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Abstract. We outline the key–steps towards the construction of a physical, fully
relativistic cosmology. The influence of inhomogeneities on the effective evolution
history of the Universe is encoded in backreaction terms and expressed through
spatially averaged geometrical invariants. These are absent and potential candidates
for the missing dark sources in the standard model. Since they can be interpreted as
energies of an emerging scalar field (the morphon), we are in the position to propose a
strategy of how phenomenological scalar field models for Dark Energy, Dark Matter and
Inflation, that are usually added as fundamental sources to a homogeneous–geometry
(FLRW) cosmology, can be potentially traced back to inhomogeneous geometrical
properties of space and its embedding into spacetime. We lay down a line of arguments
that is – thus far only qualitatively – conclusive, and we address open problems of
quantitative nature, related to the interpretation of observations.

We discuss within a covariant framework (i) the foliation problem and invariant
definitions of backreaction effects; (ii) the background problem and the notion
of an effective cosmology; (iii) generalizations of the cosmological principle and
generalizations of the cosmological equations; (iv) dark energies as energies of an
effective scalar field; (v) the global gravitational instability of the standard model
and basins of attraction for effective states; (vi) multiscale cosmological models
and volume acceleration; (vii) effective metrics and strategies for effective distance
measurements on the light cone, including observational predictions; (viii) examples of
non–perturbative models including explicit backreaction models for the LTB solution,
extrapolations of the relativistic Lagrangian perturbation theory, and scalar metric
inhomogeneities. The role of scalar metric perturbations is critically examined and
embedded into the non–perturbative framework.
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1. General relativity and cosmology

1.1. The foliation issue and the notion of an effective cosmology

The homogeneous–isotropic standard model of cosmology, being itself a particular

solution of Einstein’s general theory of relativity, does by far not exploit the degrees

of freedom inherent in the geometry as a dynamical variable. It is this richer tone of

general relativity – as compared to the Newtonian theory – that opens the possibility

to generalize cosmological models, notably by including inhomogeneous structure also

in the geometrical variables. There are several guidelines to be emphasized in such a

generalization: firstly, a cosmology is thought of as an evolving space section that implies

the need to speak of a foliated spacetime, introducing four degrees of freedom (the

lapse and shift functions in an ADM setting). This dependence on the foliation should

not be confused with coordinate– or gauge–dependence of the resulting cosmological

equations and variables, however. Secondly, a cosmology purports an effective point of

view in the sense that the evolving spatially inhomogeneous variables are thought of as

being “averaged over” in a way that has to be specified. We aim at a description

that only implicitly refers to a metric. However, if a metric is to be specified, a

cosmological metric is then to be considered as an effective, “smoothed out” or template

metric, being not necessarily a solution of the equations of general relativity. Finally,

a physical cosmology should be characterized by such an effective evolution model, an

effective metric to provide the distance scale for the interpretation of observations, or

alternatively an evolution model for average characteristics on the light cone, together

with a set of constraint initial data. These latter are to be related to physical

properties of fundamental sources, but also to the geometrical data at some initial time

(effective, i.e “averaged” quantities of known energy sources, but also of intrinsic and

extrinsic curvature). This latter clearly emphasizes the absence of any phenomenological

parameters. Those would just parametrize our physical ignorance. All these points will

be made explicit in what follows.

1.2. The dark side of the standard model: postulated sources and proposed solutions

The high level of idealization of the geometrical properties of space in the standard

model leads to the need of postulating sources that would generate “on average” a

strictly, i.e. globally and locally, homogeneous geometry. It is here where a considerable

price has to be paid for a model geometry that obviously is not enough to meet physical

reality. Assuming a FLRW geometry 96 percent of the energy content is missing in

the form of a) a postulated source acting attractive like matter, so–called Dark Matter

(∼= 23 percent) and b) a postulated source acting repulsive, so–called Dark Energy

(∼= 73 percent). Evidence for the former does indeed come from various scales (galaxy

halos, clusters and cosmological, see e.g. [111]), while evidence for the latter only comes

from the apparent magnitude of distant supernovae (see [81, 69, 60] for the latest data)

that, if interpreted within standard model distances, would need an accelerating model.
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In the simplest case this volume acceration is achieved by a homogeneous–isotropic

cosmology with a cosmological constant. It should be emphasized that when we speak

of evidence, we already approach this evidence with model priors [71, 116, 123]. Keeping

this idealization for the geometry of the cosmological model on all scales, one has to

conjecture fundamental fields e.g. in proportion to the missing Dark Matter within

small–scale systems also on cosmological scales. The search for these fields is one major

research direction in modern cosmology.

Another huge effort is directed towards a generalization of the underlying theory

of gravitation. While this would generalize the geometry of the model, it is not clear

why most of these efforts go into a generalization of general relativity and not into the

generalization of the cosmological model within general relativity. There are certainly

good lines of arguments and various motivations in particle physics and quantum gravity

to go beyond the theory of Einstein (for reviews see [49], [114]), but the “dark problem”

may be first a classical one.

Looking at generalizations of the standard model within general relativity can be

identified as a third research direction to which we dedicate our attention here. In

light of current efforts it is to be considered conservative, since it does not postulate

new fundamental fields and it does not abandon a well–tested theory of gravitation

[28], [101], [77] (for reviews on the physical basis of this third approach see [17, 23] and

[102]). Among the works in this latter field, research that analyzes spherically symmetric

exact solutions has been meanwhile developed to some depth, and has determined

the constraints that are necessary to explain Dark Energy, on a postulated observer’s

position within a large–scale void (see [58, 7, 39, 6, 117, 97, 93] and references therein,

as well as the contributions [9] and [89] in this volume).

1.3. Fictitious and physical backgrounds: a more realistic cosmological principle

Perhaps a reason for not questioning the standard model geometry within general

relativity and to go for the search for fundamental fields or for generalizations of the

laws of gravitation is the following belief: effectively, i.e. “on average”, the model

geometry has to be homogeneous, since structures should be “averaged over”. Then,

due to observational facts on large scales (the high degree of isotropy of the Cosmic

Microwave Background, if the dipole is completely eliminated due to our proper motion

with respect to an idealized exactly isotropic light sphere), and first principle priors (the

strong cosmological principle that requires the universe model to look the same at all

places and in all directions), the model’s geometry – supposed to describe the Universe

on average – is taken to be locally isotropic.

Taking this reasoning at face value we must note two points: the notions of

homogeneity and isotropy in the standard model are both too strong to be realistic:

firstly, local isotropy implies a model that is locally and globally homogeneous, i.e.

despite the conjecture that the homogeneous model describes the inhomogeneous

Universe “on average”, this strict homogeneity does not account for the fact that any
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averaging procedure, in one way or another, would introduce a scale–dependence of the

averaged (homogeneous) variables [57]. This scale–dependence, inherent in any physical

averages, is suppressed. Even if a large scale of homogeneity exists (we may call this

weak homogeneity principle), the model is in general scale–dependent on scales below

this homogeneity scale [120] (see the contribution by Sylos Labini in this volume [121]).

The same is true for isotropy: while the averaged model may be highly isotropic on

large scales, a realistic average distribution on smaller scales is certainly not (we may

call this weak isotropy principle). Correspondingly, a weak cosmological principle that

applies only to the largest scales would be enough to cover the reality needs while still

respecting observational evidence.

We may summarize the above thoughts by noting that, on large scales, a

homogeneous–(almost)isotropic state does not necessarily correspond to a homogeneous–

(almost)isotropic solution of Einstein’s equations. These former states are the averages

over fluctuating fields and it is only to be expected that the state coincides with a strictly

homogeneous solution in the case of absence of fluctuations. In other words, looking at

fluctuations first requires to establish the average distribution. Only then the notion

of a background makes physical sense [78, 79]; see also the contribution by Kolb [80] in

this volume. Current cosmological structure formation models, perturbation theories or

N–body simulations, are constructed such that the average vanishes on the background

of a homogeneous–isotropic solution [16]. A such chosen reference background may be

a fictitious background, since it arises by construction rather than derivation. On the

contrary, a physical background is one that corresponds to the average (whose technical

implementation has to be specified, and which is nontrivial if tensorial quantities like

the geometry have to be “averaged”). A sound implementation of a physical background

will be a statistical background where not only solutions but ensembles of solutions are

averaged. Having specified such an averaging procedure, a physical cosmological model

may then be defined as an evolution model for the average distribution. Despite these

remarks it is of course possible that the homogeneous solution forms at the same time

the average. A well–known example is Newtonian cosmology [16]. It is also conceivable

that a Friedmannian background provides, in some spatial and temporal regimes, a good

approximation for the average (compare here the analysis of the stability properties of

Friedmannian backgrounds [113] in this volume).

2. Refurnishing the cosmological framework

2.1. Effective evolution of inhomogeneous universe models

Taking the point of view of generalizing the cosmological model within general relativity

by abandoning the strong cosmological principle (strict homogeneity and isotropy

on all scales) and replacing it by the weak cosmological principle (existence of a

homogeneity scale and restriction to effective states that are almost isotropic on the

scale of homogeneity) leads us to a “rewriting of the rules” to build the cosmological
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model. We shall consider the rules that led to the standard model of cosmology

and replace them by their more general counterparts. It follows a basically similar

framework that displays, however, a signature of inhomogeneity through the occurence

of so–called backreaction terms and through a manifest scale–dependency. We shall not

introduce new principles or assumptions, apart from the above outlined relaxation of the

cosmological principle. We shall restrict ourselves to the simplest case of an irrotational

dust model, except in the last section of this review (for generalizations of the dust model

[18] with non–constant lapse function see [19], and for additionally non–vanishing shift

see [10, 11, 83, 42, 122, 63, 88]).

2.2. The key–steps for generalizing the cosmological framework

We shall now paraphrase the foundations of the cosmological equations of the standard

model and give their generalized counterparts.

• As in the standard model we introduce a foliation of spacetime into flow–orthogonal

hypersurfaces. We generalize the notion of Fundamental Observers to those that are in

free fall also in the general spacetime. Although, as in the standard model, this setup

depends on the chosen foliation, we presume that this choice is unique as it prefers the

fundamental observers against observers that may be accelerated with respect to the

hypersurfaces. A general inhomogeneous hypersurface – contrary to the homogeneous

case – will, in this setting, unavoidably run into singularities in the course of evolution.

This is to be expected in a given range of spatial and temporal scales, since we are

treating the matter model as dust. This is not a problem of the chosen foliation, but

a problem of the matter model that has to be generalized, if small–scale structure

formation has to remain regular, and this can be achieved by the inclusion of velocity

dispersion and vorticity.

• As in the standard model we confine ourselves to scalar quantities. We replace,

however, the homogeneous quantities by their spatial averages, e.g. the homogeneous

density %H(t) is replaced by 〈%〉D (t) for the inhomogeneous density % that is volume–

averaged over some compact domain D. We realize the averaging operation by a

mass–preserving Riemannian volume average. In some mathematical disciplines and

in statistical averages at one instant of time, it may be more convenient to introduce

a volume–preserving averager, but thinking of an averaging domain that is as large

as the homogeneity scale we have to preserve mass rather than volume. Furthermore,

the average is performed with respect to the above–defined Fundamental Observers.

Spatially averaging a scalar Ψ(t, X i), as a function of Gaussian coordinates X i and a

synchronizing time t, is defined as:

〈Ψ(t, X i)〉D(t) :=
1

VD

∫

D
Ψ(t, X i) dµg , (1)

with the Riemannian volume element dµg :=
√
gd3X, g := det(gij), and the volume of

an arbitrary compact domain, VD(t) :=
∫
D
√
gd3X. Note that within a more general

setup that includes lapse and shift functions, we would have to consider the question
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whether the locally lapsed time is replaced by a global “averaged time” that would

involve an average over the lapse function [109]. Here, the dust cosmology is already

synchronous, so that this question does not arise. Note furthermore, that the building

of averages is done in the inhomogeneous geometry. The averages functionally depend

on the inhomogeneous metric, but this latter needs not to be specified. We may talk of

a kinematical averaging that does not deform the geometry, i.e. that does not change

the physical properties of the inhomogeneous spacetime. For other strategies, see [57],

and references therein, Section 6, as well as the contribution of Wiltshire [130] in this

volume.

• We generalize the kinematical laws of the standard model a) for the volume expansion

(the Hamiltonian constraint in the ADM formulation of general relativity) and b)

for the volume acceleration (Raychaudhuri’s equation in the ADM formulation of

general relativity) by dropping the symmetry assumption of local isotropy. The

general equations are then volume–averaged, leading to the following general volume

expansion and volume acceleration laws (for a volume scale factor, defined by aD (t) :=

(VD(t)/VD(ti))
1/3; the overdot denotes partial time–derivative, which is the covariant

time–derivative here) [18]:

3
äD
aD

= −4πG 〈%〉D + QD + Λ ; 3H2
D +

3kD
a2
D

= 8πG 〈%〉D − 1

2
WD − 1

2
QD + Λ , (2)

where HD denotes the domain dependent Hubble rate HD = ȧD/aD = −1/3 〈K〉D,

K is the trace of the extrinsic curvature Kij of the embedding of the hypersurfaces

into the spacetime, and Λ the cosmological constant. The kinematical backreaction

QD is composed of averaged extrinsic curvature invariants, while WD is an averaged

intrinsic curvature invariant that describes the deviation of the average of the full (three–

dimensional) Ricci scalar curvature R from a constant–curvature model,

QD :=
〈
K2 −Ki

jK
j
i

〉
D − 2

3
〈K〉2D ; WD := 〈R〉D − 6kD

a2
D
. (3)

The kinematical backreaction QD can also be expressed in terms of kinematical

invariants, where the extrinsic curvature is interpreted actively in terms of (minus)

the expansion tensor:

QD :=
2

3

(〈
θ2

〉
D − 〈θ〉2D

)
− 2

〈
σ2

〉
D , (4)

where θ is the local expansion rate and σ2 := 1/2σijσ
ij is the squared rate of shear. Note

that HD is now defined as HD = 1/3 〈θ〉D. QD appears as a competition term between

the averaged variance of the local expansion rates, 〈θ2〉D−〈θ〉2D, and the averaged square

of the shear scalar 〈σ2〉D on the domain under consideration.

For a homogeneous domain the above backreaction terms QD and WD, being

covariantly defined and gauge invariants (to second order) in a perturbation theory

on a homogeneous background solution, are zero. They encode the departure from

homogeneity in a coordinate–independent way [85, 63, 88].
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The integrability conditions connecting the two Eqs. (2), assuring that the

expansion law is the integral of the acceleration law, read:

〈%〉̇D + 3HD 〈%〉D = 0 ; a−2
D (a2

DWD )̇ + a−6
D (a6

DQD )̇ = 0 . (5)

While the mass conservation law for the dust is sufficient in the homogeneous case, there

is a further equation connecting averaged intrinsic and extrinsic curvature invariants

in the inhomogeneous case. The expressions in brackets are conformal invariants (for

further details see [23]).

2.3. Interpretation and Discussion

The interpretation of these average equations as generalized or evolving backgrounds

[23], [79] implies that the new second conservation law in Eq. (5) describes an

interaction between structure formation and background curvature. In the standard

model this latter is absent and structures evolve independently of the background

having homogeneous geometry. This homogeneous curvature background furnishes

the only solution of (5), in which structure formation decouples from the background

(the expressions in brackets in the second conservation law are separately constant).

Backreaction on such a fixed background decays in proportion to the square of the

density and is unimportant in the Late Universe [18, 20, 23]. This degenerate case of a

decoupled evolution explains the fact that in Newtonian and quasi–Newtonian models

backreaction has no or little relevance [23]; in the Newtonian case [16], as well as in

Newtonian [25, 76] and spatially flat, relativistic spherically symmetric dust solutions

(see Section 7), QD vanishes. In models with homogeneous geometry and with periodic

boundary conditions imposed on the inhomogeneities on some scale, the backreaction

term is globally zero and describes cosmic variance of the kinematical properties in the

interior of the periodic universe model.

In general, a physical background “talks” with the fluctuations, and it is this

coupling that gives rise to an instability of the constant–curvature backgrounds as we

discuss below. The essential effect of backreaction models is not a large magnitude of

QD, but a dynamical coupling of a nonvanishing QD to the averaged scalar curvature

deviation WD. This implies that the temporal behavior of the averaged curvature

deviates from the behavior of a constant–curvature model. In concrete studies, as

discussed in Section 5, this turns out to be the major effect of backreaction, since

it does not only change the kinematical properties of the cosmological model, but also

the interpretation of observational data as we explain in Section 6.

3. Scalar field language for backreaction: the morphon

3.1. Rewriting the averaged equations as an effective Friedmannian model

We rewrite the above set of spatially averaged equations together with their integrability

conditions by appealing to the kinematical equations of the standard model, which will
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now be sourced by an effective perfect fluid energy–momentum tensor [19]:

3
äD
aD

= −4πG(%Deff + 3pDeff) + Λ ; 3H2
D − 3kD

a2
D

= 8πG%Deff + Λ ; %̇Deff + 3HD(%Deff + pDeff) = 0 ,

(6)

where the effective densities are defined as

%Deff := 〈%〉D + %Φ ; %Φ := − 1

16πG
QD − 1

16πG
WD ;

pDeff := pΦ ; pΦ := − 1

16πG
QD +

1

48πG
WD . (7)

In this form the effective equations suggest themselves to interpret the extra fluctuating

sources in terms of a scalar field [17, 21, 31], which refers to the inhomogeneities in

geometrical variables.

3.2. Scalar field emerging from geometrical inhomogeneities

In making this suggested analogy concrete we, thus, choose to consider the averaged

model as a (scale–dependent) “standard model” with matter source evolving in a mean

field of backreaction sources. This mean field we call the morphon field, since it captures

the morphological (integral–geometrical [23]) signature of structure. (Note that in more

general cases, involving lapse and shift functions, the structure of the scalar field theory

suggested by the equations may no longer be a minimally coupled one.) We rewrite [31]:

%DΦ = ε
1

2
Φ̇2

D + UD ; pDΦ = ε
1

2
Φ̇2

D − UD , (8)

where ε = +1 for a standard scalar field (with positive kinetic energy), and ε = −1

for a phantom scalar field (with negative kinetic energy; if ε is negative, a “ghost” can

formally arise on the level of an effective scalar field, although the underlying theory

does not contain one; note also that there is no violation of energy conditions, since

we have only dust matter). Thus, from the above equations, we obtain the following

correspondence that can be employed to change between the languages:

− 1

8πG
QD = εΦ̇2

D − UD ; − 1

8πG
WD = 3UD . (9)

The correspondence (9) recasts the integrability conditions (5) into a (scale–dependent)

Klein–Gordon equation for ΦD, and Φ̇D 6= 0:

Φ̈D + 3HDΦ̇D + ε
∂

∂ΦD
U(ΦD, 〈%〉D) = 0 . (10)

We appreciate that the deviation of the averaged scalar curvature from a constant–

curvature model is directly proportional to the potential energy density of the

scalar field. Averaged universe models obeying this set of equations follow, thus, a

Friedmannian kinematics with a fundamental matter source, and an effective scalar

field source that reflects the shape of spatial hypersurfaces and the shape of their

embedding into spacetime. Given the potential in terms of variables of the averaged

system, the evolution of these models is fixed (the governing equations are closed). This

also potentially fixes coupling parameters, since all involved fields can be traced back

to the initial value problem of general relativity.
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3.3. Interpretation and Discussion

The morphon formulation of the backreaction problem offers a nice interpretation in

terms of energies: a homogeneous model, QD = 0 (a necessary and sufficient condition

to also drop the scale–dependence, if required on every scale), is characterized by the

virial equilibrium condition:

2ED
kin + ED

pot = −QDVD
8πG

, QD = 0 ; ED
kin = εΦ̇2

DVD , ED
pot = −UDVD . (11)

Deviations from homogeneity, QD 6= 0, thus invoke a non–equilibrium dynamics of

the morphon in its potential that is dictated by the effective intrinsic curvature of the

space in which the fluctuations evolve. The off–equilibrium state can be measured by a

Kullback–Leibler distance [70, 2], an entropy functional that arises naturally from the

non–commutativity of averaging and the density evolution [70]. It is conjectured [70]

and shown to hold in some popular models [95] that this entropy grows in the course of

structure formation.

Morphon energies are redistributed and can be assigned to the dark energies.

Dependent on the signs of the backreaction terms (and a sign change may occur

in the course of structure formation and by looking at different spatial scales) the

morphon can act as a scalar field model for Dark Matter, a quintessence model for

Dark Energy, or it may even play the role of a classical inflaton [33]. (For the different

interpretations of scalar fields see the review [49], and for unified views the selection of

papers [3, 100, 115, 112], and for scalar Dark Matter e.g. [91, 4, 92]).

4. Global gravitational instability of the standard model backgrounds

4.1. The phase space of exact background states

The space of possible states of an averaged cosmological model, or the space of

physical backgrounds has one dimension more than the space of possible homogeneous–

isotropic solutions in the standard model framework. This can be seen by introducing

adimensional “cosmological parameters”. We divide the volume–averaged expansion

law by the squared volume Hubble functional HD := ȧD/aD introduced before. Then,

the expansion law can be expressed as a sum of adimensional average characteristics:

ΩD
m + ΩD

Λ + ΩD
k + ΩD

W + ΩD
Q = 1 , with : (12)

ΩD
m :=

8πG〈%〉D
3H2

D
; ΩD

Λ :=
Λ

3H2
D

; ΩD
k := − kDi

a2
DH

2
D

; ΩD
W := − WD

6H2
D

; ΩD
Q := − QD

6H2
D
. (13)

Taking for simplicity the constant–curvature parameter and the curvature deviation

into a single full curvature parameter, ΩD
k + ΩD

W =: ΩD
R, the generalized model offers a

cosmic quartet of parameters. Furthermore, if we put Λ = 0, the expansion law defines,

for each scale, a two–dimensional phase space of states. A one–dimensional subset of this

phase space is formed by backgrounds with Friedmannian dynamics (for illustrations see

Figure 3 in [31] or Figures 1 and 2 in [23], and especially Figures 1 and 2 in [113]).
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We can analyze the fix points and their stability properties in the general dynamical

system [31]; see the detailed investigation in this volume [113]. Corresponding results for

the LTB solutions support these findings [118] and [119]. The principal outcome of these

studies is that the standard zero–curvature model forms a saddle point; of particular

interest are two instability sectors for the standard model, regarded as averaged state:

firstly, perturbed homogeneous states are driven into a sector of highly isotropic,

negative curvature and accelerated expanding “backgrounds” where backreaction thus

mimics Dark Energy behavior over the domain D; secondly, perturbed homogeneous

states are driven into a sector of highly anisotropic, positive curvature, collapsing and

decelerated “backgrounds” where backreaction thus mimics Dark Matter behavior over

the domain D. Concrete models, discussed in Section 5 show that the former happens

on large scales, and the latter on the scales of galaxy surveys, and also on smaller scales;

(compare here with the phase space orbits depicted in Figure 7 in [125]).

Thus, qualitatively, the instability sectors identified comply with the aim to trace

the dark components back to geometrical properties of space, but they also agree

with the expected properties of the structure: isotropic, accelerating states on large

scales, and highly anisotropic structures on the filamentary distribution of superclusters.

Moreover, the curvature properties also meet the expectations (to be inferred from the

averaged Hamiltonian constraint): on large scales the Universe is void–dominated and,

hence, dominated by negative curvature, while on intermediate scales over–densities are

more abundant and are individually characterized by positive curvature. (A more refined

classification of instability sectors, associated with the dark sectors of the concordance

model, is provided in [113] in this volume.)

4.2. Dark Energy and Dark Matter hidden in the geometry of space

The fact that the standard model can be globally unstable in the phase space of averaged

states, and the fact that the instability sectors lie in the right corners to explain Dark

Energy and Dark Matter behavior, are both strong qualitative arguments to expect that

the conservative explanation of the dark energies through morphon energies is valuable.

The underlying mechanism is indeed based on the fundamental existence of the relation

between geometrical curvatures and sources dictated by Einstein’s equations.

Whether this mechanism is sufficient in a quantitative sense is to date still an open

issue. The difficulty to construct quantitative models is to be seen in the need for

non–standard tools, for example perturbation theory on a fixed reference background

should be replaced by a fluctuation theory on an evolving background that captures the

average over the fluctuations. The question whether perturbations are small can only

be answered if we know with respect to which background they are small. Furthermore,

since backreaction affects the geometry, it will change the interpretation of observational

data, a problem that is intimately related to the generalization of the cosmological

model, and to which we shall come in Section 6.

Before, we shall in the next section explain the identified mechanism by discussing
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some physical properties of structure formation and its relation to the interpretation of

geometrical curvature invariants, and how exactly they mimic the dark sources. We here

touch on a deeper problem: backreaction effects qualitatively mimic both, Dark Energy

and Dark Matter, simultaneously. Whether, on a given domain, or on an ensemble of

domains on a given scale, the morphon mimics Dark Energy or Dark Matter behavior,

changes as a function of time and as a function of scale. Moreover, the small–scale

contribution to e.g. a Dark Matter behavior requires more sophisticated relativistic

models than the dust model used throughout here (e.g. [48, 110, 38]). Considering

rotation curves of galaxy halos, missing gravitational sources in clusters or missing

sources on cosmological scales always needs different modeling strategies. We try in the

following to provide a first step of disentangling Dark Energy and Dark Matter behavior

by explicitly constructing an effective multiscale cosmological model.

5. Multiscale cosmology: generic volume partitioning of the Universe

5.1. A note on the non–local nature of averaging

Contrary to the standard model, where a homogeneous background is used as

a standard of reference for the expansion history of the Universe, a background

constructed as the average over fluctuating fields introduces a subtle element: while

a homogeneous geometry can be characterized locally, an average is non–local, since

it is determined by the inhomogeneities inside, but also outside the averaging domain,

reflecting the non–local nature of gravitation. Furthermore, an average incorporates

correlations/fluctuations of the local fields, expressed e.g. through the variance between

local and averaged quantities. It is this latter which is the key–driver of a repulsive

effective pressure that arises in the averaged models, as we explain now.

5.2. Structure–emerging volume acceleration

The simple fact that the local expansion rates differ from their average value on

some scale provides the reason why backreaction can produce a volume–accelerating

component despite the decelerating nature of the general local acceleration law. We

here are not talking about an exotic ingredient that produces such a repulsion; it is a

basic physical property of a lumpy matter distribution as was already noted in [17].

This physical property can easily be understood by comparing the local and the

volume–averaged Raychaudhuri equation (for vanishing vorticity and pressure that both

would also act accelerating on the local level, but only on small scales) [18]:

θ̇ = Λ − 4πG%+ 2II − I2 ; 〈θ〉̇ = Λ − 4πG 〈%〉D + 2 〈II〉D − 〈I〉2D , (14)

where we defined the principal scalar invariants of the expansion tensor Θij, 2II :=

2/3θ2 − 2σ2 and I := θ. Clearly, by shrinking the domain to a point, both equations

agree. However, evaluating the local and averaged invariants,

2II − I2 = −1

3
θ2 − 2σ2 ;
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2 〈II〉D − 〈I〉2D =
2

3

〈
(θ − 〈θ〉D)2

〉
D − 2

〈
(σ − 〈σ〉D)2

〉
D − 1

3
〈θ〉2D − 2 〈σ〉2D , (15)

gives rise to two additional, positive–definite fluctuation terms, where that for the

averaged expansion variance enters with a positive sign. Thus, the time–derivative

of a (on some spatial domain D) averaged expansion may be positive despite the fact

that the time–derivative of the expansion at all points in D is negative.

In concrete models this variance is the source of a possible large–scale volume–

acceleration that would be assigned to Dark Energy in the standard model, while the

averaged shear variance mimics an attractive source that would be missing as Dark

Matter in the standard model on cosmological scales. Both terms are competing in the

backreaction term QD. Since the latter depends on scale, it may act in both ways.

5.3. Scale–dependence made explicit

We can go one step further and make the scale–dependence explicit by introducing a

union of disjoint over–dense regions M and a union of disjoint under–dense regions E ,

which both make up the total (homogeneity–scale) region D. The averaged equations

can be split accordingly yielding for the kinematical backreaction [29]:

QD = λMQM + (1 − λM)QE + 6λM (1 − λM) (HM −HE)
2 , (16)

where λM := |M| / |D| denotes the volume–fraction of the over–dense regions compared

with the volume of the region D. In a Gaussian random field this fraction would be 0.5

and would gradually drop in a typical structure formation scenario that clumps matter

into small volumes and that features voids that gradually dominate the volume in the

course of structure formation.

Ignoring for simplicity the individual backreaction terms on the partitioned

domains, the total backreaction features a positive–definite term that describes the

variance between the different expansion histories of over– and under–dense regions.

It is this term that generates a Dark Energy behavior over the domain D [125] (see

also [104] for a model by Räsänen, and [127, 128, 129, 84] for Wiltshire’s model that

is based on this term only, but includes a phenomenlogical lapse function to account

for different histories in M and E regions that, this latter, we cannot implement in the

synchronous foliation of a multiscale dust model; the reader may find more details in

the contributions by Räsänen [108] and Wiltshire [130] in this volume). If we model

non–zero individual backreaction terms by an extrapolation of the leading perturbative

mode in second–order perturbation theory [85, 86], which also corresponds to the leading

order in a Newtonian non–perturbative model [25], then we even produce a cosmological

constant behavior over the homogeneity scale D, see Figure 3 in [125]. In other words,

the fact that, physically, over–dense regions tend to be gravitationally bound, i.e. do

not partake significantly in the global expansion, together with a volume–dominance

of under–dense regions, already produces a large–scale kinematical pressure as a source

of volume acceleration. A homogeneous background simply cannot account for this

physical property.
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6. Effective metrics and light cone distances

6.1. Template metrics and effective distances

For the construction of an effective cosmological evolution model, as outlined above, a

metric needs not be specified. The need for the construction of an effective metric in

these models arises, since measured redshifts have to be interpreted in terms of distances

along the light cone. Given an explicit, generic and realistic, inhomogeneous metric, the

need for the construction of effective metrics does not arise. Also, if we succeed to

understand the evolution of light cone averages in relation to distances, then also here

an explicit metric will not be needed [105, 106]. Work is in progress to construct effective

equations on light fronts by surface averaging optical scalars [36]. In this line Gasperini

et al. in a recent paper made a first step towards defining suitable covariant and gauge

invariant light cone averages [64].

The idea of an effective cosmological metric comes from the “fitting problem”,

that has been particularly emphasized by George Ellis already in the 70’s [54]. The

observation was that an inhomogeneous metric does not average out to a homogeneous

metric that forms a solution of general relativity. Not only the nonlinearity of the theory,

but also simple arguments of a non–commutativity [57] between evolution equations

and the averaging operation, give rise to the need to find a “best–fit”, we may call

it “template” geometry, that inherits homogeneity and (almost–)isotropy on the large

scales and, at the same time, incorporates the inhomogeneous structure “on average”

(for earlier practical implementations of this problem see [56], [68], [61], [74], [37], [62];

compare here the introduction to early work on the backreaction problem, to the fitting

problem and the discussion on geometrical optics by George Ellis in this volume [55]).

For the solution of the fitting problem various strategies have been proposed (see [57]

and references therein). One strategy, that allows to explicitly perform a “smoothing”

of an inhomogeneous metric into a constant–curvature metric at one instant of time,

is based on Ricci–flow theory: one notices that a smoothing operation of metrical

properties can be put into practice by a rescaling of the metric in the direction of

its Ricci curvature. The scaling equations for realizing this are well–studied, and the

rescaling flow results in a constant–curvature metric that carries “dressed” cosmological

variables [27], [28]. These incorporate intrinsic curvature backreaction terms describing

the difference to the “bare” cosmological parameters as they are obtained through

kinematical averaging.

6.2. Reinterpretation of observational data

The standard method of interpreting observations is to construct the light cone ds2 = 0

from the line–element ds2 = −dt2+ghom
ij dX idXj, where the coefficients ghom

ij are given in

the form of a constant–curvature (FLRW) metric, and then to calculate the luminosity

distance dL(z) in this metric for a given observed redshift z. Assuming this metric

for the inhomogeneous Universe implies the conjecture that the FLRW metric is the
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correct “template” of an effective cosmological metric. However, the integrated exact

equations (the integral properties of a general inhomogeneous model) are not compatible

with this metric, simply because the averaged curvature is assumed to be of the form

〈R〉D = 6ka−2 on all scales. Improving the metric template slightly, by replacing

the global scale factor a(t) through the volume–scale factor aD(t) and the integration

constant k through the domain–dependent integration constant kDi
, one renders this

metric implicitly scale–dependent [99]. As we explained, this is not enough since the

averaged curvature couples to the inhomogeneities and in general deviates from the a−2
D –

behavior. What we can do as a first approximation, and this would render the metric

compatible with the kinematical average properties, is to introduce the exact averaged

curvature in place of the constant curvature in this metric form [82].

The resulting effective spacetime metric consists of a synchronous foliation of

constant–curvature metrics that are, however, parametrized by the exact integral

properties of the inhomogeneous curvature, thus they “repair” the standard template

metric as for the evolution properties of spatial variables. Such a construction can

be motivated by Ricci–flow smoothing, that guarantees the existence of smoothed–out

constant curvature sections at one instant of time, and by assuming that the intrinsic

backreaction terms are subdominant, so that we can parametrize the metric by “bare”

kinematical averages. To stack these hypersurfaces together introduces, however, an

inhomogeneous light cone structure [94], [103]. Ideally, one would wish to smooth the

light cone too, which is also possible by employing Ricci flow techniques. Improving

this first approach to a template metric is needed and this is work in progress.

The result of employing improved template metrics as described above is a change

in the luminosity distance. It will, e.g., take care of the fact that light mostly propagates

in under–dense regions of negative curvature. This will alter the interpretation of all

observational data formerly based on FLRW distances. A comparison of the luminosity

distances in the multiscale models investigated in [125], that are based on the template

metric of [82], with a flat ΛCDM model is presented in Figure 2 of [125], see also [126].

Clarkson’s C–function [41] (see the review by George Ellis in this volume [55]) features

a clear minimum at redshifts of around 3−5, which may serve as observational evidence

for the effective cosmologies, as proposed in [82]. As the investigated multiscale models

show, it is not even necessary to measure derivatives of distances, since the feature is

already present in the distance, and this at smaller redshifts. Although this investigation

certainly needs refinement, we already appreciate a signature of the different curvature

evolution that furnishes a clearcut prediction for future observations (see [82] for details

on the construction of template metrics, fits to observational data, and predictions).

6.3. Strategies for generalizing numerical simulations

The architecture of Newtonian simulations does not allow to describe the generic

interaction between structure formation and the background geometry. This latter is,

by the very nature of a Newtonian description within a coordinate frame comoving with
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a (possibly relativistic) background solution, a foliation of non–dynamical Euclidean

space sections. Moreover, kinematical backreaction terms vanish on the simulation box

due to the technical restriction to a torus topology, see [16] for the proof.

Obviously, these restrictions have to be overcome, if we wish to conduct realizations

of a physical cosmological model that go beyond the status of toy realizations to

study structure formation. Thus, the need to construct relativistic simulations with

dynamical geometry arises. Hereby one would wish that well–developed simulation

techniques could be used and eventually interpreted within a relativistic framework. A

straightforward method would be to integrate the ADM equations of general relativity.

To date only special general relativistic systems are studied numerically, an effort

to construct cosmological simulations awaits an attempt. In this situation we may

ask whether one could improve the architecture of Newtonian simulations to render

them relevant in a relativistic setting. A first example has been demonstrated in

[125], where the volume fraction between under–dense and over–dense regions has

been used as approximate input into the relativistic framework. A measurement of

fluctuations and the kinematical backreaction term could eventually be drawn from a

Newtonian simulation and then, iteratively, taken as input into the average equations

for a relativistic physical background. The introduction of comoving coordinates in such

an evolving background will alter time–scales and the distance interpretation, but it is

certainly a rough approximation and follows the spirit of using global template metrics

as described above.

A more systematic strategy is to first use analytical approximation schemes like

the relativistic form of Zel’dovich’s approximation, that is employed to initialize N–

body codes. Work is in progress at this front and we shall discuss this latter strategy

in concrete terms in the next section.

7. Non–perturbative models for backreaction

Backreaction models can be constructed on the basis of closure conditions on the

averaged equations without specifying a metric (for discussions see [18] and [21])‡.
Examples include globally static and stationary cosmologies [21], scaling solutions

[31], [125], [113], and specifications to other effective equations of state, e.g. [112].

These approaches only functionally depend on a metric and are to be considered as a

motivated ansatz or as balance conditions imposed on the dynamics in the spirit of the

virial theorem, where these conditions are not rooted back to explicit solutions of the

inhomogeneous dynamics. It is here where a detailed investigation of inhomogeneities

is needed to support or discard certain closure conditions. We already studied the

‡ Note that the equations for averaged scalars form an infinite hierarchy of equations. Truncating them
implies the need for a closure condition. This happens in many physical systems, also for tensorial
hierarchies, e.g. the velocity moment hierarchy of the Vlasov equation [30]. We can easily go down one
level of this hierarchy, but always the need for closure conditions will arise, if the problem is restricted
to a system of ordinary differential equations.
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construction of homogeneous template metrics in the last section, which can be made

compatible with global assumptions on the evolution of backreaction. Here we are going

to study concrete inhomogeneous metric forms and the resulting backreaction models.

We start with some general remarks.

7.1. Some general notes on relativistic metrics and perturbation theories

Consider for simplicity a spatial metric form g with coefficients gij in an exact (co–

tangential) basis dX i⊗dXj. We can write any metric as a quadratic form of deformation

one–forms, g = δab ηa ⊗ ηb, i.e. in terms of coefficients, gij = δabη
a
iη

b
j§. Now, such a

metric form is flat, i.e. its Ricci tensor vanishes everywhere, if there exist functions fa,

such that the one–forms can be written as exact forms, ηa ≡ dfa. In other words, if

we can find a coordinate transformation xi = fa≡i(Xj, t) that transforms the Euclidean

metric coefficients in a new basis, dxi ⊗ dxj, δijdx
idxj = δabf

a
|if

b
|jdX

idXj, with a

vertical slash denoting partial spatial derivatives, into the metric coefficients gij, then

these latter are just a rewriting of the flat space. Given this remark, any perturbation

theory that features metric forms of the integrable form, does not describe relativistic

inhomogeneities; metric coefficients of the form gij = δabf
a
|if

b
|j describe Newtonian

(Lagrangian) perturbations on a flat background space. A truly relativistic perturbation

theory deforms the background geometry; in other words, the perturbations live in a

perturbed space, not on a reference background. This remark also shows that relativistic

perturbation terms that are not related to coordinate artifacts can never contain full

divergences, since this latter needs integrable one–form fields.

In light of these introductory remarks, an inhomogeneous relativistic metric

produces curvature. The volume–average of this intrinsic curvature on some domain

does not obey a conservation law, as can be explicitly seen in the coupling equation

to the fluctuations (5). In particular, intrinsic curvature does in general not average

out to zero; for details on curvature estimates see [29]. This fact in itself shows the

existence of a dynamical evolution of an averaged curvature, as soon as structures form

[18]. On the contrary, standard perturbation theory formulated on a fixed background is

constructed such that the averages always vanish on the background, demonstrating the

limited nature of results obtained by standard perturbation theory. Here, we identify the

crucial difference between a fully relativistic cosmology and a quasi–Newtonian model:

for the latter, the only fluctuating fields are the matter fields and for them we have a

conservation law that assures that over– and under–densities compensate each other,

even for a nonlinear density distribution, while for the former the curvature is also

fluctuating; the argument that applies to the density distribution does not apply to the

curvature distribution.

Another perturbative argument aims to justify the validity of the homogeneous

geometry, even down to the scales of neutron stars [72, 67]. As argued in [72] and

by many others, perturbations of the metric remain small with respect to the flat

§ We use indices i, j, k to denote coordinate indices, and the indices a, b, c as counters of e.g. forms.
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background. While this is true, this does not contradict the existence of a large

backreaction effect, since these latter depend on spatial derivatives of the metric that can

be large [32], [78], [107]. Moreover, the perturbations are considered on a background

that does not interact with structure. Perturbations may be small on a different

(physical) background, in which case a perturbation may already live in a background

with strong curvature (a zero–order effect).

It is therefore not fruitful to argue against the relevance of backreaction within

standard limited schemes, but rather an effort to generalize perturbation theory is

needed. Efforts to construct a fluctuation theory around a physical average are the

subject of current studies. Before such a more general theory can be constructed, it is

necessary to first look at some results that hold for exact solutions and for approximation

schemes describing truely inhomogeneous deformations as outlined above. We shall

therefore discuss some results in the next subsection, obtained for the spherically

symmetric LTB solution and for the relativistic Lagrangian perturbation theory. These

results will be presented elsewhere within comprehensive investigations [34, 35].

7.2. Backreaction for spherically symmetric solutions

A large number of recent publications on the evaluation of backreaction is based on the

spherically symmetric LTB solutions (for reference lists see the articles [58, 7, 39, 6, 117,

97, 93, 119], the book by Bolejko et al. [8], as well as the contributions [9] and [89] in

this volume). A comprehensive study of LTB solutions in relation to the backreaction

formalism discussed in this review and to the existing literature is provided by Sussman

[119]. This paragraph just focuses on the special character of this class of solutions and

provides some exact results. Before we come to the relativistic setting, we briefly recall

the situation in the Newtonian theory [16], [25], [76].

Newton’s Iron Spheres

In Newtonian theory the background geometry is fixed and given by a Euclidean vector

space, the Newtonian spacetime. Let the spatial domain of averaging D = DR be taken

as a sphere with radius R. The velocity v inside DR is only depending on the distance r

to the origin and always parallel to the radial unit vector er, v = v(r) er. By doing this

we exclude rotational velocity fields. The chosen domain stays spherical at all times.

The Newtonian velocity gradient is denoted by (vi,j), with a comma indicating

derivative with respect to a non–rotating Eulerian coordinate system; it may be

characterized by its three principal scalar invariants, the trace I, the dispersion of its

non–diagonal components II, and the determinant III (for explicit expressions we refer

the reader to [52], [25]). The averaged first invariant may be obtained directly using

Gauss’ theorem:

〈I(vi,j)〉DR
=

3

4πR3

∫

DR

d3x∇ · v =
3

4πR3

∫

∂DR

dS · v(r)er = 3
v(R)

R
, (17)
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whereas the averages of the second and third invariants require some basic calculations.

One obtains the relations [25]:

〈II(vi,j)〉DR
=

1

3
〈I(vi,j)〉2DR

, ; 〈III(vi,j)〉DR
=

1

27
〈I(vi,j)〉3DR

. (18)

The first of the above relations implies that the backreaction term vanishes identically,

Qspherical
DR

= 2 〈II〉DR
− 2

3
(〈I〉DR

)2 = 0, a result which is in accord with Newton’s “Theorem

of the Iron Spheres”. Since this relation holds true on every scale, the exact averaged

equations (2) reduce to the standard FLRW equations.

Some exact results for LTB solutions

The LTB solutions for dust generalize the well–known FLRW solutions for dust: their

metric not only depends on the time–coordinate as in the FLRW model, but also on the

radial coordinate. The spherical domain can be seen as a superposition of infinitesimally

thick homogeneous shells governed by their own dynamics. In a comoving–synchronous

setting (see e.g. [58] for a demonstration but with different notations) the line–element

has the form:

ds2 = −dt2 +
R′2(t, r)

1 + 2E(r)
dr2 +R2(t, r)dΩ2 , (19)

E being a free intrinsic curvature function of r satisfying E(r) > −1/2; the prime

denotes partial differentiation with respect to r.

In this metric, the scalar parts of the Einstein field equations read:

4πρ(t, r) =
M ′(r)

R′(t, r)R2(t, r)
;

1

2
Ṙ2(t, r) − GM(r)

R(t, r)
= E(r) , (20)

M being another free function of r related to the radial density profile; the overdot

denotes partial time–derivative. Using the relation between the expansion tensor and

the metric tensor in the coordinate form Θi
j := 1

2
gikġkj, the averaged scalar invariants

of the expansion tensor on a simply–connected LTB–domain can be calculated [35]:

〈
I(Θi

j)
〉

LTB
=

4π

VLTB

∫ rD

0

∂r

(
ṘR2

)

√
1 + 2E

dr ; (21)

〈
II(Θi

j)
〉

LTB
=

4π

VLTB

∫ rD

0

∂r

(
Ṙ2R

)

√
1 + 2E

dr ; (22)

〈
III(Θi

j)
〉

LTB
=

4π

3VLTB

∫ rD

0

∂r

(
Ṙ3

)

√
1 + 2E

dr , (23)

where the volume is given by

VLTB =
4π

3

∫ rD

0

∂r (R3)√
1 + 2E

dr . (24)
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The deviation of the averaged scalar curvature from a constant–curvature model (3) can

also be averaged on a LTB domain:

WLTB = − 16π

VLTB

∫ rD

0

∂r (ER)√
1 + 2E

dr − 6
kDi

V
2/3
LTBi

V
2/3
LTB

. (25)

These integrals can be straightforwardly solved for E(r) = E0 = const. yielding the

following exact results for the averaged scalar curvature,

〈R〉LTB = −4(E(r)R)′

R2R′ = − 4E0

R2(rD)
, (26)

and for the averaged invariants:

〈
II(Θi

j)
〉

LTB
=

1

3

〈
I(Θi

j)
〉2

LTB
;

〈
III(Θi

j)
〉

LTB
=

1

27

〈
I(Θi

j)
〉3

LTB
. (27)

Combining the averaged invariants into the backreaction term QLTB, cf. Eq. (3), we

obtain for a spherically symmetric domain with a strong restriction on the curvature

function‖:

QLTB = 0 , WLTB = 0 . (28)

We here generalize to non–flat domains a result obtained in [98]. Comparing Eq. (25)

and the result for the averaged curvature, one can express kDi
as a function of E0:

kDi
= −2E0/R

2(ti, rD).

The result (28) mainly shows that spherically symmetric LTB solutions for a

geometry with zero intrinsic curvature are quasi–Newtonian, i.e. they are too special

and not useful to access the backreaction problem. Only work on LTB solutions that

allow for a non–trivial curvature function E(r) and non–constant curvature geometries

are relevant in this context.

The result (28) can be interpreted as a generalization of what people have in mind

when they quote Birkhoff’s theorem, since here the density distribution is continuous and

QLTB = 0 in general implies that the scale factor, volume–averaged over a spherically

symmetric inhomogeneous distribution, follows the FLRW equations. Note, however,

that it is by far not enough to have a spherically symmetric distribution, since the result

(28) is very special and we cannot expect a similar theorem to hold in a more realistic

situation. This point is important since, for this latter reason, we can expect to learn a

lot from LTB solutions concerning the backreaction problem (see especially the review

by Sussman [119]).

The above subclass of LTB solutions is contained in a wider class of backreaction

models that are based on a relativistic Lagrangian approximation scheme. We are going

to give some related results in the next subsection.

‖ The restriction E = E0 = const. corresponds to self–similar LTB solutions if we require at the same
time that the function M(r) ∝ r (R.A. Sussman, priv. comm.), see [117].
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7.3. Backreaction in relativistic Lagrangian perturbation theory

In this subsection we report on an application of relativistic Lagrangian perturbation

theory for the construction of a generic backreaction model. The formulation of this

theory as well as the formalism used to obtain the results sketched here will be published

in forthcoming papers [34, 35]. The idea of the construction of this theory is to employ

as a single dynamical variable the spatial deformation one–form fields (Cartan’s co–

frames), ηa, cast the full set of Einstein’s equations for dust matter into a form that

features only this variable, and then setup perturbation and solution schemes for this

deformation field. Other fields like the 3−metric are then functionally expressed through

solutions of this perturbation variable.

We write the 3−metric as a quadratic form of non–normalized co–frames,

gij = Gabη
a
iη

b
j ; gij(ti) = Gij(ti) . (29)

To choose non–normalized frames, that has been suggested by [40], bears the advantage

that the resulting expressions are similar to their Newtonian counterparts (these latter

can be found in [25]).

The obtained perturbation solutions for the deformation one–forms read to leading

order (and with a restriction of initial data that eliminates decaying modes):

RZAηa
i(t, X

k) := a(t) (δa
i + ξ(t)Pa

i) , (30)

where Pa
i = P a

i(ti, X
k), ξ(ti) = 0, a(ti) = 1. The function ξ(t) solves the well–known

first–order equations to be found in [14, 15, 5]; RZA stands for “Relativistic Zel’dovich

approximation”, generalizing Zel’dovich’s idea [131] and suggested first by Kasai [75]

(for normalized co–frames). Contrary to Kasai’s definition we consider the full 3−metric

from first–order deformations:

RZAgij(t, X
k) = a2(t)

{
Gij + ξ(t)

(
GajP

a
i +GibP

b
j

)
+ ξ2(t)GabP

a
iP

b
j

}
. (31)

One then obtains for the RZA backreaction model in a non–normal basis:

RZAQD =
ξ̇2 (γ1 + ξγ2 + ξ2γ3)

(1 + ξ〈Ii〉CD + ξ2〈IIi〉CD + ξ3〈IIIi〉CD)2
, (32)

where we have defined the set of initial data featuring the initial principal scalar

invariants of the expansion tensor (the first is the initial backreaction term):

γ1 := 2〈IIi〉CD − 2

3
〈Ii〉2CD = Qinitial

CD
;

γ2 := 6〈IIIi〉CD − 2

3
〈IIi〉CD〈Ii〉CD ;

γ3 := 2〈Ii〉CD〈IIIi〉CD − 2

3
〈IIi〉2CD . (33)

We note that for non–normalized co–frames the initial 3−metric tensor does not appear

explicitly in the expression for the backreaction model; the domain D is, however,

Lagrangian, i.e. it is frozen into the evolving metric. Initially, the domain D can here be

chosen to be a section of a Euclidean space, denoted by CD. All relativistic expressions
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have a straightforward Newtonian limit by sending the deformation one–forms to exact

forms ηa → dfa≡i, where the counting index for the forms a becomes a coordinate index

i. Note that the Newtonian approximation contains integrable averaged invariants.

In the situation of a spherically symmetric model restricted to the class of LTB

solutions with trivial curvature function E(r) = E0 = const., the averaged invariants

obey the (quasi–Newtonian) relations (27), compatible with the backreaction model

(32). The generic model (32) therefore contains this class of LTB solutions in a subclass.

Furthermore, the leading term in the model (32) agrees with the backreaction model of

the linear perturbation mode,

RZAQlinear
D = ξ̇2Qinitial

CD
=

Qinitial
CD

a
, (34)

where the latter equality holds for an Einstein–de Sitter background. This mode plays

an important role in the evaluation of the backreaction effect, since it forms the weak–

backreaction limit of an exact scaling solution [31]:

scalingQD =
Qinitial

CD

aD
; scalingWD =

W initial
CD

aD
, (35)

that has to be compared with the competing sources in the balance equation of the

averaged Hamiltonian constraint (the second of Eqs. (2))¶,

〈%〉D ∝ 1

a3
D

; kD ∝ 1

a2
D

; scalingQD ∝ 1

aD
; Λ = const . (36)

In Section 5 we discussed a model that assumes the scaling laws (35) on subdomains

of a multiscale cosmology where the global evolution mimics a cosmological constant

behavior as a result of the expansion variance between the subdomains.

7.4. Backreaction models for relativistic scalar metric inhomogeneities

Thus far we worked with the matter model ‘irrotational dust’. To discuss more general

matter models such as radiation or the fluid picture of a scalar field, we have to briefly

recall a covariantly defined set of averaged ADM equations obtained previously [19].

These equations are valid for any spacetime foliation within the class of foliations with

vanishing shift, and for any choice of the lapse function and the inhomogeneous 3–

metric. We shall then specify the 3–metric, investigate scalar metric inhomogeneities

for any choice of the lapse function, and evaluate the relevant backreaction terms. This

we can do in general without resorting to any other approximations than those implied

by the restriction to scalars and irrotational flows. We shall also discuss the evolution of

backreaction in the longitudinal gauge, and we shall put forward crucial arguments in

favor of a non–perturbative versus a perturbative interpretation of backreaction using

this example.

¶ For some further remarks in this context see [23], Sect. 4.2.
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7.4.1. The averaged ADM equations for vanishing shift In this subsection we entirely

follow the notations and results given in [19]. We shall study spatial averages in a

hypersurface defined by the choice of the in general inhomogeneous lapse function

N(X i, t) and inhomogeneous 3−metric coefficients gij(X
i, t) in the line–element

ds2 = −N2dt2 + gijdX
idXj . (37)

(X i are local coordinates in a t = const. hypersurface). This line–element is sufficient

to analyze the example of the so–called longitudinal gauge that we shall consider below.

Perfect fluid sources are characterized by a diagonal energy–momentum tensor with

energy density ε and pressure p, Tµν = εuµuν +phµν. We may choose to project onto the

fluid’s restframe, defining the projection tensor through hµν = gµν +uµuν, i.e. we project

onto hypersurfaces orthogonal to the fluid’s 4–velocity uµ. We employ the 4–velocity of

the flow in the form

uµ = −∂
µS
h

; h =
ε+ p

%
, (38)

together with the decomposition into kinematical parts of the 4–velocity gradient,

uµ;ν =
1

3
θhµν + σµν + ωµν − u̇µuν , (39)

where the inhomogeneous normalization of the 4–velocity gradient h is given by the

injection energy per fluid element and unit restmass, dε = hd% with the restmass density

% [73]; θ is the rate of expansion, σµν and ωµν the shear and vorticity tensors, respectively.

The existence of a scalar 4–velocity potential S together with the choice (38) implies

that the conservation equations T µν
;ν = 0 are satisfied, but also that the flow has to be

irrotational and that the covariant spatial gradient of S (denoted by a double vertical

slash in this paper) vanishes [12, 13, 50], [19]:

ωµν = h α
µ h

β
ν u[α;β] = −h α

µ h
β

ν

(
∂[αS/h

)
;β]

= 0 ; S||µ = h α
µ ∂αS = ∂µS + uµṠ = 0 , (40)

with the covariant time–derivative Ṡ := uµS ;µ ≡ h. For the special case of an equation

of state of the form p = γε we obtain:

ε =
1

2γ
h1+1/γ ; p =

1

2
h1+1/γ ; % =

1 + γ

2γ
h1/γ ; ḣ+ γθh = 0 ; h ≡ Ṡ , (41)

which reduce to the familiar expressions for a free minimally coupled scalar field source

(a “stiff fluid” with γ = 1; this case has been exploited in [26]).

The averaging operation in terms of Riemannian volume integration is performed,

as in the dust case, over the hypersurfaces orthogonal to uµ, restricting again attention

to scalar functions Ψ(X i, t), cf. Eq. (1). We also consider the same definition as for the

dust case of a dimensionless volume scale factor aD(t), which implies that we are only

interested in the volume dynamics of the domain; aD is a functional of the domain’s

shape (dictated by the metric) and position. As in the dust case we require the domains

to follow the flow lines, so that the total restmass MD :=
∫
D %Jd

3X contained in a

given domain is conserved. With a non–constant lapse function we have, however, to

introduce a scaled (t–)expansion θ̃ := Nθ, which describes the rate of change of the
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domain’s volume expansion in the spatial hypersurfaces, that on average defines an

effective Hubble–functional+:

〈θ̃〉D =
∂tVD(t)

VD(t)
= 3

∂taD
aD

= 3
a′D
aD

=: 3HD . (42)

For an arbitrary scalar field Υ(X i, t) we make use of the non–commutativity relation:

〈Υ〉′D−〈Υ′〉D = 〈Υθ̃〉D−〈Υ〉D〈θ̃〉D , or, alternatively, 〈Υ〉′D+3HD〈Υ〉D = 〈Υ′+Υθ̃〉D.(43)

Averaging Raychaudhuri’s equation and the Hamiltonian constraint, we can cast

the resulting equations into a compact form (to be found in Corollary 2 in [19]):

3
a′′D
aD

+ 4πG (εeff + 3peff) = 0 ; 6H2
D − 16πGεeff = 0 ; ε′eff + 3HD (εeff + peff) = 0 , (44)

with the following fluctuating sources:

16πGεeff := 16πG〈ε̃〉D − Q̃D − 〈R̃〉D , (45)

16πGpeff := 16πG〈p̃〉D − Q̃D +
1

3
〈R̃〉D − 4

3
P̃D ; (46)

ε̃ := N2ε and p̃ := N2p are the scaled energy density and pressure of matter, respectively.

The kinematical backreaction term is given by:

Q̃D := 2〈N2II〉D − 2

3
〈Nθ〉2D ; (47)

it is built from the principal scalar invariants 2II := θ2 −Ki
jK

j
i and Ki

i = −θ of the

extrinsic curvature, Ki
j = −1

2
gik 1

N
g′kj. The averaged 3−Ricci scalar curvature R and

the acceleration terms (dynamical backreaction) read:

〈R̃〉D := 〈N2R〉D ; P̃D := 〈Ã〉D +
〈N ′

N
θ̃
〉
D
, (48)

with the scaled (t−)acceleration divergence Ã := N2A = NN
|i
||i
∗.

7.4.2. Scalar metric inhomogeneities in a metric form corresponding to the conformal

Newtonian gauge The so–called conformal Newtonian or longitudinal gauge is often

employed in the study of perturbations on a Friedmannian background cosmology, and

is considered a preferred frame because it offers a well–defined Newtonian limit [124]].

The topic addressed in this review, i.e. the impact of inhomogeneities on expansion

properties of the Universe (backreaction) is also often discussed in this gauge [61], [62],

[96, 1], [65, 66, 90], [87], and many others. In the recent paper [59] it is shown, in an

inflationary model, how the observers in this gauge are related to the free–falling ones.

Even a ‘no–go conjecture’ has been raised on the issue of whether backreaction can be

+ We shall reserve the overdot for the covariant time–derivative (defined through the 4–velocity uµ):
∂
∂τ := uµ ∂

∂µ = 1
N

∂
∂t , and we abbreviate the coordinate time–derivative by a prime in the sequel.

∗ A single slash denotes partial differentiation with respect to the coordinatesX i, and a double vertical
slash covariant spatial differentiation with respect to the 3–metric as before.
] Note that the framework discussed in Subsection 7.3 also offers a well–defined Newtonian limit.
However, there one falls on the Lagrangian form of the Newtonian equations [51, 53].
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significant [72], also advocating the post–Newtonian metric as a sound model for most

cosmological studies. George Ellis gives a related discussion in this volume [55].

Since the averaged equations briefly reviewed above are valid for any choice of the

lapse function and any ansatz for the 3−metric, we are in the position to calculate

backreaction effects with some generality, i.e. with no need to invoke approximations

other than those implied by the restriction to scalars and irrotational flows. We shall

do this calculation explicitly with the aim to illustrate the strict, non–perturbative

application of the post–Newtonian metric form as a solution of general relativity, and

to learn some issues about common perturbative interpretations of this metric form.

In the longitudinal gauge the lapse function and the 3−metric are specified in many

studies as to provide a “Newtonianly perturbed model” in the following form:

N2 = 1 + 2φ ; gij = a2 (1 − 2ψ) γij , (49)

with the scale–factor a of a homogeneous–isotropic background model, and a constant–

curvature 3−metric γij. For simplicity, we are going to choose the Euclidean metric

γij = δij in what follows. From what has been said previously we are in the position

to evaluate all the variables, in particular the backreaction terms, as functionals of the

lapse function N(X i, t), the metrical inhomogeneities ψ(X i, t), and their time and space

derivatives.

Note already the subtle element that in general relativity X i are to be local

coordinates in a perturbed space. In turn, factoring out a scale factor as in the metric

form (49) implies that, only if φ = ψ = 0, the scale factor obeys the standard Friedmann

equations with respect to the coordinate–time; in the perturbed space the scale factor

acquires a dependency on X i as seen in the hypersurfaces t = const., defined by the

inhomogeneous lapse function. In the presence of perturbations it makes no physical

sense to factor out a function of t that obeys Friedmann’s equations. If the background is

not perturbed, then the lapse function can only be time–dependent (for the background

equations in hypersurfaces with a time–dependent lapse see [19], Sect. 4.1).

Note also that the simple ansatz for the (conformally flat, i.e. vanishing Cotton–

York tensor) metric requires that a scalar function models all six metric components.

It is therefore expected that in the case of a strict application of this metric form as

a solution to general relativity we are dealing with a highly restricted situation. We

remark that this metric ansatz is general for the case where the trace–free symmetric

part of the extrinsic curvature (the shear tensor σij) vanishes:

Ki
j =

1

N

[
ψ′

1 − 2ψ
− a′

a

]
δi

j ⇒ Ki
j −

1

3
Kk

kδ
i
j =: −σi

j = 0 . (50)

However, the post–Newtonian form is employed with the implicit understanding that

|φ| and |ψ| are small compared to 1 (together with corresponding requirements on their

derivatives [124]). For perfect fluids and small peculiar–velocities φ = ψ. The so–

constructed model is designed to be in a “near–Friedmannian state”. In what follows

we have to keep in mind that Eq. (50) implies that any application of this metric–form to

describe inhomogeneities can only be considered in an approximate sense. Especially for
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a non–tilted slicing where the expansion tensor is proportional to the extrinsic curvature

(peculiar velocities are not small but vanish), we have vanishing shear everywhere and

this implies homogeneity in cosmologically relevant cases††.
In the sequel we shall consider (49) as an ansatz for the metric and only later, in the

final result, we may look at the importance of the various terms; we do not invoke any

further approximation in the following calculations. The usual practice of employing

perturbative assumptions from the outset may mask the simplicity of the problem. Also,

we prefer to not specify the lapse function; we shall retain N so that we can discuss

the result for different foliations. We introduce, to shorten the notation, the auxiliary

variable with its derivatives with respect to the coordinate time:

α := − ln
√

1 − 2ψ ; α′ =
ψ′

1 − 2ψ
; α′′ =

ψ′′

1 − 2ψ
+ 2

(ψ′)2

(1 − 2ψ)2
. (51)

Kinematics of the volume Let us start with the simple observation that, given the

3−metric in the form (49), the kinematics of the volume is determined by a given

solution for ψ: the volume of an averaging domain, and hence the effective scale–factor

aD, is calculated from its definition VD =
∫
D Jd

3X with J =
√

det(gij) = a3(1− 2ψ)3/2:

VD = a3
DVDi =

∫

D
a3 [ 1 − 2ψ ]3/2 d3X . (52)

The rate of volume expansion of a domain in the spatial hypersurface, written in terms

of the Hubble functional HD(t), reads:

1

3
〈Nθ〉D =

1

3

V ′
D
VD

= HD = 〈H̃〉D − 〈α′〉D , (53)

with the local Hubble function H̃(X i, t) := a′/a of the background model as seen

in the spatial hypersurfaces specified by the inhomogeneous lapse, i.e. H = ȧ/a =

a′/(aN) = H̃/N . At this place note that there is no ambiguity concerning the notion

of averaged volume expansion, once the lapse function has specified the foliation of

spacetime. Although being unambiguous, we have to come back to this point later,

since a majority of papers on averaging scalar metric inhomogeneities employs Euclidean

volume averaging on the background metric in a frame of global coordinates, which do

††Note that a priori the tilt of the 4−velocity relative to the hypersurface normal is not specified. For
vanishing tilt, as considered here, and in the case of dust matter, shear–free motion implies homogeneity;
this also holds true for large classes of perfect fluid models, see [46, 47, 45]. We briefly show for the
case of dust matter that we can determine the lapse function such that the model is hypersurface–
homogeneous: we use the momentum constraints, Ki

j||i − Kk
k|j = 0, for the extrinsic curvature of

Eq. (50), and integrate them to yield Ns(t) = ψ′/(1 − 2ψ) − H̃ , with a time–dependent function of
integration s(t) that reflects the freedom of time–reparametrization. On the other hand we have from
Ṡ = N−1S,t = h, with h = (ε + p)/%: N = S,t/h. Equating the two relations for the lapse function
gives ψ′/(1 − 2ψ) − a′/a = s(t)S(t)/h. This shows that, if we require p = 0 and hence N|i = 0 and
h = 1, the function ψ can only be time–dependent and does not describe perturbations in the considered
hypersurfaces; e.g. the Ricci tensor, given further below in explicit form, vanishes everywhere, since the
space gradients of ψ(t) vanish. For further discussions of this metric form including estimates, see [32].
Work is in progress that analyzes the present issue in a tilted slicing and non–vanishing shift vector.
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not exist in a general relativistic setting, if the space is deformed by inhomogeneous

perturbations (see the related discussion of George Ellis [55]).

The second time–derivative provides the kinematical equation for the rate of volume

acceleration: writing

a′′D
aD

= H ′
D +H2

D , (54)

and, using the commutation rule (43) for both terms on the r.–h.–s., we calculate: H ′
D =

〈H̃ ′〉D − 〈α′′〉D + 3[〈(α′)2〉D − 〈α′〉2D] − 6[〈H̃α′〉D − 〈H̃〉D〈α′〉D] + 3[〈H̃2〉D − 〈H̃〉2D], and

H2
D = 〈α′〉2D−2〈H̃〉D〈α′〉D+〈H̃〉2D. Summing up the above terms, using H̃ ′+H̃2 = a′′/a,

and rearranging some terms, we get for the rate of volume acceleration:

a′′D
aD

=
〈a′′
a

〉
D

+ 2[ 〈(α′)2〉D − 〈α′〉2D ]

−4[ 〈H̃α′〉D − 〈H̃〉D〈α′〉D ] + 2[ 〈H̃2〉D − 〈H̃〉2D ]

−〈α′′ + 2H̃α′ − (α′)2〉D , (55)

where a′′/a = N2(ä/a) + N ′(ȧ/a) is the local rate of acceleration of the background

model as seen in the spatial hypersurfaces.

This latter equation is quite simple given the fact that the second line above only

appears, since we have factored out a “background model” which, within the spatial

hypersurfaces, appears as a fluctuating background: there is a fluctuating t−Hubble

function, which with the replacement H̃ = NH results in a frame backreaction term.

This term has to be taken seriously, since there are no “background observers” from

which we could see a homogeneous behavior of the background expansion.

Given a solution of Einstein’s equations for ψ and given a lapse, e.g., as a functional

of ψ, the above equation provides the answer to the question, whether the universe model

‘accelerates’. We did not use any dynamical equations of general relativity so far.

Backreaction terms Since we did not employ any approximation beyond those of the

chosen framework, the first and second t−derivatives of the scale factor calculated above

are in accord with those found from the general equations (44). To demonstrate this we

have to employ dynamical equations of general relativity. We evaluate the kinematical

and dynamical backreaction terms:

Q̃D

6
= [ 〈(α′)2〉D − 〈α′〉2D ] − 2[ 〈H̃α′〉D − 〈H̃〉D〈α′〉D ] + [ 〈H̃2〉D − 〈H̃〉2D ] ; (56)

P̃D = 〈Ã〉D + 3
〈N ′

N

(
H̃ − α′

)〉
D
. (57)

We employ the Hamiltonian constraint and Raychaudhuri’s equation in the forms:

R̃ = 16πGε̃+ 2ΛN2 − 6H̃2 + 12H̃α′ − 6(α′)2 (58)

α′′ + 2H̃α′ − (α′)2 =
4πG

3
( ε̃+ 3p̃ ) − N ′

N
(H̃ − α′) − 1

3
Ã +

a′′

a
. (59)



Towards Physical Cosmology 27

Then, we take spatial averages, use the averaged t−scalar curvature 〈N2R〉D, and insert

the average of the left–hand–side of (59) into the last line of Eq. (55); we so find

consistency with the averaged equations (44):

a′′D
aD

= −4πG

3
〈ε̃+ 3p̃〉D +

1

3

(
Q̃D + P̃D

)
; 6H2

D = 16πG〈ε̃〉D − Q̃D − 〈R̃〉D . (60)

(The t−averaged curvature term cancels in the averaged Raychaudhuri equation.)

7.4.3. Dynamical equations for scalar metric perturbations The Hamiltonian constraint

and Raychaudhuri’s equation may be rewritten by replacing the coordinate time–

derivative (denoted by a prime in the previous equations) through the covariant

derivative (denoted by an overdot), and use of the relation H̃ = HN :

R = 16πGε+ 2Λ − 6H2 + 12Hα̇− 6α̇2 ; (61)

α̈ + 2Hα̇− α̇2 − 4πG

3
( δε+ 3δp ) +

1

3
A = 0 , (62)

where we have split off the background model through introduction of the deviations

δε := ε− εH and δp := p− pH , and where the background quantities have to obey the

covariant equation

ä

a
+

4πG

3
(εH + 3pH) = 0 ⇔ a′′

a
+

4πG

3
(ε̃H + 3p̃H) =

N ′

N
H̃ . (63)

Equation (62) is key to the determination of solutions for ψ; we therefore write it in

terms of ψ:

ψ̈ + 2Hψ̇ − 1

3
( 4πG[ δε+ 3δp ] −A ) (1 − 2ψ) +

ψ̇2

1 − 2ψ
= 0 . (64)

The acceleration divergence A = Ã/N2 in these equations can be explicitly expressed

through ψ only, if the lapse function is specified, e.g. through ψ. If it is specified

according to (49) we obtain:

A =
N

|i
||i

N
=

φ
|i
||i

1 + 2φ
−

φ|iφ|i

(1 + 2φ)2
, (65)

involving the Laplace–Beltrami operator ∆g on the 3–metric, (note: Γi
ik = (ln J)|k and

J :=
√

det(gij) = a3(1 − 2ψ)3/2):

∆gφ := φ
|i
||i = [ gijφ|j ]||i = [ gijφ|j ]|i + gkjφ|jΓ

i
ik =

1

J
[ gij J φ|j ]|i . (66)

We notice that we have to specify the form of the lapse function. Then, we can proceed

by solving or approximating the local evolution equation governing ψ. Also this problem,

if approached perturbatively from the outset, could mask the transparency of the general

problem, and so may give rise to ambiguities in interpretation.
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Example As an example that connects the above thoughts with the model in

Subection 7.3 we shall specify the matter model to an irrotational dust continuum,

i.e. p = 0, and therefore h = 1, and ε = %. We consider the comoving synchronous

gauge with N = 1 without loss of generality. Hence, we have no acceleration in the

hypersurfaces, A = 0, and retain the simplified equation:

ψ̈ + 2Hψ̇ − 4πG

3
δ%(1 − 2ψ) +

ψ̇2

1 − 2ψ
= 0 ; δ% = %− %H =: %Hδ , (67)

where the overdot is, in this gauge, equivalent to the coordinate time–derivative, and δ

is defined as the conventional density contrast. Since the energy density is reduced to

the restmass density %, we can employ the general integral

% = %initialJ
−1 i.e. % =

1

a3

%initial

(1 − 2ψ)3/2
= %H

1 + δinitial

(1 − 2ψ)3/2
. (68)

Although a general solution to Eq. (67) may exist and could be found, we here resort to

approximations. Linearizing the above equation with respect to ψ, i.e. also expanding

δ%(1 − 2ψ) to linear order, δ%(1 − 2ψ) ≈ %H [(1 + δinitial)(1 + 3ψ) − 1](1 − 2ψ) ≈
%H(δinitial + 3ψ), we obtain a familiar equation for the approximate solution ψA [85]:

ψ̈A + 2Hψ̇A − 4πG%Hψ
A =

4πG%Hδinitial

3
. (69)

Interestingly, this approximation may be interpreted as the scalar part of the (first–

order) relativistic Lagrangian approximation discussed in Subsection 7.3. For, if we

write the 3–metric in terms of Cartan one–forms, gij = δabη
a
iη

b
j = a2(1 − 2ψ)δij, the

deformation is given by ηa
i = a

√
1 − 2ψ δa

i. On the other hand, the equation for the

trace of first–order Lagrangian perturbations reads [34]:

Aη̈a
i = a[δa

i + P a
i] ; P := P k

k = δakP
a
k ; P̈ + 2HP − 4πG%HP = 4πG%Hδinitial. (70)

Linearizing the trace of the Cartan deformation above we obtain the relation P = 3ψA,

so that Equation (70) implies Equation (69). Keeping only the growing part of the

homogeneous solution we have:

ψA = ψinitial(X
i)ξ(t) with ξ̈ + 2Hξ̇ − 4πG%H(ξ + 1) = 0 , (71)

with the well–known solutions ξ(t) of the linear perturbation theory, or the standard

Zel’dovich approximation [131, 14, 15, 5].

Inserting this approximate solution into the general averaged equations results

in a non–perturbative backreaction model. The averaged intrinsic curvature can be

evaluated in two ways: firstly, from averaging the Hamiltonian constraint (58) as above

(which is enough for the kinematically averaged equations), and, secondly, from the

geometry of the spatial hypersurface: locally, we have for the 3−Ricci tensor:

Ri
j =

1

a2

[
δikψ|kj + ∆ψδi

j

(1 − 2ψ)2
+

3δikψ|kψ|j + (∇ψ)2δi
j

(1 − 2ψ)3

]
, (72)

and for the scalar 3−curvature R = Rk
k:

R =
4

a2

[
∆ψ

(1 − 2ψ)2
+

3

2

(∇ψ)2

(1 − 2ψ)3

]
, (73)
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with the Euclidean operators ∆ψ = δikψ|ik, ∇ψ = ψ|k. (Note that, since N = 1, the

scale–factor a depends only on the coordinate–time t; for non–constant lapse the above

expression also contains spatial derivatives of this scale–factor.) Averaging the above

curvature expression can be used to test consistency and therefore the quality of the

proposed non–perturbative approximation for the backreaction model.

Discussion: non–perturbative versus perturbative approaches

The above example calculation for metrical inhomogeneities of dust furnishes a

perturbative approach with regard to the local solution. Considering the backreaction

problem, i.e. the evolution of average properties given the local solution, we are entitled

to look at the averaged equations in their general form and only approximate the local

evolution of ψ, and this as general as we can (compare here some results obtained in the

Newtonian theory [22]). In such an approach no approximation is done on functionals of

ψ like the averaged equations, the averaging operator itself, etc. We so deal with a non–

perturbative result. The perturbative result should arise as a limit; however, this limit

process is drastic: it involves not only linearizing the equations, but also the averaging

operator, which explains that in previous work many more backreaction terms were

found [96]; compare also [42, 122] and the explicit discussion of this point in [43] and the

contribution [44] to this volume. Exploiting our result in this limit is of course possible,

but from a physical point of view not necessary. The present suggestion of a non–

perturbative approach consists in performing approximations only for the fluctuating

local sources, but how these approximations enter functional expressions like the volume

average and the backreaction model is not further approximated.

The discussion of scalar metric inhomogeneities also should make clear that for

a realistic modeling of inhomogeneities the tensorial degrees of freedom have to be

taken into account. As our example and its connection to the relativistic Zel’dovich

approximation shows, this can be achieved and forms the subject of forthcoming

investigations [34, 35].
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