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Abstract— We propose in this paper, two ID-Based
authentication methods for the Extensible Authentication
Protocol (EAP), as an alternative to methods relying
on Public Key Infrastructure (PKI), to provide nodes
with private and public keys. ID-Based Cryptography
(IBC) proposes to derive the public key from the node’s
identity directly. As such, there is no need for deployment
of a Certification Authority (CA) and the burdensome
management of certificates is removed. IBC relies on a
Private Key Generator (PKG) for the computation of
stations private keys.

Our first presented authentication method corresponds
to a situation where the PKG is trustful. As such,
the PKG generates the private keys of all the network
stations. However, our second contribution presents an
authentication method which is resistant to the Key
Escrow Attack. That is, we make each station generate
its own ID-Based private key. In addition, results from
implementation tests are given and prove how efficient
IBC might be for use in wireless networks.

I. Introduction

Nowadays, most of the authentication schemes proposed
for wireless networks rely on the 802.1X standard [1].
The 802.1X standard was designed to integrate Extensible
Authentication Protocol (EAP) into IEEE 802 wired net-
works. It gave also birth to the IEEE 802.11i [2] which is
more specific to wireless networks but still refers to similar
authentication methods. The 802.11i standard is the main
standard used to secure 802.11 WLAN and IEEE wireless
mesh networks specified in the 802.11s standard [3].

The authentication methods proposed by the 802.1X
standard are based either on the verification of a secret
shared between two stations or a signature mechanism
that lies on certificates to prove the ownership of a public
key and a signature for proving knowledge of the associ-
ated private key. The management of public and private
keys requires deploying CAs to control the generation,
revocation and duration of certificates. This system is
disadvantageous in wireless environments, such as ad-
hoc and wireless sensor networks, where stations may
have some power and memory constraints and where CA
reachability is not guaranteed.

In this paper, we present two EAP authentication meth-
ods adapted to wireless networks and using ID-Based
Cryptography (IBC). IBC considers the station identity
as its public key, and makes it possible to derive a cor-
responding private key. This derivation function, as well

as the secure transmission of the private key to its owner
are performed by the Private Key Generator (PKG). We
propose in this work to use the network Authentication
Server (AS) as a PKG. As such, each station (STA) has
to authenticate itself to the AS before requesting the
computation of its private key.

Note that IBC requires lightweight implementations at
the client level. Compared to Public Key Infrastructure
(PKI) certificate management, it does not need any spe-
cial space for certificate storage, and the key revocation
operation is simpler. Key revocation in IBC is bound to a
validity period which is defined either by the PKG or the
connecting station. Please refer to the work [4] for a good
comparison between PKI and IBC.

The major problem of IBC is the Key Escrow Attack
(KEA) which can be attempted by the PKG. The KEA
attack refers to the attack where a PKG impersonates as
a legitimate station due to its (i.e., the PKG’s) knowledge
of the station private key. That is, the PKG is able to
decipher any encrypted message transmitted to (or by) a
station. In addition, the PKG has the capability to sign a
message on behalf of any station due to its knowledge of
this station private key.

Our first contribution is an authentication method
which is adapted to a network where the PKG is supposed
to be trustful. That is, the PKG is not going to attempt a
KEA. This authentication serves to mutually authenticate
a station with the AS. We called this first authentication
method the EAP ID-Based Authentication method (EAP–
IBA).

Our second contribution presents an authentication
method which permits to avoid the KEA. The idea is
that each station is going to generate its own private key.
Meanwhile, the PKG generates a token to prove the STA
ownership of the private key. We will be referring to this
authentication method by the EAP Key Escrow Resistant
ID-Based Authentication method (EAP–KERIBA).

The remainder of this work is organized as follows. First,
the ID-based encryption and signature mechanisms are
introduced in Section II. Then, we describe the EAP–IBA
method in Section III-A and the EAP–KERIBA method
in Section III-B. We next discuss the security properties
of these two authentication methods in Section III-C. Fi-
nally, the implementation of some ID-based signature and
encryption schemes gives performance results in terms of



computation time and memory capacity related to pairing
functions (Section IV). By the way, the ID-based signature
schemes are presented comparatively to the famous RSA
and ECDSA performances.

II. ID-Based Cryptography

ID-Based Cryptography (IBC) was initially introduced
by Shamir [5] to provide entities with public and private
key pairs with no need for certificates, Certification Au-
thority (CA) and PKI. Shamir assumes that each entity
uses one of its identifiers as its public key. These identifiers
have to be unique. In addition, he assigned the private
key generation function to a special entity which is called
Private Key Generator (PKG). That is, before accessing
the network, every entity has to contact the PKG to get
back a smart card containing its private key. This private
key is computed so it is bound to the public key of the
entity.

During the last decade, IBC has been enhanced by the
use of the Elliptic Curve Cryptography (ECC) [6]. As
a consequence, new ID-Based encryption and signature
schemes emerged and they differ from Shamir’s method
in that the PKG does not rely on smart cards to store the
private key and the ciphering information.

Note that IBC requires lightweight implementations at
clients. Compared to PKI certificate management, there
is no need for storing certificates, and the key revocation
operation is much simpler. Key revocation in IBC is bound
to a validity period which is defined by the PKG or chosen
by the station and acknowledged by the PKG.

Sometimes, certificates are considered as IBC as they
bind the user’s public key to his identity. In this paper,
note that IBC is considered as the cryptographic schemes
where the public key is computationally derived from the
identity. That is, the public key is the output of a function
(mostly a hash function) that takes as input the user’s
identity. There are many existing types of IBC schemes
but this article has only interest in the ones using pairing
functions.

In the following sections, we present the key generation
processing for IBC. Furthermore, we introduce some well
known ID-Based Encryption and Signature (IBE and IBS)
schemes which have been verified secure with the random
oracle model [7].

A. ID-Based key generation

When a station needs a private key, it provides the PKG
with the identity �� intended to be used for its private
key computation. The PKG then derives the node’s private
key using some parameters which must be defined with
respect to the Bilinear Diffie-Hellman problem [8]. For
generating these parameters, the PKG runs a Probabilistic
Polynomial Time algorithm which takes as input a security
parameter � and outputs the groups G1, G2 and G� and
the pairing function �̂ from G1 ×G2 in G� . G1 and G2 are
additive groups of prime order � and G� is a multiplicative
group of the same order �. Note that the order � is defined

with respect to � such that � > 2�. Generally, G1 and
G2 are subgroups of the group of points of an Elliptic
Curve (EC) over a finite field and G� is a subgroup of
a multiplicative group of a related finite field.

The pairing function �̂ has to be bilinear, non degenerate
and efficiently computable. The non degeneracy property
means that for all points � ∈ G1, �̂(�, 1G2

) = 1GT
. In

addition, for all points � ∈ G2, �̂(1G1
, �) = 1GT

. If we
consider a generator � of G1 and a generator � of G2, the
value �̂(�, �) = � is equal to the generator of G� . Paterson
et al. [9] defined three types of pairing functions that can
be divided into two families:

1) Symmetric pairing: it verifies G1 = G2.
2) Asymmetric pairing: it verifies G1 ̸= G2. This

pairing function can be further classified based on
the existence (or not) of an efficient homomorphism
ã : G2 ⊗⊃ G1.

The point � is used to compute another point ����.
Practically this kind of bilinear mapping is derived from
the Weil or Tate pairing (or any efficient pairing) [10].

In addition to the definition of groups, some hash func-
tions need to be defined in accordance to the IBE or IBS
schemes that are going to be used. For example, a hash
function � that verifies � : ¶0, 1♢

*
⊃ G1 is defined in

order to transform the node’s identity into an EC point.
Generally, the public key of a station is computed as a
hash of one of its identities and it is either a point of an
elliptic curve or a positive integer. The list containing the
groups G1 and G2, the bilinear mapping �̂, the points �

and ���� and the hash functions form the public elements.
These public elements are distributed by the PKG to the
network users because they are needed during the public
key derivation and the cryptographic operations.

The key derivation operation starts when the PKG
receives the �� of the node that is requesting a private
key (Figure 1). First, the PKG computes the user’s public
key as ����� = �(��). Then, the PKG generates the
corresponding private key using a local secret value � ∈ Z

*
� .

Note that the private key is computed as: ������ =
�(�, �����). In the most common cases, ������ = � ≤
����� where ����� ∈ G1. The secret value � is also used
for ���� derivation from � : ���� = � ≤ � . As such, the
public elements are ¶G1, G2, �, �̂, �, �, ����, �1, . . . , ��♢.

It is clear from the aforementioned key derivation
scheme that the PKG knows every private key it generates
itself, and as such it is able to impersonate as a private key
owner by illegally generating signature or deciphering en-
crypted traffic. To mitigate the key escrow attack (KEA),
a strong assumption is made necessary that the PKG is a
trustworthy entity. In the following, we present some IBE
and IBS schemes.

B. Boneh and Franklin encryption scheme

Boneh and Franklin (BF) proposed in 2001 [10] an
IBE scheme using ECC and a symmetric pairing function.
They define two hash functions �1 and �2 such that:
�1 : ¶0, 1♢

*
⊃ G

*
1 and �2 : G2 ⊃ ¶0, 1♢

�
. So BF public



Fig. 1: ID-Based key generation.

elements are ¶G1, G2, �, �̂, �, � , ����, �1, �2♢. The PKG
computes the user’s public key as ����� = �1(��). Then,
the PKG generates the corresponding private key using a
local secret value � ∈ Z

*
� .

To encrypt a message � ∈ ¶0, 1♢
�

using the pub-
lic key �����, a user generates a secret random � ∈
Z

*
� and computes the ciphertext � as � = (�, � ) =

(� ≤ �, � ⊕ �2(�̂(�����, ����)�)). The decrypting entity
deciphers the received message as follows: � = � ⊕
�2(�̂(������, �)).

C. Paterson signature scheme

Paterson proposed in 2002 [11] an IBS scheme using
ECC and a symmetric pairing function. He defines three
hash functions �1, �2 and �3 such that: �1 : ¶0, 1♢

*
⊃

G1, �2 : ¶0, 1♢
*

⊃ Z
*
� and �3 : G1 ⊃ Z

*
� . So,

Paterson public elements are ¶G1, G2, �, �̂, �, � , ����,
�1, �2, �3♢. The PKG computes the user’s public key
as ����� = �1(��). Then, the PKG generates the
corresponding private key using a local secret value � ∈ Z

*
� .

To compute the signature of a message � , a user
generates a secret random � ∈ Z

*
� and computes its

signature as the pair (�, �) ∈ G1 × G1 where: � = � ≤ � ,
� = �⊗1(�2(�) ≤ � + �3(�) ≤ ������). The signature

verifier has only to compare �̂(�, �) to (�̂(�, � )
�2(�)

≤�̂(����, �����)
�3(�)

). The two values must be equal in
order to consider the signature as valid.

III. EAP ID-Based Authentication methods

The Extensible Authentication Protocol (EAP) [12] was
originally defined as an extension to the Point to Point
Protocol in order to provide a mechanism for the selection
of authentication methods. Then it has evolved to become
the standard that is used for station authentication in the
existing networks. Particularly, it has been adapted to the
802.11 networks architectures in the IEEE 802.11i stan-
dard [2] which extends the IEEE 802.1X specification [1].
The IEEE 802.1X defines the EAP over LAN protocol
(EAPOL).

When a station (STA) joins the network for the first
time or after being disconnected for a while, it authen-
ticates itself to one of its 1 hop neighbours that acts as
an authenticator. That is, through the exchange of some
request and response messages, the authenticator and the
supplicant negotiate the authentication method which is

going to be used. When the authenticator does not support
the authentication method proposed by the supplicant
STA, it acts as a passthrough server to transmit STA au-
thentication messages to a backend Authentication Server
(AS). Generally, the AS implements the most known
authentication methods. At the end of an authentication,
the AS transmits to STA the result of the authentication
using authentication success and authentication failure
messages.

We propose in this section two different EAP authenti-
cation methods that rely on IBC but correspond to two
different situations in practice. We assume first to use the
AS as a PKG in the two methods. We do so to avoid the
deployment in our network of a new entity in order to
use it as a PKG. As such, the AS will be the responsible
of STA authentication and key derivation. In addition, we
assume that the AS and STA share a secret password ���.
This ��� permits to authenticate them mutually.

Our first contribution (Section III-A) corresponds to a
situation where STA entrusts the AS for its private key
generation. That is, STA uses the EAP–IBA method to
authenticate to the AS. Then, the AS computes the private
key of STA (������ �). STA assumes that the AS will
not try a KEA even if it knows its ������ �. However,
we consider in our second contribution (Section III-A)
the opposite situation where STA does not trust the AS
for its private key computation. We assume that the AS
generates only the domain public elements. Then, STA
executes the EAP–KERIBA method to authenticate to
the ��. During the authentication, STA receives the IBC
public elements from the AS and uses them to compute
its own private key locally. As such, the AS will not know
the private key of STA and so it will not be able to realize
a KEA.

Note that the public elements are defined according
to the selected IBE and IBS schemes that are going
to be used between the different STAs. For example, if
we consider that we are using BF encryption scheme
and Paterson signature algorithm during the protocol
execution, the public elements that AS has to generate
are: ¶G1,G2, �, �̂, �, �, ����, �1, �2, �3, �4♢ where: �1 :
¶0, 1♢

*
⊃ G

*
1, �2 : G2 ⊃ ¶0, 1♢

�
, �3 : ¶0, 1♢

*
⊃ Z

*
�

and �4 : G1 ⊃ Z
*
� .

A. EAP ID-Based Authentication method (EAP–IBA)

For straight integration of IBC into wireless networks,
we defined the EAP ID-Based Authentication method
(EAP–IBA). In accordance with the EAP protocol [12],
four types of message are used: request, response, success
and failure. The request message is always sent first from
the AS (or the authenticator) to the supplicant STA. It
contains information about the authentication method to
be used. The next request messages support the authen-
tication exchanges. The response messages are generated
by the supplicant STA in response to the requests. They
contain the supplicant authentication elements. Finally,
the success or failure messages are sent from AS to STA
at the end of the authentication.



Fig. 2: EAP ID-Based Authentication Method (EAP–IBA)

The EAP–IBA method is illustrated in Figure 2. EAP
messages are encapsulated between STA andthe authenti-
cator into EAPOL (EAP Over LAN) packets using IEEE
802.1X; they are encapsulated between the authenticator
and the AS into AAA (Authentication Authorization,
Accounting) messages like RADIUS or Diameter for Wi-
Fi networks, or into the Mesh EAP Message Transport
Protocol for mesh networks [3].

When a STA joins the network for the first time of after
being disconnected for a while, it starts an authentication
with the AS. STA must first send an EAPOL start message
to one of its 1-hop authenticators which responds with
an EAP request of type identity (Message 2 in Figure 2).
Upon receiving the request, STA sends an EAP response
message to the authenticator. The response is of type
identity and contains STA identity ���� � (Message 3).
The authenticator transmits this response to the AS.

When the AS receives the ���� �, it searches in its
password database for the password ��� corresponding to
���� �. Then, the AS generates the Message 4. The latter
is an EAP request message of type EAP–IBA. It contains
the identity of the AS (����), a timestamp �1, the AS
public elements (��) and a signature of the concatenation
of these fields and the ���. For example, if the AS uses
Paterson signature scheme, its signature is formed by the
pair (�, �) ∈ G1 × G1 such that:

� = �.�, � ∈ Z
*
�

� = �⊗1(�3(�1♣♣���� ♣♣��♣♣���).� + �4(�).� �����)

Upon receiving the Message 4, STA gets from the public
elements (��) the hash function in use for the public key
computation (�1 in our example). Then, STA computes
the public key of AS as ����� = �1(����). In addition,
it concatenates the password ��� to ���� , �1 and the
public elements which have been received in clear. That
is, STA creates the message that has been signed by the
AS. At this point, STA uses the computed ����� to
verify the received signature. In our example, the signature

verification consists in verifying that:

�̂(�, �) = �̂(�, � )
(�1♣♣��AS ♣♣� �♣♣���)

.�̂(����, �����)
�4(�)

If the signature verification fails, STA deduces that the
received public elements were wrong or have been modified
during the transfer of the Message 4. The reception of
wrong public elements implies that ����� which STA
computed is not valid. The verification failure can also
result from the usage of an invalid ���. Thus, the sup-
plicant STA does not authenticate the AS unless a valid
signature is received in the Message 4. The authentication
process has to be stopped when the signature verification
fails.

If the signature verification is successful, STA authenti-
cates the AS and the public elements. Consequently, STA
creates the Message 5 to authenticate itself to the AS using
its ���. The Message 5 is an EAP response message of
type EAP–IBA. It contains the encryption with ����� of
a timestamp �2, a point �� = ��� �.� and the password
���. The AS needs the point �� for later encryption of
STA private key. �� is computed using a secret value
��� � which is randomly selected in Z

*
� . For example, if BF

encryption algorithm is selected, the encrypted message
will be:

� = (�, � ) = (�.�, (�2♣♣��♣♣���) ⊕ �2(�̂(����� , ����)�))

Upon receiving the Message 5, the AS deciphers it with
its private key ������ . In our case, the AS makes the
following operation:

� = �2♣♣��♣♣��� = � ⊕ �2(�̂(������ , �))

Therefore, the AS authenticates STA by verifying the
validity of the ���.

If STA authentication succeeds, the AS computes the
STA private key as ������ � = �.����� � where � is
the AS secret value and ����� � = �1(���� �) is the
public key of STA. Then, the AS ciphers ������ � as
����� ���ST A

= ������ � + �.�� and creates the Message
6. The latter contains a timestamp �3, the encrypted
private key of STA (����� ���ST A

) and a signature over
the concatenation of these fields. Thus, the AS signature
is (�, �) ∈ G1 × G1 where:

� = �.�, � ∈ Z
*
�

� = �⊗1(�3(�3♣♣����� ���ST A
).� + �4(�).� �����)

At the reception of the Message 6, STA uses the AS public
key to verify the signature. If the signature verification is
successful, STA recovers its private key ������ � from the
����� ���ST A

by computing:

������ � = ����� ���ST A
⊗ ��� �.����

Note that ⊗��� �.���� is the inverse of ��� �.����. Then
STA computes its public key ����� � = �1(���� �) and
verifies the equality:

�̂(����� �, ����) = �̂(������ �, � ) (1)



Fig. 3: EAP Key Escrow Resistant ID-Based Authentica-
tion method (EAP–KERIBA).

If this verification holds, STA authenticates the AS as
the generator of ������ � because the Equation 1 binds
������ � to ����� � using the points � and ���� which
are parts of the public elements received in the Message
4. Recall that these public elements have been already
authenticated at the reception of the Message 4.

STA responds to the AS with an empty EAP response
of type EAP–IBA to acknowledge the good reception of
its private key ������ �. Finally, the AS sends to STA an
EAP success packet to indicate the success of their mutual
authentication.

B. EAP Key Escrow Resistant ID-Based Authentication
method (EAP–KERIBA)

In this section, we assume that the AS is acting as PKG
but only for the generation of the public elements that
STAs use to derive their private and public keys. In order
to decrease the risk of a KEA, we make every STA generate
its own private key locally while AS computes a token
which contains pieces of information that are bound to
STA private key. In addition, we assume as for EAP–IBA
that the AS and STA share a secret value (���) that they
use with IBC to mutually authenticate.

EAP–KERIBA is used by a STA when it joins the
network for the first time or after being disconnected for
a while. To perform an authentication, STA must first get
the public elements that are published by AS (acting in
this proposal as a PKG which only computes these public
elements). After a successful initial authentication, STA
computes its private key corresponding to its ID-Based
public key. For later authentications to other STAs, STA
can use its token and any existing authentication scheme
based on asymmetric cryptography.

When STA wants to authenticate to the AS, it sends an
EAPOL Start to its authenticator (Message 1 in Figure 3).
Upon receiving this message, the authenticator responds
with an EAP request of type identity to recover the STA

identity (Message 2). Consequently, STA responds with
an EAP response of the same type containing its identity
���� � (Message 3). The authenticator transfers then the
message 3 to the AS which starts an EAP authentication
of type EAP–KERIBA with STA.

When the AS receives ���� � in Message 3, it searches
in its password database for the password corresponding to
this STA. Then it generates the Message 4. The password
is included in this message in order to authenticate the
AS with its public elements. The Message 4 is an EAP
request of type EAP–KERIBA. It contains the identity of
the AS (����), a timestamp �1, the public elements (��)
and a signature of the previous fields after concatenating
them to the password (���). For example, if the AS
uses the Paterson signature scheme, the AS signature
is the pair (�, �) ∈ G1 × G1 such that � = � ≤ � ,
� = �⊗1(�3(���� ♣♣�1♣♣��♣♣���) ≤ � + �4(�) ≤ ������)
where � is a random integer.

Upon receiving the Message 4, STA gets from the public
elements the hash function in use for the public key
computation (�1 in our example). It computes the public
key of AS as ����� = �1(����). It concatenates the
password ��� to ���� , �1 and the public elements to
form the message that has been signed. At this point,
STA uses the computed ����� to verify the received
signature. In our example, the signature verification con-
sists in comparing �̂(�, �) to (�̂(�, � )

�3(��AS ♣♣�1♣♣� �♣♣���)
≤

�̂(����, �����)
�4(�)

). If the signature verification is suc-
cessful, STA authenticates the AS and the public elements.
Otherwise, STA stops the authentication.

If the signature is valid, STA has to authenticate itself to
AS using the preshared secret and creating the Message
5 (the EAP response which corresponds to the Message
4). The latter contains the encryption with ����� of
a timestamp �2, a point ��� � = ��� � ≤ � , a lifetime
� and the password ���. The point ��� � is used to
avoid the KEA. Its usage is detailed in the upcoming
section III-C. It is computed using a secret value ��� �

which is randomly selected in Z
*
� . This secret ��� � enables

STA to compute its own private key ������ � such that
������ � = (��� � ≤ ����� �). As such, STA does not rely
any longer on the PKG (namely AS) to compute its private
key. The lifetime � refers to the validity duration that
STA wishes to acquire for its ��� �. It indicates also the
lifetime that STA chooses for its own private key ������ �

because ������ � is bound to ��� � through the secret
value ��� �. For example, if BF encryption algorithm is
selected, the encrypted message is � = (�, � ) = (� ≤
�, (�2♣♣��� �♣♣�♣♣���) ⊕ �2(�̂(����� , ����)�)) where � is
a random number.

Upon receiving this fifth message, the AS uses its private
key ������ for deciphering. In our case, the AS makes
the following operation � = �2♣♣��� �♣♣�♣♣��� = � ⊕
�2(�̂(������ , �)). In addition, the AS authenticates STA
by verifying the value of password ���. If the AS succeeds
in authenticating STA, it generates the Message 6. This
message contains a timestamp �3 and a token. The token
represents the signature of the AS over the following fields:



the identity of AS (����), the identity of STA (���� �),
the lifetime � and the timestamp �3. The validity of the
private key ������ � starts at �3 for � duration.

At the reception of Message 6, STA verifies the AS
signature over the token. If the verification is valid, STA
responds to AS with an empty EAP response of type
EAP–KERIBA to acknowledge the good reception of the
Message 6. Finally, the AS sends to STA an EAP success
packet to indicate the success of their mutual authentica-
tion.

C. Security discussion

In this section, we present informally how the aforemen-
tioned EAP authentication protocols remove some attacks.
We use an ’active saboteur’ attacker model as defined by
Dolev and Yao [13]. That is, an attacker might be a user
of the network and can have access to all the traffic. We
suppose also that the ID-Based signature and encryption
algorithms used for our EAP–IBA and EAP–KERIBA
schemes have been already verified secure in the random
oracle. That is, we will be only interested in discussing the
security properties of the exchanged messages.
∙ Replay attack: For avoiding replay attacks, we make
use of timestamps �1, �2 and �3. However, timestamp
usage assumes that all the stations in the network are
synchronized. This can be done with the Beacon frames
received by a STA from its 1-hop neighboring APs in
802.11 or 1-hop peer STAs in 802.11s. These Beacons
include time information about their senders’ clock values.
In addition, they contain a certain value ∆ which is a time
interval used for the verification of message freshness.

The timestamp Delta value ∆ is chosen by the network
administrator and is used as follows: During the execution
of EAP–IBA or EAP–KERIBA, the first timestamp �1

is included by the AS in the Message 4, the receiving
supplicant STA compares the reception time (������) of
the message to the timestamp �1 using ∆ as follows:
♣������ ⊗ �1♣< ∆. If this inequality does not hold, STA
rejects the received message. In addition, every STA stores
the last reception time and timestamp values received from
its peers for future timestamp verification.
∙ Collision attack: An attacker can try making a collision
over the second message in order to get the password
or to impersonate as the AS. If the collision attack is
successful, he gains access to STA secret information and
original password. Thanks to the known birthday attack,
it is known that 2�/2 attempts are necessary for getting a
collision over a �-bit length hash.

This attack may be avoided by changing the password
periodically to decrease the risk of collision. However, the
best solution in practice is to use a one-time password.
That is, the AS and STA share a master session key which
is used to derive a new password for each authentication
session.
∙ Private key recovery from STA encrypted private key:
During the execution of EAP–IBA, an attacker can get
the enciphered private key ����� ���ST A

of a supplicant

STA by realizing just a capture of traffic. However, it
has to find the secret ��� � in order to recover ������ �.
To do so, the attacker has to know ������ in order to
decipher the Message 5. Then, he has to guess ��� � from
�� = ��� �.� . Therefore, he has to solve the Elliptic Curve
Discrete Logarithm Problem (ECDLP) in the group G1 of
elliptic curve points [6]. Or, the ECDLP becomes a hard
cryptographic problem when the order � of G1 is at least
160 bit long. That is, the complexity of solving the ECDLP
is around �(280) [6].

When we look in depth at the encryption of ������ �

into ����� ���ST A
, we notice that it is equivalent to ElGa-

mal encryption algorithm when it is applied in an additive
group [14]. In that case, ��� � is the private key of STA
and ��� �.���� is its corresponding public key.

Upon deciphering the Message 5 of EAP–IBA, the AS
shares �� = ��� �.� with STA. So that, the AS becomes
the unique entity which is able to compute the point
��� �.���� used for ������ � encryption. The AS computes
��� �.���� by multiplying �� with its secret �. Then,
the AS sums ��� �.���� to ������ � to get ����� ���ST A

.
In practice, the AS computes ������ � and encrypts it
as ����� ���ST A

only by doing one scalar/point multi-
plication. That is, the AS adds ��� �.� to ����� � =
ℎ��ℎ(���� �). Then, it multiplies the result of the sum
by its secret � to get:

����� ���ST A
= �.(��� �.� + ����� �)

= ��� �.�.� + �.������

= ��� �.���� + ������ �

At the reception of Message 6 of EAP–IBA, STA recovers
its ������ � from ����� ���ST A

by calculating:

������ � = ����� ���ST A
⊗ ��� �.����

= ��� �.���� + ������ � ⊗ ��� �.����

STA is the unique entity which is able of deciphering
����� ���ST A

because it is the unique station which is in
possession of ��� �.
∙ Key escrow attack: During the EAP–KERIBA execution,
we supposed that each STA is generating its own private
key ������ � based on the use of a secret ��� �. This secret
is also used to compute a point ��� � = ��� �≤� . The point
��� � is included into the token generated by the AS on
behalf of STA. Consequently, the AS (acting as the PKG)
is not able to make a KEA because it has not generated
STA’s private key (������ �). In addition, the only way
to recover STA’s private key would be to compute ��� �

from ��� � = ��� � ≤ � which is equivalent to solving the
Elliptic Curve Discrete Logarithm Problem (ECDLP) [6].
The risk of a KEA is reduced to the unique case where
STA is offline and AS generates a fake ����� on behalf
of STA for impersonation of it. Note that this issue is
common to any ID-Based cryptograms as the PKG can
always impersonate as an offline legitimate STA.

During EAP–KERIBA execution, we made each STA
generate its own ������ � contrarily to EAP–IBA. So,
STA does not rely any longer on the AS to derive its



private key. However, it has to prove the ownership of
������ � to the AS and to other STAs. Consequently,
we decided to introduce the point ��� � to justify a key
ownership by a STA. ��� � is computed by STA using
the same secret ��� � that has been used for ������ �

computation. The point ��� � is then authenticated by
the AS when it is received with the ��� in the Message
5 of EAP–KERIBA. It is included in the ����� of STA
and signed by the AS. This point ��� � has to replace
���� when ciphering a message addressed to STA or when
verifying a signature from STA. In fact, we are not going
to use ���� for all the STA but only when verifying the
AS signatures or when ciphering a message for the AS. For
the other STAs, we use the corresponding point ��� �. For
example, when STA1 receives a signature from STA2, it
has to use ��� �2 and ����� �2 to verify the signature.
STA1 authenticates ��� �2 because it is included in the
������� �2 which is signed by the AS. In addition, STA1
gets ����� �2 by hashing ���� �2.

Through the encryption or the signature of a message,
STA has to prove the association between its ������ � and
the computed ��� � which is signed by the AS. This associ-
ation implies directly that STA is the owner of the private
key ������ � and that it has been initially authenticated
by the AS. For example, if we are using the aforementioned
Paterson signature scheme, the public elements generated
by the AS are: ¶G1,G2, �, �̂, �, �, ���� = � ≤ �, �1, �2, �3♢
and ������ = � ≤ ����� where ����� = �1(����).
The signature of a message � by the AS is the pair
(�, �) ∈ G1 × G1 where: � = � ≤ � , � = �⊗1(�2(�) ≤
� + �3(�) ≤ ������) and � is a random scalar. The
verification of this signature consists in comparing �̂(�, �)

to (�̂(�, � )
�2(�)

≤�̂(����, �����)
�3(�)

). The verification
holds because:
�̂(�, �) = �̂(� ≤ �, �⊗1(�2(�) ≤ � + �3(�) ≤ ������))
=⇒ �̂(�, �) = �̂(�, � )�2(�) ≤ �̂(�, ������)�3(�)

=⇒ �̂(�, �) = �̂(�, � )�2(�) ≤ �̂(�, � ≤ �����)�3(�)

=⇒ �̂(�, �) = �̂(�, � )�2(�) ≤ �̂(� ≤ �, �����)�3(�)

=⇒ �̂(�, �) = �̂(�, � )�2(�) ≤ �̂(����, �����)�3(�)

If STA wants to make the same signature, it uses the point
��� � and its private key (������ � = ��� � ≤ ����� �)
instead of the ���� and ������ when signing a message us-
ing the Paterson signature algorithm. The signature veri-
fier has to get ��� � from the token, and then it has to com-
pare �̂(�, �) to (�̂(�, � )

�2(�)
≤�̂(��� �, ����� �)

�3(�)
).

∙ Denial of service attack (DoS): To avoid an attacker
making a DoS attack against the AS by sending a big
amount of Start authentication messages, we decided to
limit at the AS the number of authentication requests to
a threshold � . That is, the authenticator accepts only one
authentication request per supplicant STA. Then STA has
to wait for the AS response. In addition, the AS limits the
number of authentication requests coming from the same
authenticator to � . When the number of authentication
requests exceeds � , the AS drops all the upcoming packets
received from that authenticator.

TABLE I: IBS and IBE elementary operations.
IBS or IBE scheme GT Exp Pt/scalar mul Pairings
Paterson signature 0 4 0
Paterson verification 2 0 3
Hess signature 1 2 1
Hess verification 1 0 2
Barreto et al. signature 1 1 0
Barreto et al. verification 1 1 1
BF encryption 1 1 1
BF decryption 0 0 1
BB encryption 1 3 0
BB decryption 0 0 2
Chen et al. encryption 1 1 0
Chen et al. decryption 0 0 1

IV. Implementations and results

In this section, we present the implementation results
related to our authentication schemes. We focus on the
time performance of our EAP–IBA and EAP–KERIBA
methods. That is, we have noticed that our EAP methods
performance depends mostly on the time consumption of
the used signature and encryption algorithms in messages
4 and 5. Consequently, we decided to evaluate the time
performance of a set of IBS and IBE in order to elect
the most suited IBS and IBE for EAP–IBA and EAP–
KERIBA.

First, we show how to evaluate the security level of an
ID-Based signature or encryption scheme. That is, the
studied IBS and IBE performances are compared at the
same security level. In the sequel, we present results of
the comparison of the time performances of different ID-
Based signature and encryption algorithms. The studied
IBS are compared by the way to RSA and ECDSA. Finally,
we study the gain in memory that STAs realize when IBC
replaces the use of certificates. We show that IBC is more
efficient in terms of memory consumption than classical
PKI where certificates are used and need to be stored.

A. Security level equivalence between schemes

To compare the performances of IBS or IBE schemes,
a first analysis of the number of mathematical operations
can be done. Barreto et al. [15] used G� exponentiations,
scalar point multiplications (Pt/scalar mul) and pairing
computation operations to evaluate the signature scheme
performances. Table I presents a comparison of Paterson
signature, Barreto et al. signature and Hess signature [16]
based on elementary operations as in [15]. In addition, it
presents a comparison of the following encryption schemes:
BF, Boneh and Boyen (BB) [17] and Chen et al [18]. For a
fair comparison between an IBS and an existing signature
scheme like RSA, we need defining the security level of
each scheme and making the comparison for the same
security level.

In cryptography, the security level of a symmetric en-
cryption algorithm is defined as the number of operations
needed to break the algorithm when a �-bit key is used.
For example, the number of elementary operations needed
to break a block cipher encryption scheme is equal to



TABLE II: Equivalent key sizes for the same security level
(in bits).

k RSA key length ECC key length
80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 512

2� [9]. In asymmetric cryptography, the security level of
an algorithm is defined with respect to the hardness of
factoring prime numbers (the case of RSA) or solving
the Discrete Logarithm Problem (DLP) in an additive
group (the case of ECDSA). This concept of security
level sets the length in bits of RSA keys and EC keys.
Table II presents the equivalence between the lengths of
RSA and EC keys respectively to the security level �,
where � corresponds to the security level of a �-bit length
symmetric key.

The security level of an ID-Based cryptographic scheme
depends on the security level of the pairing function in
use �̂ : G1 × G2 ⊗⊃ G� . However, the security level of
�̂ is related to the hardness of solving the DLP in the
groups G1, G2 and G� , and as such is closely related to
the groups being selected as some of them make the DLP
easier. To understand how to define this security level in
practice, investigation of the structures of G1, G2 and G�

is necessary.
Let �(F�) denote the elliptic curve defined over the

finite prime field F�. G1 and G2 correspond mostly to
the q-torsion subgroups of �(F�) and �(F�k ) where � is
the embedding degree of the curve �(F�) relatively to �.
Meanwhile, G� is a multiplicative subgroup of F�k of order
� [6]. For example, assume that the prime order � of F�

is 512 bits long, the order � is 160 bits length while the
embedding degree relatively to � of the curve �(F�) is 2.
The pairing function �̂ is then defined over the subgroups
G1, G2 and G� of order �. The security level of �̂ is defined
respectively to the hardness of solving DLP in G� . As G�

is a subgroup of F�2 which has an order of 1024 bits, DLP
hardness in G� is defined respectively to this 1024 bits
order. That is, �̂ security level is equivalent to an RSA
key of 1024 bits length, and so, with respect to Table II,
to a security level of 80 bits.

B. Time performances

As the time performance of EAP–IBA and EAP–
KERIBA is mostly depending on the time consumption
of the signature and encryption algorithms in use, a
comparison is established between the time consumption
of some IBS and IBE algorithms. The three signature
schemes selected are the following: Paterson signature,
Barreto et al. signature [15] and Hess signature [16].
For illustration, we also include time consumption of the
RSA and ECDSA signature algorithms. In addition, we
compared BF encryption to BB encryption [17] and Chen
et al. encryption algorithm [18].

TABLE III: Signature generation and verification times
(in ms).

Security level 80 112 128
Signature generation time

RSA 2.995 14.650 38.585
ECDSA 1.585 2.809 2.835
Paterson 17.316 59.288 123.116
Hess 24.889 91.835 204.757
Barreto et al. 6.715 22.106 57.677

Signature verification time
RSA 0.113 0.329 0.623
ECDSA 1.884 3.352 3.363
Paterson 24.135 106.804 264.832
Hess 13.232 60.985 155.714
Barreto et al. 33.791 119.080 313.702

Encryption time
BF 13.157 51.919 122.760
BB 18.031 62.644 129.770
Chen et al. 7.044 23.128 47.845

Decryption time
BF 6.937 29.730 75.844
BB 13.020 58.707 149.972
Chen et al. 6.959 30.095 75.357

Pairing computation time
Type A 6.097 28.890 74.265
Type D 13.653 50.429 136.738

Our implementation is based on the PBC library for
IBS and IBE schemes, and on the OpenSSL library for
the RSA and ECDSA algorithms. Times for RSA and
ECDSA are just given as an information, not for an
accurate comparison. We make use of two different pairing
functions. The first type of pairing is symmetric (it is
referred to as Type A pairing in [19]). The second type
is asymmetric and is used into Barreto et al. signature (it
is referred to as Type D pairing in [19]). 1000 samples serve
to evaluate the signature generation and verification times.
All the tests were performed on an Intel(R) Core 2 Duo
machine running at 800 MHz each. Table III summarizes
the comparison results (in milliseconds).

From Table III, it is clear that pairing based signa-
tures and encryption algorithms are slower than RSA and
ECDSA. This is due to today’s available pairing functions
that are more complex. Their computation takes more
time than an exponentiation in a multiplicative subgroup
or a scalar multiplication in a subgroup of elliptic curve.

We notice from Table I that Barreto et al. signature
and Chen et al. encryption should be respectively the
fastest signature and encryption schemes, as they contain
only one pairing function for the signature verification and
decryption phases. Their performance efficiency is due to
the use of the Sakai-Kasahara key construction scheme,
i.e. the private key is computed as: ������ = 1

� ��ID+� � .
From Table III, we can confirm, through practical mea-
surements, that Chen et al. encryption is the fastest ID-
Based encryption algorithms among the studied one. How-
ever, Paterson signature verification is faster than Barreto
et al. signature verification, although the Barreto et al.
verification needs one pairing operation while Paterson
verification needs three. This result is explained by Barreto
et al. signature using the asymmetric type D pairing which



TABLE IV: Times for certificate generation and request
(in ms).

STA key key_gen cert_req CA_cert_gen
RSA-1024 96.809 2.462 15.205
RSA-2048 650.728 12.874 15.490
RSA-3072 2336.758 34.984 15.744
EC-160 4.840 1.829 18.441
EC-224 7.902 3.038 18.479
EC-256 7.889 3.066 18.500

TABLE V: Time for PKG initialization and public element
generation (in ms).

Sec_level Pairing type Pairing_gen PE_gen Key_gen
80 Type A 6.097 28.677 18.044
112 Type A 28.890 116.299 91.643
128 Type A 74.265 295.527 249.392
80 Type D 13.653 175.589 1.820
112 Type D 50.429 551.537 7.160
128 Type D 136.738 1453.174 18.217

is slower than the symmetric type A pairing used by
Paterson, as given in the last 2 lines of Table III.

We conclude from Table III that IBS or IBE time
performances mostly depend on the number and type of
pairing functions in use. Thanks to the work done by
Beauchat et al. [20] leading to defining the fastest existing
pairing in less than 1 millisecond, we are confident that
very efficient IBC schemes will emerge in the next few
years.

C. Benefits of not using certificates and CA

In this section, we first study the different generation
times related to the creation of certificates and to the
generation of IBC public elements. Then, we show how
IBC increases the storage capacity of STA unlikely to
certificates.

For better highlighting interest for IBC against
RSA/EC schemes in wireless networks, we start by pre-
senting some results in Table IV related to public key cer-
tificate creation using the OpenSSL library. We evaluate
the time for STA to generate its key pair (key_gen) and
to make a request for a certificate from the CA (cert_req),
and also the time needed for CA to accept or reject the
request and to issue a certificate (CA_cert_gen). CA is
assumed to have a 2048 RSA key to sign the certificates.
During the simulation, we used three elliptic curves that
are referred to as ’NID_secpxxxk1’ in OpenSSL.

Table V gives time results for the STA to get IBC keys.
These times include the times for generating the pairing
function (Pairing_gen), the public elements (PE_gen)
and the key (Key_gen). Our simulations are considering
the public elements defined by Paterson in [11] and by
Barreto et al. in [15] as they use different pairing functions.

Note that using IBC instead of CA and certificates
enables saving for each STA the time for generating a
certificate request. From Tables IV and V, we can deduce
that generation of pairing functions and public elements
can take lot of time, especially for higher level of security.

TABLE VI: Certificate size (in bytes).
STA key cert_size
RSA-1024 1046
RSA-2048 1224
RSA-3072 1399
EC-160 1062
EC-224 1131
EC-256 1164

TABLE VII: Public element size (in bytes).
Pairing type Fp_size G1_size sec_level PE_size
Type A 512 160 80 1303
Type A 1024 224 112 2534
Type A 1536 256 128 3767
Type D 175 167 ≥80 2184
Type D 347 332 ≥112 4219
Type D 522 514 ≥128 6254

However, public elements can be generated offline thus
saving time at the PKG.

The key generation time is smaller for IBC than for
RSA, but is of the same order or at least 25% slower
than EC depending on the type of the pairing function in
use. For example, Paterson public elements make the key
generation time slower than for EC as the Paterson scheme
requires the complex operation of hashing the identity to a
point of an elliptic curve, and it refers to the private and
public keys as two points of an elliptic curve. Also, the
Barreto et al. scheme gives similar key generation times
than EC keys because the key generation requires the
multiplication of an elliptic curve point by a scalar, and
only one of the public or private keys is a point of an
elliptic curve.

Let’s move to storage capacities evaluation. It is clear
that IBC selection enables STA to save memory space as
the same public elements serve for all the STAs, unlikely
to the CA deployment where each STA needs to store the
certificates of its peers and the corresponding Certificate
Revocation List (CRL). Our simulations with OpenSSL
give the size (in bytes) of RSA or EC key certificates in
Table VI, and the size (in bytes) of the public elements
(PE_size) according to the pairing function type in Ta-
ble VII. The order sizes of F� (F�_size) and G1 (G1_size)
are expressed in bits.

A direct comparison between Table VI and Table VII
shows that one certificate takes less space than the public
elements in a STA memory. However, in practice, a net-
work contains more than 1 STA, and for a fair comparison,
we need considering a network of � STAs, with each STA
communicating to the other � ⊗1. If certificates are used,
each STA has to store (� + 1) × ����_���� + ���_����.
That is, each STA has to store � ⊗ 1 certificates cor-
responding to its peers, the CA certificate and its own
certificate. However, if EAP–KERIBA is used, each ����

has to store only ����_���� + ��_���� + ������_���� +
︁�⊗1

�=1,� ̸=� ×(���� �i
_����+��� �i

_����+��_����). That
is, ���� stores its own password (shared with the AS),
its own token, the public elements and the information
recovered from the tokens of the successfully authenticated
����, i.e. the identity of its peer ���� �i

, its p ublic



Fig. 4: Memory consumption according to the number of
users (security level=80 bits).

point ��� �i
and the lifetime of its corresponding private

key ��. If EAP–IBA is used, only the public elements
are stored by each STA. This results in an important
gain of memory space. Based on the previous formulas,
we next evaluate the memory consumption of a STA
according to the number of STAs (�) in the network, or
according to the level of security. We can deduce from
Figure 4 that memory consumption for a fixed 80 bits
security level is smaller for EAP–KERIBA than for RSA
or EC certificates. However, the memory consumption
when EAP–IBA is used is smaller than the one for EAP–
KERIBA. But this result is normal because, we do not
generate tokens in EAP–IBA contrarily to EAP–KERIBA.
Similar results can be deduced for various security levels
and a fixed number of peer STAs.

As such, EAP–IBA and EAP–KERIBA methods con-
sume less memory than certificate based scheme. They also
reduce the bandwidth consumption as there is no need to
send certificate requests and responses including a large
certificate. We conclude that our proposed authentication
methods are more suitable than classical PKI for networks
where STA has memory constraints and good computation
capacities.

V. Conclusion

In this paper, we presented two new EAP authentication
methods relying on IBC. We informally discussed the
security limits of this protocol. We are actually work-
ing on the formal verification of EAP–IBA and EAP–
KERIBA with the ProVerif tool and we hope to publish
our verification results as soon as possible. In addition,
the article presented some implementation results leading
to the conclusion that IBC is of great interest for wireless
networks where storage capacities within STAs are limited.

Furthermore, through implementations and testing, ID-
Based signature generation and verification are shown to
be at least 25% slower than RSA or ECDSA. However,
we are confident that fastest pairing functions will emerge
in the future, thus making the ID-Based cryptography
and signature scheme adequate for use in any types of
networks.
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