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Abstract: Homogeneous and isotropic cosmological models with ordinary matter

and gravity predict slower expansion and shorter distances than observed. It is

possible that this failure is due the known breakdown of homogeneity and isotropy

related to structure formation, rather than new fundamental physics. We review this

backreaction conjecture, concentrating on topics on which there has been progress

as well as open issues.
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1. Introduction

1.1 Three choices for a factor of two

The predictions of homogeneous and isotropic models (with linear perturbations)

with ordinary matter and gravity are off by a factor of about two compared to

observations in the late universe. Ordinary matter here means that it has non-

negative pressure and ordinary gravity refers to the four-dimensional Einstein-Hilbert

action. The simplest such model, which contains particles of the Standard Model

of particle physics and cold dark matter in a spatially flat universe, underpredicts

the distance to the last scattering surface at redshift 1090 by a factor of 1.4–1.7,

for a fixed Hubble parameter today (assuming a power-law spectrum of primordial

perturbations) [1]. The expansion rate today is wrong by a factor of 2 if we keep
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the matter density fixed, Ωm0 ≡ 8πGNρm0/(3H2
0 ) ≈ 0.25 [2], or a factor of 1.2–

1.5 if we keep the age of the universe fixed instead, H0t0 ≈ 0.8–1 as opposed to

H0t0 = 2/3 [3, 4]. This factor of two disagreement means that at least one of the

three assumptions is wrong. Either there is exotic matter with negative pressure,

general relativity does not hold on cosmological scales, or the homogeneous and

isotropic approximation is not valid at late times.

Mathematically, the simplest possibility is to retain the homogeneous and isotropic

approximation and introduce vacuum energy or a cosmological constant, which are

examples of exotic matter and modified gravity, respectively. Quantum field the-

ory predicts that there is an energy density associated with the vacuum state, so

this possibility is theoretically on very solid ground (unlike most other exotic matter

or modified gravity proposals). This ΛCDM model agrees well with most observa-

tions, though there appear to be discrepancies in the distribution of matter on large

scales [5–8]. Its main problem is generally considered to be the fact that the value

of the vacuum energy required to explain the observations is very small compared

to known particle physics scales, ρvac ≈ (2.3 meV)4. However, there is no predic-

tion for the vacuum energy, only arguments based on naturalness. It can even be

argued that the meV scale is quite natural from the point of view of electroweak

physics, as follows. In the axiomatic approach to quantum field theory in curved

space [9], the vacuum energy of a free scalar field vanishes in the limit of zero mass.

Let us assume that the same is true for gauge fields and fermions, and that the

Higgs is a composite, so that there are no fundamental scalar fields. At high en-

ergies, when the electroweak symmetry is unbroken, the vacuum energy would be

zero, while a non-zero value would be generated in the electroweak phase transi-

tion. Naively, we would expect this energy to be of the order of the electroweak

scale. However, it is expected that in an interacting theory vacuum expectation val-

ues depend non-analytically on the coupling constants [9]. We can make the simple

estimate ρvac = v4e
− 1

g2 = v4e−
1
α ≈ (1.3 × 10−15v)4 ≈ (0.3 meV)4, where v = 246

GeV is the Higgs vacuum expectation value and g2 is the coupling, for which we

have simply put α = 1/137. Substituting for the scale v the sum of particle masses

and taking into account numerical prefactors would change the vacuum energy by

factors of order unity, and it is of course exponentially sensitive to factors of 4π and

weak mixing angles in the exponent (and sensitive to the scale at which the coupling

is evaluated). Like arguments in favor of unified scale vacuum energy, this is little

more than inspired numerology, but it shows that it is not implausible to get the

right scale out from the quantum field theory of electroweak physics.

The vacuum energy density required to explain the observations is considered

problematic not only because of its smallness compared to known fundamental scales,

but also because it has to be close to the matter density today. Another formulation

of this coincidence problem is that the vacuum energy would have become impor-
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tant only at late times, when the universe is about ten billion years old. It seems

serendipitous that we should be witnessing a special and brief dynamical phase in the

evolution of the universe, when the universe is undergoing a transition from matter

domination to vacuum energy domination. However, the coincidence problem con-

tradicts neither observation nor any known theoretical law, so at most it provides a

motivation to search for alternatives.

In contrast, a concrete problem with all homogeneous and isotropic models is

that the real universe is far from homogeneity and isotropy at late times. Indeed,

homogeneous and isotropic models with ordinary matter and gravity agree well with

observations of early times, and the factor of two disagreement arises in the late

universe when deviations from homogeneity and isotropy become significant.

Before concluding that the introduction of vacuum energy or more complicated

new physics is needed, it is necessary to check the validity of the homogeneous and

isotropic approximation. The effect of deviations from homogeneity and isotropy

on average quantities (in particular, the average expansion rate) is called back-

reaction [10–13]. Physically, the simplest possibility is that the factor two dis-

crepancy would be explained by the known breakdown of the homogeneous and

isotropic approximation related to to structure formation, without any new funda-

mental physics [14–19]. This may be called the backreaction conjecture.

The formation of non-linear structures does in fact lead to deviations in the

local expansion rate which are of the order of the observed discrepancy, and the

process has a preferred time of about ten billion years. The key issue is how local

deviations add up and cancel in the observed signal, which involves integrals over

large scales. Note that the success of the homogeneous and isotropic model with

vacuum energy shows that the observations can be explained simply by increasing

the expansion rate (and correspondingly making distances longer), since that is the

only cosmological effect of vacuum energy. Furthermore, there is no evidence from

local physics for exotic matter or modified gravity, all of the indications involve

integrals over large scales. The situation is rather different from that of dark matter,

for which there are several independent lines of evidence [20], including from local

physics. Also, since most observations probe distances, which involve the expansion

rate only via an integral (for exceptions, see [21, 22]), the expansion history can in

fact have significant deviations from the homogeneous and isotropic vacuum model

while still fitting the data.

The problem is well-defined. Given the known particle content plus a model of

dark matter and starting from a nearly homogeneous and isotropic state at early

times, with a given Gaussian spectrum of perturbations, how do the matter distri-

bution and geometry evolve in general relativity? In particular, we want to find how

null geodesics are affected, since most cosmological observations consist of measure-

ments of photons. The difficulty arises from the complexity of non-linear evolution in

general relativity. The problem of finding a tractable approximation scheme is com-
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plicated by the fact that it is not immediately obvious what are the relevant physical

effects which have to be included. At the moment it is not yet clear whether backre-

action is quantitatively important or not, but there has been important progress in

understanding the phenomenon.

In section 2 we discuss the basics of how structures affect the average expansion

rate. In section 3 we illustrate the issue with a simple toy model which has correct

qualitative features, and then present a semi-realistic model where we can estimate

magnitude of the effect. In section 4 we briefly discuss light propagation and its rela-

tion to the average expansion rate. In section 5 we discuss the role of the Newtonian

limit of general relativity and linear perturbation theory. We conclude in section 6

with a summary.

2. The expansion rate

2.1 Statistical and exact symmetry

In cosmology, the evolution of the universe is usually described with the homogeneous

and isotropic Friedmann-Robertson-Walker (FRW) models, with the justification

that the universe appears to be homogeneous and isotropic on large scales. However,

it is important to distinguish between exact and statistical homogeneity and isotropy.

Exact homogeneity and isotropy means that the space has a local symmetry: all

points and all directions are equivalent. The FRW models are exactly homogeneous

and isotropic. Statistical homogeneity and isotropy simply means that if we consider

a box anywhere in the universe, the mean quantities in the box do not depend on its

location, orientation or size, provided that it is larger than the homogeneity scale.

(See [8] for more detailed discussion of statistical homogeneity and isotropy, and also

the issue of self-averaging.)

The early universe is nearly exactly homogeneous and isotropic, in two ways.

First, the amplitude of the perturbations around homogeneity and isotropy is small.

Second, the distribution of the perturbations is statistically homogeneous and isotropic.

At late times, when density perturbations become non-linear, the universe is no

longer locally near homogeneity and isotropy, and there are deviations of order unity

in quantities such as the local expansion rate. However, the distribution of the non-

linear regions remains statistically homogeneous and isotropic on large scales. It

has been argued that the homogeneity scale would have been detected [23], but the

result is disputed [8]; in any case the homogeneity scale is not less than 100 Mpc.

We assume that the universe is indeed statistically homogeneous and isotropic, with

a homogeneity scale much smaller than the Hubble scale. We are interested in the

effects of the structures that are known to exist, not speculative structures such as

Gpc-scale voids.
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Due to the statistical symmetry, the average expansion rate evaluated inside each

box is equal (up to statistical fluctuations), but this does not mean that it would be

the same as in a completely smooth spacetime, because there are structures in the

boxes. We can say that time evolution and averaging do not commute: if we smooth

a clumpy distribution and calculate the time evolution of the smooth quantities with

the Einstein equation, the result is not the same as if we evolved the full clumpy

distribution and took the average at the end. Put simply, FRW models describe

universes which are exactly homogeneous and isotropic, not universes which are only

statistically homogeneous and isotropic. The effect of clumpiness on the average was

first discussed in detail by George Ellis in 1983 under the name fitting problem [24].

Clumpiness affects the expansion of the universe, the way light propagates in the

universe and the relationship between the two. Let us first discuss the expansion

rate.

2.2 The local expansion rate

We consider a universe where the energy density of matter dominates over pressure,

anisotropic stress and energy flux everywhere. In other words, the matter can be

considered a pressureless ideal fluid, or dust. We assume that the relation between

the matter and the geometry is given by the Einstein equation:

Gαβ = 8πGNTαβ = 8πGNρuαuβ , (2.1)

where Gαβ is the Einstein tensor, GN is Newton’s constant, Tαβ is the energy–

momentum tensor, ρ is the energy density and uα is the velocity of observers co-

moving with the dust. In the real universe, the matter cannot locally be treated as

dust everywhere, but the deviations are unlikely to be relevant for quantities inte-

grated over large scales, which is what enters into the observations. For treatment

of non-dust matter, see [25, 26].

The evolution and constraint equations can be written elegantly in terms of the

gradient of uα and the electric and magnetic components of the Weyl tensor [27,28],

∇βuα =
1

3
hαβθ + σαβ + ωαβ , (2.2)

where hαβ projects orthogonally to uα. The trace θ ≡ ∇αuα is the volume expansion

rate, the traceless symmetric part σαβ is the shear tensor and the antisymmetric

part ωαβ is the vorticity tensor. For an infinitesimal fluid element, θ indicates how

its volume changes in time, keeping the shape and the orientation fixed, while shear

changes the shape and vorticity changes the orientation. In the FRW case, the

volume expansion rate is just 3H, where H is the Hubble parameter.

The equations can be be decomposed into scalar, vector and tensor parts with

respect to the spatial directions orthogonal to uα. We need only the scalar parts (we

– 5 –



omit a scalar equation related to the vorticity),

θ̇ +
1

3
θ2 = −4πGNρ − 2σ2 + 2ω2 (2.3)

1

3
θ2 = 8πGNρ − 1

2
(3)R + σ2 − ω2 (2.4)

ρ̇ + θρ = 0 , (2.5)

where a dot stands for derivative with respect to proper time t measured by observers

comoving with the dust, σ2 ≡ 1
2
σαβσαβ ≥ 0 and ω2 ≡ 1

2
ωαβωαβ ≥ 0 are the shear

scalar and the vorticity scalar, respectively. In the irrotational case, (3)R is the spatial

curvature of the hypersurface which is orthogonal to uα; see [29] for the definition in

the case of non-vanishing vorticity.

Equation (2.5) simply shows that the energy density is proportional to the inverse

of the volume, in other words that mass is conserved. The second equation (2.4) is

the local equivalent of the Friedmann equation, and it relates the expansion rate

to the energy density, spatial curvature, shear and vorticity. The equation (2.3)

gives the local acceleration. Let us assume that the fluid is irrotational, i.e. that

the vorticity is zero. (See [26] for the case with vorticity.) As vorticity contributes

positively to the acceleration, putting it to zero gives a lower bound. In this case, the

local acceleration is always negative, or at most zero. This is just an expression of the

fact that gravity is attractive for matter which satisfies the strong energy condition.

Cosmological distance observations imply that the expansion rate has acceler-

ated if we assume that the FRW relation between distance and the expansion rate

holds. Deviations from homogeneity and isotropy change this relationship, so this

conclusion does not necessarily hold in the real universe; we discuss this in section

4. (Based on direct measurements of the expansion rate, we can only say that there

has been less deceleration, not that the expansion has accelerated.) We can distin-

guish between apparent and actual acceleration. Apparent acceleration means that

when cosmological observations are interpreted assuming that the universe is well

described by a FRW model, the expansion rate given by the FRW scale factor has

accelerated. Actual acceleration means that the real volume expansion rate has really

increased in time. It is easy to understand how a different relationship between the

expansion rate and distance might lead to apparent acceleration, but it is possible

for inhomogeneities to lead to actual acceleration as well, if we consider the average

expansion rate relevant for cosmological observations.

2.3 The average expansion rate

When discussing averages, the first question concerns the choice of the hypersurface

on which the average is taken. We choose the hypersurface orthogonal to uα, which is

also the hypersurface of constant proper time t measured by the observers. (Discus-

sion of this choice is postponed to section 4.) The spatial average of a scalar quantity
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f is its integral over the hypersurface, with the correct volume element, divided by

the volume:

〈f〉(t) ≡
∫

d3x
√

(3)g(t, x̄) f(t, x̄)∫
d3x
√

(3)g(t, x̄)
, (2.6)

where (3)g is the determinant of the metric on the hypersurface of constant proper

time t.

Averaging (2.3)–(2.5), we obtain the Buchert equations [30]

3
ä

a
= −4πGN〈ρ〉 + Q (2.7)

3
ȧ2

a2
= 8πGN〈ρ〉 −

1

2
〈(3)R〉 − 1

2
Q (2.8)

∂t〈ρ〉 + 3
ȧ

a
〈ρ〉 = 0 , (2.9)

where the backreaction variable Q contains the effect of inhomogeneity and anisotropy,

Q ≡ 2

3

(
〈θ2〉 − 〈θ〉2

)
− 2〈σ2〉 , (2.10)

and the scale factor a(t) is defined so that the volume of the spatial hypersurface is

proportional to a(t)3,

a(t) ≡

( ∫
d3x
√

(3)g(t, x̄)∫
d3x
√

(3)g(t0, x̄)

)1
3

, (2.11)

where a has been normalised to unity at time t0, which we take to be today. As θ

gives the expansion rate of the volume, this definition of a is equivalent to 3ȧ/a ≡ 〈θ〉.
We also use the notation H ≡ ȧ/a.

The Buchert equations (2.7)–(2.9) have a slightly different physical interpretation

than the FRW equations due to the different meaning of the scale factor. In FRW

models, the scale factor is a component of the metric, and indicates how the space

evolves locally. In the present context, a(t) does not describe local behaviour, and it

is not part of the metric. It simply gives the total volume of a region.

Mathematically, the Buchert equations differ from the FRW equations by the

presence of the backreaction variable Q and the related feature that the average

spatial curvature can have non-trivial evolution. In the FRW case, Q = 0 and

〈(3)R〉 ∝ a−2. This evolution of the spatial curvature follows from the integrability

condition between (2.7) and (2.8), and it is also an independently known feature of

any homogeneous and isotropic model [31]. Note that Q can vanish even when the

universe is locally far from FRW. In other words, the FRW equations may give a

correct description of the average evolution even if they are completely wrong for
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the local dynamics. (By derivation, the FRW equations are meant to describe local

evolution.)

In general, Q is non-zero, and it expresses the non-commutativity of time evolu-

tion and averaging. The backreaction variable Q has two parts: the second term in

(2.10) is the average of the shear scalar, which is also present in the local equations

(2.3)–(2.5). It is always negative (unless the spacetime is FRW, in which case it is

zero), and acts to decelerate the expansion. In contrast, the first term in (2.10), the

variance of the expansion rate, has no local counterpart. It may be called emergent

in the sense that it is purely a property of the average system. The variance is

always positive (unless the expansion is homogeneous, in which case it is zero). If

the variance is sufficiently large compared to the shear and the energy density, the

average expansion rate accelerates according to (2.7), even though (2.3) shows that

the local expansion rate decelerates everywhere.

3. Modelling backreaction

3.1 A two-region toy model

It may seem paradoxical that the average expansion rate accelerates even though

the local expansion rate decelerates everywhere at all times. So let us first con-

sider a simple toy model to understand the physical meaning before moving on to

a semi-realistic model of the universe. We give the punchline right away. In an in-

homogeneous space, different regions expand at different rates. Regions with faster

expansion rate increase their volume more rapidly, by definition. Therefore the frac-

tion of volume in faster expanding regions rises, so the average expansion rate can

rise. Whether the average expansion rate actually does rise depends on how rapidly

the fraction of fast regions grows relative to the rate at which their expansion rate

decelerates.

In the early universe, the distribution of perturbations of the density, and thus

of the expansion rate, is very smooth, with only small local variations. In a sim-

plified picture, overdense regions slow down more as their density contrast grows,

and eventually they turn around and collapse to form stable structures. Underdense

regions become ever emptier, and their deceleration decreases. Regions thus become

more differentiated and the variance of the expansion rate grows.

We can illustrate this with a simple toy model where there are two spherically

symmetric regions, one underdense and one overdense [11, 32]. We consider the re-

gions to be Newtonian, so their evolution is given by the spherical collapse model and

the underdense equivalent, i.e. they expand like dust FRW universes with negative

and positive spatial curvature, respectively. We denote the scale factors of the under-

dense and the overdense region by a1 and a2, respectively. We take the underdense

region, which models a cosmological void, to be completely empty, so it expands
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like a1 ∝ t. The evolution of the overdense region, which models the formation of

a structure such as a cluster, is given by a2 ∝ 1 − cos φ, t ∝ φ − sin φ, where the

parameter φ is called the development angle. The value φ = 0 corresponds to the

big bang singularity, from which the overdense region expands until φ = π, when it

turns around and starts collapsing. The region shrinks to zero size at φ = 2π. In

studies of structure formation, the collapse is usually taken to stabilise at φ = 3π/2

due to vorticity and velocity dispersion, and we also follow the evolution only up

to that point. The total volume is a3 = a3
1 + a3

2. The average expansion rate and

acceleration are

H =
a3

1

a3
1 + a3

2

H1 +
a3

2

a3
1 + a3

2

H2 ≡ v1H1 + v2H2 (3.1)

ä

a
= v1

ä1

a1

+ v2
ä2

a2

+ 2v1v2(H1 − H2)
2 . (3.2)

The average expansion rate is the volume-weighted average of the expansion rates

H1 and H2, as one would expect. It is therefore bounded from above by the fastest

local expansion rate. However, from the fact that both H1 and H2 decrease it does

not follow that their weighted average would decrease, or that the average expansion

rate would decelerate. This is illustrated by the acceleration equation (3.2). The first

two terms are the volume-weighted average, and because the regions decelerate (or at

most have zero acceleration, in the completely empty case), it is negative. However,

there is an additional term related to the difference between the two expansion rates,

which is always positive (as long as the regions have non-zero volume and different

expansion rates). This term arises because a time derivative of (3.1) operates not

only on H1 and H2, but also on v1 and v2. In terms of the general acceleration

equation (2.7), the first two terms in (3.2) come from the average density, and the

last term is (one third of) the backreaction variable Q.

The toy model has one free parameter, the relative size of the two regions at some

time. For illustration purposes, we fix this by setting the deceleration parameter

q ≡ −ä/a/H2 at φ = 3π/2 to the value of the spatially flat ΛCDM FRW model with

ΩΛ = 0.7. In figure 1 (a) we plot q as a function of the development angle φ. We

also show the ΛCDM model for comparison.

The ΛCDM model starts matter-dominated, with q = 1/2. As vacuum energy

becomes important, the model decelerates less and then crosses over to acceleration.

Asymptotically, q approaches −1 from above as the Hubble parameter approaches a

constant value. The backreaction model also starts with the FRW matter-dominated

behaviour, then the expansion slows down more, before q turns around and the ex-

pansion decelerates less and eventually accelerates: in fact the acceleration is stronger

than in the ΛCDM model.

The acceleration is not due to regions speeding up locally, but due to the slower

region becoming less represented in the average. First the overdense region brings
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(a) (b)

Figure 1: The evolution of the toy model as a function of the development angle φ. (a):
The deceleration parameter q in the toy model (blue, solid) and in the ΛCDM model (red,
dash-dot). (b): The Hubble parameter multiplied by time, Ht, in the toy model (blue,
solid) and in the ΛCDM model (red, dash-dot).

down the expansion rate, but its fraction of the volume falls because of the slower

expansion, so eventually the underdense region takes over and the average expansion

rate rises. This is particularly easy to understand after the overdense region has

started collapsing at φ = π. Then the contribution v2H2 of the overdense region to

(3.1) is negative, and its magnitude shrinks rapidly as v2 decreases, so it is transparent

that the expansion rate increases. Note that while there is an upper bound on

the expansion rate, there is no lower bound on the collapse rate. Therefore, the

acceleration can be arbitrarily rapid, and q can even reach minus infinity in a finite

time. (This simply means that the negative expansion rate of the collapsing region

cancels becomes equal to the positive expansion rate of the exanding region, so H

vanishes in the denominator of q.) This is in contrast to FRW models, where q ≥ −1

unless the null energy condition (or the modified gravity equivalent) is violated. After

the overdense region stops being important, the expansion rate will be given by the

underdense region alone, and the expansion will again decelerate. Acceleration is

a transient phenomenon associated with the volume becoming dominated by the

underdense region.

Figure 1 (b) shows the Hubble parameter multiplied by time as a function of the

development angle φ. This contains the same information as figure 1 (a), but plotted

in terms of the first derivative of the scale factor instead of the second derivative.

In the ΛCDM model, Ht starts from 2/3 in the matter-dominated era and increases

monotonically without bound as H approaches a constant. In the toy model, Ht

falls as the overdense region slows down, then rises as the underdense region takes

over, approaching unity from below. The Hubble parameter in the toy model is

smaller than in the ΛCDM model at all times. Because H is bounded from above

by the fastest local expansion rate, Ht cannot exceed unity. This bound also holds
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in realistic models: as long as matter can be treated as dust and vorticity can be

neglected, we have Ht ≤ 1 at all times [33], in contrast to FRW models with exotic

matter or modified gravity. This is a prediction of backreaction. (For discussion of

vorticity and non-dust terms in the energy-momentum tensor, see [25, 26].)

Whether the expansion accelerates depends on how rapidly the faster expanding

regions catch up with the slower ones, roughly speaking by how steeply the Ht curve

rises. This is why the variance contributes positively to acceleration: the larger

the variance, the bigger the difference between fast and slow regions, and the more

rapidly the fast regions take over.

3.2 A statistical semi-realistic model

The toy model shows how acceleration due to inhomogeneities can occur and makes

transparent what this means physically. Acceleration has also been demonstrated

with the exact spherically symmetric dust solution, the Lemâıtre-Tolman-Bondi

model [34–36]. So there is no ambiguity: accelerated average expansion due to

inhomogeneities is possible. The question is whether the distribution of structures in

the universe is such that this mechanism is realised. The statement that faster ex-

panding regions increase their volume more rapidly makes it sound as if there would

necessarily be less deceleration (if not acceleration) than in the FRW case. For a

set of isolated regions, this is true: eventually, the volume will be dominated by the

fastest region. However, the characteristic feature of structures in the real universe is

their hierarchical buildup. Smaller structures become incorporated into larger ones,

and rapidly expanding voids can be extinguished by collapsing clouds.

The non-linear evolution of structures is too complex to follow exactly. However,

because the universe is statistically homogeneous and isotropic, statistical properties

are enough to evaluate the average expansion rate. The average expansion rate is

determined if we know which fraction of the universe is in which state of expansion

or collapse. Instead of trying to find a solution for the metric and calculating the

quantities of interest from it, we can consider an ensemble of regions from which

we can determine the average expansion rate without having to consider the global

metric. We now discuss a semi-realistic model which does this by extending the two

fixed regions of the toy model to a continuous distribution of regions which evolves

in time [37, 38].

The starting point is the spatially flat matter-dominated FRW model with a

linear Gaussian field of density fluctuations. Structure formation, even though com-

plicated, is a deterministic process. Therefore any statistical quantity at late times

is determined by the initial distribution processed by gravity. For a Gaussian dis-

tribution, the power spectrum contains all statistical information. So even in the

completely non-linear regime, the average expansion rate follows from the power

spectrum. The problem is formulating a tractable model for propagating the struc-

tures given by the initial power spectrum into the non-linear regime with gravity.
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One approach, proposed in [39], is to identify structures at late times with spherical

peaks in the original linear density field, smoothed on an appropriate scale. The

number density of peaks as a function of the smoothing scale and peak height can be

determined analytically in terms of the power spectrum. In the original application,

the correspondence between peaks and structures was assumed to hold only for very

non-linear overdense structures: all peaks exceeding a certain density threshold were

identified with stabilised structures. Here the idea is a bit different: spherical peaks

of any density are identified with structures having the same linear density contrast.

Troughs are identified with spherical voids in the same way. (As the distribution is

Gaussian, the statistics of peaks and troughs are identical.) We keep the smoothing

threshold fixed such that σ(t, R) = 1, where σ is the root mean square linear density

contrast, t is time and R is the smoothing scale. Non-linear structures form at σ ≈ 1,

so R corresponds to the size of the typical largest structures, and grows in time. The

smoothing is just a simplified treatment of the complex stabilisation and evolution

of structures in the process of hierarchical structure formation.

Since the peaks are spherical and isolated, and they are individually assumed to

be in the Newtonian regime, their expansion rate is the same as that of a dust FRW

universe with the same density, as in the toy model. The volume which is neither

in peaks nor in troughs is taken to expand like the spatially flat matter-dominated

FRW model.

The peak number density as a function of time is determined by the power

spectrum, which consists of two parts: the primordial power spectrum, determined

in the early universe by inflation or some other process, and the transfer function,

which describes the evolution between the primordial era and the time when the

modes enter the non-linear regime. The transfer function T (k) simply multiplies the

amplitude of the primordial modes. We take a scale-invariant primordial spectrum

with the observed amplitude; small variations from scale-invariance have little effect.

For the transfer function, we assume that dark matter is cold, and we consider

two different approximations in order to show the uncertainty in the calculation.

The BBKS transfer function [39] is a fit to numerical calculations (we take a baryon

fraction of 0.2), and the BDG form introduced in [40] is a simple analytically tractable

function with the correct qualitative features. The transfer functions are shown in

figure 2 as a function of k/keq, the wavenumber divided by the matter-radiation

equality scale. Modes with k > keq enter the horizon during radiation domination,

so their amplitude is damped. The sooner they enter, the more they are damped

before the universe becomes matter-dominated, so there is a damping tail, which falls

approximately like k−2. Modes with k < keq enter during the matter-dominated era

and retain their original amplitude. For modes with k ∼ keq, the transfer function

interpolates between these two regimes. In the BBKS transfer function, the transition

is centered around keq and is rather gradual, while in the BDG case the transition

happens a bit earlier and is more rapid. Even the more realistic BBKS transfer
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Figure 2: The BBKS (blue, solid) and BDG (red, dashed) transfer functions as a function
of k/keq.

function has an error of 20–30% compared to Boltzmann codes.

We have

H(t) =

∫ ∞

−∞
dδ vδ(t)Hδ(t) , (3.3)

where vδdδ is the fraction of volume in regions with linear density contrast δ and

expansion rate Hδ(t). The correspondence between δ and Hδ is given by the spherical

evolution model (i.e. FRW evolution), and the distribution of regions vδ(t) is given

by the peak statistics, which is determined by the power spectrum of the Gaussian

density field. With the transfer function fixed, there are no free parameters: the

expansion history H(t) given by (3.3) is completely determined. Since the primordial

spectrum is scale-invariant and the smoothing and peak identification process does

not introduce a scale, features in the expansion rate as a function of time can only

come from the turnover at the matter-radiation equality scale in the transfer function.

In figure 3 we show Ht as a function of r ≡ keqR, the smoothing scale relative to

the matter-radiation equality scale. Essentially, the coordinate r is time as measured

by the size of the largest generation of structures. We have Ht ≈ 2/3 at early times,

as the fraction of volume in non-linear structures is small. As time goes on, deeper

non-linear structures form, and they take up a larger fraction of the volume. The

expansion rate grows (relative to the FRW value) slowly, until there is rapid rise and

saturation, roughly at the scale of matter-radiation equality. It is clear that after

r = 1, when the perturbations which correspond to the matter-radiation equality

scale collapse, Ht must settle to a constant, since the transfer function is nearly

unity, and there is no scale in the system anymore.

The matter-radiation equality scale is k−1
eq ≈ 13.7ω−1

m Mpc ≈ 100 Mpc, using the

value ωm = 0.14 [1]. Observationally, σ(t, R) ≈ 1 today on scales somewhat smaller

than 8 h−1Mpc, so R0 ≈ 10 Mpc. Therefore the present day happens to be located

around r = 0.1 in the plots – right in the transition region. Note that nothing related

to present day has been used as input in the calculation.
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Figure 3: The expansion rate Ht as a function of r = keqR for (a) the BDG transfer
function and (b) the BBKS transfer function.

(a) (b)

Figure 4: The expansion rate Ht as a function of time for (a) the BDG transfer function
and (b) the BBKS transfer function.

It is instructive to view Ht also as function of time as measured in years. In figure

4, the horizontal axis is log10(t/yr). For the BDG transfer function, Ht has the FRW

value at one million years, and it grows very slowly until it rises at about a billion

years, and then saturates to a value somewhat larger than 0.8 at some tens of billions

of years. For the more realistic BBKS transfer function, the behaviour is qualitatively

the same, but the transition is slower and the final value of Ht is smaller. The slope

of the Ht curve is less steep as a function of time than as a function of r, because the

size of structures grows more slowly at late times. When plotting Ht as function of

the smoothing scale, the comparison scale is keq, whereas here it is the time of matter-

radiation equality, teq. Now the amplitude of the primordial perturbations also enters.

The timescale follows from the shape of the transfer function. Perturbations which

entered the horizon at matter radiation equality reach non-linearity at t ≈ A−3/2teq ≈
100 Gyr, where A = 3 × 10−5 is the primordial amplitude and the matter-radiation

equality time is teq ≈ 1000ω−2
m years ≈ 50 000 years for ωm = 0.14. This is when the

expansion rate saturates, and it enters the transition region somewhat earlier.

As noted in section 3.1, whether or not the expansion accelerates is a quantitative

question related to the slope of the Ht curve. In the present case, while the expansion

rate increases relative to the FRW value, the change is not sufficiently rapid for the
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expansion to accelerate, there is just less deceleration. This is related to the fact

that, unlike in the toy model, the overdense regions play almost no role, and the

evolution of Ht can be understood in terms of the underdense voids. At early times,

voids take up only a small part of the volume, and Ht rises smoothly as their volume

fraction increases.

Nevertheless, it is encouraging that the model gives a change of the right order of

magnitude in Ht, 15–25%, and that the timescale for the change comes out right. The

model involves many approximations, such as treating structures as spherical, using

an approximate transfer function, having an artificial split between the peaks/troughs

and the smooth space, not taking into account that the Gaussian symmetry between

the overdense and underdense regions is broken in the non-linear regime (in the

present treatment, they have equal mass in at all times) and treating the structures

as isolated even for small density contrasts and high peak number densities. It is

clear the model cannot be trusted beyond an order of magnitude. It is also possible

that a more careful statistical treatment would reveal cancellations that significantly

change backreaction from this approximate estimate.

In order to obtain a more drastic change in Ht, the expansion rate should have

extra deceleration due to overdense regions before the voids take over, as in the toy

model. (This effect is present in the model, but it is too small to be visible in figures

(3) and (4).) If the expansion were to slow down more before the voids take over, the

variance and the change in the expansion rate would be larger. The magnitude of

the change of Ht is easy to understand: if the universe were completely dominated

by totally empty voids, we would have Ht = 1. Since not all of the volume is taken

up by voids and they are not totally empty, Ht is somewhat smaller than unity.

As noted in the case of the toy model, Ht < 1 is a prediction of backreaction [33],

assuming that matter can be treated as dust and rotation can be neglected [26]. The

constraint Ht < 1 also means that proposals for implementing primordial inflation

using backreaction [41] are unfeasible (aside from other problems, such as generating

the spectrum of primordial perturbations).

The change in the expansion can also be viewed in terms of the deceleration

parameter q (see [37] for the plots). From (2.7) and (2.10) we have q = 1
2
Ωm −

2(〈θ2〉 − 〈θ〉2)/〈θ〉2 + 6〈σ2〉/〈θ〉2. We can obtain a conservative lower bound on this

parameter by taking into account 〈σ2〉 > 0 and 〈θ2〉 < (3t−1)2, where the latter

inequality follows from the fact that the local expansion rate cannot be higher than

3t−1. This gives q > 1
2
Ωm − 2[(Ht)−2 − 1]. For a realistic distribution of structures,

the value of q is likely to be much above this bound. For the values Ωm0 = 0.3 and

H0t0 = 0.8 . . . 1 we have q0 > −0.98 . . . 0.15. There is a tension between obtaining

a large value of Ht and a very negative value of q simultaneously. The physical

reason is that in order to have Ht close to unity, a large fraction of the volume

has to be in regions which are nearly empty. This in turn means that the variance,

and hence acceleration, is smaller. In terms of the spatial curvature, we see from
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(2.7) and (2.8) that for Ωm0 = 0.3 and q0 = −0.55, we have 〈(3)R〉0 = −6.3H2
0 , or

ΩR0 ≡ −〈(3)R〉0/(6H2
0 ) = 1.05 > 1. The spatial curvature is large, because much of

the volume is occupied by very underdense regions. We should note two caveats with

regard to q0. First, while we have model-independent measurements of the Hubble

parameter today, determinations of the deceleration parameter from the data are

very dependent on the assumed parametrisation of the expansion history [42]. For

backreaction, we would expect extra deceleration before the acceleration, and the

expansion will return to deceleration as the voids take over. This sort of evolution

is excluded by construction in most parametrisations of the expansion history. The

data, however, does not exclude the possibility that the expansion could have already

have gone from acceleration back to deceleration. There have been arguments that

the observations would in fact slightly prefer deceleration today [43] and extra decel-

eration before acceleration [44], though such trends are not statistically significant in

the present data. Another caveat is that the deceleration parameter is determined

from distance observations, assuming that the relation between distance and expan-

sion rate is the one given by the FRW metric. However, clumpiness changes this

relation, a topic we now turn to.

4. Light propagation

4.1 The choice of hypersurface

Historically, studies of the average expansion rate and light propagation have been

somewhat disconnected. In perturbative light propagation calculations, the change

of the average evolution has often been neglected, while studies of the average expan-

sion rate have usually not made the connection to observations of light. However, the

primary quantities are the observable redshift and distance, and averages are useful

only insofar as they give an approximate description of what is observed [26,45]. As

we discuss below, it is the requirement that the average expansion rate describes light

propagation which fixes the hypersurface of averaging. The physically relevant aver-

aging hypersurface cannot be determined on abstract mathematical grounds. This is

a crucial feature, given that the averages depend on the choice of hypersurface. Note

that the averaging hypersurface is a physical choice, and should not be confused with

choice of coordinates nor choice of gauge [19, 46, 47]. The derivation of the Buchert

equations (2.7)–(2.9) is entirely covariant, and the result is uniquely defined in terms

of measurable quantities. It does not depend on coordinates (indeed, it is not nec-

essary to specify the coordinate system). Because the treatment is non-perturbative

and does not refer to a background, there is also no question of gauge choice (which

refers to a mapping between the real spacetime and a fictitious background).

It has been argued that the procedure of averaging only scalar quantities is

somehow incomplete, and various proposals have been put forth for averaging tensors.
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The macroscopic gravity formalism [48], for example, extends general relativity so

that one can map the physical manifold onto another manifold, which is in some sense

an average of the real one. However, the issue at hand is the effect of deviations from

spatial homogeneity and isotropy in the fixed spacetime geometry which describes the

real universe, not quantities calculated in some other spacetime. (See section 4.1 of

[26].) Averages and ensembles can be useful for describing cosmological observations

which probe large scales because of the statistical homogeneity and isotropy of the

universe. However, it has to be demonstrated that they really describe observational

quantities.

Almost all cosmological observations are made along the lightcone, measuring

the redshift, the angular diameter distance (or equivalently the luminosity distance)

and other quantities related to bundles of light rays. In a general spacetime, these

quantities are not determined solely by expansion, and certainly not by the aver-

age expansion rate along spacelike slices of simultaneity. However, in a statistically

homogeneous and isotropic universe where the distribution evolves slowly, the av-

erage expansion rate does determine the leading behaviour of the redshift and the

distance [26, 45]. Considering the real observables also fixes the choice of averaging

hypersurface. We now sketch the argument for this.

4.2 The redshift

In a general dust spacetime, the redshift is given by (see [26] for the non-dust case)

1 + z = exp

(∫ η0

η

dη

[
1

3
θ + σαβeαeβ

])
, (4.1)

where η is defined by ∂/∂η ≡ (uα + eα)∂α, and eα is the spatial direction of the null

geodesic. If there are no preferred directions and the change in the distribution is

slow compared to the time it takes for a light ray to pass through a homogeneity

scale sized region, the integral over σαβeαeβ is suppressed. In the real universe,

if the homogeneity scale is around 100 Mpc, then it is indeed much smaller than

the timescale for the change in the distribution, which is given by the Hubble scale

H−1
0 = 3000h−1Mpc. In the early universe, structure formation is less advanced, so

the homogeneity scale is even smaller relative to the Hubble scale further down the

null geodesic. The direction eα changes slowly for typical light rays [26], whereas

the dust shear is correlated with the shape and orientation of structures and changes

on the length scale of those structures. If there are no preferred directions, over

large scales structures are oriented in all directions equally, so σαβ should contribute

via its trace, which is zero. Therefore the integral over σαβeαeβ should vanish, up

to statistical fluctuations and corrections from correlations between σαβ and eα and

evolution of the distribution. We can split the local expansion rate as θ = 〈θ〉+ ∆θ,

where ∆θ is the local deviation from the average, and similarly argue that the integral

of ∆θ is suppressed relative to the contribution of the average expansion rate. This
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suppression of the dependence on direction also explains how the small anisotropy

of the cosmic microwave background (CMB) is not in contradiction with order unity

perturbations in the geometry [49].

Here the choice of hypersurface is important. For the cancellations to occur, the

averaging has to be done on the hypersurface of statistical homogeneity and isotropy.

(In addition, the evolution of the distribution from one hypersurface to another has

to be slow compared to the homogeneity scale.) This defines the hypersurface of

averaging. In section 2.3 we took the average on the hypersurface of constant proper

time of observers comoving with the matter. Since the evolution of structures is

governed by the proper time, one can argue that this is close to the hypersurface

of statistical homogeneity and isotropy [11, 37, 45]. However, these hypersurfaces

will not be exactly the same, and in the realistic case when the observer velocity is

not irrotational, the hypersurface of constant proper time is not orthogonal to the

observer velocity. The details are thus more complicated, but non-relativistic changes

in the velocity field which defines the hypersurface of averaging lead only to small

changes in the averages, as long as the distribution is statistically homogeneous and

isotropic, and the averaging scale is at least as large as the homogeneity scale [26].

Given that 〈θ〉 = 3ȧ/a, we obtain 1 + z ≈ a(t)−1, the same relation between

expansion and redshift as in the FRW case. This result depends on the fact that

the shear and the expansion rate enter into the integral (4.1) along the null geodesic

linearly. In contrast, the shear and the expansion rate enter quadratically into the

equations of motion (2.3)–(2.5) for the geometry, so the variations do not cancel in

the average, and instead we have the generally non-zero backreaction variable Q.

4.3 The distance

For the angular diameter distance, we can apply similar qualitative arguments to

obtain the result [45]

H∂z̄

[
(1 + z̄)2H∂z̄D̄A

]
≈ −4πGN〈ρ〉D̄A , (4.2)

where D̄A is the dominant part of the angular diameter distance with the corrections

to the mean dropped, and the same for the redshift, 1 + z̄ ≡ a(t)−1. From the

conservation of mass, (2.9), it follows that 〈ρ〉 ∝ (1 + z)3. The distance is therefore

determined entirely by the average expansion rate H(z) and the normalisation of the

density today, i.e. Ωm0. For a general FRW model, 〈ρ〉 in (4.2) would be replaced

by ρ + p. So the equation for the mean angular diameter distance in terms of H(z)

in a statistically homogeneous and isotropic dust universe (with a slowly evolving

distribution) is the same as in the FRW ΛCDM model. If backreaction were to

produce exactly the same expansion history as the ΛCDM model, the distance-

redshift relation would therefore also be identical. This is the case even though

the spatial curvature would be large, as the spatial curvature affects the distances
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differently than in the FRW case. Note that in a general spacetime, the luminosity

distance is related to the angular diameter distance by DL = (1+z)2DA [27], so from

the theoretical point of view it measures the same thing.

Backreaction is not expected to produce an expansion history identical to the

ΛCDM model: if the expansion accelerates strongly, then this is likely to be preceded

by extra deceleration, unlike in ΛCDM . Therefore the distances will also be differ-

ent. However, the backreaction distance-redshift relation will be biased towards the

ΛCDM model, compared to a FRW model with the same expansion history as in

the backreaction case. The reason is that in the FRW model, the equation for DA is

modified not only by the change in H(z), but also by the change in ρ + p. This may

help to explain why distance observations prefer a value close to −1 for the effective

equation of state.

It has been pointed out that the relation between DA(z) and H(z) can be used

as a general test of FRW models [50]. If we measure the distance and the expansion

rate independently, we can check whether they satisfy the FRW relation. If this is

not the case, the observations cannot be explained in terms of any four-dimensional

FRW model. (An extra-dimensional model where the four-dimensional subspace has

the FRW metric would still remain a possibility [51].) This holds independent of

the presence of dark energy or modified gravity, because light propagation depends

directly on the geometry of spacetime, regardless of the equations of motion which

determine it. Similarly, we can test the backreaction conjecture that the change in

the expansion rate at small redshift is due to structure formation without having

a prediction for how the expansion rate changes, simply by checking whether the

measured DA(z) and H(z) satisfy (4.2). The relation (4.2), which violates the FRW

consistency condition between expansion and distance is a unique prediction of back-

reaction which distinguishes it from FRW models. However, the derivation of the

relation between should be done more rigorously, and the expected magnitude of the

violation is unclear.

The redshift, as well as null geodesic shear and deflection [26], should also be

studied in more detail. In particular, it would be interesting to check quantitatively

the conjecture that light propagation in a statistically homogeneous and isotropic

space with a slowly evolving distribution of small structures can be described in terms

of the average expansion rate, and to characterise the small corrections [26, 37, 45].

The small-scale pattern depends only on the angular diameter distance [1], but the

effects on large angular scales remain to be determined. Extending to analysis of

weak lensing in the case when the geometry is not nearly FRW is also needed for

comparing with present and upcoming data. Swiss Cheese models [52], in particular

ones with a random distribution of structures [52], are particularly interesting for

numerical work, since the average expansion rate and density can be different from

the FRW case, and quantities related to light can be explicitly calculated.

It has been argued that deviations from the approximation of treating the matter
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as dust would be important for modelling observations of light because of their

effect on the way clocks run in different regions of space [54]. Note that the dust

approximation does not concern the issue of granularity, or what should be seen as

the grains of dust, nor any fundamental aspect of general relativity. It is simply a

question of the pressure, anisotropic stress and energy flux being subdominant to

the energy density. It seems unlikely that for a matter content of Standard Model

particles and cold or warm dark matter these quantities would be so important in

a significant fraction of space as to have a major impact on light propagation over

large scales. And that were the case, it is unlikely that the effects would be captured

by simply having clocks run at different rates in different regions [26].

5. Discussion

5.1 Beyond Newton

A model is often understood better when it is considered in a larger context, outside

its domain of validity. In particular, some special features of FRW models are better

appreciated when they are viewed as a limit of general spacetimes with no exact

symmetries. One example is the consistency condition between distance and expan-

sion rate discussed above, which is properly viewed as prediction of the FRW model

to be observationally tested rather than a fundamental relation. Another aspect is

the Newtonian limit of general relativity – or more properly, the relation between

Newtonian gravity and general relativity.

Quantifying backreaction analytically or via an improved statistical model sim-

ilar to the one discussed in section 3.2 is difficult because structure formation is by

definition a non-linear process. However, the details of the evolution of non-linear

structures starting from small perturbations in the linear regime are routinely studied

numerically in cosmological N-body simulations. The problem is that the simulations

use Newtonian gravity with periodic boundary conditions. In Newtonian gravity, the

variance and the shear cancel in the backreaction variable Q given in (2.10), up to

total derivatives which can be written as boundary terms [55]. Boundary terms of

course vanish for periodic boundary conditions. However, using a large simulation

and considering boxes of the size of the observable universe would not help the sit-

uation. Total derivative terms represent a flux, and due to statistical homogeneity

and isotropy, the integrated flux over the boundary should vanish (up to statistical

fluctuations), as otherwise there would be a preferred direction.

In general relativity, the backreaction variable Q does not reduce to a boundary

term, and the average expansion rate of a volume depends on the behaviour every-

where in the volume, not just on the boundary. In contrast, the Newtonian evolution

is sensitive to boundary conditions, even for infinitely far away boundaries. This is

related to the fact that the Poisson equation is elliptic and not hyperbolic, so the
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Newtonian system of equations not have a well-posed initial value problem. This is

one aspect of the qualitative difference between general relativity and what is called

Newtonian cosmology. The small-velocity, weak field limit of general relativity is not

Newtonian gravity, as demonstrated by the existence of Newtonian solutions which

are not the limit of any general relativity solution [27,56]. Rather, it is a theory with

new degrees of freedom and additional constraints compared to Newtonian grav-

ity [27,57–60]. The formulation of this limit of general relativity in the cosmological

setting with non-linear perturbations is an open issue.

In Newtonian gravity, the feature that inhomogeneities do not change the average

expansion rate in a statistically homogeneous and isotropic universe can be under-

stood in terms of energy conservation. In the exactly homogeneous and isotropic

case, the Newtonian Friedmann equation (multiplied by a2) can be interpreted as

stating that the kinetic energy plus the potential energy is constant. The relativistic

Friedmann equation is mathematically identical, but has a different physical inter-

pretation, with the constant energy replaced by the spatial curvature term. This

correspondence does not hold beyond the FRW case. In Newtonian gravity, the total

energy is conserved even when the system is inhomogeneous and anisotropic, as long

as the system is isolated (i.e. the boundary terms in Q vanish). However, in general

relativity, there is no conservation law for the average spatial curvature, and a2〈(3)R〉
is in general not constant. The FRW model is rather special in that the relativistic

spatial curvature behaves exactly like the Newtonian energy.

In building a statistical model to evaluate backreaction effects to improve on the

semi-realistic treatment discussed in section 4, it is important to make sure that it

is consistent with the relativistic evolution equations and constraints, instead of the

Newtonian ones. (Similarly, for numerical studies, one should include the relevant

relativistic degrees of freedom in the simulation.) For example, if the peak model

of section 4 were to be considered in a Newtonian setting, we would have to take

into account that the peak identification process does not conserve the Newtonian

energy (or correspondingly the relativistic spatial curvature). Taking this constraint

into account would completely cancel the effect seen in the model.

While there is no such exact cancellation in general relativity (in the non-linear

regime; we discuss the linear case below), it has been argued that for solutions

relevant for the real universe there is nevertheless a strong cancellation between the

variance of the expansion rate and the shear in the backreaction variable Q given in

(2.10) [61–63]. However, the models which describe a single spherically symmetric

structure are not realistic. They only show that in some models backreaction is small,

just as it has been demonstrated that it is large for other spherical solutions [34–36].

In [63], a Swiss Cheese construction was also considered. However, the individual

holes either have zero shear everywhere except at an infinitely thin shell (where

both the shear and the expansion rate diverge), or consist of two regions, one of

which has zero variance and zero shear, and the other has zero variance but non-zero
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shear. Both cases are unrealistic, the first case because the shear and the expansion

rate should remain bounded, and the second because in general non-zero shear is

accompanied by non-zero variance of the expansion rate.

5.2 Beyond linearity

It has been argued that backreaction is small, because metric perturbations remain

much smaller than unity even when the density perturbation becomes non-linear.

However, it is not clear whether metric perturbations indeed remain small. Fur-

thermore, the observables depend not only on the metric but also on its derivatives,

which have non-linear fluctuations. See [60] for discussion. A recent paper making

this argument is [64], but there the averages are taken over the background space,

not the physical volume, so they commute with time derivatives and backreaction is

suppressed by construction. (This also means that the results depend on the cho-

sen coordinate system and gauge.) A much more interesting analysis is [65], where

the background and perturbations are carefully defined; the approach deserves fur-

ther study. Also, whether the metric can be written in the perturbed FRW form if

backreaction is important is not yet clear, and should be considered.

It has also been suggested that the effect of backreaction could be encapsulated

in a change of the evolution of the FRW scale factor. The idea is that backreaction is

simply a matter of taking into account the effect of structures on the choice of a FRW

background. It can be unambiguously said that this is not the case. If backreaction

is important, the universe cannot described by the FRW metric. For example, the

relation between the distance and the expansion rate discussed in section 4 which

follows directly from the FRW metric is in general violated [26].

Ultimately, the relevant question is not in which form the metric can be written,

but what happens to physical quantities. As noted earlier, in the real universe the

variation in the local expansion rate is of the same size as the observed change in the

average expansion rate, and any realistic metric has to reproduce this fact. The key

issue is how the slow and fast expanding regions add up and whether the variations

cancel in the average. In linear theory, and in Newtonian gravity, the cancellation

holds, but this is not true of non-linear general relativity.

6. Summary

The formation of non-linear structures at late times affects the expansion of the

universe and light propagation. This may explain the observed late-time failure

of the predictions of homogeneous and isotropic models with ordinary matter and

gravity.

Clumpiness can lead to accelerated expansion [11, 32, 34–36]. The observed

timescale of 10 billion years and the right order of magnitude for the change of the ex-

pansion rate emerge from the known physics of structure formation in a semi-realistic
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model [37,38] (though the model does not have acceleration, only less deceleration).

However, the model cannot be trusted beyond an order of magnitude, and it is pos-

sible that a more detailed study will reveal cancellations which suppress the effect.

The physical explanation is simple: at late times, the universe becomes dominated

by underdense voids, since they expand more rapidly than their surroundings, so the

average expansion rate rises.

The basics of the change in light propagation due to structures and how it is

related to the average expansion rate is understood [26, 45]. Demanding that the

average quantities give an approximate description of light propagation also fixes the

hypersurface of averaging as the one of statistical homogeneity and isotropy. The

redshift and the average expansion rate are related in the same way as in FRW mod-

els, provided the distribution of structures is statistically homogeneous and isotropic

and evolves slowly. In contrast, the relation between the average expansion rate

and the angular diameter distance is different from the FRW case. This is a unique

prediction which makes it possible to distinguish backreaction from FRW models

with dark energy or modified gravity. Details of light propagation remain an impor-

tant venue for investigation. Interesting issues include understanding the large angle

CMB anisotropy and weak lensing in a setting where the spacetime is not assumed

to be close to FRW.

An important topic which remains to be properly addressed is the role of non-

Newtonian aspects of general relativity [60]. In Newtonian cosmology, backreaction

reduces to a boundary term, and is therefore suppressed for a statistically homo-

geneous and isotropic distribution [55]. However, this is not the case in general

relativity, and deriving the cosmological limit of general relativity in the case when

the metric is not close to FRW is an open problem. Making sure that the relevant

non-Newtonian aspects of general relativity are taken into account is a central issue

in going from a semi-realistic model of backreaction to a fully reliable treatment.

There has been much progress in understanding backreaction during the last

dozen years. The backreaction conjecture that the failure of the homogeneous and

isotropic models with ordinary gravity and matter is due to the known breakdown of

homogeneity and isotropy related to structure formation remains a plausible possibil-

ity. Directions for further study are clear, and a lot of work remains to be done before

we know whether the conjecture is true or false, and if it is true, how to precisely

quantify the effect. Until this question has been answered, we do not know whether

new physics is needed to explain the observations, or if they can be understood in

terms of a complex realisation of general relativity.
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[22] E. Gaztañaga, A. Cabré and L. Hui, Clustering of Luminous Red Galaxies IV: Baryon
Acoustic Peak in the Line-of-Sight Direction and a Direct Measurement of H(z), Mon. Not.
Roy. Astron. Soc. 399 (2009) 1663 [arXiv:0807.3551 [astro-ph]]
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