17 n o.M a,

with h?; = hie; £ hje; and ™ = ﬁ(hi)

+ 4
[P
hi,hj

Note that = O(h?) by (1.4), for i,j € [1,d], j # i.

2.2. Calculus results related to the weight functions. We now present
some technical lemmata related to discrete operations performed on the Carleman
weight functions p and r = p~!, as defined in Section 1.2.1. The positive parameters
7 and h will be large and small respectively and we are particularly interested in the
dependence on 7, h and A in the following basic estimates.

We assume 7 > 1 and A > 1.

LEMMA 2.7. Let o and B be multi-indices in the x variable. We have

(0% p) =la] *|(=sg) N HA ()t (2.1)
+ [a]|Bl(s¢) INTHITLO(1) + 5117 al (o] = 1)OA(1) = Ox(s"™).
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Let o € [-1,1] and i € [1,d]. We have

0P (r(t,)(0p)(t, . + ohi)) = Ox(s1*I(1 + (sh)171)) €20, (2.2)
Provided Th(maxp ) 0) < & we have 0°(r(t,.)(0%p)(t,. + oh;)) = Oy a(sl®). The
same expressions hold with v and p interchanged and with s changed into —s.

A proof is given in [BHL10a, proof of Lemma 3.7] in the time independent
case. This proof applies to the time-dependent case by noting that the condition
Th(maxp 1) 0) < & implies that s(t)h < & for all ¢ € [0, T7.

LeEMMA 2.8. Let a be a multi-index in the x variable. We have

D, (ro%p) = s11THON(1).

Proof. 'We proceed by induction on |a|. The result holds for || = 0, and we
assume it also holds in the case |a| = n. In the case |a| = n + 1, with |o| > 1, we
write « = o/ + o” with |o//| = 1 and we have

ro%p = —sro” (@) ) = (T (3) (07" p)sr0%D).
846" =o'
Next we write

|01 (s70°p)| < |(8y5)rd°p| + |50, (rd’p)| < sTOs?

by (1.10) and Lemma 2.7 for the estimation of the first term and by the inductive
hypothesis for the second term. We then conclude as |6'|+1 < |&/|+1 = |a] =n+ 1.
0

With the Leibniz formula we have the following estimate.
COROLLARY 2.9. Let o, o, and 8 be multi-indices in the x variable. We have

95 (r2(8%p) 0% p) =|a + |1l (—sg)lete’ I Nlata +5l (gy)ata’+s
+ Bl + o [(sg)lete I\t +81-10 (1)
+ sl = jal(Ja] — 1) + || (|o/| = 1))Ox(1) = Ox(sloF)).

The proofs of the following properties can be found in Appendix A of [BHL10b)
(except the one of Proposition 2.14 which is specific to the parabolic case).

PROPOSITION 2.10. Let « be a multi-index in the x variable. Let i,j € [1,d],
provided Thmaxp 710 < &, we have

rrEd%p = rd%p + 51910, q(sh) = s1410, 5(1),
rAk 9% p = ro“p + s'a‘O,\ﬁ((sh)Q) = sla‘O,\ﬁ(l), k=1,2,
rAFDip = rd.p + 505 a((sh)?) = sOx 4(1), k=0,1,
rDFDY p = rdf 0 p+ 52 Ox 1 ((sh)?) = s2Oaa(1), ki +k; < 2.
The same estimates hold with p and r interchanged.

LEMMA 2.11. Let o and B be multi-indices in the x variable and k € N. Let
i,j € [1,d], provided Thmaxy 160 < &, we have

DD (07 (r0% p)) = 0007 (r0”p) + h2Ox a(s1*), ki +k; <2,
ARG (rd%p) = 0P (r9%p) + h2Oy 1 (s1°N).
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Let o € [~1,1], we have D¥ D?J P (r(t,.)0%p(t, . +oh;)) = Oy q(slo), for ki+k; < 2.
The same estimates hold with r and p interchanged.

LEMMA 2.12. Let a, o and B8 be multi-indices in the x variable and k € N. Let
i,j € [1,d], provided Thmaxyy 6 < &, we have

AFOP (r2(0°p)0™ p) = 07 (r?(9”p)0™ p) + KOy a(s!*I 1) = O g(sl*IT1),

DD} 0% (r*(9° )0 p) = O 9 (9” (r*(p) 0™ p)) + W Op (s 1)

= O a(slHN) k4 k<2,

Let 0,0' € [-1,1]. We have

ALD™ (r(t, (07 plt, .+ oha))O% ply, . + 0'hy) ) = O (s 1),

DD} 9° (r(t, D2O%p(t, . + oh:))O¥ p(t, . + a’hj)) = Oaa(sH1N) k4 ky < 2.

The same estimates hold with r and p interchanged.
ProproOSITION 2.13. Let a be a multi-index in the x variable and k € N. Let
1,7 € [1,d], provided sh < R, we have
DD ARG (rDip') = 80 0% (rdap) + sOx a((sh)?) = 5O (1),
DEDY (rD2p) = 950 (rd?p) + s*Ox a((sh)?) = O 1 (1),
rAZp =14 Oxa((sh)’, DJ"Dy (rAZp) = Ox((sh)?).

The same estimates hold with v and p interchanged.
PROPOSITION 2.14. Provided Thmaxjg )0 < K, and o is bounded,we have

O (r(,,)(0%p)(.,,x + oh;)) = Tslo“H(t)(’),\ﬁ(l),
0:(rAZp) = T(sh)*0(t)Ox.(1),
8y (rD}p) = Ts*0(t)Ox a(1).

The same estimates hold with v and p interchanged.

Proof. We set v(t,@,ch;) := r(t,z)p(t,z + ch;) and simply have v(t,x,ch;) =
esWp@)=p(@tohi)) — cONsMN) = O, 4(1), by a first-order Taylor formula. We have

o (t, @, oh;) = (0,5)(p(x)—p(z+oh;))v(t, @, oh;) = 70" (t)h; Ox q(1) = TO()Ox a(s(t)h),
by (1.10).
Next, we write 7(t,)(0%p)(t,x + oh;) = v(t,x,0h;)ua(t,z + oh;), where we
have set p, = r9§p. We have
Orpio = Ts!*00, 5(1),
by Lemma 2.8. This yields

O (r(t,x)(0%p)(t,x + oh;)) = (Ow(t, @, 0h;)) pa(t,x + oh;) + v(t, @, 0h;)Otpia (t,  + chy)
= T.Sla‘e(g)\vﬁ(l).
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Next we write

1
r(t,x)Ap(t,x) = 1+ Ch? [ (1— |o|)r(t,z)07p(t,x + oh;)do,

-1

which gives

O (r(t,x)Alp(t,x)) = Chi }1(1 — oo (r(t, )07 p(t, @ + ohy)) do,

and the second result follows. Similarly, we write

1
r(t,x)Dp(t, @) = r(t,®)07p(t, ) + Chi [ (1= |o])’r(t, )0} p(t, @ + ohy) do,

which gives

1
Oy (r(t,:c)Dfp(t,m)) =0 (r(t,m)@fp(hw))—kCh? f(1—|a|)30t (r(t,w)@fp(t,m—{—ohi)) do,
21
and the third estimate follows by using Lemma 2.8 and the first result of the present
Proposition. O

PROPOSITION 2.15. Let «, 8 be multi-indices in the x variable, i,j € [1,d] and
ki, ki, kj, k' € N. For k; + k; <2, provided sh < & we have

J’]

i

AL AT DEDY 9 (r2 (0% p)Dip )

OF 0 0% (r2 (9% p)Dip) + 5117105 a((sh)?)
= 512110, (1),

A AT DEDY 0% (0% p)A20) = 00} 0% (r(0° p)) + 512105 s ((5h)?)

510, q(1),

AF AN DR DY 97 (12(97p)D2p) = 80107 (12(9°)92p) + 51205 ((sh)?)

= 20, 1 (1),

and we have
k! s

A AJ DF D 9% (r? Dip D2 p) = 8;“8;-78“(7“2(8ip)8]2»p) + 5°0y.a((sh)?) = 5Oy 4(1),
k) ok Ao

AV ATIDE DY 9% (r2Dip’ A2p) = 01081 0% (rdip) + 5O a((sh)?) = sOx.4(1).

3. Proof of the Carleman estimate. Here we prove the result of Theorem 1.3.
We shall carry out the proof for the operator P™ = P™ = 9, — A™. The proof is the
same for P = 0; + A™ (change t in to T' — t).

We set f:= P™u. At first, we shall work with the function v = ru, i.e., u = pv,
that satisfies

r(apv)+ X DivDilpv)) = 1. (3.1)

i€[1,d]
We have
roi(pv) = O + 1(Op)v = dpv — T(9 ) pv
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Following [FI96], we write
g = Av + Bu,
where Av = Ajv + Asv + Azv, Bv = Byv + Bov + Bsv with

hy —i = _
g=rf—- 2 2 Dir (Divi) (7 * Div — 7~ Dyw)

1€[1,d]
he - _ i —_ i
- Z fz(Di’yi)’f‘(DiDip)Di’U —hi Z O(l)?"DZ‘p Di’U
i€[1,d] i€[1,d]
- (T(Di%‘)DiP +hi0(1)T(DiDiP)) o' —2s(Ay9)v,
i€[1,d]

and
AlU = Z Tﬁq Dl (’le,L’U)7 AQ’U = Z ,ylr(DlDZp) ﬁi’
i€l1.dl ie[Ld]
Azv = —7(0:0) v,

Blv =2 E ’yﬂ“%l mi, BQU = —25(A7¢)U7 B?,U = 8,511.
i€[1,d]

An explanation for the introduction of this additional term Bgwv is provided in [LL11].
Equation (3.1) now reads Av + Bv = g and we write

HAv||2L2(Q) + ”BUH%Z(Q) + 2 (Av, B) 2y = ||9||2L2(Q)~ (3.2)

We shall need the following estimation of ||g|[z2(g). The proof can be adapted from
Lemma 4.2 and its proof in [BHL10a] (the time dependency of the present weight
function does not affect the argument and computations of the proof).

LeEMMA 3.1 (Estimate of the r.h.s.). For Th(maxy ) ¢) < & we have

932y < O (IrfI32g) + lsvliaig) + B2IsVolieig) - (3:3)

Most of the remaining of the proof will be dedicated to computing the inner-
product (AU,BU)LQ(Q). Developing the inner-product (AU,BU)LQ(Q), we set I;; =
(A{U, BjU)LZ(Q) .

LeEMMA 3.2 (Estimate of I1; (Lemma 3.3 in [BHL10b])). For th(max 1 0) < &,
the term I11 can be estimated from below in the following way

Iy > _)\QH(S(z))%|VV1/J|YWUH%2(Q) + Y — X1 — Wi — Ju,

with
Vo= X (062 + Ons((sh)?) 1Dip) ., (Div)y,
i€[1,d] Q;
— (32 + Orsl((sh)?) rmi)o(Div)z)dt,
and

X1 = Z ff V11,i(Di’U)2dt+ Z ffﬁll,i(Divi)2dt,

ie[1,d] @ i€l,d] Q
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with v11,; and T11,; of the form sA¢O(1) + sOy a(sh) and

W= Y ffynyij(DiDjvfdt—i— > ff’711,ii(DiDiU)2dt,
l,ﬂidu Q i€[1,d] Q

with vy11,;; and 11,4 of the form h? (s)\d)O(l) + SO,\,Q(Sh)) and

Jll = ff ( 6%?1 (D U)N +1 + (5521)1)% (D’v)
2€[[1 d] Qi

NN

) dt,

with 8\, = shiA¢O(1) + sh;Ox a(sh).

LeEMMA 3.3 (Estimate of I1» (Lemma 3.4 in [BHL10b])). For th(max 1) 0) < &,
the term Lo can be estimated from below in the following way

Lp > 2X%)|(56) 2 [Vt Vvl f2(q) — Xia,
with

Xo= > [ V12,i(Div)2dt+ | p120? dt,
ie[Ld] Q 0

where 12 = s*°0x g(1), and v12; = sApO(1) + sOy g(sh).

LEMMA 3.4. There exists £1(A) > 0 such that, for 0 < Th(max 7 6) < 1()),
the term Iy3 can be estimated from below in the following way

Lz > —Cha [|To(T)* - X135
Q

with C > 0 and
X3 = ff( (sh) + T(sh)?0) Oy a(1)| Yo|? dt+ffs’10A,,q(8h)(8tv)2 dt
Q

For a proof see Appendix A.

LeEMMA 3.5 (Estimate of I5; (Lemma 3.5 in [BHL10b])). For 7h(maxp 1 0) < &,
the term I3y can be estimated from below in the following way

Loy > 3N (s9)2 (V,0) 0l|72(q) + Yor — War — Xan,

with

Ya= X [ Onal(sh))rDip)o(Div)} di
ie[L.d] Q: :
+ X [ 0ss((sh)?)(Dip ) v, 41 (D U) N, +1 9

ie[[Ld]] Ql

Wor = > [[ 7215 (DiDjv)tha Xoy = [[parv®dt+ > ff V21,i(Di”)2dt’
Biclhdl Q Q ie[1,d] @

where

Y21,ij = hO,\’ﬁ((Sh)z)7 Ho1 = (SA¢)3O(1) + 820)\";{(1) + 830)\’ﬁ(8h)7
V21, = SOA,ﬁ((Sh)2)-
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LEMMA 3.6 (Estimate of I, (Lemma 3.6 in [BHL10b])). For th(maxp 1 0) < &,
the term Io is of the following form

3
Ing = =2)\[(59) % [V [P0l 2 () — X2,
with

X22 = ff/,t22v2 dt + E ff V227i<DiU)2 dt
Q i€[1,d] Q

where oz = (sA@)3O(1) + 5205 a(1) + s20x q(sh), and vz ; = sOy z(sh).

LEMMA 3.7. For Th(maxp ) 0) < &, the term Is3 can be estimated from below
in the following way

Inz > [ 8*(Oxx(1)vfiq + Ox 2(1)0fi—) — Xas,
Q
with

Xog = foTS290)\,ﬁ(1)U2 dt + g(sh)Qs_l(’))\,ﬁ(l)(Gtv)2 dt

+ X Jf(sh)?s0x 2(1)(Div)” dt.
i€[1,d] Q

For a proof see Appendix A.

LEMMA 3.8. For Th(max( 1) 0) < &, the term I3y is of the following form

Iy = — X3 = [[Ts?00, q(1)0?dt+ > [ T(sh)200>\,g(1)(Div)2dt.
Q i€1,d] Q

For a proof see Appendix A.

With (1.10) we may write

Iyp = — X3y =2 g‘rs(ata)@mm)v? = gTSQGOA,R(nUQ. (3.4)

LEMMA 3.9. For Th(maxy ) 0) < &, the term Is3 can be estimated from below
in the following way

1
I33 > — X33 = 57 I p(8760)0* dt.
Q

For a proof see Appendix A.

Continuation of the proof of Theorem 1.3. Collecting the inequalities we have
obtained in the previous lemmata, from (3.2) we obtain, for 0 < 7Th(max|o ) 0) <
61()\),

3 1
140]| 72 () +1I Bl 720y +2X* | (56) 2 V120l 22y +2A° [ (0) 2 V4| Y| 72y +2Y
< Cx,ﬁ(nrfnia(@ + £s2 (vfier + i) + £ |Vv||2t:T) +2X 4+ 2W +2J, (3.5)
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where C' > O7 Y = Yll + Y21,

X = X1+ Xi2+ Xi3 + Xo1 + Xog + Xog + X371 + X320 + X33

+ Cna(llsvllfz(q) + b > IsDivl3()),

€1,

W =Wy + Way, and J = Jy1. With the following lemma, we may in fact ignore the
term Y. This uses the property (1.11) of the weight functions.

LEMMA 3.10 (Lemma 3.7 in [BHL10b]). For all X there exists 0 < e3(A\) < £1(\)
such that for 0 < Th(maxp 1) 0) < e2()), we have Y > 0.

Recalling that |V, > C > 0 in Q\ wy we may thus write

3 1
[Av[|72(gy + 1Bl|72(g) + A I(s0) 2 0llT2 () + A2lI(5¢) Yool Z2(q)
3 1
< CA,R(||Tf||2L2(Q) + X (50) 20l T2 (0.7 o) + AN(50)2 VovllT2 (0,7 o)

+ [ 8* (vfi—p + vimo) + |7v||2t:T> +2X 4+ 2W +2J. (3.6)
Q Q

LEMMA 3.11. We have
N2[|(5¢)% Yyoll22(g) = v(h,A) + CH — X =W,
where v(h,\) >0 for 0 < h < hi(X) for some hi(X\) sufficiently small and

H=X Y [[s¢(Div)’dt+ 1> Y [[ s¢(DiDyw) dt
i€[L,d] Q i€[1,d] Q
+ A% Y [ s¢(DiDjv)? dt,
Q

ije[1,d]
i#j

X:l«ﬁ( S [[s05(1)(Dw) dt+ Y fstA(l)(Divi)th),

ie[1,d] Q i€[l,d] Q

and

w=n( ¥ g’som)(DiDju)QdH > ] s0A(1)(DiDy)” dt).

”ﬂid] i€[1,d] Q

For a proof see Appendix A.

If we choose A1 > 1 sufficiently large, then for A = A\; (fixed for the rest of the
proof) and 0 < Th(maxp ) 0) < e3(A\) = min(e1(A1),e2(A1)) and 0 < b < hy(Ay),
from (3.6) and Lemma 3.11, we obtain

3 1
||AUH2L2(Q) + ||BU||2L2(Q) + H52UH%2(Q) + s> YU||2L2(Q) +H
3 1
< O)\1,R<||Tf||2L2(Q) + 52001220,y xwo) + 152 YOl 2207 xwo)

[ 8 (vimr +0fiz0) + Yolor) + X+ W+, (37)
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where

1= 1 1=
H= 5 |5 D' |faqy+ (% IIs* DDl + X lstDiDivli(g)),
i€[1,d] i;jﬂ;,dﬂ i€[1,d]

(3.8)

X: ff ‘LLl’UQ dt+ Z ff lll,i(Di’U)Zdt+ Z ffvl,i(Diﬂ)i)th
Q ic[Ld] Q ie[Ld] O
+ X3 + Xo3 + X371 4+ X309 + X33,

with g1 = 520, &(1) + s20n, a(sh) and v1 4, 71 4, of the form sOy, g(sh), and where

W= 5 [[ni(DiDp)*dt+ Y [[1:(DiDw) d,
z‘,jg?dﬂ Q i€l,d] Q

where 71 ;; and 71 ;; are of the form sh?Oy, a(sh), and where

J = ff((sl”“ (Dv)N+1+(511)%( )i) dt,
i€[1,d] Q; 2

with d1,; = sh;Ox a(sh). The last term in J was obtained by “absorbing” the following
term in Jyq
) dt,

} ffshi((qﬁ)N 10(1)(D; v)N+1 +(¢)10(1)(Div)
1€[1,d] Q;

[C[= )

by the volume term

I sqb(Div)Q dt

i€[1,d] Q

for A large.
Observe that

1<T?% and (070 < CT?63,
We can now choose 4 and hg sufficiently small, with 0 < g4 < e3(A\1), 0 < hg <

hi(M\1), and 71 > 1 sufficiently large, such that for 7 > 7 (T +T2), 0 < h < hg, and
Th(maxp 1) 0) < 4, we obtain

3 1
||AUH2L2(Q) + ||BU||2L2(Q) + H52UH%2(Q) + |52 YU”i?(@) +H
3 1
< C',\l,ﬁ<||7"f||2L2(Q) + ||52U||%2((0,T)><w0) + |52 YUH%Z((O,T)XUJO)

+ ffs sh) (0p)” dt + h2( £U@:0+ évlzt:T)), (3.9)

where we have used that (D v) < Ch~ ((T+U)2 + (770)2).
Since 7 > 71 (T + T?) then s(t) > 11 > 0 for any ¢, we then observe that

_1 _1 1 1
ls™3001%20) < Crvx (I~ Bulifaq) + llstol3ag) + ls? Volliag))

3 1
< Onyras 1BVl g) + lIsPollfzg) + s ToliEagy )-
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With 0 < gg < 4 sufficiently small and 0 < 7h(max, ) 6) < g9 we thus obtain
_1 3 1
s 25”1“%2(@) + ||32U||2L2(Q) + |52 YUH%Q(Q) +H
3 1
< C>\17T1,R(Hrf||%2(Q) + “S2U“%2((O,T)><WO) + |52 YUH%Q((O,T)X(JO)

FA (v +£U@ZT)),

Arguing as at the end of the proof of Theorem 4.1 in [BHL10a] (using Lemma 4.9
therein) for the spatial discrete derivative and as in [FI96] for the time derivative, we
obtain

0% e™0%ul[3a ) + T [[Z ]] 162 ™ Dyull32 ) + 7710720l ) + H
iefl,d

9 31198 70 L -6
< C)\lﬂ'hﬁ(”eT wmeH%z(Q)*TdHe?eT ¢“|\2L2((0,T)XM1)+T [[Z ]]HQQGT vDi“”zL?((&T)le)
ie[l,d

R o B+ 1Py ). (3.10)

with wy € w1 € w.
1
We next remove the volume norms T||6567090Diu||2L2((0 Tyxw,) 0 the r.hs. by
proceeding as in the proof of Theorem D.2 in [BHL10b]. We obtain

7_3”0%67950,“”%2(@) +7 [[Z: : ”9%670(‘0Diu”2L2(Q) + 7’71”97%67—9@5}114”%2(@) +H
ie[l,d

3 7
< Onyoraosn (Il Pl g + 71037 ul 220 2y
R Pumg gy + ey ) (3:11)

With Lemmata 2.2 and 2.3 and we now write

Diu' = Di(pv) = (Dip)i + p Div’

—i —i—y  h?, i ;-
N B i o
=Dipv+p Div + ZZ((DiDiP)DiU +2D;p D;D;w)

With Proposition 2.10 we then find
rDiu’ = sv0x q(1) + Dyv Oz (1) + sh?(D; Dv)Ox a(1).
With (3.10) and (3.11) and the expression (3.8) of H we then obtain

7_3”9%67'99911/”%2(62) + 7 [[Zd]] (HH%eT@QDDZuH%Q(Q) + ||0%670¢Di7ui
€1,

2
@)
— -1 r T Er
+77H6" e 9<p8t“||2L2(Q) < C/\hn,ﬁ(ne QSDPMUHQH(Q) +76%e qu||%2((07T)xw)
+h 72 (Je™ " up—o|72 () + |€TWU\t:T|i2(Q)))~

Finally, we observe that since maxjy 6 < m < ﬁ, a sufficient condi-

tion for Th(max( ) 60) < o becomes Th(T?5)~! < ey. This concludes the proof of
Theorem 1.3. O



24 F. BOYER AND J. LE ROUSSEAU

4. h-null controllability: the linear case. We consider the following semi-
discrete parabolic problem with potential

8ty -+ Afmy + ay = ].U_,U, t e (O,T), y|BQ = O7 (41)

To achieve a h-null controllability result for (4.1) we start by proving a relaxed ob-
servability estimate.

4.1. A relaxed observability estimate. The adjoint system associated with
the controlled system with potential (4.1) is given by

—0iq+ A"q4+aqg=0, t€(0,T), qpo=0. (4.2)

With the Carleman estimate we proved in Theorem 1.3 we have the following relaxed
observability estimate.

PROPOSITION 4.1. There exists positive constants Cy, Cy and Cy such that for
all T > 0 and all potential function a, under the condition h < min(hg, hy) with

1 2.,
hi=Co(1+  + lall %)
T
any solution of (1.14) satisfies
— G+ Tl
19(0)[z2(0) < Cobsllgll2(0.1)xw) +€ 7 4(T) |2 (4.3)

2
with Cype = eC2A+ 7+ Tllalo+lall&)

Proof. The change of variable
g = ellell=t=T) ¢ (4.4)

allows us to consider the potential a to be non negative.
With the Carleman estimate we proved in Theorem 1.3 we have

3 3
ls¥eql32.q) < C (™ aalita o) + ls¥ e al22 0.1y
+ h2(1e*qr—olZ2(q) + |€WQ\t:T|%2(Q))>,

with s = 70 for 7 > 79(T +T?), 0 < h < hg and Th(6T?)~! < €.
As 1 < COT? it suffices to have

5 2
7> CT?||a||% (4.5)
to obtain

3 3 9/ s
Is2e%%q||72(q) < C(||SQGS¢Q||2L2((0,T)W) +h72(1e*?qu—ol720) + |est\t:T|i2(Q)))'
(4.6)

We thus choose 71 > ¢ sufficiently large to have (4.5) for
2
7> 7(T+ T% + T?||al|%). (4.7)
The positivity of A™ 4+ a yields

lg(0)[L2 < q(t)[r2, € (0,T). (4.8)
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Recalling that ¢ is negative, and independent of time ¢, we observe that we have

ff83 25@,0 dt> f fSS 25«,0 dt

T
4
%
> [ 739(%)36T9(%)inf¢|Q(0)|2L2(Q) dt
T
Y
_ 1T 3p(T)3 70(L)inf ¢ 0)|2
= STr0(%)% 4(0) 32 (o)
> CTe™ 72 [q(0) 320 (4.9)

as T > 112,
As O(T) = 0(0) = (T2(1+8)8) ', we have e"#li=0 = e*?i=r < 572 (%) ang
we find
\ewt]\t=0|2L2(Q) + |€W(1|t=T|2L2(Q)
_cr _cr
< C(e™27]q(0)[F2(q) +e 272 [a(T)|72(q))
< O [g(T) (),
as sup ¢ < 0, and using (4.8). We now write
3 5 70(L) su
5% gl 320,y ) < O P2l T2 0.1y )

Consequently we obtain

T_ _ T_ 707/
TIg(0) gy < O [l 0.1y + 1267 (O F) g(T) g
For 0 < § < 67 < §p, with §; sufficiently small, we obtain

T1g(0) |72y < Ce“77 |lqll32 0.0y xw) + h_zefc/#M(Tﬂizm) (4.10)
We recall the conditions of Theorem 1.3:
Th
oT?
They need to be fulfilled along with § < §;.

2
We fix 7 = 70(T + T? + T?||a||%) with 7o as chosen in Theorem 1.3. We define
hy through

<e€p and hfho

€0 1 2 _q
hy = —01(1+ = )7,
V=200 g+ falld)

which gives
Th
5T2
We choose h < min(hg, hy1), and § = héy/hy < 61 we then find 7% = &.
As 7/(T268) = 9 /h, we obtain from (4.10)

1 a % _ 76"20
14(0) 720y < Ce®UF TN g| T2 (o ey + B2 [0(T) 720,
which gives

2
3 C
19(0)| L2 () < eC2HTHNAZ) |1g|| 120, 1yxy + €~ 7 (T L2

Recalling that we made the change of variable (4.4) we conclude the proof. O
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4.2. h-null controllability. With the result of Proposition 4.1 we deduce the
following h-controllability result for System (4.1).

PROPOSITION 4.2. There exist positive constants C1, Co, C3 and for T > 0 a
map Lt : R™ — L2(0,T;R™), such that if h < min(hg, he) with

1

2
7 T Tlallee + llall) ™,

ho = C4 (1 +
for all initial data yy € R™, there exists a semi-discrete control function v given by
v = Ly (yo) such that the solution to (4.1) satisfies

[y(T)|r2() < Coe™ " yol2(a, and |[v|[z2(@) < Colyolr2(a),

with Cy = ¢C0+#+Tlaltlal d).

REMARK 4.3. Note that the final state is of size e_c/h|y0|L2(Q). In comparison
the result obtained in [BHL10a, BHL10b] based on a Lebeau-Robbiano-type spectral in-
equality yields a final state of size e=C/M lYolr2(q). The method in [BHL10a, BHL10b]
does not yield however a precise observability constant as in Proposition 4.1 which is
cructal in the study of semi-linear equation as we do below. Questions regarding
differences in size of the final state when comparing this two method are of theoret-
ical interest: can one improve the estimate given above? Yet for practical purposes
there are very little differences: in fact one is rather interested in a target of size
RP|yolr2(qy in connexion with the consistency of the numerical scheme. We refer to
[BHL11] where such questions appear.

Proof. We use a dual formulation; we consider the adjoint parabolic equation

(=0 + A™)qg+aq=0, ¢T)=qr. (4.11)

The relaxed observability inequality of Proposition 4.1 gives

q(0)|z2() < Copsllall 2 0.1y xw) T Elar|r2 (), (4.12)

2
. 1 3 _c . .
with Cops = €At tTlalletllall%) and ¢ = ¢~ % tTllalle . We introduce the functional

J(qr) =

N =
o—H~

g
922w dt + 5lar (i) + (w0, 4(0))- (4.13)

The functional J is smooth, strictly convex, and coercive on a finite dimensional space,
thus it admits a unique minimizer ¢r = ¢7" *. We denote by ¢°P(t) the associated
solution of the adjoint problem (4.11). The Euler-Lagrange equation associated with
this minimization problem reads

o—H~

(@7 (t), q(t)) L2y dt + (g ar) 12(0) = — (Y0, 9(0)) 12(02), (4.14)

for any gp € R™, with the associated solution ¢(t) of the adjoint problem (4.11). We
set the control to v = Ly 4(yo) = 1,q°P(t). We consider now the solution y to the
controlled problem

Oy + A%y +ay = 1,q°"'(t), t€(0,T), Yoo =0, y(0)=yo.
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By multiplying this equation by ¢ and integrating by parts, we deduce

o—H~

for any g7 € R™. With (4.14) we conclude that
y(T) = —eq7™".

We now take gr = ¢** in (4.14) to obtain

(@ (), q(t)) L2(w) dt = (W(T), q7) L2(2) — (Y0, 2(0)) L2()

27

(4.15)

147 172 0.y xe) T+ €107 120y = — (W0, P (0)) 2(2) < [wolz2()|a”" (0)|22 (0,

With the observability inequality (4.12) we have
g7 (0)| 22 (0) < Cobslla™ |2 (0,7)xw) + €la |12 (00)-
With the Young inequality we obtain
5%|Q;pt|L2(Q) < (Cobs +5%)|yO|L2(Q)7~

and

0]l 22 0.1y xw) = 147|220, xw) < (Cobs + €2)|yol L2 (-

Hence the linear map

Lrg: L*(Q) — L*((0,T) x w),
Yo v,

is well defined and continuous.
Next we see that £2 < Copg if
1

2 _
7+ Tllalloe + llall&) ™

h<C(1+
This yields

_1
1677 | 12(0) < 2Conse™ 2 [Yol L2 (a)-

Moreover, we then have h < C/(T||al|s) which yields ¢ < e=¢/". We thus find

vl L2 ((0,1) xw) < 2Cobs|Yo|L2(02)s
and
(1) 12(0) < 2Cobse™ "M |yol L2,

which concludes the proof. O

(4.16)
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5. h-null controllability: the semilinear case. We start this section by stat-
ing a classical regularity result for the linear equation

Oy+ Ay +ay=f € L2(O,T; R™), Yon =0, y(0) = yo € R™. (5.1)
PROPOSITION 5.1. For any a € L* the solution to (5.1) satisfies

Iyl o= 0, 7,220y + ¥l z2(q) + [[Z HIIDinILz(@ < Ko(lyolr2o) + 1 flle2(@)
i€[1,d

10wllr2c) + X 1Diylle~rr2¢0) < Ki( > [Diyolr2) + 1fll220))
ie[[Ld]] iElIl,d]]
with Ko = eCOFT+Tlall=) gnd K, = (COATHTE+T)al| =)

We now consider the semi-linear equation
O+ ANy +G(y)=f, te(0T),  yoa=0,  y(0) =y, (5.2)

with G Lipschitz continuous, since R™ is finite dimensional, the Cauchy-Lipschitz
theorem applies. For each initial data yy and r.h.s. f L' w.r.t. ¢, this yields the
existence and uniqueness of maximal solution in €*([0,); R™) with 0 < to < T. If
to < T the solution ceases to exist at ¢t = t( because of a blow up: lim,_,, - ly(t)| e =
+00.

We shall consider the following semilinear semi-discrete control problem.

(at + A(m)y + g(!/) = 1UJU’ le (O7T)a Yoo = 07 y(()) = Yo- (53>
where w C . The function G : R — R is assumed! of the form
G(z) =zg(z), z€R, (5.4)

with ¢ Lipschitz continuous. In Section 5.1 we shall assume that g € L*>°(R), i.e., the
semi-linearity is sublinear. In Section 5.2, following [FCZ00], we shall consider the
more general case of a possibly superlinear semi-linearity:

3
lg(z)] < KIn"(e + |z|), =z €R, WithOST<§. (5.5)

5.1. The sublinear case. In the present section we assume that g € L>(R).
The sublinearity of the function G prevents any blow-up as can be observed by the
Gronwall inequality. Solutions to (5.2) are thus defined on [0, T7].

We prove the following h-null controllability result.

THEOREM 5.2. There exist positive constants Cy, Cy such that for all T > 0 and
h chosen sufficiently small, for all initial data yo € R™, there exists a semi-discrete
control function v with

[vllz2(@) < Clyolr2(a)
such that the solution to the semi-linear parabolic equation (5.3) satisfies

Y(T)|12(0) < Ce™ M yol 2,

1Regularity as low as locally Lipschitz can be considered. For results with lower regularity in the
continuous case we refer to [FCZ00].
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,3
with C = eC1(+7+Tlglloo+lgl1%).

Observe that the constants are uniform with respect to the discretization pa-
rameter h. In particular the L?-norm of the control function v remains bounded as h
varies. Then, up to a subsequence, the semi-discrete controls converge towards a func-
tion v € L?((0,T) x w) that actually drives the solution of the continuous parabolic
problem to zero at time T

Proof. The proof follows that given by [Ima95] with some particularities due to
the discrete case. We set Z = L%(0,T;R™). For z € Z we consider the linear control
problem

(0 + A™)y +yg(z) = 1,0, Yoo =0, y(0) = vo- (5.6)

We set a, = g(z). We have |la.|r=Q) < [|gllcc- If we apply Proposition 4.2 we

denote by v, = Lr4_(yo) € L*(0,T;R™) and vy, the associated control function and
controlled solution. We have

= (T)| 20y < Ce™ %M yo| 20, vzl 22 (@) < Clyolr2(a); (5.7)

,2
for Cyp > 0 and C = @1+ +TlglHlgll%)  uniform with respect to z and the dis-
cretization parameter h.
With the regularity result of Proposition 5.1 we can define the map

N:Z— Z,
Z Yy,

and, as T is fixed and ||a. ||z~ (q) < |lg|/z~ we have

[A2]lL2(q) = lly=llz2@) < Clwolrz) + lv:ll2@)) < C'lvolr2)-

Hence, A maps the closed ball B of Z of radius R = C’|yo|12(q) into itself.
LEMMA 5.3. The map A is continuous on Z.
The proof of Lemma 5.3 is given below.
Recalling the form of the difference operator D we find

|Dyolr2(0) < Ch™ yolr2(o).-

Additionally from Proposition 5.1 we find that

10yl L2(@) < C(IDyolr2@) + [vzlr2(@)) < C (W™ +1) ol L2 (o)-

As H'(0,T) injects compactly in L?(0,T) and R™ is finite dimensional we get that
A(B) is precompact in Z.

All the previous properties allow us to apply the Schauder topological fixed-point
theorem: there exists y € Z such that A(y) = y. Setting v = L1 4, (y0) we obtain

(0 + Ay +yg(y) = 1w, Y00 =0, y(0) = vo-

which concludes the proof as we have found a control v that drives the solution of the
semilinear semi-discrete parabolic system to a final state y(T') with the estimates of
(5.7). O
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Proof of Lemma 5.5. With the continuity and the boundedness of g we have
that the map z — a, = g(z) is continuous on Z with values in the space Z = {a €

Z, lalloo < lglloc}-
Let us consider the following controlled parabolic problems

(0 + A™)y1 + a1y1 = 1,04, (0f + A7 )y2 + azyz = 14,Vay,
Y1jt=0 = Yo, Y2|t=0 = Yo,

with a1,a9 € Z. The controls Vg, and v,, are obtained through Proposition 4.2.
Setting Y = yo — y1 we write

(at+Am)Y+a1Yz lw(vaz _Ua1)+(a1 _a’2)y27 }/\tZO =0
From Proposition 5.1 we obtain

1Y [l (0,7,2(2)) < C([vay = v, llL2(@) + w2l (@) laz — arllL2(q))

As we have

92l = (@) < Chlly2llLe=(0,7.22)) < Ch(lvolz2) + vas llz2(q))
and [[va, || 22(@) < Clyolr2(o) We obtain

ly2 = v1llze=(o,m,22)) < Ch(1Vay — Vay lL2(Q) + lWolz2(0) laz — a1llr2(@))-  (5.8)

To prove the result of the lemma it thus suffices to prove that the map a — v, is
continuous on Z.
As in the proof of 4.2 we consider the adjoint parabolic equation

(=0 + A™)qg+aqg =0, ¢(T)=qr, (5.9)
and we denote by Q(a, gr) its solution. The control v, of the parabolic system
(O + A™)y + ay = 1,v,,
Ylt=0 = Yo,

is then given by v, = 1,Q(a,¢;"""), with ¢7*"* minimizer of the functional (4.13).

We shall thus study the continuity of the map a € Z + 1,Q(a, ¢*"") € Z.
For the two potentials as and a; we can write the associated Fuler-Lagrange
equations for the two associated minimizers

T
[(Q(ar,¢""), Q(ar, 4r)) L2 (w) dt + (@™ Gr) 12(0) + (Q(a1, Gr)(0), Yo) r2(0) = 0,
0

L opt,a opt,a

J(Q(az,¢77""), Q(az, 4r)) L2(w) dt + (a7, Gr) L2(0) + (Q(az2, 47)(0), yo) L2(0) = 0,
0

opt,ar _ _opt,az

for any gr € L*(Q). Choosing gr = ¢} a7 and subtracting these two
equations yields

1Q(ar, ¢7""") — Q(a, q;pt’a2)||2L2(o,T,L2(w)) +ellgt e — gt 1720

= —(Q(ar,g" ™ — ¢F"**)(0) — Q(az, "™ — q7"**)(0), yo) r2(0)

+ <Q(a17 q’;‘pt’al)a Q(ala q;Pt;GQ) - Q(GZa q’(])‘pt’az)>L2(w) dt

<Q(a27 q%pt,az), Q(ala q;Pt;al) - Q(G/Qa q;pt)al»l/z(w) dt.

o—HN o—/|—H~
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Applying Proposition 5.1 to the adjoint system (5.9) with g7 = ¢g*** and using that

a € Z, we have

1
r2) < C"e 2 |yolr2()s

|‘Q(aaq’(1)“pt7a)‘|L°°(Q) < CQ(a, Q%pt’a)||Loo(o,T,L2(Q)) < C'|q(%pt’a

by (4.16). We thus find

1Q(ar, ¢77"") — Q(as, Q%pt’a2)||2L2(o,T,L2(w)) +elg M — g 1720
< O rlyol ooy (1QLan, a2 — 427)(0) — Qlaz, 2" — g37"**)(0) |20
+[|Q(ax, q;ptm) — Q(az, q;pt’az)HM(Q)
+1Qar,af") = Qlaz 4" lln2() ).
Using now (5.8) for the adjoint system and again (4.16) we obtain
|Q( Opt,al) _ Q( 0pt,az)||2 + | opt,ay Opt,az‘2
|Q(a1, g7 a2, 4qr L2(0,T,L2(w)) T Eldr dr L2(Q)
< CLplyol7zllar — asl 2.
opt,a

This gives the continuity of the map a — 1,Q(a,q7 ) on Z and thus of the map
a +— v, on Z. This concludes the proof. O

5.2. The superlinear case. In this section we consider also the semilinear
semi-discrete control problem (5.3). The function G : R — R is assumed of the form

G(z) =ag(x), z€eR, (5.10)

with g Lipschitz continuous and, in agreement with the controllability result of [FCZ00]
in the continuous case, we assume that

3
lg(z)| < KIn"(e+ |z]), xz€R, with0<r< 7 (5.11)
To ease the notation we set

((s)=KIn"(e+s) fors>0. (5.12)

5.2.1. Preliminary observations. If 7' > 0, for a vanishing r.h.s. f, starting
from a sufficiently small initial data ensures the existence of the solution of (5.2) in
the time interval [0, T]. Moreover the size of the solution at time ¢ = T’ remains small.

PROPOSITION 5.4. Let T > 0. There exists My > 0 and Ko > 0 such that the
maximal solution to

O+ A"y +6(y) =0, yoa =0, y(0) =1y, (5.13)
satisfies
()| z2) < [Yolr2@e™f,  0<t<T,

if we choose h™%2|yg|p2(0) < Mo.

This result will be useful for the construction of the control function in the proofs
below: if a sufficiently small state is achieved for a time 0 < t; < T it suffices to set
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the control function to 0 for time interval (¢1,7") and one still obtains a small solution
at the final time 7.

Proof. The maximal solution to (5.13) can cease to exist if there is a blow up at
some time ¢y € (0,7]. We first prove that this does not occur if either » <1 or if the
initial condition is chosen sufficiently small.

Taking the L? inner-product of the equation with y(t) we have, after a discrete
integration by parts,

;aw&n%my+E%ﬂmﬂ%mezmwnam+wg@@»wa»mm>=m

for 0 <t < tg, which gives

1
§5t|y(t)|2L2(Q) < gz @)y(®)[72q)
< C(|y(t)|Lso(Q))|y(t)\%2(9)
< (Coh™ 2|y (t)|12()) ()72

using that if u € R™, |u|p~ < Ch=%?|u|y2. Setting z(t) = h*d|y(t)|%2(m we obtain

2 < 220(Co2?).

We have z(t) > 0 and if z(¢;) = 0 for some ¢; then z vanishes identically. We may
thus assume that z > 0 on [0, ).

We set p(s) = (25((0035))71 for s € (0,+00) and u(s) = [] p(o)do. Recall that
¢ is defined in (5.12). We have 0 < 4 /i(2(t)) < 1, which gives

w(z(t)) — u(z(0)) <t, V0 <t<ty. (5.14)

Notice that p is not integrable at 07 and that p(1) = 0. Therefore, there exists a
unique My > 0 such that u(My) = —to.
We now consider two cases:

Case r < 1. We have lim,_, o pu(s) = 4+o0o0. Assuming that lim, 2(t) = +oo,
with inequality (5.14) we reach a contradiction. Hence the solution does not
blow up in finite time.

Case r > 1. In this case the function p is integrable at infinity. Assuming that

lim, - z(t) = +o0, with (5.14) we find

lim p(s) — p(z(0)) < to.

§—>00

If z(0) < My then p(zp) < u(Mp) = —to and therefore we get limg_, o0 p1(s) <
0. This prevents a possible blowup at time .

In both cases, if 2(0)2 = h=%2|yo|> < My, then the solution exists on [0, 7],
and moreover we have p(z(t)) < to+ 1(z(0)) < 0 which implies that z(¢) < 1 for any
t € [0, 7], uniformly w.r.t. h.

There exists C7 > 0 such that s~ < Cyp(s), for any s € (0,1]. This yields by
integration

z(t)

1dwﬂsawmm—mwmsat

Hence we have z(t) < 2(0)e“*! which gives the result. O
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5.2.2. Controllability result. We shall prove the following theorem.

THEOREM 5.5. Let G satisfy (5.10)-(5.11). There exists Co > 0 such that for
T >0 and M > 0 there exist positive constants C, hg < min(hg, h1,hs) and aq, such
that for 0 < h < hz and all initial data yo € R™, with |yolr2) < M, there exists
a semi-discrete control function v such that the solution to the semi-linear parabolic
equation (5.3) satisfies

(D) r20) < Ce™ %M yo| 120, and  |[vllz2(@) < Chlyolr2(0)
where Cp, = Ch™® with C = C(T, M).

REMARK 5.6. Note that the constant Cy that yields the exponential decay of the
final state when the discretization is refined is independant of T and M, i.e., the size
of the initial condition.

Observe that the constant C}, in the estimation of the control norm is not uniform
with respect to h here. Here we cannot bound the norm of the control if the discretiza-
tion is refined, i.e., if h decreases to 0. To achieve a proper estimate one can make
use of a control v in L>(0,T;R™). This approach was central in the proof of the
the controllability of semilinear parabolic equations in [FCZ00]. To that purpose one
needs to refine the observability inequality of Proposition 4.1. This is the subject of
future work based on the analysis of the semi-discrete heat kernel. Such an estimation
will also naturally yield a local controllability result. In dimension d > 1 with such an
estimation we can replace h=%? by a constant in (5.25).

Yet, only using a L? control, the result of Theorem 5.5 can be improved if we
consider the case of one dimension in space. This is presented in Theorem 5.11 in
Section 5.2.3 below. In fact in this case the heat kernel estimation can be replaced by
a (discrete) Sobolev inequality.

REMARK 5.7. Note that the largest discretization step h allowed by the previous
theorem is function of the norm of the initial condition of the control problem.

Proof of Theorem 5.5. We use some of the arguments given by [FCZ00], yet with
some particularities due to the discrete case.
Let Ry > 0 be such that ((Rg) > 1. For R > Ry we introduce

s if —R<s<R,
SR(S){ T

sgn(s)R  otherwise.
Adapting [FCZ00] we introduce the following control time
Tr = min(T, (R)~2/3).
We set Zg = L>(0, Tr; R™) and Qg = (0,Tr) x R™. We shall denote by ||.|| 1 n)

the natural norm on L?(0,Tr; R™), p = 2 or p = co (see the end of Section 1.1.4).
For z € Zr we set a, = g(Sr(z)). Observe that we have

+CRP, (T + Ta)llas]|eo < 20(R)?/3, (5.15)

since

la(t, k)| = [9(Sr(z(t, k)| < ((Sr(2(t, k) < ((R),
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and ((R) > ((Rp) > 1. We shall choose R in the form R = R(h) > Ry to be made
precise below.
For z € Zp we consider the linear control problem on [0, T]:

(at + Awt)y +ya, = 1,0, Yoo = 0, y(O) = Yo- (516)
If we apply Proposition 4.2 to the control system (5.16), we set
VR = Lrpa.(yo)  0<t<Tk.

as the associated control function and we denote by yr . the controlled solution.
We have

lyr,=(Tr)|r2(0) < K2e™ " yo| 12 (0, (5.17)
|vR,2 | 20,10, 22(2)) < K2|y0lr2(0), (5.18)

for C' > 0 uniform with respect to z and the discretization parameter h and with

2
Ky = C gt Trlloclltlal L) o 0 (144 +(m)*/?) (5.19)
by (5.15).
To apply Proposition 4.2 we require
1 -t 1\
h<CO(1+=+CR?*?) <C(14+—) |, (5.20)
T Tr

using (5.15).
As y, € L*°(0,Tr;R™) by Proposition 5.1 (using that R™ is finite dimensional)
the following map is well defined
AR 1 Ap — ZR,
2 YR,z

LEMMA 5.8. The map Ag is continuous on Zr = L>(0,Tr;R™).
We denote by Bg,j, the ball centered at 0 and of radius R = R(h) in Zg. Propo-
sition 5.1 gives
10yl (@r) < ChllOry:ll2(@r) < CrlDYolr2(0) < CLCE 1Yol L2(0)-

As H'(0,Tg) injects compactly in L>°(0,Tg) and R™ is finite dimensional we find
that A(Bg,p) is precompact in L>(0, Tr; R™).

_ LemmA 5.9. Let a > d/2. For any M > 0, there exists C = C(M,a) > 0 and
hs(T, M, ), such that for

R=Ch™®,

the map Ar maps Bp, into itself if 0 < h < hs and if lyolr2(0) < M.

All the previous properties allow us to apply the Schauder topological fixed-point
theorem if 0 < h < hs and |yo|2(q) < M and R is chosen according to Lemma 5.9:
there exists y € Br s such that Ar(y) = y. Setting vg = L1y, 4,(y0) we obtain

(0 + A™)y + yay, = L,vr, 0<t<Tg, Y90 =0, y(0) = yo.
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Since y € Bg,, we have ||y||r=(q) < R. Then we have a, = g(Sr(y)) = g(y), which
yields

(0 + A™)y + G(y) = Luvr, 0<t < Tk, Yoo =0, y(0) = vo.

With the value of R = R(h) given by Lemma 5.9 we go back to the estimations
(5.17)—(5.18) and find

Y(Tr)| 20 < K2e™ " yo| 1210, lvrllL2(@n) < Kalyolr2(),
with (use (5.26) in the proof of Lemma 5.9 and that 2r/3 < 1)

Ky < C(1+E+¢(R)>?) < 2OCR?M® £ OB (o L RYC < O (MR,

(5.21)
with a9 > 0. This yields
Y(Tr) L2 < C(M)e™ Myl o), Nvrllizigr < C(M)A™*lyo|L2()- (5.22)
for any 0 < Cy < Cy.
We now define v on [0,77] by
vp f0<t< Tr,
v =
0 ifTpr<t<T,
We naturally have |[v||z2(g) < Ch™*|yo|r2()-
If we have
h=*2|y(Tr)|12(0) < Mo, (5.23)

we can apply Proposition 5.4 on the time interval® [Tg, T, which yields
(D) r20) < |[Y(TR)|p2@)e™ T TR < O(M, T)e™ /M |yo| 12(q).

With (5.22), choosing hg < min(hg, hi, hs, hs) sufficiently small, condition (5.23) can
be fulfilled if 0 < h < hg, which concludes the proof. O

Proof of Lemma 5.8 (Continuity of the map Ar on L*°(0,Tr; R™)). In this proof
the values of h and R are kept fixed.

Observe that z — Sg(z) is continuous on Zi as Sg is Lipschitz continuous. As
g is also Lipschitz continuous we have that the map z — a, is continuous on Zp as
well.

Let us consider the following controlled parabolic problems

{(815 + Agm)yl +a1y1 = lwvala {(at + Am)yQ + agys = lwva27

y1|t:0 = Yo, y2|t:0 = Yo,

with max ([|a1|ec, [laz]eo) < CIn*/3(e + R). The controls v,, and v,, are obtained
through Proposition 4.2. Setting Y = y5 — y1 we write

(Or + AMY + a1Y = 1(Va, — Vay) + (a1 — a2)y2,  Yjy=o =0

2Here R = R(h). Yet, Proposition 5.4 applies in fact on the interval [T, T + T] by translation
in time.
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From Proposition 5.1 we obtain
1Y 2 (@n) < CullY Iz 0,7m,22(2)) < Ch(|Vas—vay lL2(@m vl 22(0m) laz—a1 | L= @x) ),
As we have
lv2llz2@m) < C(lvolrz) + l1vasllL2(on))
and [|va, [|z2(@r) < CrlYo|r2(0) we obtain
ly2 — villn=(@n) < Ch.r(1vay = Vay |l 22(0n) + W0l 22 laz — a1llL=(@r)),  (5.24)

To prove the result of the lemma it thus suffices to prove that the map a — v, is
continuous from L% (0, Tr;R™) to L2(0,Tr;R™). This is contained in the proof of
Lemma 5.3. O

Proof of Lemma 5.9. From Proposition 5.1 and (5.17)—(5.18) we have
vl @m) < B~ sl 070,220
< B (TR (5.25)
We hence find
Ry ll=(am < hfgec’l(1+T+%+1n%(e+R))7ln(R)|yO|L2(Q).

Let 0 < € < 1 be such that o > 2(%5)' As r < 3/2, there exists Ry = Ry(T) > Ro
such that

C(RY*=KIm¥(2+R)>1+ % (5.26)

and
Ci(1+T+ % +In¥ (e+ R)) —In(R) < —(1 — &) In(R). (5.27)
it R > Ry(T), which gives
_d

Ryl (@r) < %h}oh?(m-
We set

R=h"" MT= < p 709 M, (5.28)

and we have R > R;(T') by taking 0 < h < ;Lg with ;lg sufficiently small and function
of T"and M. With the choice for R we then obtain

d

_ h™2 h
Ryl zoe(@n) < e olz) < pr=M < L.

ol

We now recall condition (5.20) that connects R and h:
h<C(1+ % + (R
By (5.26) as ((R)?/3 > 1+ L if R > Ry (T) it suffices to have
h < C(2§(R)2/3)_1, i.e. R< e 9,

Observe that this last condition is satisfied by R as defined in (5.28) for 0 < h < hs <
Bg with i~z3 taken sufficiently small and function of T and M. O
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5.2.3. The one-dimensional case. Finally, we study the one-dimensional case
for which the result of Theorem 5.5 can be sharpened to yield a control function
uniformly bounded with respect to the discretization parameter h. This require a
more regular intial condition which can be achieved by simply setting the control
function to zero for a arbitrary small time interval according to the following lemma
in the case of an inital condition yg € R™ that lays in a bounded set for the L*°-norm.

LEMMA 5.10. Let yg € R™. Consider the homogeneous semi-linear equation

(815 + Am)y + g(y) = Oa > Oa Yoo = 07 y(O) = Yo, (529)

There exists t1 > 0, depending on |yo| (), such that the solution exists on [0,1]
and we have

ly()| ) < C(f%\yom(ﬂ) +t%5(97 |y0|Lw(Q))), 0 <t <ty,

for some continuous function [ and some C' > 0 independent of the discretization
parameter h.

Here, we have introduced the following discrete H'-norm:

|U|H1(Q) = |U|L2(Q) + Z |D¢U|L2(Q).
i€[1,d]

Observe below that the proof of Lemma 5.10 holds in arbitrary dimension.
Proof. For any h > 0 there exists a unique solution to (5.29) by the Cauchy
Lipschitz theorem and we have the Duhamel formula:

y(t) = S(t)yo + f S(t — )G (u(s)) ds,

where S(t) = e~ tA™ . For s > 0, we set G(s) = sup[_ 4 |G|, which yields a Lipschitz
function. We have |S(t)u|p~ < |u|p~ which gives

()] < lyolz= + f 1G(y(s)| = ds

t
< yolze~ + [ G(ly(s)|r) ds.
0

Take ug > 0 and define

¢(u)—j Gd(s;)’ u>0

The function ¢ is increasing and so is its inverse ¢~ !. The Bihari inequality [Bih56]
then yields

ly(t)|r= < ¢ (¢(lyolr=) +1t),  te€0,t],

with ¢; chosen sufficiently small and function of |yg|r-. This insures the existence of
the solution on [0,¢;]. Note that ¢; is chosen independently of h. We write

()| Lo < H(t, |yolr=) < H(t1, |yolz=) = H(lyolz=), £ €[0,1],
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as H increases with respect to t.

We now consider the regularization effect. We have |S(t)u|g1 < C’t_%|u|Lz as
can be derived using an eigenfunction decomposition. From the Duhamel formula we
thus obtain

1 t 1
()| < Ct 2 |yo[ L2 + {(t —5)721G(y(s))L> ds.

As we have |u|p2 < |2 |u|p~ we obtain

1G(y()|zz < Q1[G (y(5)) L= < QUEC(|y(s)]1=)
< 912G (H(|yolr=)) =: B, |yl

for 0 < s < t1, which gives
t 1
()| < CE 2 |yol 12 + B, [yol =) J(t—s)"2d
0

< O/ (4 Hyol 2 + 2B lyol 1) ).

The constants are independent of h. O
We can now state the control result.

THEOREM 5.11. Let d =1 and Q = (0,1) and v satisfy (1.2). There exists Cy
such that, for T > 0 and M > 0, there exist positive constants C, hs < min(hg, hi, h2)
such that for 0 < h < hz and for all initial data yo € R™ satisfying |yo| g1y < M,
there exists a semi-discrete control function v such that the solution to the semi-linear
parabolic equation

O+ Ay +G(y) =1,v,  ypa =0, y(0) = yo. (5.30)

satisfies

Y(T)|r2() < Ce™ M yolr2(),  and |v]lL2(@) < Clyolr2(@)-

Here C =C(T,M).

Proof. The proof follows that of Theorem 5.5. We set Zr = L*(0,Tg;R™).
Denoting by Bp the ball centered at 0 and of radius R in Zg, the following lemma
replaces Lemma 5.9.

LEMMA 5.12. There exists Ry = Ro(T, M) such that the map Ar maps Bg into
itself if R > Ro and if |yo|m1q) < M.

Here Ry is not connected to h. We choose R = Ry. If we take h sufficiently small,
0 < h < hs with hs = hg(T, M) = min(hg, hy, ha, C(1 + 1/T + C(R)*3)~1), then
(5.20) is fulfilled.

As Ap is also continuous and Agr(Bg) is precompact this yields the existence of
y € Bg such that Ar(y) =y. Setting vg = Lty q,(y0) we obtain

(O + A™)y +ya, = 1,0, tec (0,Tg], Yoo =0, y(0) = vo-

Since y € Bg we have [|y||p~(g) < R. Then we have a, = g(Tr(y))
yields

I
—
=
E.
o
=

O+ Ay +G(y) =1ov, t€(0, TRl yoo =0,  y(0)=yo.
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With the estimations (5.17)—(5.18) we have

Y(Tr)|r2(0) < C(T, M)e™ /" |yo| 12(q). lvrllL2(@r) < C(T, M)|yolr2(),

as R = Ry is chosen independently of h here.
We now define v on [0, 7] by

_Jur if0<t< T,
)0 ifTp<t<T,

We naturally have ||v||z2(q) < C(T, M)|yolr2(0)-
If we have

h71/2|y(TR)|L2(Q) < Mo, (5.31)
we can apply Proposition 5.4 on the time interval [Tg, T, which yields
(D) 120y < [Y(Tr) L2y e™° TR < O(T, M)e=%/"|yo| p2(q).-

With (5.22), choosing hs < min(hq, by, ha, hs) sufficiently small, condition (5.23) can
be fulfilled if 0 < h < hg, which concludes the proof. O

Proof of Lemma 5.12. From Proposition 5.1 and (5.15) we have

1
L4 T +(TZ +Tg)|ax| ) (

1Dyl Lo (0,1, 22(02) < el [Dyolz2 (o) + vllz2 (@)

1
oC (14Tt 7 +(TE +Tn) 0z | o+ la- 12°)

IN

|y0|H1(Q)
O (14T +E+c(R)>?)

IN

|yo|H1(Q)-

In the one dimensional case if f € R™ with fjpq = 0 we have

|flze < |Dflei) < CalDf|r2q)-
We thus obtain

(1474 £ +¢(R)>/?)

Y=l (@r) < e 1Yol 1 () (5.32)

We hence find

_ 1 u2r/3 _
R 1||yzHL°°(QR) < 6C(l-&-T—i—T+ln (e+R)) 1n(R)|yO‘H1(Q)~

As r < 3/2,if |yo|g1(o) < M there exists Ry > 0, depending on 7" and M such that
Hyz”Loc(QR) <R, if R > Ry.

Hence, for R > Ry the map Ar maps Bpr into itself. O

REMARK 5.13 (local controllability in one space dimension). Estimate (5.32) is
used above to prove controllability thanks to the form of the non-linearity. For an
arbitrary non-linearity one can also use (5.32) and impose a sufficiently small initial
condition yo in H'-norm, which yields

Yyl (@n) < R-
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The rest of the proof remains unchanged and this yields the following local controlla-

bility result.

THEOREM 5.14. Let d =1 and Q = (0,1), v satisfy (1.2), and the function G
of the form (5.4). There exists Cy such that, for T > 0 there exist positive constants
C, hy < min(hg, h1,h2) and € > 0, such that for 0 < h < hs and for all initial data
Yo € R™ satisfying |yolm1 (o) < €, there exists a semi-discrete control function v such
that the solution to the semi-linear parabolic equation

O+ AMy+G(y) =1ov, Yoo =0,  y(0)=y. (5.33)
satisfies

[y(T)| 200y < Ce™ % yo|r2(q), and  |[v|lr2@) < Clyolr2(e)-

REMARK 5.15. Smallness of the initial condition in H'-norm can be obtained
by setting the control function to zero for a short initial time and starting from a
small initial condition in L?>-norm by Lemma 5.10 that also lays in a bounded set of
L*°-norm.

Appendix A. Proofs of intermediate results in Section 3.

A.1. Proof of Lemma 3.4. We have

113 = Z ff Tﬁl Di(%Div)&gvdt.
i€[1,d] Q

As v|po = 0, with a discrete integration by parts, we have

Lz=—- 3 ff Di(Tﬁi 3tv)'yti dt = Q1 + Qo,
ie[1,d] Q
with
Q=— > [[Di (Tﬁi)atﬂi”yiDiv dt,
i€[L,d] Q
Q2 = ff TP 3tD )y Div dt.
1€|Il d] Q

Proposition 2.13 shows that D; (rpT) = O x(sh), it then follows that

Qi< X [[57'00a(sh) (0,5 dt+ X [f sOxa(sh) (D) dt

ie[l,d] Q ie[l,d] Q

< > st Oxg( (sh) (0 v)2 dt+ > ffSO,\,R(Sh)(DiU)2 dt
Zeﬂl d]] Q ie[[lvd]] Q

— [[ s Oxa(sh)(Ow)” dt+ 3 [f sOxa(sh)(Div)? dt (A.1)
Q ie1,d] Q

—_~— i

as (8&#)2 < (8tv)2 , by convexity and as v|pqg = 0.
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We write, using that ~; do not depend on time, that
1 N

| 15 3o (D)’ dt
ie[l,d] Q
1 ' 2 1 = 2)t=T
==Y o (rp )’yi (Div) dt—= Y [rp" v (Div) 0"
2 icma) o ielLd] ©

We observe that for 0 < sh < e1(\) with e1(\) sufficiently small we have rpT >0
by Proposition 2.13. The signs of the terms at ¢ =T and ¢ = 0 are thus prescribed.

Moreover, by Proposition 2.14, we know that 8t(rﬁi) = T(sh)?00, «(1) so that, for
sh < R, we obtained the result.0

A.2. Proof of Lemma 3.7. We have

Ly = Y [[~r(DiDip) o Oy dt.
ie[L,d] Q

As v]pg = 0 we write

i

-
Iz = 3> [[7ir(DiDip) 0o o' dt = Q1+ Qa,
i€[1,d] Q

by Lemma 2.2 with

Q1= Y. [[vr(DiD;p) 000" dt,

i€[1,d] Q
h? _ .
Q= > ZZ I Di(vir(D;Dip))(D;0pv) " dt.
i€[1,d] Q
We have
1 ’.\/7" - 2 1 ’.\/i - 2 t=T
Qi=-= Y [[o(vir(DiDip) )(2°) dt+= > [~r(D;D;p) (") ‘ .
2icmay’a ic[Ld] @ t=0

By Proposition 2.13 and Lemma 2.7 we have

i

vir(D;Dip) = 520A7§(1)

LEMMA A.1. We have

O¢(vir(DiDip) ) = Ts*00, (1).

Proof. Since ~y; do not depend on time, we have
O (ir(DiDip)) = ~i0, (r(DiDip))

which is bounded by Ts?00, q(1) thanks to Proposition 2.14. The action of the
avering operator -* does not affect the form of this estimate. O

—_—

As (171')2 < (U)2 and v|gpg = 0, we thus have

Q= gTS290/\,.Q(1)(U)2 dt + £82 (OA,ﬁ(l)('U\t:T)2 + OA,ﬁ(l)(U‘t:0)2). (A.2)



42 F. BOYER AND J. LE ROUSSEAU

With an integration by parts in time and Lemma 2.1 we obtain Qs = Q. + Q»,
with

2
Qu=— ¥ " [10.(Di(ur(D.Di0)T) (D)
i€[1,d] Q
2 f—
Qv= > %fDi(%T(DiDiP))Di(U)Q i;g
ie[Ld] 8 0

With Lemma 2.1 and as v|pg = 0 with a discrete integration by parts in space
(Proposition 2.4) we have

Q. = %ﬂ@memDamﬂfﬁ
zE[[l d]
fo( r(D;D;p)))(9,;0")(D;v) dt
zE[[l d]

To estimate @), we perform a discrete integration by parts using that v|sq = 0,

h2 t=T
Qp = — s L [ DiDi(yir(DiDip)) (v)” [, -
zeﬂl d]]

LEMMA A.2. We have

Di(vir(DiDip)) = s*Ox a(1),  hiDiDi(yir(D;Dip)) = s(sh)Ox x(1),

Proof. We use Lemma 2.1 to get

D;(yir(DiDip)) = (Di%)mi + %' Di(r(D;Dip)))

and the required estimate follows from the Lipschitz regularity of ; and Proposition
2.13. The second estimate is deduced from the first one by observing that h;D; =

TZ-+ — 7; . For the third estimate, since ; do not depend on the time, we can write

h;0.D; D;i(vir(D; Dip)) = (7 * = 77 )(7;" — 77) (7:0:(r(D; Dip))).

The conclusion comes from Proposition 2.14. O

—_~i

With the Cauchy-Schwarz inequality, using that (6t17")2 < (8,511)2 and v|pq = 0
we obtain

Qa = gTSQGOA,R(l)(U)2 dt + g(sh)%_l@x,ﬁ(l)(@tvfdt (A.3)
I (sh)?sOx x(1) (Dw)2 dt.
i€[1,d] Q
and
Qp = éOA,ﬁ(l) (S(Sh) (v)z) |t=T + éOAﬁ(l) (S(Sh) (0)2) |t=0. (A4)

In fine, collecting (A.2), (A.3), (A.4), we obtain the result. O
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A.3. Proof of Lemma 3.8. We have

I3y =217 . ff(atﬁ)wyirmi vDv' dt.
i€1,d] Q

As v|pa = 0, we write

i

Isy = =21 Y [[(0:0)pyirDip v Dyv dt
i€1,d] Q

We have

i

¢rirDip v = @yirDip’ ¥ + -Di(pyir Dip') Div

We obtain

In=-7 % [[(@0)¢virDip’ D; (U)th
ic[l,d] @
hi — 2
57 > J[(2:0)D;(prirDip’) (Div)” dt
ie[,d] @

i

=7 3 [[(2:0)D;(¢yirDip') (U)2dt
i€[1,d] Q

2 -
— 57 2 J[(@6)Di(pvirDip) (Div)” dt.
ic[Ld] Q

with a discrete integration by parts.
By using the Lipschitz continuity of ¢7y; and Proposition 2.13 we get that

i

D; (erTpi) =50\ x(1), D; (SDViTDii,Oi) =50, x(1).
With (1.10), the result follows.O

A.4. Proof of Lemma 3.9. We have

Iss = —7 [[(9:0)p v dt = —;Tg(ata)@at (U)Z dt

= ;Tg(830)<p(v)2 dt — %T£(8t9)¢ (v)2 Zg

With (1.10) we have
—0,0(0) = 0,0(T) = TO*(T) > 0.

As ¢ < 0 the result follows. O
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A.5. Proof of Lemma 3.11. We choose i,j € [1,d] with ¢ # j. We have

ff s¢: (Div)”d

J

> C [[ s¢ (Dw)* dt = C [[ s¢ (Dyv)”
Q , Q

= Ogsq;j (Dyv)* dt+CTgs(Dj¢) D;(D;v)* dt
:cgsd? (lf?ivvj)th—kC}fofs&j (D; D) dt — ff D;D;¢) (Div)” dt.

by Proposition 2.4 as Di’l)‘(o7T)><an = 0 and by Lemma 2.2. We thus have

2 2

ff 8(25’}/,' (l)i’U)2 dt > C% ff qu (DjDﬂ})2 dt — C% ff S(DJDqu) (Dﬂ])Q dt. (A5)
Q Q Q
With Lemma 2.6 we note that
¢ =o+h20\(1),  D;Djp =96+ h*0x(1) = Ox(1),

which justifies the last term in H, and contributes to the first term in X and the first
term in W.

Similarly for ¢ € [1,d], we also write

g7i¢ (Dyv)? dt > cg¢ (Dyv)* dt
= [ 9(Dwe) de+7 3 I (6 (D) + (0 (D) ).y o

Q
| ——
=9;

by Proposition 2.4, and Lemma 2.2 yields

2, = [[4' (D)’ dt+—ff Di(Diw)* dt

2

Q
:f@fa'(D v')? dt+—ff¢ (D;Dw)” d _h ffDngb)(Dv) dt

h? _ _
+ Z? éf ((Di(b)NiJrl (Dlv)?\w-% — (Dzﬁb)O(DzU)Q%) dt.
We observe that
h;
= AT (0 (D)) + (0 (D))

2
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can be made non-negative for h sufficiently small once A is fixed, as D;¢ = Oy (1).
With Lemma 2.6 we note that

¢ =¢+hOr(1), DiDip =026+ h*05(1) = Ox(1),

which justifies the first and second term in H, and contributes to the two terms in X
and the second term in W. 0O
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