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STRONGLY REINFORCED
VERTEX-REINFORCED-RANDOM-WALK ON THE

COMPLETE GRAPH

MICHEL BENAIM, OLIVIER RAIMOND, BRUNO SCHAPIRA

Abstract. We study Vertex-Reinforced-Random-Walk on the com-
plete graph with weights of the form w(n) = n

α, with α > 1.
Unlike for the Edge-Reinforced-Random-Walk, which in this case
localizes a.s. on 2 sites, here we observe various phase transitions,
and in particular localization on arbitrary large sets is possible,
provided α is close enough to 1. Our proof relies on stochastic
approximation techniques.

1. Introduction

This paper considers a Vertex-Reinforced Random Walk (VRRW) on
a finite complete graph with weights wα(n) := (n+1)α in the strongly
reinforced regime α > 1.

Such a process is a discrete time random process (Xn)n≥0 living in
E = {1, . . . , N} and such that for all n ≥ 0 and j ∈ E,

P(Xn+1 = j | Fn) =
wα(Zn(j))

∑

k 6=Xn
wα(Zn(k))

1{Xn 6=j},

where Zn(j) :=
∑n

ℓ=0 1{Xℓ=j}, is the number of jumps to site j before
time n, and Fn = σ(Xk; k ≤ n).

The linear regime (i.e α = 1) has been initially introduced by Pe-
mantle [P] on a finite graph and then extensively studied for different
type of graphs by several authors ([PV, T1, V, LV, BT]).

The main result of the present paper is the following:

Theorem 1.1. Let N ≥ 2 and α > 1 be given. Then the following
properties hold.

(i) With probability one there exists 2 ≤ ℓ ≤ N , such that (Xn)
visits exactly ℓ sites infinitely often, and the empirical occupa-
tion measure converges towards the uniform measure on these
ℓ sites.

(ii) Let 3 ≤ k ≤ N. If α > (k − 1)/(k − 2), then the probability to
visit strictly more than k − 1 sites infinitely often is zero.
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If α < (k−1)/(k−2), then for any 2 ≤ ℓ ≤ k, the probability
that exactly ℓ sites are visited infinitely often is positive.

This result has to be compared with the situation for Edge Rein-
forced Random Walks (ERRW). Limic [L] (see also [LT]), proved that
for any α > 1, and for any free loops graph with bounded degree, the
ERRW with weight wα visits only 2 sites infinitely often. It has also to
be compared to the situation on the graph Z, where for any α > 1, the
VRRW with weights (wα(n)) visits a.s. only 2 sites infinitely often.

It might be interesting to notice also that when we add one loop to
each site, i.e. when at each step, independently of the actual position
of the walk, the probability to jump to some site i is proportional to
wα(Zn(i)), then Rubin’s construction (see [D]) immediately shows that
the walk visits a.s. only one site infinitely often. In fact with our
techniques we can study a whole family of processes which interpolate
between these two examples: for c ≥ 0, consider the process with
transitions probabilities given by

P(Xn+1 = j | Fn) =
wα(Zn(j))1{Xn 6=j} + c wα(Zn(j))1{Xn=j}
∑

k 6=Xn
wα(Zn(k)) + c wα(Zn(Xn))

,

with the same notation as above. The case c = 0 corresponds to the
VRRW on the free loop complete graph, and the case c = 1 corresponds
to the VRRW on the complete graph with loops. Then for any c ≥ 1,
the process visits a.s. only 1 site infinitely often, and when c ∈ (0, 1),
various phase transitions occur, exactly as in Theorem 1.1, except that
the critical values are this time equal to [k− (1− c)]/[k− 2(1− c)], for
2 ≤ k ≤ N and localization on 1 site is always possible and occurs even
a.s. when α > (1+c)/(2c). Since the proofs of these results are exactly
similar as those for Theorem 1.1, we will not give further details here.

Finally let us observe that similar phase transitions as in Theorem
1.1 have been observed in some random graphs models, see for instance
[CHJ, OS].

2. A general formalism for VRRW

We present here a general and natural framework for studying VRRW
based on the formalism and results introduced in [B] and [BR]. Such
a formalism heavily relies on stochastic approximation technics and
specifically the dynamical system approach developed in [B2].

Let A = (Ai,j)i,j≤N be a N ×N symmetric matrix with nonnegative
entries. We assume that Ai,j > 0 for i 6= j, and that

∑

j Ai,j does not

depend on i. Let α > 1 be given. We consider the process (Xn)n≥0
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living in E = {1, . . . , N}, with transition probabilities given by

P(Xn+1 = j | Fn) =
AXn,j(1 + Zn(j))

α

∑

k≤N AXn,k(1 + Zn(k))α
,

where Zn is defined like in the introduction. The case of the VRRW
on the complete graph is obtained by taking

(1) Ai,j = 1− δij .

For i ≤ N , set vn(i) = Zn(i)/(n+ 1). Note that if Ai,i = 0 and Xk = i
then Xk+1 6= i. In particular for any such i, and n ≥ 1, vn(i) ≤
(1/2 + 1/(n + 1)) ≤ 3/4. In other words, for all n ≥ 1, vn belongs to
the reduced simplex

∆ :=

{

v ∈ R
N
+ : vi ≤ 3/4 if Aii = 0 and

∑

i

vi = 1

}

.

In the following, we might sometimes view an element f = (fi)i≤N ∈
R

N as a function on E, and so we will also use the notation f(i) for fi.
Now for ǫ ∈ [0, 1] and v ∈ ∆ we let K(ǫ, v) denote the transition

matrix defined by

(2) Ki,j(ǫ, v) :=
Ai,j(ǫ+ vj)

α

∑

k Ai,k(ǫ+ vk)α
,

for all i, j ≤ N. To shorten notation we let

(3) K(v) := K(0, v).

Two obvious, but key, observations are that

P(Xn+1 = j | Fn) = KXn,j((n+ 1)−1, vn)),

and

lim
n→∞

K((n+ 1)−1, v) = K(v).

Hence, relying on [B] and [BR], the behavior of (vn) can be analyzed
through the ordinary differential equation v̇ = −v+π(v), where π(v) is
the invariant probability measure of the Markov chain with transition
matrix K(v).

3. The limit set theorem

3.1. The limiting differential equation and its equilibria. For
v ∈ ∆, set vα = (vα1 , . . . , v

α
N), and

(4) H(v) :=
∑

i,j

Ai,jv
α
i v

α
j = 〈Avα, vα〉.
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Note that H is positive on ∆. Hence one can define

πi(v) =
vαi (Av

α)i
H(v)

, i = 1, . . . , N.

From the relation

vαj (Av
α)iKi,j(v) = Ai,jv

α
i v

α
j ,

it follows that K(v) is reversible with respect to π(v).
For r = 0, 1 set Tr∆ =

{

v ∈ R
N :

∑

i vi = r
}

and let ı : T1∆ → ∆
be the map defined by ı(v) = argmin{‖y − v‖ : y ∈ ∆}. Since ∆ is
convex ı is a Lipschitz retraction from T1∆ onto ∆.

Let now F : T1∆ → T0∆ be the vector field defined as

(5) F (v) = −v + π(ı(v)).

Note that F is Lipschitz. Thus by standard results, F induces a global
flow Φ : R× T1∆ → T1∆ where for all x ∈ T1∆, t 7→ Φ(t, x) := Φt(x)
is the solution to v̇ = F (v) with initial condition v(0) = x.

For any subset I ⊂ {1, . . . , N}, we let

∆I := {v ∈ ∆ : vi = 0 ∀i ∈ E \ I},

denote the I-face of ∆. We let int∆I = {v ∈ ∆I : vi > 0 ∀i ∈ I}
denote the (relative) interior of ∆I . For v ∈ ∆ we let supp(v) = {i ∈
E : vi 6= 0}, so that v always lies in the supp(v)-face of ∆.

Lemma 3.1. The flow Φ leaves ∆ positively invariant: ∀t ≥ 0, Φt(∆) ⊂
∆; and

for each I ⊂ E, the face ∆I is locally invariant: ∀v ∈ ∆I , ∀t ∈ R,
Φt(v) ∈ ∆ ⇔ Φt(v) ∈ ∆I .

Proof. For all v ∈ ∆, π(v) lies in ∆. Indeed for the Markov chain
having transition matrix K(v) the empirical occupation measure lies
in ∆ and by the ergodic theorem (for finite Markov chains) the same
is true for π(v). Hence F (v) points inward ∆ for all v ∈ ∆, proving
that ∆ is positively invariant. Since Fi(v) = 0 when vi = 0, each face
is locally invariant. �

Let
C = {v ∈ ∆ : F (v) = 0},

denote the equilibria set of F . Relying on stochastic approximation the-
ory [B, B2, BR] it will be shown below (Proposition 3.5) that (vn, n ≥ 1)
converges almost surely to C.

The next result is similar to the case α = 1 (see for instance [P]):

Lemma 3.2. The map H : ∆ → R is a strict Lyapunov function,
meaning that 〈∇H(v), F (v)〉 is positive for all v ∈ ∆ \ C.



STRONGLY REINFORCED VRRW ON THE COMPLETE GRAPH 5

Proof. One has ∂iH(v) = 2αvα−1
i (Avα)i. Thus

〈∇H(v), F (v)〉 =
∑

i

2αvα−1
i (Avα)i

(

−vi +
vαi (Av

α)i
H(v)

)

=
2α

H(v)

(

−
(

∑

i

vα−1
i (Avα)ivi

)2
+
∑

i

(

vα−1
i (Avα)i

)2
vi

)

≥ 0,

with equality only when vα−1
i (Avα)i does not depend on i ∈ supp(v),

i.e. only when v is an equilibrium. �

Remark 3.3. The barycenter v = (1/N, . . . , 1/N) is always an equi-
librium.

Lemma 3.4. H(C) has empty interior.

Proof. The computation of ∂iH(v) shows that

(∂i − ∂j)H(v) = 2α(vα−1
i (Avα)i − vα−1

j (Avα)j).

Hence, for all v in the relative interior of ∆, F (v) = 0 ⇔ ∇H(v) = 0. In
other word C ∩ int∆ = ∇H−1(0)∩ int∆. By Sard’s theorem, it follows
that H(C ∩ int∆) has measure zero, hence empty interior. Similarly,
for each face I, H(C ∩ int∆I) has empty interior. This proves the
lemma. �

Proposition 3.5. The set of limit points of (vn) is a connected subset
of C.

Proof. By proposition 3.3 and Theorem 3.4 in [B] or Proposition 4.6 in
[BR], we get that the limit set of (v(n)) is an internally chain transitive
set for Φ. Since H is a strict Lyapunov function and H(C) has empty
interior, it follows from Proposition 6.4 in [B2] that such a limit set is
contained in C. �

In particular, when all the equilibria of F are isolated, then vn con-
verges a.s. toward one of them, as n→ ∞.

Remark 3.6. When A is not symmetric, the convergence result given
by Proposition 3.5 fails to hold. Indeed, an example is constructed in
[B] with N = 3 and α = 1 for which the limit set of (vn)n≥1 equals ∂∆.
This behavior persists for α = 1 + ǫ and ǫ > 0 small enough.

3.2. Stable and unstable equilibria. An equilibrium v is called lin-
early stable provided all the eigenvalues of DF (v), the differential of F
at point v, have negative real parts. It is called linearly unstable if one
of its eigenvalues has a positive real part.
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Now we will see with the next result that to study the stability or
instability of the equilibria, it suffices in fact to consider only those
which belong to the interior of ∆. In the following we let (e1, . . . , eN)
denote the canonical basis of RN .

Lemma 3.7. Let v be an equilibrium. Then, for i, j ∈ supp(v), we
have

Dei−ejF (v) = (α− 1)(ei − ej) + α
∑

ℓ

vαℓ (Aℓ,iv
α−1
i − Aℓ,jv

α−1
j )

H(v)
eℓ,

and for i /∈ supp(v),

Dei−vF (v) = −(ei − v).

Furthermore, the eigenvalues of DF (v) are all reals.

Proof. For any i, j ≤ N , and v ∈ ∆,

∂j(Av
α)i = αAi,jv

α−1
j ,

and then by using that A is symmetric, we get

∂jH(v) = 2αvα−1
j (Avα)j .

Thus

∂jπi(v) = δi,jα
vα−1
i (Avα)i
H(v)

+ α
vαi Ai,jv

α−1
j

H(v)

−2α
vαi (Av

α)i
H2(v)

vα−1
j (Avα)j.

Now assume that v is an equilibrium, and let i, j ∈ supp(v). We get
with Lemma 3.2

∂jπi(v) = δi,jα + α
vαi Ai,jv

α−1
j

H(v)
− 2αvi,

and then

∂jFi(v) = δi,j(α− 1) + α
vαi Ai,jv

α−1
j

H(v)
− 2αvi.

On the other hand if vi = 0 or vj = 0, then

∂jπi(v) = 0,

and thus
∂jFi(v) = −δi,j.

The first part of the lemma follows. To see that eigenvalues are real,
we may assume without loss of generality that v ∈ int(∆). Note that
∂jFi(v)vj = ∂iFj(v)vi. Therefore, the transpose of DF (v) is self adjoint
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with respect to the dot product (x, y) =
∑

i vixiyi, and this concludes
the proof of the lemma. �

As announced above we deduce

Corollary 3.8. An equilibrium on a face is linearly stable (respectively
unstable), if and only if, it is so for the restriction of F to this face.

Proof. Indeed, assume that v is an equilibrium on a face ∆I associated
to some subset I. Then the previous lemma shows that for any i /∈ I,
ei − v is a stable direction. So the result of the corollary follows from
our definitions of stable and unstable equilibria. �

In other words to study the stability or instability of equilibria, and
we will see in the next two subsections why this question is important,
it suffices to consider those belonging to the interior of ∆.

3.3. Non convergence towards unstable equilibria. The purpose
of this section is to prove the following result.

Theorem 3.9. Let v∗ be a linearly unstable equilibrium. Then the
probability that vn converges towards v∗ is equal to 0.

Proof. Let us recall now that for g ∈ R
N and i ∈ E, we use the notation

g(i) = gi. For u, v ∈ R
N , we also set uv :=

∑

i uivi, and ‖u‖ = supi |ui|.
Furthermore, C will denote a non-random constant that may vary from
lines to lines.

For v ∈ ∆, let Q(v) be the pseudo-inverse of K(v) defined by:

(I −K(v))Q(v)g = Q(v)(I −K(v))g = g − (π(v)g)1,

for all g ∈ R
N , with I is the identity matrix and 1(i) = 1 for all i ∈ E.

Then by a direct application of the implicit function theorems (see
Lemma 5.1 in [B]) one has

Lemma 3.10. For any v ∈ ∆ and i ∈ E, Q(v), K(v)Q(v), and
(∂/∂vi)(K(v)Q(v)), are bounded operators on ℓ∞(E), the space of bounded
functions on E, and their norms are uniformly bounded in v ∈ ∆.

Now for all n ≥ 1 and i ∈ E, we can write

vn+1(i)− vn(i) =
1

n+ 1

(

− vn(i) + ei(Xn+1)
)

.

Note that K
(

(n + 1)−1, vn
)

= K(ṽn), where

ṽn(i) =
vn(i) + 1/(n+ 1)

1 +N/(n + 1)
for 1 ≤ i ≤ N.
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Note also that ‖ṽn − vn‖ ≤ C/n. Let next zn be defined by

zn(i) = vn(i) +
K(ṽn)Q(ṽn)ei(Xn)

n
for 1 ≤ i ≤ N.

Then Lemma 3.10 implies that ‖zn − vn‖ ≤ C/n. Moreover, we can
write:

(6) zn+1 − zn =
F (zn)

n+ 1
+

ǫn+1

n+ 1
+

rn+1

n+ 1
,

where ǫn+1 and rn+1 are such that for all 1 ≤ i ≤ N ,

ǫn+1(i) := Q(ṽn)ei(Xn+1)−K(ṽn)Q(ṽn)ei(Xn),

and rn+1 =
∑4

k=1 rn+1,k, with

rn+1,1 = F (vn)− F (zn)

rn+1,2 = π(ṽn)− π(vn)

rn+1,3(i) = K(ṽn)Q(ṽn)ei(Xn)

(

1−
n+ 1

n

)

rn+1,4(i) = K(ṽn+1)Q(ṽn+1)ei(Xn+1)−K(ṽn)Q(ṽn)ei(Xn+1),

for 1 ≤ i ≤ N .
By using the facts that F and π are Lipschitz functions on ∆, ‖vn −

ṽn‖+ ‖vn − zn‖ ≤ C/n, and by applying Lemma 3.10, we deduce that

‖rn+1‖ ≤ C/n.

Moreover, we have

E[ǫn+1 | Fn] = 0.

Since v∗ is linearly unstable there exists, by Lemma 3.7, f ∈ T0∆ and
λ > 0 such that

(i): DfF (v) = λf and,
(ii): fi = 0 for i ∈ E \ supp(v∗).

Such an f being fixed, we claim that on the event {vn → v∗},

lim inf
n→∞

{

E[(ǫn+2f)
2 | Fn+1] + E[(ǫn+1f)

2 | Fn]
}

> 0.(7)

To prove this claim, we first introduce some notation: for µ a proba-
bility measure on E, and g ∈ R

N , denote by Vµ(g) the variance of g
with respect to µ

Vµ(g) :=
1

2

∑

1≤j,k≤N

µ(j)µ(k)
(

g(j)− g(k)
)2
.
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Then for any n ≥ 0 and i ≤ N , let µn,i be the probability measure
defined by µn,i(j) = Ki,j(ṽn). Set also Vn(i) := Vµn,i

(Q(ṽn)f). Then
we have that

E[(ǫn+1f)
2 | Fn] = Vn(Xn).

Furthermore, when vn converges toward v∗, K(ṽn) and Q(ṽn) converge
respectively toward K(v∗) and Q(v∗). Thus, for any i ∈ E,

lim inf
n→∞

Vn(i) ≥ V ∗(i) := Vµ∗

i
(Q(v∗)f),

where µ∗
i (j) = Ki,j(v

∗), for all j ≤ N . Next by using the fact that
when Xn = i and Ai,i = 0, then Xn+1 6= Xn, we get that

lim inf
{

E[(ǫn+2f)
2 | Fn+1] + E[(ǫn+1f)

2 | Fn]
}

≥ min
i

c∗(i),

where

c∗(i) := min
j∈Ai

(V ∗(i) + V ∗(j)),

and

Ai :=

{

E if Ai,i 6= 0
E r {i} if Ai,i = 0.

Now by using that

Q(v∗)f −K(v∗)Q(v∗)f = f − (v∗f)1

(recall that π(v∗) = v∗), we see that Q(v∗)f has constant coordinates
on supp(v∗), if and only if, f has constant coordinates on supp(v∗).
But since f ∈ T0∆ and fi = 0 for i 6∈ supp(v∗); this cannot be the
case. Since µ∗

i (j) > 0, when j 6= i and j ∈ supp(v∗), it follows already
that c∗(i) > 0, for all i /∈ supp(v∗). Now let i ∈ supp(v∗) be given.
If Ai,i 6= 0, then again we have V ∗(i) > 0, and thus c∗(i) > 0. Now
assume that Ai,i = 0. If #supp(v∗) ≥ 3, then there can be at most one
value of i, for which V ∗(i) = 0, and thus in this case we have c∗(i) > 0
as well. Let us then consider the case when #supp(v∗) = 2, and say
supp(v∗) = {i, j}. Recall that if Ai,i 6= 0, then V ∗(i) > 0. However,
we cannot have Ai,i = Aj,j = 0, since otherwise v∗i = v∗j = 1/2 and by
lemma 3.7 v∗ is linearly stable. Finally we have proved that in any case
mini c

∗(i) > 0. Theorem 3.9 is then a consequence of (7) and Corollary
3.IV.15 p.126 in [Du]. �

3.4. Convergence towards stable equilibria and localization.

Theorem 3.11. Let v∗ be a linearly stable equilibrium. Then the prob-
ability that vn converges towards v∗ is positive.

Proof. follows from Corollary 6.5 in [B] since any linearly stable equi-
librium is a minimal attractor. �
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Theorem 3.12. Let v∗ ∈ ∆ be a linearly stable equilibrium. Then a.s.
on the event {limn→∞ vn = v∗}, the set E \ supp(v∗) is visited only
finitely many times.

The proof follows directly from the next two lemmas:

Lemma 3.13. There exists ν > 0 such that on the event {limn→∞ vn =
v∗},

lim
n→∞

nν‖vn − v∗‖ = 0.

Proof. This is similar to Lemma 8 in [BT]. We give here an alternative
and more direct proof relying on [B2]. Since v∗ is a linearly stable
equilibrium there exists a neighborhood B of v∗, a constant C > 0
and λ > 0, such that ‖Φt(v) − v∗‖ ≤ Ce−λt, for all v ∈ B (see e.g
[R], Theorem 5.1). Let τn =

∑n
k=1 1/k and let V : R+ → ∆ denote

the continuous time piecewise affine process defined by a) V (τn) =
zn and b) V is affine on [τn, τn+1]. By (6) and Doob’s inequalities,
the interpolated process V is almost surely a −1/2 asymptotic pseudo
trajectory of Φ, meaning that

lim sup
t→∞

1

t
log

(

sup
0≤h≤T

‖Φh(V (t)− V (t+ h)‖

)

≤ −1/2

for all T > 0. For a proof of this later assertion see [B2], Proposition
8.3. Now, by Lemma 8.7 in [B2]

lim sup
t→∞

1

t
log(‖V (t)− v∗‖) ≤ −min(1/2, λ)

on the event {vn → v∗}. This proves that ‖zn − v∗‖ = O(n−min(1/2,λ)),
which concludes the proof of the lemma. �

Lemma 3.14. For any I ⊆ {1, . . . , N}, and ν ∈ (0, 1), a.s. on the
event

Eν(I) := { lim
n→∞

vn(i)n
ν = 0 ∀i ∈ I},

the set I is visited only finitely many times.

Proof. For m ≥ 1, set

Em,ν(I) := {|vk(i)| ≤ k−ν ∀k ≥ m ∀i ∈ I}.

Note that on Em,ν(I), at each time k ≥ m, the probability to jump
to some vertex i ∈ I, is bounded above by pk := N1+α k−αν . Let now
(ξk)k≥m denotes some sequence of independent Bernoulli random vari-
ables with respective parameters (pk)k≥m. Then for any n ≥ m, on
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Em,ν(I) the number of jumps on I between time m and n is stochasti-
cally dominated by

Zn :=

n
∑

k=m

ξk.

However, it is well known that a.s. lim supZn/n
1−ν′ < ∞, for any

ν ′ < αν ∧ 1. We deduce that a.s. for any ν ′ < αν ∧ 1,

Em,ν(I) ⊆ Eν′(I).

Since Eν(I) ⊆ ∪mEm,ν(I), we deduce that a.s. for any ν ′ < αν ∧ 1,

Eν(I) ⊆ Eν′(I).

Since α > 1, it follows by induction that a.s.

Eν(I) ⊆ Eβ(I),

for any β ∈ (1/α, 1). But a simple application of the Borel-Cantelli
lemma shows that for any such β, a.s. on Eβ(I), the set I is visited
only finitely many times. This concludes the proof of the lemma. �

4. The case of the VRRW on the complete graph

In this section we study in detail the case of the VRRW on the
complete graph described in the introduction. In other words, A is
given by (1).

Since the case N = 2 is trivial, we assume in all this section that
N ≥ 3.

We first study the stability of the centers of the faces. As already
explained, this reduces to analyze the center of ∆.

Lemma 4.1. Let v = (1/N, . . . , 1/N) be the center of ∆. Then v is a
linearly stable (respectively unstable) equilibrium if α < (N−1)/(N−2),
(respectively α > (N − 1)/(N − 2)).

Proof. Lemma 3.7 shows that for all i 6= j,

Dei−ejF (v) =

(

−1 + α

(

N − 2

N − 1

))

(ei − ej).

The lemma follows immediately. �

By combining this lemma with Corollary 3.8, we get

Lemma 4.2. Let v be the center of the face ∆I associated with some
subset I with cardinality k ≤ N . Then v is a linearly stable (respectively
unstable) equilibrium if α < (k − 1)/(k − 2), (respectively α > (k −
1)/(k − 2)).
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It remains to study the stability of the other equilibria. We will see
that they are all unstable, which will conclude the proof of Theorem
1.1.

First we need the following lemma, which shows that coordinates of
equilibriums take at most two different values.

Lemma 4.3. Let v be an equilibrium in the interior of ∆, which is
different from its center. Then #{vi : i ≤ N} = 2.

Proof. Let a =
∑

i v
α
i and b =

∑

i v
2α
i . Since v is an equilibrium, we

have for all i,

vi = vαi
a− vαi
a2 − b

.

Since all coordinates of v are positive by hypothesis, this is equivalent
to

f(vi) = a− b/a,

for all i, where f(x) = −x2α−1/a+ xα−1. Now observe that

f ′(x) = xα−2
(

− (2α− 1)xα/a+ (α− 1)
)

,

does not vanish on (0, 1) if a ≥ (2α−1)/(α−1), and vanishes in exactly
one point otherwise. Thus for any fixed λ ∈ R, the equation f(x) = λ,
has at most one solution in (0, 1), if a ≥ (2α− 1)/(α− 1), and at most
two otherwise. The lemma follows. �

Let now v be an equilibrium in the interior of ∆, which is different
from its center. The previous lemma shows that its coordinates take
exactly two different values, say u1 and u2. Since the action of per-
mutation of the coordinates commutes with F , we can always assume
w.l.g. that vi = u1, for i ≤ k, and vi = u2, for i > k, for some k ≤ N/2.
Denote now by Ek the set of such equilibria (those in the interior of
∆, not equal to the center of ∆, and having their first k coordinates
equal as well as their last N − k coordinates). For v ∈ Ek, we also set
t(v) = vN/v1. We have the

Lemma 4.4. Assume that α ≥ (N − 1)/(N − 2), and let v ∈ Ek, with
k ≤ N/2. If k > 1 or if t(v) < 1, then v is linearly unstable.

Proof. It follows from Lemma 3.7 that for any i < j ≤ k,

Dej−eiF (v) = λ1(ej − ei),

and for k + 1 ≤ i < j ≤ N ,

Dej−eiF (v) = λ2(ej − ei),
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with

λm =

(

(α− 1)− α
u2α−1
m

H(v)

)

,

for m = 1, 2. Then it just suffice to observe that if u1 < u2, λ1 > 0,
whereas if u1 > u2, λ2 > 0. Thus if any of the hypotheses of the lemma
is satisfied, there DF (v) has at least one positive eigenvalue, and so v
is linearly unstable. �

On the other hand we have the following:

Lemma 4.5. Let v ∈ Ek be given. If k = 1 and α ≥ (N − 1)/(N − 2),
then t(v) < 1 and v is unstable. Similarly, if α < (N − 1)/(N − 2),
then v is linearly unstable.

Proof. Following our previous notation, set u1 := v1 and u2 := vN , and
recall that u1 6= u2, since v is not equal to the center of ∆. Recall
also that t(v) = u2/u1. Note that since ku1 + (N − k)u2 = 1, we have
u1 = 1/(k + (N − k)t). Now the fact that v is an equilibrium means
that F (v) = 0, which is equivalent to say that the function ϕ defined
by

ϕ(t) := −(N − k − 1)t2α−1 + (N − k)tα − ktα−1 + (k − 1),

vanishes at point t(v). We now study the function ϕ. First ϕ′(t) =
tα−2ψ(t), with

ψ(t) = −(2α− 1)(N − k − 1)tα + α(N − k)t− (α− 1)k.

In particular ψ is strictly concave, ψ(0) < 0 and limt→∞ ψ(t) = −∞.
Now two cases may appear. Either ψ vanishes in at most one point,
in which case ϕ is nonincreasing, thus vanishes only in 1. But this
case is excluded, since t(v) 6= 1 by hypothesis. In the other case ψ
vanishes in exactly two points, which means that there exist t1 < t2
such that ϕ is decreasing in (0, t1) ∪ (t2,∞), and increasing in (t1, t2).
Now consider first the case when k = 1, which implies ϕ(0) = 0.
If α ≥ (N − 1)/(N − 2), then ϕ′(1) ≤ 0, thus ϕ has at most one
zero in (0, 1) and no zero in (0,∞). Together with Lemma 4.4 this
proves the first part of the lemma. If α > (N − 1)/(N − 2), then
ϕ′(1) > 0, and thus ϕ has no zero in (0, 1) and exactly one zero in
(0,∞), in which the derivative of ϕ is negative. The fact that this zero
corresponds to an unstable equilibrium will then follow from (8) below.
But before we prove this fact, let us consider now the case k > 1 and
α < (N − 1)/(N − 2), which imply that ϕ(0) > 0 and ϕ′(1) > 0. Thus
ϕ vanishes in exactly one point in (0, 1) and another one in (1,∞), and
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again the derivative of ϕ in these points is negative. So all that remains
to do is to prove the following fact

If v ∈ Ek is such that ϕ′(t(v)) < 0, then v is unstable.(8)

Let us prove it now. For t ∈ (0,∞), set u1(t) = 1/(k + (N − k)t)
and u2(t) = tu1(t). Then let v(t) ∈ (0, 1)N , be the point whose first
k coordinates are equal to u1(t) and whose last N − k coordinates are
equal to u2(t). Then we have

H(v(t)) = k(k−1)u1(t)
2α+2k(N−k)tαu1(t)

2α+(N−k)(N−k−1)t2αu1(t)
2α,

and after some computation we find that

F (v(t)) = −
tu1(t)

2α+1

H(v(t))
ϕ(t) ek,

where ek is the vector, whose first k coordinates are equal to −(N − k)
and whose last N − k coordinates are equal to k. Then notice that
DekF (v(t)) = c(d/dt)F (v(t)), for some constant c > 0. But recall that
when v(t) is an equilibrium, ϕ(t) = 0. Thus

d

dt
F (v(t)) = −

tu1(t)
2α+1

H(v(t))
ϕ′(t) ek.

So if ϕ′(t) < 0, ek is an unstable direction, proving (8). This concludes
the proof of the lemma. �

The two above lemmas show that any equilibrium in the interior of ∆,
which is not equal to the center of ∆ is linearly unstable. Together
with Lemma 4.2, and Theorems 3.9, 3.11 and 3.12 this concludes the
proof of Theorem 1.1. �
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