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Abstract—It is highly desirable and challenging for a wireless
ad hoc network to have self-organization properties in orde to
achieve network wide characteristics. Studies have showrhat
Small World properties, primarily low average path length and
high clustering coefficient, are desired properties for neworks
in general. However, due to the spatial nature of the wireles
networks, achieving small world properties remains highly
challenging. Studies also show that, wireless ad hoc netwa
with small world properties show a degree distribution that lies
between geometric and power law. In this paper, we show thani
a wireless ad hoc network with non-uniform node density with
only local information, we can significantly reduce the aveage
path length and retain the clustering coefficient. To achieg our
goal, our algorithm first identifies logical regions using Laeral
Inhibition technique, then identifies the nodes that beamfom
and finally the beam properties using Flocking. We use Latera
Inhibition and Flocking because they enable us to use locatate
information as opposed to other techniques. We support our wrk
with simulation results and analysis, which show that a redation
of up to 40% can be achieved for a high-density network. We also
show the effect of hopcount used to create regions on average
path length, clustering coefficient and connectivity.

Index Terms—utonomous communication, Complex Networks,
Small World properties, Beamforming, Bio-Inspired, Lateral
Inhibition, Flocking, Centralityutonomous communication,
Complex Networks, Small World properties, Beamforming,
Bio-Inspired, Lateral Inhibition, Flocking, CentralityA

|I. INTRODUCTION

Decades of academic and industrial research in wireless
networks [1] has led to the tremendous growth of wireless
networks requiring researchers to address manageability ad
scalability issues. Due to these issues, most of the resdarmork
has been oriented towards autonomous wireless networks. €h
autonomous behavior of the wireless nodes made decentradid
computing and cost efficient topology deployment possibl&]. It
was also proved that self-organization of the network can lad
to better performance.

An attractive model to achieve better network performance
is the Small World network. Small world networks are
characterized by reduced Average Path Length APL) and high
Clustering Coefficient (CC). Here, the APL is the mean of
hopcount between all pairs of nodes in the network. Consider
a node, v, with k£ neighbors. In the sub-graph of thesek + 1
nodes, the CC is defined as the fraction of links that exist
to the maximum number of links that could have existed in
the sub-graph. Drawing inspiration from the experimental work
of Stanley Milgram [3], Watts et al [4] proposed a model that
could achieve small world properties. In the model, Watts etal
proposed, small world properties could be reached by randoty
rewiring a few existing links within the network. Watts et al

showed that the dynamics of these small world networks lie
between that of a regular network and a random network [4], [5.
To prove the findings, however, Watts et al used a regular wiré
network and called the rewired links as shortcuts. Many compex
real world networks such as internet, biological networks,food
web and social networks also demonstrate small world propdies
[6], [71, [8]. In real world networks where there is a non-uniform
distribution of nodes, these real world networks were showrto
exhibit the properties of scale-free networks marked by powr
law degree distribution. Section[VI-Al provides more detai on
small world networks.

In a wireless ad hoc network, achieving small world propertes
can help us in many ways. Having a lowA P L would increase the
performance of the network in terms of communication [9], [10]
(reduced traffic per unit area, reduced congestion and redued
signal interference), low latency and reduce the overall esrgy
consumption in the network during the data communication. n
the other hand, maintaining the CC would ensure connectivity
to the neighborhood and would make the network resilient[[1],
[12]. However, Watts’ model cannot be applied directly to wieless
ad hoc networks because of the spatial nature of such netwosk
In wireless ad hoc networks, addition of a shortcut between ay
two nodes should depend on the distance between two nodes.
Helmy in [13] first studied the effect of adding few distance-
limited links in the network. He showed that, upon introduction
of distance-limited links, wireless ad hoc networks show sail
world properties. He concluded that, when the shortcut lenths
are %th of the network diameter, there is a maximum reduction in
the APL. Thus, proving that realization of small world properties
in a wireless ad hoc network depends crucially on the length
of shortcuts created among nodes. Another important factor
in the realization of small world properties is the choice of
nodes among which shortcuts are to be created. One method
to obtain these nodes is that ofpreferential attachment[14],
[7], typically observed in real world networks, wherein links
are created to nodes with high structural importance. It was
shown that, analogous to real world networks, usingpreferential
attachment for creation of distance-limited links in a spatial
network resulted in reduced network diameter [15], [16]. Ths
was accompanied by high clustering coefficient and a shift in
the node degree distribution towards power law. These restd
motivate us to say that, creation of links to nodes having higy
structural importance in the network can result in the desired
small world characteristics.

The creation of a wireless ad hoc network with the small
world properties also depends on the manner in which distare-
limited links are added. Such links can be added through diférent
techniques like: 1) creating the directional beam using thesame
power as when the node was operating in the omnidirectional
mode; 2) increasing the omnidirectional transmission rang of the
node; 3) introducing of few long wired links [17]; 4) introducing
special nodes with higher omnidirectional transmission rage
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Fig. 1. Source:[[18], Effect of beamforming on tWe” L and theC'C when
the nodes are using 1) Sector model and/2)A Model. The results obtained
show a reduction in thel P L while almost no change in theC for the case
when we use a realistic antenna model. On the other handhdaheoretical
model, the reduction in thd PL is relatively less while the reduction &@'C'
is considerably large. The number of nodes that beamfornmassis with a
probability value in the log scale. The results also show the reduction in
the APL increases with an increase in the number of beamformingmodle
[5]. Here, APL(p,) andCC(p,) are theAPL and theCC of the network
when p,.% of the nodes create long-range links. = 0 means no node is
beamforming. Further, in the figure, we normalizé”L(p,) andCC(p-) to
account for the variation in thel PL and theCC.

deterministically in the network [L2]; 5) using another antenna
for beamforming in addition to the omnidirectional antenna.

Talking about the self-organization characteristics of tte
nodes, only techniques one and two mentioned above qualify.
However, even though other techniques help in achieving dieed
network characteristics, they lack self-organization capbilities.
In addition, the second technique suffers from the problem &
early death of the node due to increased energy consumption.
Thus leaving us only the first technique. Achieving reorgargdation
or rewiring in a wireless ad hoc network through the first
technique is hard due to the spatial nature of the wireless ad
hoc network. Finding the beam direction, the beam length and
determining the new neighborhood are primary issues asscated
with rewiring in a wireless ad hoc network. Our previous study,
[18], proved that the use of distance-limited long links in vireless
ad hoc network to achieve small world properties is beneficia
(Cf. Fig. ).

Motivated by this, in this study, we investigate how we can
increase connectivity, reduce theAPL and almost maintain the
CC in a non-uniformly distributed wireless ad hoc network. We
thus propose an algorithm that achieves these goals by creag
long-range directional beams between nodes that have low én
high structural importance. The decentralized computing ad
self-organizing requirements of such an approach motivataus to
draw inspirations from nature. We further propose that Lateral
Inhibition [19], [20], [21], [22] and Flocking [23], in conjunction
with the centrality concept of graph theory, can provide valiable
insights in building a solution to our problem.

We use Lateral Inhibition to create small logical regions wihin
a network. The use of Lateral Inhibition not only reduces the
message complexity but also enables us to apply the Flockingle
analogy successfully. We use analogy of Flocking rules toedtify
the nodes that beamform and the beam properties. According
to the rules, explained later in section_VI-D, it is important to
identify stray nodes, align the nodes and move them towards
the centroid of their neighborhood. Analogous to this, afte

region formation in a non-uniformly distributed wireless ad hoc
network, we use Flocking rules to identify the beamforming mdes
and direct the beams of these beamforming nodes towards the
centroid of the region. The centroid node in the region has a igh
structural importance. Beamforming towards the centroid node
of the region contributes towards reducing theAP L because the
centroid node of the region is the most connected node and has
the highest Closeness Centrality measure. Thus, beamforny
towards the centroid node is thepreferential attachmentbehavior
of the beamforming node, thereby making centroid finding a
prerequisite to Flocking. In a distributed system where noes only
have local information and lack GPS facilities, exact centroid
node identification of the region is challenging. We can only
make an estimate to the centroid node location in the region.
We, therefore, use the self-organizing virtual coordinatescheme
combined with the centrality concepts to identify the centoid
nodes.

Thus, our algorithm design is such that it first identifies regons
using Lateral Inhibition, then identifies the centroid nodes of the
regions and then uses the analogy of flocking rules to identif
the nodes that will beamform along with their beam properties.
Section[ll gives a formal description of our proposed algorihm.

The organization of rest of this paper is as follows. Sectioff]
presents the assumptions used for the proposed algorithm ahg
with the algorithm specifications. Sectior Tl presents theformal
definitions. Sectior{ TV and[M discuss the simulation setup ahthe
results respectively. For the readers who are unfamiliar wih the
concepts used in this paper, we provide a detailed descriin of
the same in section_MIl. We finally conclude our work in the
section [VIIT] after providing insights to some future research
directions in section[VI]

II. ASSUMPTIONS ANDALGORITHM

A. Assumptions

To address issues mentioned in the Introduction, we
focus ourselves towards the deployment of homogenous and
autonomous wireless ad hoc nodes with no central entity
controlling the nodes. This type of deployment enables us to
easily apply self-organizing features, achieve global csensus
with very limited local information, make any eligible node the
group leader, make the system highly fault tolerant, ease #n
topological maintenance, lower the deployment cost and esthd
to incorporate the mobility of the nodes in the future. Further,
the nodes are set to have an omnidirectional transmission rege
r. We assume a non-uniform distribution of nodes generated
using thinning process defined by Bettstetter et al [24]. Tha&on-
uniform distribution of nodes allows us to realize scenaris that
are more realistic. The algorithm proposed by Bettstetter & al
proceeds by removing nodes which have less thai,;, neighbors
within a transmission range r, (ref. section[VI=E). Further, we
assume the deployment of the nodes on a 2-D plane of areha

As part of our network setup, our algorithm assumes each
node to have an antenna consisting of/ isotropic elements. The
use of single antenna element results into omnidirectiondbeam
while use of more than one antenna element results into a lorg
range directional beam. A node, however, decides to use more
than one antenna element using simple local rules mentionddter
in this section. The nodes use beamforming only to transmit ata
but use omnidirectional beams for reception. We have used th
Sector modd] [25] to visualize our algorithm and have assumed
transmission of data to be synchronous.

Further, we assume that the nodes lackGPS facilities and
global network knowledge. To achieve our goal, it is thus firs
essential to know what information can be used by the nodes.
We limit a node to use local information along with that of
its one hop neighborhood. Determining single hop neighborbod

1Sector model approximates realistic antenna models



to build the local information is thus essential for the correct
operation of the algorithm. Various studies have proposed mny
neighborhood discovery mechanisms, eg. [26], and have céudly

analyzed them. Therefore, for our approach, we assume thatlia
the nodes have information about their neighborhood.

It is also essential to address the self-organizing paradigs,
[27], to claim for the self-organizing behavior of the netwak.
Prehofer et al's [27] paradigms state: designing local ruls
to achieve global properties, implicit coordination, minimizing
the use of historic information about the state of the
network and designing an algorithm that changes with
environment parameters. Our algorithm uses only locally
available information to determine the beamforming nodespeam
properties and the regions. The nodes implicitly coordinag
with their neighbors to determine the node with the highest
hopcount from the centroid of the region. For a given region,
the nodes also coordinate implicitly to determine the centid
node of that region. The current discussion focuses on a siat
network. In dynamic network scenarios, optimizing the extat of
reconfiguration to deal with frequent changes in state infomation
is likely to be a crucial factor. We leave this for future
investigation but offer some insights in sectiof_VII.

We further describe the system model and the algorithm in
the following sections.

B. System Model

Given a network, G(V, E), where V is the set of vertices and
E is the set of edges, we visualiz&' as a network consisting of
N logical regions, {G1,Gs,...,Gn}, ie., G = Y, Gi. Each
region, G;, consists of the set of nodesV;|V; Cc V and V =
Ui, Vi, and set of edges,E;|E; ¢ E and E = U, E;. All
vertices in G; are located within g hops of a head nodeh;. As
a part of our algorithm, we use Lateral Inhibition to identif y
regions and regional heads.

We characterize the set of vertices), into three sets. These
are termed as the Peripheral node set, the Centroid node sehd
the Standard node set. We provide separate role to the nodes i
these sets. The Peripheral nodes seP§ contains the nodes that
beamform. The Centroid node set (') contains the nodes towards
which the nodes in the Peripheral node set beamform. We call
the set of remaining nodes,S = V — (P|JC), as the Standard
node set. Further, we call nodes in these sets as the periplaér
nodes, the centroid nodes and the standard nodes respectiye

Mathematically, Closeness centrality of a node,v € V,
in a graph G is equal to m where hops(v, w)
is the hopcount between nodesv and w. The node having
maximum Closeness Centrality is the centroid of the graph ad
has a high structural importance. For the vertex sets defined

C. Algorithm

We divide our approach into two parts:
A) Use of Lateral Inhibition technique and self-organizing
virtual coordinate scheme for the identification of regions
and the centroid nodes of the regions, so that there are
less message overheads and nodes can beamform towards
the centroid node to achieve reduceddPL. Section[1=C1|
provides more details.
Use of flocking rules to identify the nodes that beamform,
to determine beam properties that realize small world
properties and improve connectivity. Sectiod II-=C2 provides
more details.

We describe these parts in detail in the next sub sections.

1) Region formation and Centroid findingrhe Closeness
Centrality [28], [29] identifies the structural importance of the
node in the network. The node with the highest Closeness
Centrality value is the most central node in the network. Through
this node, the spread of the information to other nodes is quik.
To determine the Closeness Centrality of the node, the node
requires the knowledge of other nodes in the region as suggesd
by the definition of Closeness Centrality, (ref. sectiol_VIEJ).
This makes the Closeness Centrality a global measure. Stog
information about all the nodes in the network can consume a
lot of node’s memory. When there is lack of global informatian,
gathering such information can also be time consuming and th
message complexity could be high. To overcome these problem
we create small logical regions. The creation of regions nainly
reduces the message complexity of the network but also redes
the effect on the APL due to the failure of a node, thereby
making the network more manageable, efficient and tolerant @
failures [30]. Some algorithms designed in this direction wre
centralized. The Base Station chose the region heads based o
the energy and the position of the nodes. Other techniques as
either the transmission power or the degree or the mobility,eg.,
WACA [31]. On the contrary to centralized approaches, some
algorithms were either distributed, [32], or probabilistic [33].

We thus divide this part into two, identification of regions
using Lateral Inhibition and identification of centroid node in
the region. As we only have local information, we use degreef o
the node in the Lateral Inhibition process.

For Lateral Inhibition, we consider that a node v; broadcasts
and stores a message containing following information: the
identity of the head node to which v; is associated &), its
hopcount from h; and the degree ofh; (degs,), where v; € V;.
Initially, all the nodes, v € V, consider themselves as heads,
i.e. H = V, and store their own information, i.e., h; = v,
hopcount = 0 and degn, = deg,. Each node,v € V, then
broadcasts this information to its neighbors, L,. Similarly, v
receives information from each of its neighbors and subseantly
updates the information stored in it. Thus, a node replacest$

B)

above, nodes in the setP have lowest value of Closeness Stored values, if the stored degreedegs,, is less than that of

Centrality, i.e., argmax{zwev,u#w hops(v,w)}. However, the
veEV ’

veE
nodes in the setC' have highest value of closeness centrality,
i.e., argmin{>’, .y, hops(v,w)}. A node in P beamforms

towardseg node inC in order to minimize the distance to other
nodes and reduceAPL.

The directional beam is modeled using Sector model, i.e.,f@a
given directional beam lengthB;, the corresponding beam width,
By, is

2712
By =
By

)

In realistic antenna model, as beam length of the directionia

the received value andhopcount + 1 is less thang, where g is
the gradient or the desired size of the regions. Further, if e
stored and the receiveddeg,, are same, the node decides to
update the stored information based on lowerhopcount value.
If the hopcount is also same, then the node randomly decides to
update the stored information to received information. Thenode
v then broadcasts the updated information after incrementirg
the hopcount by 1. Subsequently,v removes itself from H, i.e.,
= H —{v}, and inhibits itself from acting as the regional head.
The process continues until all the nodes withiry hops from the
maximum degree node reach a consensus about the head node.
Due to g, the algorithm assigns saméh; to all the nodes within
g hops of the head node. We call the nodes having sanig to
belong to one region,G;. The nodes lying at different hopcount
from the h; virtually creates a gradient of different hops around

antenna is dependent on the number of antenna elements used,h;, (Cf. Fig.[3(€)). In the end, the algorithm tags a node with no

m, the corresponding value of B; used isB; = m % r.
Further, table [lists the notations used in this paper.

neighborhood as the head as it has remained uninhibited, (CFig.

[B(c)). The regions created differ from other Lateral Inhibition



Notation | Meaning Notation Meaning
A simulation area g gradient
G network with set of verticed” and set of Imaz maximum gradient

edgeskE e_bety Egocentric Betweenness ofw.r.t. its
G; region G;|G; C G with set of cluster

verticesV; and set of edge®; hops(v,w) | hopcount between node andw
N number of regions formed vi(z,y) virtual coordinates ob in the regionG;
v nodelv € V vi(z*,y*) | updated virtual coordinates of in the
v; nodew in regionG;|v; € V; regionG;
r transmission radius € error margin
T Bettstetter transmission radius M max antenna elements available with
) average node density m number of antenna elements used<by
1D, identification number of node to beamform|m € (2, M]
Ly neighbor list ofv|v € V RCy set of centroid nodes reachable fram
Ly neighbor list ofv in the regionG;|v € V; with their hopcount that are withing,,qz
Loniin minimum number of neighbors used for hops fromv whenwv is not beamforming

creating a non-uniform distribution RC set of centroid nodes reachable fram
degy size of L,,, i.e., degree ob with their hopcount whenv is beamforming
H set of all region heads 0 beam direction, i.e., the sector
h; head node of the regio&';|h;, € H By boresight direction
C set of all centroid nodes B; beam length
ci centroid node of the regiot¥;|c; € C By beam width
P set of all peripheral nodes APL Average Path Length
P; set of peripheral nodes in the regi6h|P; € P | CC Clustering Coefficient
©i peripheral nodégp; € P; ULA Uniform Linear Antenna Array
0p; peripheral neighbor of;|op,; € P; GSccC Giant Strongly Connected Component
S Set of nodes neither i@’ nor in P GIN Giant In Component

TABLE |

NOTATIONS AND THEIR MEANING.

algorithms, [22], in a way that our algorithm creates regiors that
are not limited to 1 hop, (Cf. Fig.[3(c] and Fig.[3(d)). Howeve
the Lateral Inhibition technique does not guarantee that tre head
nodes identified above have a high Closeness Centrality vawand
are the most central nodes, (Cf. Fig[12).

@ Centroid node
@ Max degree node

Fig. 2. The max degree nodes are not at the center of the re@iom
Closeness Centrality of these nodes is less.

We thus now describe the steps for the centroid node
identification in a given region, G;, created using Lateral
Inhibition described earlier. Due to the global properties
of the Closeness Centrality and unavailability of any GPS
facilities within the nodes, we take insights from existing
algorithms on self-organizing virtual coordinate systemsin self-
organizing virtual coordinate system, the nodes identify ieir own
coordinates relative to their neighborhood in the network. We
however, make use of self-organizing virtual coordinate stem
to calculate centroid of the region. Existing techniques orself-
organizing virtual coordinate system include [34], [35], [B6], [37],
[38], [39], [40Q], [41]. These studies deploy various mech&sms

overheads.

Thus, in our algorithm, all nodes v; € V; in G; assign
themselves randomly selected virtualzy coordinates, v;(x,y).
The identity of the nodes in the virtual coordinate system,
however, remains the same. The nodes then communicate to the
neighbors in G; these coordinates, i.e.L,;. Using the coordinates
of their local neighborhood, the nodes compute an average tfie
coordinates,v; (", y*), and broadcast the average coordinates to
their neighbors. The neighbors in turn use these coordinate to
compute a new average. This process continues until all nogén
the region reach consensus of having same average coordinates
of the centroid.

The self-organizing virtual coordinate technique revealsthe
location of the centroid node in the self-organizing virtud
coordinate system but not the identity of the node that is to b
termed as centroid. In order to identify the centroid node ofthe
region, nodes use their initially assigned virtual coordirates and
the newly found averagezy coordinates. Each nodev; checks
if vi(z,y) = vi(z™,y") £ &, where ¢ is the error margin, and
declares itself as the centroid. This process might resultnto
multiple nodes declaring themselves as the centroid as twor o
more nodes can lie within thes range of v; (z*, y*). To avoid this,
a node also considers its Degree and Egocentric Betweentfess
The nodes within e range of v;(z*,y*) share this information
among themselves. Subsequently, the node having maximumrsu
of Degree and Egocentric Betweenness declares itself as the
centroid of the region. As the node has same identity in the
self-organizing virtual coordinate system as in the real cordinate
system, the centroid node in the self-organizing virtual cordinate
system will also be the centroid in the real coordinate systa.
After the identification of the centroid nodes, the centroidnodes
broadcast their information in the network. All nodes then update
their stored head information to their respective ¢;’s and the
hopcount t0 hops(vi, ci).

This broadcasting of the centroid node information enables

to reach consensus. We use a method for achieving consensushe nodes to build RC, for future use. RC, is the set of

on centroid location based on self-organizing virtual coodinate
techniques that rely on averaging of local neighborhood vales
[38], [40]. This allows us to limit the information required
to a single hop, and thereby have minimum communication

centroid nodes within g,,., hops of the nodev, where g4 > g.

2Egocentric Betweenness approximates the Socio-CentrisveBaness
very well in the absence of global knowledde [[42]



Algorithm [lrepresents the algorithmic description of the region
formation and the centroid identification process. The Fig[3(f)]
shows the centroid nodes for the regions identified in the Fig
3(c)-

2) Beamforming:ln this part, we describe the steps involved
in beamforming. According to the results of [13], it requires
only a small fraction of nodes with long link capabilities to
achieve small world properties. In a self-organizing envionment
where all nodes possess beamforming capabilities, it is essial
to identify nodes that create long-range beams along with th
direction and the width of the beam. Flocking provides us wih
valuable insights in determining the answers to these qudsins.
We use insights from the Alignment rule of Flocking to identfy
the set P. Alignment in Flocking is the change in the direction
of the node to match its neighbors, in other words the change
in the orientation of the node. Further, Alignment rule is, the
node has to decide to change the direction and has to find the
new direction. We modify the Alignment rule and say that our
Alignment rule is only limited to the decision of whether to aceate
the beam or not. The Alignment rule we apply is, thus, to idenify
the set of peripheral nodes,P; in the region G;. Our algorithm
uses thehopcount of the neighborhood nodes to decide whether
or not the node is a peripheral node,p;, of the region G;. If
all L,,; of the node v, have hopcount less than or equal to
the node’s hopcount to the c;, then the node declares itself as
a peripheral node. i.e., for a given regionG; with centroid c¢;,
pi € P; < hops(pi,ci) > hops(Ly,,c;). This implies that, a
single unconnected node will become a peripheral node becse
it does not have any neighborhood. Further, we can also infer
that two peripheral nodes can be neighbors of each other dueot
the equality in the condition.

The peripheral nodes randomly choose the number of antenna
elements,m € [2, M], and use the above rules to beamform.
Considering B; to be equal tomx*r in a Sector model, by keeping
constant power as used for omnidirectional beam, we can e#gi
compute B,, from eq. (I) as B, % From this we infer that,
to cover all the directions, minimum number of sectors that ve
need to consider ism?. The dependency ofB; and B, on m
affects the connectivity of the network. The Fig[b(a) showshe
variation in B; and B, when m > 1. When B; is smaller, i.e.,
when we use less number of antenna elements, the probability
of connecting to the neighbors is high as the beam is wider, C
Fig. B(b)). However, when B, is longer, i.e., when we use more
antenna elements, the probability of connecting to a neightr is
low as the beam is narrower, (Cf. Fig[5b(c)).

As the number of sectors increase exponentially with an
increase in the number of antenna elements, there is an incase
in the time taken to decide the best sector. Checking all thesgtors
formed for all m € [2, M] requires a test of DM TDEMED
sectors. The complexity of such a test i®)(M?). This results
into more energy consumption at the node. To reduce this
energy consumption and the complexity ta(M?), our algorithm
randomly selects the number of antenna elementsy € [2, M],
and only tests the corresponding set ofn? sectors.

Non-uniformity reduces the size of the giant component in
the wireless ad hoc network. It is thus important for the nodes
to find different network components and connect them using
beamforming. Separation rule of Flocking provides us insigt
towards this problem. Separation rule states that the nodes
should maintain certain distance with their neighbors. Our
algorithm applies similar analogy to address the connectity
issue. We say, in order to increase connectivity, nodes crea
beam in different directions from their peripheral neighbors.
Consider g, € P; as a peripheral neighbor of ; then for all
00:’S, ©i(Bv) # 0p,;(By) must hold. Here B, is the boresight
direction. To make this decision, if p,,, of a p; decides to create
the beam in certain direction, g,,, informs g; about the chosen
direction before it actually creates the beam.yp; then tries to
create the beam in another direction. Further,p, gives preference

Algorithm 1 Region formation and centroid finding

1: Let U = uninhibited;
Let I = inhibited;
Let ID = identity of node;
\\\ Region formation;
for all v €V do

SetvStatus =U

setv_coordinates = v;(x,y)

Initially broadcast(D,,, hopcount = 0, deg,,)
end for
: repeat
recv=receive{ D, hopcount + 1, degree)
if deg, < degree & hopcount < g then

Ustatus = 1 & broadcastfecv)
end if
. until converges
16: \\ Centroid finding;
:forall v; e V; e Vdo
vi(z*, y*)=Cent finding;(z, y), Lv.:(z, y))
: end for
cforall v; € V; € V§wi(x,y) —e < vi(z*, y*) < vi(x,y)+
e do

computesum,,, = sum(deg.,, e_bet,,)
22: end for
23: forall v; e V; € V do

¢i = vi|v; = max{sum,,}

c=cC + v;
end for
for all v eV do

formulate RC,
end for

I S S e S
gk wdhkE o

25:
26:
27:
28:
29:

to connect to the nodes in other region rather than that of its
own. This increases the possibility of connecting to an isaled
region. The Fig.[4 shows two nodev and = which were initially

neighbors of each other, create beams in different directio in

order to increase connectivity.

Nevertheless, we still have to address the best direction tifie
beam and the knowledge of whether go; has a node within its
1 hop. We address these problems next in this section.

To the above-mentioned problem, we use analogy of Cohesion
rule of Flocking to determine the best direction of the beam.n
Flocking, Cohesion rule states that a node should move towds
the centroid of the neighborhood to remain connected to all bits
neighbors. We apply this definition of Cohesion in our algorihm
because we want to bind a peripheral node with other nodes
in minimum hops. From the previous section, we already know
that the centroid node has the highest Closeness Centralityalue
in a given region. Directing the peripheral node’'s beam toweds
the centroid node would help reduce the average distance ohé
peripheral node to other nodes of the region in which the cembid
node lies.

Combining Separation and Cohesion rules as discussed above
we can say that, if the centroid node chosen by the peripheral
node and the peripheral node itself were not connected inidily,
connecting them would help in increasing the connectivity(Cf.
Fig. [). On the other hand, if the centroid node chosen by the
peripheral node was within some hops from the peripheral nod,
it will lead to the reduction in the APL.

To account for choosing the correct centroid to connect, the
peripheral node, p;, builds RC{,, a set of all centroid nodes
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(c) Identified regions in the deployment shown

(e) The gradient of the nodes created using th@count
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(b) Distribution after applying Thinning process with = 1
and?,,;n = 5.
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by the Fig. (d) Identified uninhibited nodes created using tHel[22]

algorithm for the deployment shown by the Hig. 3(b). As there
is only one head in the region, the number of uninhibited sode
directly refers to the number of regions created. The nodes
shown with + are the uninhibited nodes while the nodes shown
with o are the inhibited nodes.
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(f) Association of the nodes to the centroid nodes. The o@htr

for the regions created in the Fig. 3(b). The peaks show the of the region is marked with a black square.

centroid nodes while the valley show nodes with the max

gradient value.

Region Formation and Centroid identification using: 5.



—— Bi-directional link

—— Uni-directional link
<< Long range beam created
@  Centroid node

o

Peripheral node

Fig. 4. Nodes beamform in different directions. Two perighenodesw
andz which were initially neighbors of each other, create beamdifferent
directions. In order to have increased connectivity, théeno creates a beam
towards the region containing the centroid nagewhile the noder creates
a beam towards the region containing the centroid ned&he maximum
gradient value for Lateral Inhibition is 4.

(a) The difference in the beam properties whegp;a
uses different number of antenna elements.

(b) Connectivity when 2
antenna elements are used.

(c) Connectivity when 4
antenna elements are used.

Fig. 5. Relationship between beam properties and coniitgctiv

reachable when it is beamforming. To determine RCy,, the
peripheral nodes sweep through all the sectorsnf?) created with

the chosen number of antenna elements except the sectors in ;.

which o,,’s have created the beam. IfRC;, — RC,,, # () and
|RCS, — RC,,| > 1, i.e., p; identified two or more potential
centroid nodes, assuming theiopcount to these centroid nodes
as oo the decision to connect to one of them is randomly made.
However, if RC;,, — RC,, = 0, i.e., no new centroid is found,
the p; decides to connect to farthest centroid node inRC,,.
As we know that APL is dependenton_ ., hops(v,w)
any reduction in this summation will lead to a reduced netwok
path length. In order to have maximum reduction in the path
length, the node should connect to the farthest centroid. Ithe
farthest centroid node was thec;, then g, beamforms towards
it. However, this decision also depends on thkopcount between
¢; and gp;. Creating the beam toward the centroid that is less
than two hops away will only reduce the initial neighborhood
but not the APL. In this case p; drops the decision of being the
peripheral node and remains omnidirectional. The Fig[6(a)and

the Fig.[B(b) depicts the same. In the Fid6(a), node is 5 hops
away from y while it is 4 hops away from z and 2 hops away
from the centroid of the region in which z lies. Thus, in order
to have a reduced path length, noder decides to create beam
towards y. On the contrary, in the case when the node: does not
have the previously stored information about the centroid rodes
y and z, the node considershopcount to these centroid nodes
as oo and randomly chooses one of them to connect to, (Cf. Fig.

B(b)).

Whenever a peripheral node creates a beam towards a centroid
node that is more than 1 hop away, asymmetric link may
arise. This is due to the fact that the B; of peripheral node
is m = r while B, of a centroid node isr, in other words,
Lol Centoid - — 1L pye to this difference, peripheral nodes

1 of peripheral m A
will 'not know if they got connected to the centroid of other
region or not. We propose to solve this issue as, when a cenitlo
node receives information about the node trying to connectd it,
it just for one time instant, to acknowledge the reception, eates
the beam back to the node. We do this after determining angle
of incidence of the beam. This works well for both connected
and unconnected components. Algorithm{2 represents a brief
algorithmic description of beamforming using Flocking rule
analogy. The Fig[T shows the new network created after runmig
our algorithm on the network shown in the Fig.[3(b].

Algorithm 2 Beamforming using Flocking Analogy

1: \\\ Alignment;
2: forall v; € V; € V do

3 if hops(v;, ¢;) > hops(Ly, ¢;) then

4 P, =P, + {v}

5 P=P+ {’Ul}

6: end if

7: end for

8: \\ Separation;

o: for all p, € P, € P do

10:  setm

11:  for all m? Sectors|o,,, (By) ¢ Sectorsdo
12: RCY, = RC, + {reachable centroid nodes}
13:  end for

14: end for

15: \\ Cohesion;
16: for all o, € P, € P do

17: if RC}, — RC,,, # 0 then
18: for all c € RC;, — RC,, do
19: h = h+ hops(g;, ¢)
20: end for
else
22: if RC,, # 0 then
23: for all ¢c € RC,,, do
24: h = h + hops(gpi, ¢)
25: end for
26: else
27: P,=P — {pl}
28: end if
29:  end if
30:  beamtonode = max{h}
31: 6 = Sector containingeamtonode
32: end for




(a) One component with three regions whes- 3.
Here, the noder can create the beam towargor
z, but because théopcount to y is more thanz,
nodex creates the beam towards

Bi-directional link

Uni-directional link

) Long range beam Created

) Can be created long range beam
Centroid node

Peripheral node

‘o
O

(b) Three unconnected components with three
regions wheng = 3. Here, the node: can create
the beam either towardg or z, but because the
hopcount t0 y and z is same asxo, x randomly

decides betweep and z to connect to.

Fig. 6. Beamforming priority.

Ill. FORMAL DEFINITIONS

Definition 1. Assume a centroid; of the regionG;, and a nodev.
in V; which has the highest Closeness Centrality, then

Closeness(v.) = argmax [Closeness(v;)]
Vv, €V,
Closeness(c;) =~ Closeness(ve) 2

Definition 2. The nodew; with neighborhoodL, ; of the region
G; with centroid ¢; is a peripheral node <=  hops(vi,ci) >
hops(Ly,i, ¢;).

Lemma 1. The expected number of nodes remaining after applying

the thinning processed, [24], on a uniformly distributedwark is

)

F(Tby pTI%W)

(Tb — 1)! (3)

E(n) = pA (1 -

Lemma 4. If a node is not a centroid node, it is connected to a
centroid node.

Proof: Our algorithm identifies regions and their centroid
nodes. An identified region is always connected, i.e., all hnodes
in the identified region are connected to each other. Furtherthere
is one and only one centroid node in a region, ref. lemmia 3. Thai
for a given region, all nodes that are not centroid are conneged
to the centroid node. [ ]

Lemma 5. An unconnected node is both the centroid node as well
as the peripheral node.

Proof: A single unconnected node does not have any
neighborhood. It thus remains uninhibited at the end of the
region formation phase and becomes the head. As it is lacking
any neighborhood, the node does not have any gradient around
itself and is the only node in the region. In this region, the gerage

where E(n) is the expected number of nodes remaining after ttoordinates perfectly match the virtual coordinates of thenode.
thinning process is applied; is the initial node density in a given Thus requiring no further computation to correctly identif y the

area A and I'(ry, prin) is the incomplete gamma function.

centroid node.
This node is also the peripheral node as the condition of

Lemma 2. The separation between any two head nodes is betweggfinition P holds true because of the unavailability of the

(9,29 + 1] whereg is the hopcount used to create the regiorl,_[21].

Proof: Consider a head node with a gradienty around itself.
All the nodes within g hops from the head node will be in its
region. A node which is more thang hops away will lie in another
region. If in the neighboring region, a head node does not hay
any gradient around it, then the distance between the two hah
nodes in hops will beg+ 1. On the other hand, if the neighboring
region also has a gradienty around it, then the distance between
two head nodes in hops will be2g + 1. |

neighborhood. |

Lemma 6. For a node distribution and fully connected network with
average node density and total number of noded/|, then|C]| is
1\ /- ‘V‘ ‘V‘
bounded by and prerveE
Proof: From lemmal[2, the hop distance between two heads

is bounded by (g,2g + 1].

Case 1 (Lower Bound)When the heads are separated bg2g+1
hops, the number of regions formed are less. The number of ne&
one region is pg*r?x. Thus, the total number of nodes in all

Lemma 3. The number of regions is equal to number of (:entroia?I

: 7 2,2
nodes and each region has exactly one centroid node. e N regions is [N|pg™r~n. As the total number of nodes are

V], . IN| = 0. From lemma[3 |C| = |N], .. |C] = —rb-
Proof: Our algorithm computes the centroid of the region Case 2 (Upper Bound)When all the heads are separated by
based on average of coordinates, Degree and Egocentricg + 1 hops, the number of regions formed are more. A head
Betweenness of the node for each region. According to ourin such a case is connected to only 6 other heads. This can be
algorithm, the nodes are termed as centroid if the node falls visualized as a hexagon with vertex-vertex distance equabiy+ 1
within e range of the centroid coordinate estimation algorithm and a node at the center of hexagon. Each of the vertex nodes
and have maximum sum of Degree and Egocentric Betweenness.are shared between 3 other hexagons. Thus, the total numbef o
I still there are multiple nodes that are termed as centroidnodes, heads that are exclusive for the hexagon aré+1 = 3. In other
the nodes randomly decide for being the centroid and thus o8l |\ ords there are 3 heads in an area of2°"°Y3 Thus. for the
one node is chosen as centroid. The value ofis thus an important vl _ v 2 '

factor in the estimation of the centroid node. Also, smaller= will &3~ |C|_pg2r2\/§' u
tend to provide better estimation of the centroid nodes. Ashtere | emma 7. Consider a network withj componentsj(> 1), average
is only one centroid node per region, the number of centroid gensity of the nodes as and number of nodes g%/ for k € j,

nodes is equal to the number of regions. | . ; Vi j ;
|C| is bounded by "7 _, P I and|V|, where|V|=>"7_, |[V/].




Fig. 7. Nodes beamforming towards other region’s centroghted for the

Fig.[3(b] usingg < 5. The nodes marked in green beamform. The direction:

beams are also shown in green. The nodes marked with blatigkei do not
beamform. The nodes marked with red square are the centooiésn

uniform
non uniform

3

15 2 25
Average density of Nodes per square area

35
x107°

Fig. 8. Percolation of the giant component for nodes digtedd uniformly
and non-uniformly. We use, = 30m and¥,,;, = 5 to achieve non-uniform
distribution of nodes. There is a difference in the valueghef size of the
giant component at the same average density because théhsmlgased to
generate non-uniformity [24] tends to create clusters afesothat might be
unconnected. This leads to a network that is less conneggedthe uniformly
deployed network. However, when the density increasesizeeéthe clusters
also increases.

Proof: From lemmal[2, the hop distance between two heads
is bounded by (g,2g + 1].

Case 1 (Lower Bound) Consider k' component of the
network. When the heads are separated by2g + 1 hops, the
number of regions formed is less. The number of nodes in
one region is prg*r’m. Thus, the total number of nodes in
all the regions in the component is Nyprg?r®m, where N,
are the number of region in k' component. But as the total

number of nodes were assumed to dekj|, o Ng= k‘gvf]‘?

Thus for all the components, the number of regions formed is
. . J

IN| =37 _Ni=>9_, mjgﬁ% From lemmal[3, |C| = |N]|,
) Vi

|O| = izl pkl 2’6,.‘27‘.

Case 2 (Upper Bound)Upper bound to the number of regions
arises when all nodes in the network are disconnected. Thusg||

nodes in such a case will be uninhibited thereby becoming rémn
heads. Thus|C| = |V]|. [ |

9 hops

% of centroids

5 6 7 8 9
gradient

10

Fig. 9. Relationship between centroid nodes and the nodéscghenaximum
Socio-Centric Betweenness.

Lemma 8. For a node distribution and fully connected network, and
using Iemmﬂ?, th()e numPe‘r( of [))eripheral nodes in the netwsrk i
yVI(2g+1 Vi(2g+1)m
bounded by—7z and FENES
Proof: Peripheral nodes are the nodes lying in the outer
most gradient of the region. Thus, the number of nodes in the
g'" gradient of a region = pg?r*m — p(g —1)r?

r’m = p(2g+ 1)rw
Now using lemmal®, the number of peripheral nodes for all

regions thus varies between*’[#+1) and ‘V‘;igjg”“. [

Lemma 9. For a node distribution and network witj components
(j > 1), and using lemmgl7 and lemrh 5, the number of peripheral

. J
nodes in the network is bounded by, _ Wk‘(#ﬂ) and|V]|.
k=1 g

Proof: Peripheral nodes are the nodes lying in the outer
most gradient of the region. Thus, the number of nodes iny'"
gradient of a region in k" component =pg%r?m — pr(g—1)%r’z
= pu(2g9 + 1)r?7.

Now using lemmalT and lemmdl5, the number of peripheral

. . j |V,g\(2g+1)
nodes for all regions thus varies betweerp 7 . ———>—— and
k=1 g
V1.

IV. SIMULATION SETUP

We use a simulation area of A = 500mx500m to simulate
our algorithm. r, and £,.;, are set to 30m and 5 respectively
to achieve the non-uniform distribution of node throughout the
simulation area. The non-uniform node distribution enables us to
visualize the real world scenarios. The range of average dsity,
p, of nodes per unit area is set to [x1073, 2.5x107%]. We make
the choice of this range forp after considering the percolation
of the giant component for the non-uniform node deployment,
(Cf. Fig.[8). Initially, each node operates in omnidirectimal mode
using m = 1 antenna element with the omnidirectional radius
asr = 30m. We set the maximum number of antenna elements
that the nodes are equipped with toM = 6. The separation
between two antenna elements computed usind’: Fi frequency,
f = 2.4Ghz. Through our simulations, we explore the effect on
connectivity, APL and C'C by varying the node densities and
the gradient.

We use MATLAB to simulate our algorithm with a confidence
interval of 95%. We average All the results over50 topologies.
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Fig. 11.

(e) Number of components in the network.
the effects of the gradient.

Results obtained for differepte [3, 10], usingU LA model and non-uniform node distribution.
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V. RESULTS ANDANALYSIS
First, we prove the correctness of the centroid finding in

the region. For this, we compute the relation between the
nodes that have maximum Socio-Centric Betweenness and the

centroid nodes in the region. If the centroid node has the higest
Socio-Centric Betweenness in the region, then the algorith
found centroid node correctly, (Cf. Fig.[3). This depends on
the value of the gradient. Larger gradients decrease the Sa&
Centric Betweenness rank of the centroid node in the region.
As the gradient increases, more nodes are now associated to
region thereby increasing the possibility of occurrences fothe
bridge nodes (bridge nodes have high Socio-Centric Betwerass

value). Thus, we also calculate the distance in hops between

the centroid node and the maximum Socio-Centric Betweennss
node. According to the results, (Cf. Fig(®), for ag, the percentage
of centroid nodes that also have high Socio-Centric Betweeess
is more and all the centroid nodes in the network are within
hopcount < g. The Fig.[3 however shows that for anyg € [3, 10]
more than 95% of the time the centroid node is within 4 hop
distance to the maximum Socio-Centric Betweenness value d@
and it is within 1 hop 60% of the time.

Further, we useg € [3, 10] to obtain the results when the Sector
model is used in a non-uniformly distributed network, (Cf. Fig.
[I0). The Fig[I0(@) shows the effect of beamforming on tha PL.
The APL obtained in omnidirectional case is initially less than
that obtained for the directional cases because the densitgf

the nodes in the component is low. When the algorithm induces
directional beams, due to the inclusion of the nodes in other

network components, there is an increase in thelPL. The APL
for the directional case is less than that of the omnidirectinal
case whenp > 2% 1072 due to the fact that the nodes connect to
the centroid node of other regions in the different componenhas
well as in the same component. The gradient affects thel PL.
The lower the value of the gradient is, higher is the number of
nodes that beamform, (Cf. Fig[10(d)), leading to more shocuts
and in turn more reduction in the APL. For p =2.5%10"% and
g = 10, there is a reduction of almost 40% in the APL while
there is a reduction of almost55% for g = 3, (Cf. Fig. [IO(f)).
However, for p = 1% 107% and g € [3,10] when most nodes are
unconnected, there is an increase of0% in APL due to the
above-mentioned facts.

The introduction of the long-range beams also causes th€C
to change, (Cf. Fig.[I0(0)). For very low-density networksthe

a

12

Component (GSCCH and the Giant In-Component (GINY.
Thus, we calculate the size ofGSCC and GIN. We further
show the difference between the size of the giant component
for omnidirectional network, GSCC and GIN. As stated in
[44] that GSCC C GIN, we also observe thatGIN is a
bigger set and contains more nodes thaitzSCC. GIN reaches
percolation very early, (Cf. Fig.[12). Comparing the size ofthe
GSCC of directional network with the giant component of the
omnidirectional network, (Cf. Fig. B), we see that the size fo
GSCC varies between {.84,0.94] for p =210 for different
values of the gradient while the size of giant component fortte
omnidirectional network is 0.41. Thus, we observe an increase
of almost 2.1 times. The Fig.[13 shows an increase of almost2
times when we compare of size of th&SCC and the GIN for

g = 6 with the giant component of the omnidirectional network.

The number of centroid nodes (C|) depends on the value of
the gradient, (Cf. Fig.[Z0(d)). For a low-density network, he value
of the gradient does not matter while as the density increasethe
value of the gradient affects the number of regions formed. A the
gradient increases, more nodes inhibit leading to less nundp of
regions. The difference between the number of regions fornte
for g = 3 and g = 10 is of 40 for p = 2.5 % 10~2 while the
difference for p = 1% 1072 is very less.

The value of the gradient used also affects the number of
peripheral nodes (P]) identified, (Cf. Fig. [I0(c]). For a low
gradient value, as there are more regions, more nodes are
included in P because of the reduced neighborhood with respect
to the region. However, when the value of the gradient is more
|P| is less because there are more nodes in the region and the
nodes have relatively more neighbors to check before making
the decision of beamforming.|P| greatly affects the number of
unidirectional paths. However, it has an adverse effect onhe
CC. As the number of peripheral nodes increases, unidirectioal
paths between the nodes also increases leading to more loss
in the CC. For p = 1x107% and ¢ € [3,10], the difference
between the number of peripheral nodes is almost negligibld-or
p=2.5%10"3, however, the number of peripheral nodes varies
by more than 120 as the regions formed for lower gradient are
more.

Our algorithm affects the APL and the CC of the network
when we useJ LA model, (Cf. Fig.[11). On the other hand, it does
not affect | P| and |C|. No dependency of the&/ LA model on | P|
and |C| is rightly justified because these sets are built when the

CC for the directional case is less because beamforming leadshetwork was omnidirectional, (Cf. Fig. [11(c),[1I(d)). Howeer,

to loss in the initial neighborhood. However, for higher dersity
networks, the CC does not vary as much as theAPL (Cf. Fig.
[ZO{). For p = 2.5 % 1073, there is a reduction of 25% and 38%
for ¢ = 10 and g = 3 respectively. However, forp = 1 % 1073
and any g € [3,10], the reduction in CC is almost 40%. The
CC for directional case for ¢ < 6 and p € [1 % 107%,2.5
10~?] is almost constant. This implies that the directional netwek
shows modularity where CC' is independent of |V/| and evolves
towards hierarchical network [43]. However, when g € (6,10]
the evolution towards hierarchical networks cannot be jusified.
The number of components in the network can define
connectivity. In a very low-density omnidirectional netwak, the
number of disconnected components is higher, (Cf. Fid. 10{e

there is a reduction of almost60% and 68% in the APL for
higher gradient value and for low gradient value respectivéy.
On the other hand, there is no considerable reduction in the
CC. The reduction in the CC is only between19% to 22%.
Due to variation in B,, for different B, in ULA model (Cf. Fig.
[18), the values obtained for theAPL, the CC and connectivity
are different from that of the Sector model. From the Fig.[13
we observe that, for higher density networks, the change inhe
APL for the ULA model is more than that of the Sector model
while the CC changes at a much lower rate.

Until now, we have shown that small world properties are
achieved and connectivity be increased in a non-uniformly
deployed network. However, it is also important to show the

The number of disconnected components increases to a cemai complexity of the algorithm. Due to the storage of three
maximum and then decreases as the density increases. This igeéquired data values in the region formation phase, neighbood
because, for a high density, all nodes can find at least oneinformation and the knowledge about being the peripheral nae

neighborhood node within their reach. In addition, as the number
of components decreases, the connectivity increases. Fohet
directional case however, as nodes beamform towards diffent
components with the objective of increasing connectivitythe

for both itself and its neighbors is needed. Thus the requird
memory size is of the orderO(3(d+r)+d+1) where d is the size
of the neighborhood and r is the size of reachable centroid
nodes. For high-density network, reaching consensus in ttregion

number of disconnected components is less than that of the formation and the centroid finding phase is time consuming.

omnidirectional case.

The size of the giant component can also explain the

connectivity of the network. For the directed graphs howeve [44]
defined the giant component using the Giant Strongly Conneetd

3G SCC in a directed graph is the length of the largest cycle in traplyr
component.
4GIN is the set of nodes in the component which can conne& 3@ C.
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However, for a low-density network, the algorithm reaches his
consensus quickly.

V1. USEFUL CONCEPTS ANDRELATED WORK

In this section, we define useful concepts giving an overview
of the related work. We first define small world concepts in the
section[VI-Al which form the basis of our research. The need of
having long range links for achieving small world properties lead
us to discuss beamforming in the sectiof VI-B. We then define
Lateral Inhibition in the section ¥I-=C hnd Flocking in the section
[VI-D] The definitions of centrality concepts are discussedni the
section[VI-E. Further, we discuss non-uniform deploymentm the

section[VI-H.

A. Small World Network

Inspired by Stanley Milgram’s [3] experiment of “six degrees
of separation”, Watts et al [4] suggested a model for the cre#on
of small world network. Watts et al in [4], [6] showed that
rewiring edges of a regular network with a probability p, results
into reduction in the APL of the network while there is very
littte change in the C'C. Starting by choosing a random vertex
and one of its edge to the vertex's 1 hop neighbor withp,.,
Watts et al reconnected the edge to a random vertex in the
remaining network. Watts et al then considered all other vetices
for rewiring. The process of rewiring continued with the edges
now connecting the two hop neighbors. This process continde
until all the edges were consideredp, highly affected the rewiring
process. Probability p, = 0 meant that no rewiring while p, = 1
meant complete rewiring of the graph. Usingp, = 1 resulted
into complete randomness in the network.

The small world model motivated many research studies| [13]
[6], [45], [7], and many models were proposed. Newman|_[46],
[8], compiled a comprehensive list of the models on small wai.
Mostly, the researchers studied two kinds of network structires,
one without network growth while another with the network
growth. Researchers analyzed the scaling and performancesues
for the growing networks [6], [7]. Barabasi et al in [45], [7]
showed that small world properties also exists in a growing
network and there is apreferential attachmenof the nodes giving
rise to “rich gets richer” property. Barabasi et al showed that
the real world networks possess these properties. This led the
behavioral analysis of the networks. On the contrary, assuiing
spatial wireless ad hoc network without growth, Helmy [13]
performed the small world analysis and showed that rewiring
of links does not change the structure of the network. Two othr
results shown in [13] are significant in the context of this paer.
First, the APL is reduced at a greater rate when shortcuts are
25% to 40% in length of the network diameter. Second, the rate
of the APL reduction is more when there are only 0.2% to 2%
shortcut links. The reduction rate stabilizes when there ae more
than 2% shortcut links.

B. Antenna Model and Beamforming

Authors of [47], [48] provided an extensive study of antenna
models and defined antenna gain using radiation intensity:(6, ¢)
where angled is angle with the z-axis and ¢ with the xy-plane
as

u(f, ¢)
= 27 [T (0, ¢)sinfdode

Considering m antenna elements and isotropic radiators with
same phase shift between them, researchers defined two basic
antenna models Uniform Linear Array antenna model {ULA),
(Cf. Fig.[15), and Uniform Circular Array antenna model (UC A).
When m = 1, there is no superimposition of the radiation.
This leads to a beam with omnidirectional characteristics.

9(0,0) = (4)
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Source:[[47], Arrangement @f = 8 antenna elements i&f LA
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(d) By = £90°.

Fig. 16. Sourcel[47], Gain pattern obtained for differéht andm = 8 in
the U LA model

However, whenm > 1, there is a constructive and destructive
superimposition of the radiation due to the phase shift betwen

the antenna elements. This leads to a beam with directional
characteristics.

The gain pattern for the U LA antenna model is only dependent

on the number of antenna elements. It has no dependency on

the boresight direction (B, the direction of maximum radiation
intensity, Cf. Fig.[16). On the other hand, for theUC A antenna
model, gain pattern is dependent on both the number of antena
elements andB,.

However, in wireless ad hoc networks, beamforming using
UCA model has been well studied. Classical beamforming
techniques using UCA model include Random Direction
Beamforming (RDB) [47], [49], [50] and beamforming based
on the angle of incidence and packet flow. Bettstetter et al
[47] studied the use of RDB with the path probability to
improve the connectivity in the wireless networks. Vilzmam et
al [51] derived low complexity techniques for beamforming ad
proposed Maximum Node Degree Beamforming {/ NDB). In
MNDB the nodes directed their beams towards the node that
had maximum degree. The authors found that\M/ N DB leads to
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less number of inter-cluster connections but had more intra
cluster connections. To overcome this drawback, the authar
proposed Two-hop Node Degree Beamforming 7{N DB). In
TNDB the nodes directed their beams towards the node that
had maximum two-hop neighborhood. The authors showed that
TN DB outperforms both RDB and M N DB. Other works on
beamforming include [51], [52], [25], [53]. However, most b
these studies were concentrated on nodes that were uniforgl
distributed at random in the given area but very few among then
talk about non-uniform distribution of the nodes. Considering
all nodes use directional beams,[[47])[49]/ [51]/ [52]/ [25[53]
addressed connectivity very well but do not discuss the impa on
the APL and the CC. Table[illustrates a comparison between
these studies. On the other hand, studies related to the snhal
world properties lack connectivity analysis for the non-uriformly
distributed network. Table [[Clillustrates comparisons between
various studies performed in the direction of achieving smb
world properties in wireless ad hoc networks and our model.

C. Lateral Inhibition

Lateral Inhibition is a process by which cells of animal tissies,
based on the properties of neighbor cells, decide whether to
perform a task or not. Lateral Inhibition ensures that the cells
that perform the tasks are equidistant from each other. Thishelps
in producing regular patterns throughout the surface. Lawrence
[19] modeled Lateral Inhibition as, when a cell performs a
task, it inhibits its neighbors within h» hops from performing
that task thereby resulting into equally spaced uninhibited cells.
Lateral Inhibition thus creates clusters where the clusterheads
are uninhibited nodes distributed over an area. Nagpal et a[20],
[21] described a simple algorithm to achieve Lateral Inhibtion.
In the algorithm, the cells assign themselves a random numine
Each cell starts to count backwards. If before reaching), a node
receives an inhibition signal from the neighboring cell, tke cell
stops counting otherwise sends out an inhibition signal to lb
its neighbors. Nagpal et al [[20], [[21] showed that théiopcount
used to create the cluster greatly affects the number of clusrs
formed.

Recent studies revealed that Lateral Inhibition can be actéved
in an optimal way [22]. Inspired by the tissue of the fruit fly,
Afek et al [22] modeled distributed Lateral Inhibition usin g local
information and requiring only two exchange mechanisms. Tlkse
exchange mechanisms are, first, broadcasting a single cootr
bit to the neighbors with certain probability and second, if the
node receives no message from the neighbors, it sends out a
control bit to inhibit its neighbors. As a variation to Nagpal et
al's algorithm, the algorithm used a probabilistic approach that
varied over time in an increasing manner to perform Lateral
Inhibition. The runtime complexity of the algorithm was of the
order O(log? |V|) where |V| was the number of nodes in the
system. Due to single bit exchange messages over single hibe,
algorithm had a low message complexity.

D. Flocking

Flocking, [23], was first modeled by Reynolds in order to
simulate the birds’ behavior. In nature, flocking is observeal in
many other social living organisms like cattle, fishes and hmans.
Reynolds, while modeling Flocking, termed each social enyi as
a boid and formulated three very simple rules, (a) Alignment (b)
Separation and (c) Cohesion. Reynolds defined Alignment relas
the direction matching of a boid with its neighbors. He defined
Separation rule as the collision avoidance with neighborhad
boids and Cohesion rule as the tendency of &oid to remain as
close to its neighbors as possible and not stray. The Fif.11&)(
shows that the boid orients itself in the direction in which its
neighbors were moving. The Fig[Il7(b), shows that theoid has
to move away from the neighbors in order to avoid collision wlie
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Parameter\ Vilzmann Widmer Kiese Yu Li
Reference et al [49] et al [51] et al [52] et al [25] et al [53]
Transmission mod¢g Directional Directional Directional Directional Both
Reception mode Directional Directional Directional Omnidirectional | Both
Mobility No Yes No No No
Beam width Depends on Constant Constant Optional Constant,
beam direction switched beam

antenna
Beam direction Random Optional Optional Optional Random
Antenna model UCA UCA UCA modeled| Sector Keyhole

as keyhole
Node distribution Uniform Uniform and | Non-Uniform Not specified Uniform
Non-Uniform
TABLE Il

COMPARISON BETWEEN VARIOUS STUDIES IN THE DIRECTION OF BEAMBRMING THAT FOCUS ON CONNECTIVITY DUE TO EXTENSIVE LITERATURE WE
ONLY CONSIDER A LIMITED SET OF RESEARCH STUDIES HERE

Parameter\ Our Model Banerjee Guidoni Helmy Sharma Verma
Reference et al [18] et al [12] et al [13] et al [17] et al [54]
Shortcut Creation | Rewiring Rewiring Addition Addition Addition Addition
Node distribution Non-Uniform Uniform Uniform Uniform Uniform Uniform
External No No High range | - Wired Two radios
infrastructure Sensor for each node
Global knowledge | No No Yes Yes Yes Yes
Density of nodes Low High High High - Low
Shortcut Edge Directed Directed Undirected Undirected Undirected Directed
Shortcut direction | Towards Longest Random, Random Random Random
centroid of Traffic Flow towards sink
other region path
Shortcut Tength Function of Function of Constant Limited Constant Constant
antenna node density
elements
Shortcut width Depends on Depends on Constant - - Constant
Shortcut Length| Shortcut Length
Prob. of Shortcut | (0, 1] based Based on € (0,1] € (0,1] function of € (0,1]
creation on model centrality network size
parameters values
Path length, Path length, Path length, | Path length, | Path length, | Path length,
Performance metrig Clust. Coeff. Connectivity Clust. Coeff. | Clust. Coeff. | Energy Clust. Coeff.,
Connectivity degree
TABLE Il

COMPARISON BETWEEN VARIOUS RESEARCH STUDIES IN THE DIRECTNDOF ACHIEVING SMALL WORLD PROPERTIES IN THE WIRELESS AD HOC
NETWORKS. OTHER RESEARCH STUDIES IN THIS DIRECTION CONSIDER USE OF EXREAL INFRASTRUCTURE OF AT LEAST TWO RADIOS

the Fig. [I7(c) shows that theboid moves towards the centroid Centrality [28] and Egocentric Betweenness Centrality[[5R [59]
of the neighbors in order to remain close to its neighborhood are examples of the local centrality measure.
Couzin in [55] formulated mathematical explanation of the 1) Socio-Centric Betweenness Centralilyie Socio-Centric
rules. Due to the motion of aboid, velocity and displacement were Betweenness Centrality,[[28],[[29], is the measure of the mber
associated with theboid. Alignment rule was modeled using the of shortest paths passing through the node thereby expresgj the
direction of a boid while Separation and Cohesion were modeled most important node in the network and through which most of
using both velocity and the displacement. the communication takes place. The Socio-Centric Betweeess is
Recent studies have revealed the use of Flocking in solving a frequency measure and requires the global network knowlege.
various problems in wireless ad hoc networks. Antoniou et aJ56] Usually nodes with high degree and those that are acting as
used Flocking to provide efficient congestion control mech@ism the bridge nodes tend to have relatively high Socio-Centric
by computing the congestion at the neighbor nodes while_[57] Betweenness. Mathematically the Socio-Centric Betweens® of
used the Separation rule for the efficient placement of nodeto  a nodew is
maximize the coverage area.
BC, =Y sp(v) )
. sp
E. Centrality
Decades of research on network and graph theory has led where sp(v) is the number of shortest paths between any two
researchers to derive many fundamental concepts related tthe nodes that pass throughw while sp is the total number of shortest
importance of a node in the network. The concept of centraly paths in the network.
was one such concept that was developed and used to address 2) Egocentric Betweenness Centralitgiming to compute
the topological characteristics of the network nodes. Propsed the Betweenness centrality using local properties,| [58],158]
definitions of centrality measures include those that use gbal proposed the Egocentric Betweenness Centrality measure.
parameters as well as those that only use local information. Everettin [58] computed the Egocentric Betweenness usingoper
Some examples of global centrality measures are Socio-Ceiat diagonal adjacency matrix A,. A, is created considering 1 hop
Betweenness [28]/[29] and Closeness Centralily [28] whilzegree neighborhood of the nodev. Consider I to be the identity matrix,
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Fig. 17. Source: [23], Depiction of three Flocking rules.

then the sum of the inverse of all non-zero elements ir?2 along
[I — A,] is the Egocentric Betweenness of the node.
Marsden in [42] performed an empirical study to find the
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——> Direction of motion

——> Old direction of motion

— New direction of motion

—> Move away or slow down
Move towards or move fast

O ®

(c) Cohesion

determination of minimal peripheral set of nodes is one way b
extending our work. We are currently working on how we can
apply game theory to successfully find the minimal peripherbaset.

relation between the two types of Betweenness, the Socio-We believe that by applying game theory nodes can determine
Centric and the Egocentric Betweenness, and found that the what the suitable gradient size is and can reduce asymmetric

Egocentric Betweenness is strongly correlated to the Soecio

Centric Betweenness and it can be used when global network

information is lacking. )
3) Closeness CentralityThe Closeness Centrality [[28] on

links further.

We would also like to extend our algorithm to support dynamic
environment and asynchronous operation. Dynamic environrants
are likely to result in frequent changes to the state of the nde.

the other hand is the measure of how fast a node can transfer Any change in the state of the node would require reconfigurig

data to all the nodes. The Closeness Centrality is the fraain

in the network using the proposed algorithm. Information

of shortest distance between a node to all other nodes in the available at the neighborhood nodes would be helpful in learing

network. Assuming sd(v,w) be the shortest distance between
node v and w, the Closeness Centrality ofv is

1
Zw;év,wGV 8d(’l}, ’LU) (6)

A node with the highest Closeness Centrality value is the
centroid of the network.

As all the centrality measures convey different informatian, it
is not necessary that a node having high value for one centrigy
measure also have high values for the others. Many other tyjseof
centralities, such as, Bridging Centrality, Eigen Vector Gntrality
and Spectral Centrality also exist. We refrain ourselves fom
describing them in detail. However, Katsaros, [[60], provieged a
brief survey on these centrality measures.

Cy =

F. Non-Uniform distribution of nodes

Many non-uniform deployment strategies have been proposed
[61], [62], [63], [64], [65], [24]. We take insights from Betstetter
et al, [24], node deployment strategy. Bettstetter et al prposed
the use of thinning process to generate a non-uniform node
deployment. The authors started with uniform distribution of

nodes in a given region, then pruned the nodes based on two

factors, transmission radius, r,, and the number of neighbor
nodes, £,in. If the node had at least/,,;, neighbors within r,

the node was not removed else it was removed. Schilcher et

al, [66], formulated and measured the degree of non-uniforrity
of this pruned network. Schilcher et al divided the region irto
smaller sub-regions and estimated the number of nodes in the

sub-region. The estimated value was then used to calculate

the non-uniformity index, hindex. The Fig. [I8(b} shows the
deployment achieved when the thinning process is applied to

the deployment shown by the Fig[ 18(&). The Fid. 18(c) shows

the density distribution of nodes using kernel method.

VIl. FUTURE WORK

A Number of extensions to our algorithm can be visualized.
Identifying the optimal gradient size to choose for the

about the previous configuration. This learning could bedocitive
[67], meaning, partial learning from the neighborhood staes
could make nodes infer about the previous good configuratioso
that reconfiguration can be done easily and quickly. This wilalso
help us to address the unaddressed paradigms of [27]. Furthe
we would like to address network lifetime of the network when
implementing our algorithm.

VIII. CONCLUSION

In this paper, we have presented an algorithm for achieving
small world properties using beamforming and bio-inspired
techniques in a wireless ad hoc network. Our algorithm works
using locally available information and does not require tre
knowledge of the network. We have also removed the possitiii
of requirement of any external infrastructure for achieving our
goal. Through our algorithm, we have shown how isolated
communities can collaborate and connect with each other to
achieve better and faster communication. Bio-Inspired teleniques
like Lateral Inhibition helped us to form communities withi n the
network for the reduced message complexity while the Flockig
analogy helped us to determine beam properties. Our results
show that for both theoretical and realistic antenna modelsand
relatively high-density networks, there is a reduction in he APL
by almost 40% to 68% for g € [3,10]. On the other hand,
reduction in the CC is between19% to 38%. Our results also
show improvement in the connectivity. The increase in the ge of
the GSCC for the non-uniformly distributed directional network
is around 10% for high density network while it is around 61%
for relatively low density networks.
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