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Abstract—With the constantly growing number of multimedia
devices, images can now be viewed on a broad range of display
of tremendously varying size. However, perceiving all the details
of a multimedia content is difficult on smaller mobile devices. To
solve this problem, saliency based image re-targeting algorithms
have been proposed in order to generate more perceptually
efficient thumbnails. In this article, we propose a new real-time
visual attention based image re-targeting method which differs
from previous works in that it generates dynamic (i.e. time
changing) thumbnails.

This unique behavior is made possible by the use of a dynamic
computational model of visual attention. By exploiting the
singular characteristics of this model, we are able to dynamically
re-target large and complex images in order to efficiently script
their discovery on large and small displays. We achieved such
re-targeting by integrating simulated attentional focuses over a
fixed time window into a temporal heat-map. By segmenting
this heat-map at each time step, we can generate the region of
interest that will be displayed as dynamic preview.

In order to validate that every salient location of the image
has been displayed, we compare the regions shown in the preview
with mean observers eye fixations obtained during a free viewing
experiment.

Index Terms—Visual attention, image re-targeting, discovery,
adaptation, dynamic heat-map, mobile multimedia.

I. INTRODUCTION

Digital photographs are generally shot under the assumption

that they will be displayed on a high resolution media. This is

the case if these images are printed on high quality paper or

displayed in full screen on a desktop PC or laptop screen. But

even in these favorable conditions, screen resolution (2 million

pixels for a full HD screen) is still far from original images

resolution (up to more than 20 million on high-end DSLR).

Additionally, there are many cases where screen resolution is

much more limited (phone, portable music players, etc.) and

/ or a list of small image thumbnails should be displayed.

In all these cases, image processing algorithms must be

used in order to display the original images efficiently. The

most straightforward approach is simple downscaling, but this

method may result in perceived decrease in image quality since

many details will be lost.

Another possibility is to perform content-aware image re-

sizing through the use, for example, of seam carving [1]. This

method removes low energy pixel paths (named seams) from

the original image in order to reduce its size. Impressive

results can be obtained on certain types of images, and for

aspect ratio changes. However, for general use, these methods

are difficult to use, because they can lead to huge deformations

[1].[2] has evaluated many image re-targeting algorithms both

objectively and subjectively : among them, simple cropping

is found as one of the three best algorithms. Hence, simple

cropping based on saliency can be an efficient alternative [3].

A more complex approach is proposed by [4] which uses

saliency based figure ground segmentation in order to resize

background while preserving foreground figures.

In this article, we focus on extending the approach of

[3] which proposes to use a heat-map (generated using eye-

tracking data) or a saliency map (obtained through its own

visual attention model) in order to crop the original image.

The resulting cropped region contains only the most salient

elements of the original image. This approach is demonstrated

as efficient but if the scene is complex (e.g. it contains many

salient objects) cropping is not performed and the algorithm

reverts to showing the whole (downscaled) image. In this

case, it would be more appropriate to discover dynamically

the different salient elements of the scene.

Our article is organized as follow. In the next section, we

introduce our new dynamic re-targeting method which is based

on a dynamic model of visual attention. In section II, we

describe the basic ideas supporting our method. In section III,

we refine the method in order to exploit efficiently the dynamic

properties of the real-time attention model used. Finally, in

section IV, we evaluate the model with respect to eye-tracking

data.

II. A DYNAMIC RE-TARGETING METHOD

In this section, we describe how dynamic image re-targeting

can be performed using either eye-tracking data or a dynamic

model of visual attention. We define dynamic re-targeting

as an image cropping which evolves over time. In order to

generate this time varying cropping, we need visual attention

data which are also time varying. This is naturally the case

for eye-tracking data, but it is not for many visual attention

models [5][6][7]. We study this latter point in the following

subsection.

A. Computational modeling of attention : saliency map vs.

focus points

Visual attention models generally fall into two categories.

Central representation based models, consider that attention is

processed in a central location, usually named saliency map.

This map represents the (bottom-up) attentional attractiveness
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N first focalizations at time t LeMeur like re-targetting Thresholded heat-map Threshold based re-targeting heat-map at time t Our method

N first focalizations at time t+1 LeMeur like re-targetting Thresholded heat-map Threshold based re-targeting heat-map at time t+1 Our method

FIGURE 1: Sensitivity of re-targeting methods to new focalizations. By not using any threshold, our method is less sensitive

to the addition of new focalisations: dynamic re-targetting is smooother.

of each pixel of an image. It is closely related to heat-

maps which are built from the integration of all eye-fixations

measured when a set of observers watches an image during

a fixed period of time. Whatever their theoretical framework

(hierarchical [8], spectral domain[5], information theoretic [6]

or probabilistic [7], to name a few), central representation

based models generally only output a saliency map. However,

for dynamic re-targeting we need time varying output : the

attention model used should be able to generate focus points.

Some models can achieve this goal with the addition of

winner-takes-all and inhibition of return algorithms [8][9]. But

another, more natural, way of generating attentional focus is to

rely on distributed models of visual attention [10][11] which

consider that attention is a consequence of the competition

between different sources of interest. In this case, attention

is spread in all the visual system. These models are built

to directly generate focus points and consequently provide

more control possibilities. In particular, the competition based

model presented in [12] allows adaptation mechanisms that we

have used to improve dynamic re-targeting (see section III).

Additionally it is very fast (30fps for a 640x480 image on

a 2.7GHz dual core i7 processor), which allows to generate

dynamic thumbnails in real time on a standard computer, and

by extension possibly near real time on a mobile device.

B. Re-targeting for dynamic data

For static re-targeting, [3] uses the position of the N first

focus points in order to define a cropping box that surround the

most salient parts of an image I(x, y). These focus points are

processed using a winner-takes-all algorithm on a heat-map

HM or saliency map SM . Another, even simpler method,

is to binarize HM or SM using a predefined threshold

thcoverage. For both methods, the cropping box B is defined

as the bounding for of all non zero image pixels (figure 1).

For a given still image, both maps do not evolve over time.

To extend the previous algorithms to dynamic re-targeting,

we can iteratively built a heat-map HMt at each time step :

HMt(x, y) =

(

Nt
∑

i=1

(δxi,yi
x,y )

)

∗ gσx,σy
(x, y) (1)

were t is the current time step, Nt the number of fo-

cus points acquired at time t, g is a Gaussian kernel,

(xi, yi) are the coordinates of fixation i and δxi,yi
xj ,yj

=
{

1 if (xi, yi) = (xj , yj)

0 otherwise
.

This iterative heat-map can be built from eye-tracking data,

using the output of a dynamic visual attention model like [12],

or by using the focus points generated by a winner-takes-all

and inhibition mechanisms on a ”standard” saliency map.

With this iterative heat-map, we can generate dynamic

cropping boxes. However, as shown in figure 1, because of

the use of binary data (either a thresholded heat-map or focus

points), previous methods are very sensitive to the addition of

new focus points. To solve this problem we propose a new

method based on the mean (or centroid) and standard deviation

of heat-map values. It prevents from using a threshold and

modulates the influence of every pixels in the heat-map by

their intensity. For a heat-map HM , centroid (cx, cy) and left,

right, top and bottom variances vl, vr, vt, vb are calculated as

follows :

cx =

∑

x

∑

y

xHM(x,y)

∑

x

∑

y

HM(x,y)
cy =

∑

x

∑

y

yHM(x,y)

∑

x

∑

y

HM(x,y)

and

vl =
√

∑∑

δ−(x,cx)2HM(x,y)
∑∑

δ−(x,cx)2

vr =
√

∑∑

δ+(x)2HM(x,y)
∑∑

δ+(x)2

vt =
√

∑∑

δ−(y,cy)HM(x,y)
∑∑

δ−(y,cy)2

vb =
√

∑∑

δ+(y,cy)HM(x,y)
∑∑

δ+(y,cy)2

with

δ−(i, j) =

{

i− j if i < j

0 otherwise

δ+(i, j) =

{

i− j if i ≥ j

0 otherwise

and the corresponding bounding box B is defined as :
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xB = cx − αvl

yB = cy − αvt

WB = α(vr − vl)

HB = α(vb − vt)

with (xB , yB) the coordinates of the top left corner of B,

WB and HB its width and height, and α a scaling parameter.

In the following, we have used a value of α = 2. For a

heat-map containing only one focus point (represented by a

single Gaussian), this correspond to keeping 95% of the global

saliency. This statement is true only in the case of a single

focus point. For more focus points, the distribution is not

Gaussian anymore and the amount of saliency represented is

lower.

Thus, our system is less sensitive to sudden expansion

of the cropping box when adding new focus of attention.

Nevertheless, as this behavior is still sometimes problematic,

we introduce another improvement by adding inertia i to the

cropping box size update equations. We propose the following

procedure for this iterative update:

xB(t) = i× xB(t− 1) + (1− i)× (cx − αvl)

yB(t) = i× yB(t− 1) + (1− i)× (cy − αvt)

WB(t) = i×WB(t− 1) + (1− i)× α(vr − vl)

HB(t) = i×HB(t− 1) + (1− i)× α(vb − vt)

In this way, we can smooth important variations of the

cropping box at the expense, however, of reactivity.

Since it is now possible to incrementally generate a heat-

map as the simulation proceeds, it becomes possible to use the

mechanism described above to dynamically discover the im-

age. Some improvement are however still necessary since our

dynamic cropping does not allow a real sequential discovery

of the salient elements of the scene (Figure 2).

In the next subsection, we present different ways to use the

dynamic and adaptive properties of [12] visual attention model

in order to improve the discovery pathway.

III. ADVANCED RE-TARGETING

As mentioned before, the main objective of this section is

to present two methods implemented to better control the re-

targeting process.

A. A forgetting heat-map

In section II-B, we described how to build a heat-map incre-

mentally in order to generate dynamic re-targeting (equation

1). In this section we would like to introduce another change in

the way heat-maps are generated. We assume that integrating

a heat-map from t = 0 is not necessary, and that it could be

more interesting to forget what happened long time ago. By

the way, cropping would be more dynamic if it depended on an

estimation of salience calculated mainly from the latest focus

points. To create such a forgetting heat-map incrementally,

t=0 t=25

t=50 t=100

FIGURE 2: Example of dynamic re-purposing. The image is

progressively discovered, but the process is to fast ( ”final”

cropping is obtained as early as t=50. After that the system

does not evolves much).

we just have to weight HMs(x, y, t−1) by a forgetting factor

forget ∈ [0, 1]:

HMs(x, y, t) = (1− forget)×HMs(x, y, t− 1)
+
(

δxt,yt
x,y ∗ gσx,σy

(x, y)
) (2)

If forget = 0, the heat-map is computed as usual: it repre-

sents the image saliency distribution for the whole simulation

duration. With a smaller value (typically forget = 0.05),

the forgetting heat-map represents salience distribution for a

shorter duration : a local time saliency.

In the case of images cropping , the use of such an forgetting

heat-map can make the system much more dynamic: it can

display to the user parts of the image that recently caught

the attention of the model. Thus, the cropping process is

constantly evolving.

Nevertheless, this cropping behavior can still be improved.

Yet, we cannot choose if it has to focus on small details or

present a larger view of each image to the users. In the next

section we introduce a mechanism that proposes a first solution

to this question.

B. Attentional feedback

Another way of introducing intelligent dynamics is to consider

a feedback factor inside the visual attention model itself. The

feedback we propose, is a map R built upon a visited area map

M . This latter is constructed incrementally so as to remember

all the visited areas in the scene:

M(x, y, t) = max(M(x, y, t− 1),
N−min

(

d(x,y,xf ,yf )

blurSize
,N

)

N
)

(3)

where (xf , yf ) are the coordinates of the simulated focus

of attention at time t; d(x1, y1, x2, y2) is the Euclidean

distance between (x1, y1) and (x2, y2); blurSize the size of

the retinal area (fixed to 10% of the largest image dimension;

this value may be associated with human fovea size (about

2 degrees of visual field)); N = ceiling(log2(min(W,H)))
and (W,H) the size of the input image. It guarantees that
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(a) Original image (b) heat-map.

(c) Visited areas,
forget = 0.0.

(d) Visited areas,
forget = 0.05

(e) Visited areas,
forget = 0.10.

FIGURE 3: Influence of forget on the visited area map, after

100 attention simulation iterations.

M(x, y) ∈ [0, 1] ∀x, y.

Human memory is however limited, so attentional focus is

most probably influenced by only the most recent focus points.

As in section III-A, we have decided to introduce a forgetting

factor forget ∈ [0, 1] which will iteratively attenuate the role

of the oldest focus points:

M(x, y, t) = max((1− forget)×M(x, y, t− 1),

N−min

(

d(x,y,xf ,yf )

blurSize
,N

)

N
)

(4)

Figure 3 shows the influence of forget on the visited areas

map M . Another parameter, feedback allows modulating the

influence of the visited areas map in intensity and feedback

type (positive or negative):

R(x, y) =

{ 1+|feedback|×M(x,y)
1+|feedback|

if feedback ≥ 0
1+|feedback|×(1−M(x,y))

1+|feedback|
otherwise

(5)

with R(x, y) ∈ [0, 1] ∀x, y.

Then, we can use R in order to modulate the dynamics of

the original equation of [12]. A positive feedback value will

lead to a focusing or tracking behavior since already visited

objects/locations are preferred. A negative feedback value

will lead to an exploration behavior since unknown (unvisited)

objects/locations will be favored.

In order to improve the discovery properties of our re-

targeting algorithm, we propose that feedback gradually

change from 1 (strong focus on the most salient elements)

to −1 (exploration of the whole scene). Thus, users discover

the image by first viewing the few most salient regions, and

finally the entire scene.

C. Dealing with aspect ratio

For some applications, the thumbnails generated by the re-

targeting algorithm need to have a 1:1 aspect ratio (square

images). In order to deal with this requirements, two aspect

ratio adaptation are possibles:

• Cropping box extension (as proposed by [3]) which

displays more data than calculated by the cropping al-

gorithm, in order to display all salient objects. This

method maximizes the overall saliency of the content

displayed since no salient information is discarded, but

it can cause problems when extension needed by the 1:1

ratio constraint generate images larger than the original

one.

• Cropping box reduction, limits the amount of content

displayed in order not to include additional non salient

area. It also guaranties that the cropped image will

always be smaller than the original one.

Since we want to optimize the ratio of salient vs. non salient

pixels in the cropped images, we have chosen cropping box

reduction.

IV. EXPERIMENTS AND RESULTS

Qualitative and quantitative assessment of non dynamic

saliency based re-targeting has already been studied in [3].

Consequently, in this article, we focused only on the quanti-

tative study of the impact of adding dynamics through three

measures:

• CA: the percentage of original image area displayed

(cropped-area).

CA =
Wc ×Hc

W ×H

where Wc, HC and W , H are respectively the with and

height of the original and the cropped images;

• FP: the percentage of fixated pixels (non zero pixels

in binarized ground truth) not displayed in the cropped

image. It measures the amount of original salient pixels

that have been lost in the cropped images.

FP =

∑

x

∑

y γ̄xc,yc,Wc,Hc
(Gb(x, y), x, y)

∑

x

∑

y α(Gb(x, y))

with

γ̄xc,yc,Wc,Hc
(i, x, y) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if i �= 0 and

x /∈ [xc, xc +Wc] and

y /∈ [yc, yc +Hc]

0 otherwise

α(i) =

{

1 if i �= 0

0 otherwise

and Gb the binarized version of the ground truth image;

• IC: image coverage [13], which is defined as the

percentage of fixated points in an image (non zero pixels

in binarized ground truth). It is different from the fixated

pixels lost ratio in that it measures the percentage of

salient pixels vs. all pixels in the cropped image.

IC =

∑

x

∑

y γxc,yc,Wc,Hc
(Gb(x, y), x, y)

Wc ×Hc

with

γxc,yc,Wc,Hc
(i, x, y) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if i �= 0 and

x ∈ [xc, xc +Wc] and

y ∈ [yc, yc +Hc]

0 otherwise
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Our experiments have been run on images extracted from the

29 undistorted reference images of the LIVE database [14] on

which eye-tracking data were recorded. Table 4 summarizes

the setup of these experiments.

For each image in the database, we generated :

• a ground truth heat-map G, generated using the eye-

tracking data from the 21 observers; a binarized version

of the heat-map Gb (using the same experimentally

defined threshold for all images); and a static re-targeted

image generated from the binarized heat-map;

• a simulated heat-map S, generated using [12] algorithm

during 300 time steps; a binarized version of the heat-

map; and a static re-targeted image generated from the

binarized heat-map;

• different sets of simulated dynamic heat-map, generated

at each time step of a 300 steps simulation; and different

sequences of re-targeted images generated using the al-

gorithms described in sections II and III. SSt, generated

using the simple version of the algorithm described in

sectionsII using a free aspect ratio. SF t, generated using

the forgetting heat-map described in section III-A using

a free aspect ratio. SFFt, generated using the forgetting

heat-map and attentional feedback described in section

III-B using a free aspect ratio. SFF2t, generated using

the same algorithm as SFFt but with a 1:1 aspect ratio.

Sample re-targeting images from a selection of these algo-

rithms are shown in figure 5.

The results of all the measures made on these re-targeting

models are shown in table I. The original (non cropped)

images contain all fixated pixels, but their coverage is low

(15%) : these images contain many non salient pixels. When

the images are cropped using eye-tracking data (ground-truth

heat-maps) mean cropped area falls to 37% whereas mean

coverage drops to 44% : the thumbnails obtained are much

smaller and contain more salient pixels. This method is

however not usable in practice since it would require to run

eye-tracking experiment on a large number of observers to be

able to re-target an image. An alternative solution is simple

static re-targeting based on visual attention simulation. But

this approach is far less efficient since it removes 24% of

salient pixels (as determined by eye tracking). This is mainly

due to the fact that the attention model used (as any model)

is not totally in accordance with eye-tracking data.

Dynamic re-targeting allows to overcome this limitation

since the animated thumbnails allow to visit more areas and

consequently display almost all salient pixels (only 1% to

5% loss). For most dynamic re-targeting algorithms this

comes at the price of slightly less coverage and higher mean

cropped area. The only exception is 1:1 ratio dynamic

forgetting feedback cropping (SFF2t) which can achieve both

”high” mean coverage and low cropped area. This is mainly

due to a more restrictive cropping (see section III-C) which

concentrates viewing on the most salient parts of the image.

V. DISCUSSION AND CONCLUSION

In this article we have presented a new algorithm for

dynamic image re-targeting on small display devices (mobile

Model Mean CA Mean FP Mean IC

Original image 100% 0% 15%

GT 37% 0% 44%

S 41% 24% 31%

SSt 55% 5% 26%

SFt 51% 2% 27%

SFFt 43% 1% 26%

SFF2t 29% 4% 32%

Table I: Experimentation results

phones, multimedia players, etc.). This algorithm is based on

first and second order statistics of a simulated forgetting heat-

map. Different variations of the method used were described.

Qualitative measures run on both static and dynamic re-

targeting algorithms show that dynamic re-targeting allows

to reduce the number of non-salient pixels displayed while

keeping almost all salient pixels (which is not the case of

classical static re-targeting methods). Of course these mea-

sures don’t take into account the loss or gain in terms of

quality of experience. Other experiments should be conducted

in order to study this important aspect of the evaluation of re-

targeting algorithms. For these experiments, dynamic cropping

algorithms should probably be improved in order to limit

image motion (panning and zooming) and provide a smoother

more ”professional video” like result.
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Category Details Conditions

Participants

Number 21

Age range 18-42
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Compensated Yes
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Environment Conformant with ITU-R BT.500-11 recommendations

Illumination Low

Viewing distance 70 cm

Task Free-viewing

Display

Make DELL

Type LCD

Size 19”

Resolution (pixels) 1280x1024

Eye-tracker

Make SMI iView X Hi-Speed

Type Infrared video-based

Frequency 500 gaze points/sec

Accuracy 0.25-0.5 degrees of visual angle

Mounting Tower with head rest

Calibration 9 points screen

Image presentation

Order Random

Image duration 15 s

Grey-screen duration 3 s

Max/ visual angle (pixels/deg) 41.8

Central fixation point No

Figure 4: Overview of the eye-tracking experiments protocol.

FIGURE 5: Top row, static re-purposing (from left to right): original image, ground-truth heat-map, binarized ground-truth

heat-map, cropped image from ground-truth GT , heat-map from simulation, binarized heat-map from simulation, cropping
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