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Abstract. The Hierarchical Optimized Link State Routing (HOLSR) protocol

enhances the scalability and heterogeneity of traditional OLSR-based Mobile Ad-

Hoc Networks (MANETs). It organizes the network in logical levels and nodes

in clusters. In every cluster, it implements the mechanisms and algorithms of the

original OLSR to generate and to distribute control traffic information. However,

the HOLSR protocol was designed with no security in mind. Indeed, it both in-

herits, from OLSR, and adds new security threats. For instance, the existence

of misbehaving nodes can highly affect important HOLSR operations, such as

the cluster formation. Cluster IDentification (CID) messages are implemented to

organize a HOLSR network in clusters. In every message, the hop count field

indicates to the receiver the distance in hops to the originator. An attacker may

maliciously alter the hop count field. As a consequence, a receiver node may join

a cluster head farther away than it appears. Then, the scalability properties in a

HOLSR network is affected by an unbalanced distribution of nodes per cluster.

We present a solution based on the use of hash chains to protect mutable fields in

CID messages. As a consequence, when a misbehaving node alters the hop count

field in a CID message, the receiver nodes are able of detecting and discarding

the invalid message.
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1 Introduction

The Hierarchical Optimized Link State Routing (HOLSR) [14] is a proactive routing

protocol designed to improve scalability of heterogeneous Mobile Ad-Hoc Networks

(MANETs). HOLSR has two phases: i) cluster formation and ii) topology map acqui-

sition. In the first phase, HOLSR organizes the network in logical levels and nodes in

clusters. In the second phase, HOLSR implements the mechanisms and algorithms of

the original OLSR [4] to generate and to distribute control traffic messages. Information

contained in Hello and Topology Control (TC) messages are used to calculate optimal

routes from any given node to any destination within each cluster. Additionally, Hier-

archical Topology Control (HTC) messages are implemented to advertise membership



information from a cluster to other nodes in higher levels. Nevertheless, HOLSR was

designed without security measures. Therefore, both phases are vulnerable to malicious

attacks. In HOLSR networks, a malicious attack can be perpetrated by a node that in-

terrupts the flooding of control traffic information or does not obey the rules of the

protocol to maintain the hierarchical architecture. In this paper, we describe a cluster

formation attack against the HOLSR protocol during the cluster formation phase.

During the first stage, every cluster head advertises itself through the periodical

generation of CID messages that invite other nodes to join. Every CID message has a

hop count field that indicates the distance to the originator. The cluster head field of a

CID messages points to the originator. When the receiver node joins a cluster head, it

generates a new message increasing by one the hop count field. When a node receives

messages from different cluster heads, it joins the closest cluster head, in terms of hops.

When a node receives CID messages from multiple cluster heads, but with the same

hop count, it attaches itself to the cluster head from which it received the first message

and remains with that cluster head until the topology changes. As a consequence, a

node at the border of different clusters only accepts control traffic information from

its cluster. An attacker might unsettle this process by generating CID messages with

and invalid hop count field. This attack, has a higher impact when the hop count field

value is drastically reduced. The receiver nodes may join a cluster head which is farther

away than it appears. As a result, the affected cluster head may be overloaded due to an

unbalanced node distribution. Additionally, the nodes in some clusters have to include

more elements in their routing tables adding unnecessary overhead to the cluster. We

handle this risk by implementing a mechanism that implements hash chains to protect

the hop count field in every CID message. Our solution is based on the work of Hong et

al. in [6]. They present a wormhole detective mechanism and an authentication protocol

to strengthen the neighbor relationship establishment in standard OLSR. We address a

different kind of attack in HOLSR networks. Our mechanism protects the integrity of

CID messages and enforces the uniform distribution of nodes in every cluster.

Organization of the paper — Section 2 reviews the OLSR protocol. Section 3 presents

the HOLSR protocol. Section 4 describes the cluster formation attack. Section 5 presents

a new security extension to the protocol leveraging hash chains that mitigates the cluster

formation attack. Section 6, shows our results and simulations setup. Section 7 presents

the related work. Finally, Section 8 closes the paper with our conclusions.

2 Optimized Link State Routing Protocol

This section presents a brief overview of the OLSR protocol. OLSR is a proactive rout-

ing protocol designed for MANETs. The core of the protocol is the selection, by ev-

ery node, of Multipoint Relays (MPRs) among their one-hop symmetric neighbors.

OLSR nodes flood the network with link-state information messages. The link-state

information is constructed by every node and involves periodically sending Hello and

TC messages. This information is used to determine the best path to every destination

in the network. Due to the proactive nature, the routes are immediately available when

needed. The OLSR protocol is based on hop by hop routing, i.e., each routing table

lists, for each reachable destination, the address of the next node along the path to that



destination. To construct a topology map, every node implements a topology discov-

ery mechanism leveraging the periodic exchange of control traffic messages. Topology

discovery includes: link sensing, neighbor detection and topology sensing.

During this first stage (link sensing), every node populates its local link information

base (link set). This phase is exclusively concerned with the OLSR interface addresses

and ability to exchange packets between such OLSR interfaces. Then, during the neigh-

bor detection stage, every node populates its neighborhood information base (i.e., one-

hop and two-hop neighbor set). The link sensing and neighbor detection phases are

based on the periodic exchange of Hello messages. Hello messages are solely transmit-

ted to one-hop neighbors. Information contained in Hello messages allows every node

to construct and maintain neighbor tables, as well as to select its MPR set. The MPR

set is selected such that all two-hop neighbors are reachable through, at least, one MPR.

In the neighbor table, each node records the information about the one-hop neighbor

link status (i.e., unidirectional, bidirectional or MPR), with this information every node

builds its MPR selector set, i.e., the number of neighbors who selected that node as their

MPR.

Topology sensing is achieved through the exchange of TC messages. TC messages

are generated and retransmitted exclusively by the MPRs. These messages allow each

node to construct its topology table and to declare its MPR Selector set. The MPR

Selector Set is the collection of nodes that have selected a given node as an MPR. A

TC contains the MPR Selector Set of its originator. A node that has an empty MPR

Selector Set does not send or retransmit any TC message. An MPR forwards a message

if it comes from a node in its MPR Selector Set. This forwarding algorithm is defined

in [4]. Using the information from TC messages, each node maintains a topology table

where each entry consists of: (i) an identifier of a possible destination, i.e., an MPR

selector in a TC message, (ii) an identifier of a last-hop node to that destination, i.e.,

the originator of the TC message, and (iii) an MPR Selector Set sequence number [8].

It implies that a possible destination (i.e. an MPR selector) can be reached through the

originator of the TC message. If there is an entry in the topology table whose last-hop

address corresponds to the originator of a new TC message and the MPR Selector Set

sequence number is greater than the sequence number in the received message, then the

new message is discarded. Routing tables are constructed using the information from

the neighbor and topology table.

OLSR implements two optional messages: Multiple Interface Declaration (MID)

and Host and Network Association (HNA) messages. MID messages are used to de-

clare the presence of multiple interfaces on a node. HNA messages are employed to

inject external routing information into an OLSR network and provide connectivity to

nodes with non-OLSR interfaces. HNA and MID are exclusively retransmitted by the

MPRs and following the default forwarding algorithm defined in [4]. MID messages

are implemented in a network with multiple interface nodes. Additional information is

necessary in order to map interface addresses to main addresses. In OLSR, the main

address is defined as the OLSR interface address. A node with multiple interfaces must

generate periodically MID messages announcing all its interfaces to other nodes in the

network. Thus, every node in an OLSR network will associate multiple interfaces to

a node’s main address. Nodes with just one interface do not generate MID messages



and the main address is the OLSR interface address. A node with several interfaces,

where only one of them is participating in an OLSR network must not generate MID

messages. MID messages are retransmitted exclusively by the MPRs following the de-

fault forwarding algorithm . Upon receiving a MID message, the information is stored

in an Interface Association table. This information is used to construct the routing ta-

bles. Then, if a node misbehaves and does not retransmit MID messages, the proper

construction of the routing tables is compromised.

In an OLSR network, a node with multiple interfaces might be connected to an

external network (e.g., an Ethernet) not running OLSR. In this case, the node acts as

a gateway and may inject external routing information in the OLSR network. Thus,

a node connected to an external network should periodically generate HNA messages

announcing its external network address and netmask. HNA messages flood the network

following the default MPR forwarding mechanism. The flooded information is used by

the OLSR nodes to construct their routing tables. HNA messages can be considered as a

generalized version of the TC messages. Like TC messages, the originator of the HNA

messages announces reachability to the others.

3 The Hierarchical OLSR Protocol

OLSR is a flat routing protocol designed exclusively for MANETs. However, the

performance of the protocol tends to degrade when the number of nodes increases due

to a higher number of topology control messages propagated through the network. Scal-

ability can be defined as the capacity of the network to adjust and to maintain its perfor-

mance even when the number of nodes in the network increases [14]. The MPR mech-

anism is local and therefore very scalable. However, the diffusion by all the nodes in

the network of all the link-state information is less scalable. For instance, in [11] Palma

et. al. show that OLSR has good results in terms of scalability in networks with up to

70 nodes, preferably with a moderate node speed (e.g., pedestrian speed) and where the

number of traffic flows is also moderate. However, OLSR’s performance decreases in

large heterogeneous ad hoc networks.

Additionally, OLSR does not differentiate the capabilities of its member nodes and,

in consequence, does not exploit nodes with higher capabilities. Thus, HOLSR is an

approach designed to improve the scalability of OLSR protocol in large-scale hetero-

geneous networks. The main improvements are a reduction in the amount of topology

control traffic and efficient use of high capacity nodes. HOLSR organizes the network

in hierarchical clusters. This architecture allows to reduce the routing computational

cost, i.e., in case a link is broken only nodes inside the same cluster have to recalculate

their routing table while nodes in different clusters are not affected.

In HOLSR, nodes are organized in clusters according to their capacities. The net-

work hierarchical architecture is illustrated in Fig. 1. At level 1, we have low-capability

nodes with one interface represented by circles. Nodes at the topology level 2 are

equipped with up to two wireless interfaces, designated by squares. Nodes at level 2

employ one interface to communicate with nodes at level 2 and one interface to com-

municate with nodes at level 1 or 3. Nodes at level 3, designated by triangles, represent



high-capacity nodes with up to three wireless interfaces to communicate with nodes

at lower levels. Nodes with more than one interface are selected as cluster heads. In

Fig. 1, the notation used to name the clusters reflects the level of the cluster and the

cluster head, e.g., C1.A means that the cluster is at level 1 and the cluster head is node

A. A node with multiple interfaces is identified at every level with a different inter-

face. For instance, in Fig. 1 node F has two interfaces and can communicate with nodes

at levels 2 and 3. Then, F2 and F3 represent node F’s interfaces at level 2 and 3 re-

spectively. Node B has three interfaces and establishes communication with nodes at

levels 1, 2 and 3 through interfaces B1, B2 and B3 respectively. HOLSR allows forma-

tion of multiple clusters and, unlike OLSR, HOLSR nodes can exchange Hello and TC

messages exclusively within each cluster. This constraint reduces the amount of traffic

information broadcast to the entire ad hoc network.
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Fig. 1. Example of a hierarchical architecture with heterogeneous nodes.

3.1 Cluster Formation

The topology control information is exchanged between clusters via specialized HOLSR

nodes designed as cluster heads. The selection of cluster heads and classification of

nodes according to their capabilities are defined at the startup of the HOLSR process.

A cluster is formed by a group of mobile nodes -at the same hierarchical level- that



have selected a common cluster head. Nodes can move from one cluster to another

and associate to a new cluster head. Any node participating in multiple topology levels

automatically becomes the cluster head of the lower-level cluster. In HOLSR, a clus-

ter head declares its status and invites other nodes to join it by periodically sending

out CID announcement messages. These messages are transmitted in the same packets

together with Hello messages using a message grouping technique. This technique is

implemented to reduce the number of packet transmissions. A CID message contains

two fields:

– cluster head: interface address of the originator of the message.

– hop count: distance in hops to the cluster head generating the message.

Once a node has joined a cluster head, it generates a new CID message inviting other

nodes farther away to join the cluster. Any given node may receive two or more CID

messages, indicating that it is located in the overlapping regions of multiple clusters. In

such a case, the node joins whichever cluster is closer in terms of hop count. When a

node receives messages from different cluster heads with the same hop count value, it

joins the cluster head from which it received the first CID message. Fig. 2 shows the

cluster formation process. Nodes A and B are cluster heads and generate CID messages

(CIDA and CIDB respectively). The one-hop neighbor nodes join the originator of the

message and generate a new message increasing by one the hop count field. Notice that

node 2 receives CID messages from CHA and CHB with the same hop count value. In

this case, node 2 chooses the cluster from which it has received the first message. In the

same figure, node 9 joins cluster head A and generates a new CID message with hop

count equal to four. Node 11 rejects that message because cluster head B is only three

hops away. We refer to neighbor nodes in different clusters, such as nodes 9 and 11,

as border nodes. Robustness is ensured thanks to a built-in diagnostic feature. Every

node registers a timeout value for each CID message received. When a cluster head be-

comes inactive or moves away, then each neighbor node stops receiving CID messages.

Eventually the CID message timeout expires and the CID information becomes invalid.
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Fig. 2. CID messages.



Thus, each node starts to process new CID messages from other clusters and selects a

new cluster head. For instance, in Fig. 2, assuming cluster head CHA went down, then

all nodes attached to it will join cluster head CHB after receiving new CID messages

from that cluster head. If no CID messages are received, then it means that the network

is not partitioned in clusters anymore and behaves as the original OLSR protocol.

3.2 Cluster Head Message Exchange

The hierarchical architecture must support the exchange of topology control informa-

tion between clusters without introducing additional overhead. Thus, Hierarchical TC

(HTC) messages are generated by the cluster head and used to transmit the member-

ship information of a cluster to higher level nodes. There are three basic types of HTC

messages:

– full membership: these messages are periodically transmitted by a cluster head to

provide information about its cluster members, including any node in lower levels

beneath it.

– update: to provide information about cluster membership changes. The update HTC

is used when a node leaves or joins a cluster.

– request: request HTC messages are used when a packet loss has occurred. HTC

message carries a sequence number field, which allows a node to request the re-

transmission of a full membership HTC message.

HTC forwarding is enabled by the MPRs and restricted within a cluster. Nodes at the

highest topology level have full knowledge of all nodes in the network and their routing

tables are as large as they would be in an OLSR network. However, in lower levels,

the size of the routing table of every node is restricted to the size of the cluster and it

is smaller than in OLSR. For instance, in Fig. 1 the cluster head A generates an HTC

message for the interface A2 (level 2) announcing that nodes 1, 2 and A1 are members

of its cluster at level 1. The message is relayed to all nodes at the same level. Then, node

B generates an HTC message for the interface B3 (level 3) advertising that nodes 1, 2,

3, 4, 5, 7, 8, A1, B1, C1 (at level 1) and A2, B2, C2, D2 (at level 2) are members of its

cluster. Fig. 3 presents a summary of the messages implemented in HOLSR networks.

Messages Generated by Retransmitted by Information reported

Hello Every node N/A One-hop neighbors

TC MPRs MPRs MPR selectors

CID Cluster heads N/A A Cluster head

HTC Cluster heads MPRs Nodes within a cluster

Fig. 3. Summary of control traffic messages in HOLSR networks.



3.3 Topology Control Propagation

Nodes in each cluster select their MPRs to flood control traffic information. Control

messages are generated and propagated exclusively within each cluster, unless a node

is located in the overlapping zone of several clusters. For example, in Fig. 1 node 2 is

within the border of cluster C1.A and may accept a TC or HTC message from node 3

located in cluster C1.B. However, node 2 retains the information without retransmitting

it to its cluster. Thus, except for the border nodes, knowledge of nodes about the clusters

is restricted to their own cluster. Data transfer between nodes in the same cluster is

achieved directly via the information in the routing tables. However, when transmitting

data to destinations outside the local scope of a cluster, the cluster heads is used as a

gateway. When transmitting data between border nodes in different clusters at the same

level, a different strategy might be used. In this situation, the cluster head is not used as

a gateway to relay the information. Nearby nodes in different clusters at the same level

can communicate directly without following the strict clustering hierarchy. This means

that, data transfer between nodes is achieved following three different strategies:

– communication between nodes in the same cluster is achieved via the routing in-

formation in their routing tables,

– data transfer between nodes in different clusters is achieved through the cluster

heads, but

– if the nodes are neighboring nodes in different clusters at the same topology level,

the cluster heads are not used and data packets are directly relayed.

Therefore, HOLSR offers two main advantages (a) messages reflecting local movement

are restricted to each cluster (thus, reducing the routing table computation overhead)

and (b) an efficient use of high-capacity nodes without overloading them.

4 Cluster Formation Attack against the HOLSR protocol

4.1 Adversary Model

The flow of CID messages is an important vulnerability target. The hop count has to

be updated every time a new message is retransmitted. Thus, a malicious node might

alter this field to unsettle the cluster formation process. The attack, has a bigger impact

when the malicious node drastically reduces the hop count field. This is because the

receiver nodes accept the CID message with the lowest hop count value. Thus, when

an attacker increases drastically the value, the receiver nodes automatically discard the

altered message and accept the valid message from other nodes, as this is described

in Section 3.1. If a node that generates a CID message reinitializes the value of the

field hop count, the receiver nodes may join a farther cluster head and discard valid

CID messages from closer cluster heads. Then, we only need to address the case when

the hop count field is maliciously reduced.

In general, if an attacker is at distance d (in hops) from a cluster head CHi, and

generates a new CID message with hop count value j, the nodes with hop count greater

or equal to j + d
2 from the CHi are potentially affected. For instance, Fig. 4 (a) shows



the correct propagation of CID messages. Fig. 4 (b) shows an example of the attack.

In Fig. 4 (b), M1 is a malicious node at distance six hops from cluster head CHB .

M1 receives CID messages from CHB and CHA, and generates a new CID message

assigning an incorrect value to the field hop count, i.e., hop count is set to two. Thus,

all nodes at distance greater or equal to four hops (nodes 2 and 3) process the message

and incorrectly join CHA. Notice that the lowest value that can be used to reinitialize

the field hop count is two because CID messages with field hop count equal to one are

generated exclusively by the cluster heads. Additionally, we consider that the attacker

only has one interface, it can not impersonate a cluster head and it only modifies the

hop count value. In the following section, we present our proposed solution to handle

this problem.

5 Handling the Attack with the use of Hash Chains

We describe in this section a security improvement over HOLSR based on the use of

hash chains [13]. Authentication and integrity is achieved by using hash key chains. For

instance, in [10], Lamport proposes a method of user password authentication based on

a secure one-way hash function. We do not attempt to address authentication, but the

integrity of the messages. A one-way hash chain is based on a one-way hash function h

that is applied n times to a unique value x. Hash functions are relatively easy to compute

and can be applied to a block of data of any size.

A hash function can be applied to a block of data of any size and produce a fixed-

length output. According to [13], a strong one-way hash function h must have the fol-

lowing properties:

1. The one-way property implies that for any given value h(x), it is infeasible to find

the value of x.

2. The weak collision resistance property implies that for any given block x, it is

computationally infeasible to find y 6= x such that h(x) = h(y).

- Cluster Head

CHB

CIDA: 2

CIDB: 1

CIDA: 4CIDA: 3CIDA: 1 CIDA: 6 CIDA: 2

CIDB: 2CIDB: 3CIDB: 4

2 3CHA M1
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CIDA: 2

CIDB: 1
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a) Correct CID message propagation.

b) Incorrect CID message propagation, decreasing the hop count value.

Fig. 4. CID messages.



3. The strong collision resistance property implies that it is computationally infeasi-

ble to find a pair (x, y) such that h(x) = h(y).

These properties are explained in detail in [13]. Our scheme prevents the attack pre-

sented in Section 4 while avoiding the use of computationally expensive cryptographic

operations. We use the following notation:

– sj : is a random value (i.e., a nonce) generated and known exclusively by the cluster

head CHj .

– h(x): is a strong one-way hash function applied to x.

– hn(x): is a hash chain constructed by applying n times the hash function h to x,

hn(x) = h(...h(h(x))).
– t: is the maximum number of times that a hash function is applied to x.

– Maxj : is the value obtained by applying t times the hash function to a nonce sj ,

Maxj = ht(sj).
– i: is the distance in hops between the receiver and a cluster head.

Consider that the hash function h(x) and the value of t are known by all nodes in the

network. For our purposes, we suppose that the malicious attacker is not able of generat-

ing a valid nonce sj . Algorithm HASH-CHAINED_CID_DISSEMINATION (henceforth

HCCD for brevity) formalizes our proposal.

ALGORITHM: HCCD

1. A cluster head (CHj) generates a random number sj , i.e., a nonce.

2. CHj sets the field i = 1.

3. CHj calculates the value Maxj = ht(sj).

4. CHj generates the CID message:< Maxj , h
i(sj), i >.

5. The receiver node verifies that the sender node is i-hops away by applying the following

criteria:

– If Maxj = ht−i(hi(sj)), then the CID message is valid.

– Else, the receiver node discards the CID message.

6. If the CID message is valid, then the receiver node generates a new CID message

with the hop count increased by one and applying the hash function to hi(sj):

< Maxj , h(hi(sj)), i + 1 >.

Algorithm HCCD works as follows: firstly, a valid cluster head (CHj) generates a

random number sj , i.e., a nonce that is only known by the originator of the message.

Then, it initializes the hop count field i equal to one and computes the Maxj value

by applying t times the hash function h(x) to the nonce sj , such as Maxj is equal to

ht(sj). We assume that Maxj and the value of t are known by all the nodes in the

network during the execution of the protocol. Additionally, CHj applies i times the

hash function to sj , to obtain hi(sj). Then, CHj generates a CID message with the

fields: < Maxj , h
i(sj), i >. The receiver node verifies that the CID message is valid



by applying t−i times the hash function to hi(sj) and comparing the result with Maxj .

Therefore, if Maxj is equal to ht−i(hi(sj)), then the hop count value i has not been

altered and the received CID message is valid. Finally, the receiver node joins CHj until

it receives a CID message from a different cluster head with a lower hop count value. In

the mean time, the receiver node generates periodically CID messages announcing its

cluster head and the hop count distance to reach it, i.e., < Maxj , h(hi(sj)), i + 1 >.

Theorem 1 Given a HOLSR network applying the algorithm HCCD for the dissem-

ination of CID messages, such that malicious nodes in the network are not able of

generating a valid nonce s, h is a strong one-way hash function, i is the distance in

hops to reach a cluster head j and Maxj is a value obtained by applying t times h to

the nonce sj . Then algorithm HCCD guarantees that a malicious node cannot generate

a valid CID message with a hop count value k 6= i, such that Maxj = ht−k(hi(sj)).

Proof According to algorithm HCCD , Maxj = ht(sj) and a CID message is valid

if Maxj = ht−i(hi(sj)). Then, let us assume that there exists a value k 6= i such

that Maxj = ht−k(hi(sj)). Thus, ht(sj) = ht−k(hi(sj)). Then, function h does not

meet the weak collision resistance property of strong one-way hash functions due to

ht−k(hi(sj)) and ht−i(hi(sj)) are both equal to Maxj . Therefore, ht(sj) is equal to

ht−k(hi(sj)) only if k is equal to i.

�

6 Results and Simulations Setup

In this section, we describe the experiments and results after assessing the effectiveness

of our proposed countermeasure to the cluster formation attack presented in Section 4.

We conducted our experiments using the NS-3 simulator [5], version 3.9. We modified

the original OLSR code developed by Ros and Carneiro to implement the hierarchical

approach (i.e., HOLSR), attack, and countermeasure described in Section 5. We tested

our algorithm in an HOLSR network with two levels, 200 nodes in the first level with

only one interface and four nodes with up to two interfaces (i.e., cluster heads). The

transmission range for nodes in the first level and second level is 120 m and 500 m

respectively. Nodes at the first level are placed following a uniform distribution in an

area of 1000 m by 1000 m. We assume that the administrator of the network can decide

the best criteria to distribute the cluster heads. Thus, we divide our scenario in four

quadrants and place a cluster head in the center of each of them. We also assume that

the malicious node knows the position of the cluster heads and sets itself in the border

of two different clusters to maximize the impact of an attack. We also assume that the

malicious nodes do not collude to perform an attack, no data traffic is generated and all

the scenarios are static.

In an ideal scenario, the number of nodes per cluster must be equally balanced.

However, due to the position of the nodes in the network this is not always possible.

Additionally, the presence of misbehaving nodes may disproportionately increase the

imbalance of the number of nodes per cluster. We compute the average of the standard



(a) σ ≤ 5 (b) 5 < σ ≤ 7

(c) 7 < σ ≤ 10 (d) 10 < σ

Fig. 5. Standard deviation of the average number of nodes per cluster testing different HOLSR

networks with up to five malicious nodes and applying algorithm HCCD .

deviation of the number of nodes per cluster with up to five malicious nodes launching

the cluster formation attack. Then, we compare the average of the standard deviation

of the number of nodes per cluster on a series of simulated HOLSR networks without

protection and the average of the standard deviation of the number of nodes per cluster

but applying algorithm HCCD . We use the standard deviation (σ) as a measure of

dispersion. The standard deviation is computed with the formula: σ =
√

P

(xj−X̄)2

NCH

and expressed in the same units as the data, where xj is equal to the number of nodes in

the cluster j, X̄ is the average of nodes per cluster, i.e., total number of nodes (n) over

the number of clusters (NCH ). In our experiments, the standard deviation formula can

be simplified as follows: σ =
√

P

(xi−50)2

4 . Fig. 5 shows how the CID attack affects

the average of the standard deviation of 100 experiments with different topologies and

90% confidence interval.

To present our results, we consider two factors that affect the distribution of nodes

per cluster: the network topology and the presence of malicious nodes. Thus, Fig. 5(a)

shows the experiments where σ ≤ 5, this means that the distribution of nodes per cluster

in the network is relatively balanced when there is no malicious nodes. Fig. 5(b) shows

the experiments where the distribution of nodes per cluster is less balanced due to the

network topology, i.e., 5 < σ ≤ 7, Fig. 5(c) shows the experiments where 7 < σ ≤ 10,



and Fig. 5(d) shows the experiments where 10 < σ. In each case, the first column

shows the average of the standard deviation with malicious nodes and implementing

algorithm HCCD . Therefore, the distribution of the nodes per cluster is affected only

by the network topology. The second column represents the average of the standard

deviation with malicious nodes but without applying our algorithm. Notice that the

average of the standard deviation and size of the confidence interval increase because

the number of nodes per cluster is less balanced due to the network topology plus the

effect of the attack.

7 Related Work

In this paper, we reviewed the cluster formation phase in HOLSR networks, however

other hierarchical approaches based on the OLSR protocol are also vulnerable during

the cluster formation stage, for instance: cluster OLSR (C-OLSR) [12] proposed by

Ros et al. assumes that a cluster formation mechanism has been executed, nevertheless

any security measures during this stage are proposed. The Multi-level OLSR Routing

using the Host and Network Association (HNA) messages Extension (MORHE) [15]

presented by Voorhean et al. does not specify any secure cluster formation mechanism

therefore like C-OLSR, the cluster formation stage is vulnerable to malicious attacks.

A tree-based logical topology [3, 2] to provide hierarchical routing is presented by

Baccelli, this approach implements Branch messages to form and maintain a tree-based

structure. With a Branch message a node specifies information such as its identity (the

NodeID field), the tree where it belongs to (the TreeID field) and its parent in the tree

(the ParentID field). Additionally, the Depth field indicates the distance of the node

to the root. This approach does not propose any security measure to protect the in-

tegrity of Branch messages, so an attacker can easily alter the value of the Depth field

in Branch messages. A hierarchical approach similar to HOLSR which uses HNA mes-

sages instead of HTC messages for inter-cluster communication is proposed by Arce

et al. in [1]. Like HOLSR, cluster heads are predefined then is not necessary a cluster

head selection algorithm, however a cluster formation mechanism is needed. Therefore,

any strategy that uses the distance in hops as the main parameter to invite other nodes

to join a particular cluster head will be affected by the attack presented in this paper.

In [6], Hong et al., present a solution to secure OLSR (SOLSR). Authors present a

wormhole detective mechanism and authentication to strengthen the neighbor relation-

ship establishment. Thus, they use digital signature to ensure the non-mutable fields

and hash chains to secure Hop Count and TTL fields. Their solution is similar to our

proposed algorithm, however it is implemented in flat OLSR to protect only standard

control traffic messages. Kush and Hwang, present in [9] a mechanism based in hash

chains to secure AODV. Then Hashing is done for route request and reply messages to

achieve complete security in terms of availability, integrity and authentication, minimal

overhead, network performance in terms of throughput and node mobility. Similarly,

Hu et al., [7] propose a hashing mechanism to secure distance vector routing protocols.



8 Conclusion

HOLSR has been designed to improve scalability in MANETs. However, the proto-

col has been designed without security countermeasures. In this paper, we propose a

method to protect the cluster formation stage in HOLSR networks. Our mechanism

prevents an attacker from maliciously altering the hop count field in CID messages.

Thus, we present an algorithm based on hash chains that allows to detect and discard

invalid CID messages. Our experiments show that the distribution of nodes is less bal-

anced when the hop count in CID messages is maliciously altered. We also show that

we can prevent this kind of attacks by applying our proposed algorithm. Notice that our

mechanism, can be also applied in other hierarchical routing protocols for MANETs

that utilize mutable information such as the hop count or TTL fields to organize the

network in clusters.
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