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Abstract. Standard models of galaxy formation predict that matter distribution is
statistically homogeneous and isotropic and characterized by (i) spatial homogeneity
for r < 10 Mpc/h, (ii) small-amplitude structures of relatively limited size (i.e.,
r < 100) Mpc/h and (iii) anti-correlations for r > rc ≈ 150 Mpc/h (i.e., no
structures of size larger than rc). Whether or not the observed galaxy distribution is
interpreted to be compatible with these predictions depend on the a-priori assumptions
encoded in the statistical methods employed to characterize the data and on the a-
posteriori hypotheses made to interpret the results. We present strategies to test
the most common assumptions and we find evidences that, in the available samples,
galaxy distribution is spatially inhomogeneous for r < 100 Mpc/h but statistically
homogeneous and isotropic. We conclude that the observed inhomogeneities pose a
fundamental challenge to the standard picture of cosmology but they also represent an
important opportunity which may open new directions for many cosmological puzzles.
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1. Introduction

One of cornerstone of modern cosmology is represented by the observations of the three

dimensional distribution of galaxies [1, 2]. In recent years the extraordinary increase

of the number of redshifts has allowed us to characterize in detail galaxy structures

at low redshifts (i.e., z < 0.3) and small scales (i.e., r < 150 Mpc/h). Many authors

(see e.g., [3, 4, 5, 6, 7, 8, 9]) have concluded that the results of a statistical analysis

of the data are compatible with the theoretical expectations of standard scenarios of

galaxy as the Cold Dark Matter (CDM) model and its variants (i.e., the case in which

the cosmological constant is non zero or LCDM). However, there are some important

methodological issues which have not received the due attention [10, 11, 12, 14, 15, 16].

In particular, the critical points concern the a-priori assumptions which are usually used,

without being directly tested, in the statistical analysis of the data and the a-posteriori

hypotheses that are invoked to interpret the results.

Among the former, there are the assumptions of spatial homogeneity and of

translational and rotational invariance (i.e., statistical homogeneity) which are built

in the definition of the standard estimators of galaxy correlations [17]. While these

estimators are certainly the correct ones to use when statistical and spatial homogeneity

are verified, it is not simply evident that galaxy data do satisfy these properties

in the available samples. It is indeed well known that galaxies are organized into

a network of structures, like clusters, filaments and voids, with large fluctuations

[18, 19, 20, 21, 22, 23] and it is not a-priori obvious that spatial or statistical homogeneity

are satisfied in a sample of arbitrary small size.

The observed galaxy distribution is found to be inhomogeneous at small scales

while, according to theoretical models it is expected to become spatially homogeneous

for r > λ0 ≈ 10 Mpc/h (see, e.g., [24]): this scale can be easily calculated by considering

how the scale at which fluctuations are order of the mean evolves according to linear

perturbation theory of a self-gravitating fluid[25]. The scale λ0, a key theoretical

prediction which must be confronted with the data, is usually determined only indirectly

by using statistical methods which assume a-priori spatial homogeneity. When the given

finite sample distribution is not spatially homogeneous the results of the analysis are very

misleading [17]. Therefore, in order to test directly whether a distribution is spatially

homogeneous it is necessary to introduce more general statistical methods than the usual

ones [17, 11]. These methods consider explicitly the problem of the stability of finite

sample determinations: if a statistical quantity depends on the sample size then it is

affected by large fluctuations and/or by observational systematic effects; in both cases it

does not represent a meaningful and useful estimator of an ensemble average property.

A critical analysis of finite-sample volume averages is thus necessary to identify the

subtle effects induced by spatial inhomogeneities and to distinguish them from other

intervening systematic effects.

As mentioned above, a second kind of ad-hoc hypotheses are often used in the

interpretation of the results of the statistical analysis. These are invoked when
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one finds results which are a-priori unexpected and which clearly show that some

of the basic assumptions encoded in the used statistical methods are not verified in

the data. Examples are galaxy evolution, luminosity bias, or selection effects due to

some observational issues. It is plausible that some of these may affect the results

of a statistical analysis; however, in the absence of a quantitative prediction or of an

independent estimation of these effects, one must use several assumptions (e.g., specific

functional behavior or arbitrary values for a set of parameters, etc.) [26, 27, 4] without

any clean test of their validity. A different strategy, which, when possible, we adopt

here, is to develop focussed tests to understand whether the quantitative influence of

the intervening systematic effects are supported by the given data.

Theoretical models predict the matter density field properties both in the early

and in the late universe. Fluctuations and correlations must have very specific

properties. Firstly, the Friedmann-Robertson-Walker (FRW) geometry is derived under

the assumption that matter distribution is exactly translational and rotational invariant,

i.e. that the matter density is assumed to be constant in a spatial hyper-surface. On the

top of the mean field one can consider statistically homogeneous and isotropic small-

amplitude fluctuations [28]. These furnish the seeds of gravitational clustering which

eventually give rise to the structures we observe in the present universe.

Secondly, the statistical properties of matter density fluctuations have to satisfy

an important condition in order to be compatible with the FRW geometry [29, 30]. In

its essence, the condition is that fluctuations in the gravitational potential induced by

density fluctuations do not diverge at large scales [31, 17, 33]. This situation requires

that the matter density field fluctuations must decay in the fastest possible way with

scale [32]. Correspondingly the two-point correlation function becomes negative at larger

scales (i.e., r > 150 Mpc/h) which implies the absence of larger structures of tiny density

fluctuations. Are the observed large scale structures and fluctuations compatible with

such a scenario ?

This paper is organized as follows. In Sect.2 we briefly review the main properties

of both spatially homogeneous and inhomogeneous stochastic density fields. The main

features of real space correlation properties of standard cosmological density fields are

presented in Sect.3. In the case of a finite-sample distribution (Sect.4) the information

that can be exacted from the data is through a statistical analysis, and hence through the

computation of volume averages. We discuss how to set up a strategy to analyze a point

distribution in a finite volume, stressing the sequence of steps that should be considered

in order to reduce as much as possible the role of a-priori assumptions encoded in the

statistical analysis and to correctly interpret the meaning of the measured volume

averages. The analysis of the galaxy data is presented in Sect.5. We show that galaxy

distribution, at relatively low redshifts (i.e., z < 0.3) and small scales (i.e., r < 150

Mpc/h) is characterized by large density fluctuations which correspond to large-scale

correlations. We emphasis that by using the standard statistical tools one reaches a

different conclusion. This occurs because these methods are based on several important

assumptions: some of them, when directly tested are not verified, while others are very



Inhomogeneities in the universe 4

strong ad-hoc hypotheses which require a detailed investigation. Finally in Sect.6 we

draw our main conclusions.

2. A brief review of the main statistical properties

Before entering in the problems related to the statistical characterization in finite

samples, we review the main probabilistic properties of mass density fields. This means

that we consider ensemble averages or, for ergodic cases, volume averages in the infinite

volume limit.

A mass density field can be represented as a stationary stochastic process that

consists in extracting the value of the microscopic density function ρ(~r)‡ at any point of

the space. This is completely characterized by its probability density functional P[ρ(~r)].

This functional can be interpreted as the joint probability density function (PDF) of the

random variables ρ(~r) at every point ~r. If the functional P[ρ(~r)] is invariant under spatial

translations then the stochastic process is statistically homogeneous or translational

invariant (stationary) [17]. When P[ρ(~r)] is also invariant under spatial rotation then

the density field is statistically isotropic [17].

A crucial assumption usually used, when comparing theoretical prediction to data,

is that stochastic fields are required to satisfy spatial ergodicity. Let us take a generic

observable F = F(ρ(~r1), ρ(~r2), ...) function of the mass distribution ρ(~r) at different

points in space ~r1, ~r2, ... . Ergodicity implies that 〈F〉 = F = limV →∞FV , where the

symbol 〈...〉 is for the (ensemble) average over different realizations of the stochastic

process, and FV = 1
V

∫
V FdV is the spatial average in a finite volume V [17].

2.1. Spatially homogeneous distributions

The condition of spatial homogeneity (uniformity) is satisfied if the ensemble average

density of the field ρ0 = 〈ρ〉 is strictly positive, i.e. for an ergodic stochastic field [17],

〈ρ〉 = lim
R→∞

1

V (R; ~x0)

∫

V (R; ~x0)
ρ(r)d3r > 0 ∀ ~x0 , (1)

where R is the linear size of a volume V with center in ~x0. Note that it is necessary to

carefully test spatial homogeneity before applying the definitions given in this section

to a finite sample distribution (see Sect.4). Indeed, for inhomogeneous distributions

the estimation of the average density substantially differs from its asymptotic value and

thus the sample estimation of ρ0 is biased by finite size effects. Unbiased tests of spatial

homogeneity can be achieved by measuring conditional properties (see below).

‡ We use the symbol ρ(r) for the microscopic mass density and n(r) for the microscopic number density.
However in the following sections we consider only the number density, as it is usually done in studies
of galaxy distributions. In that case we can simply replace the symbol ρ(r) with n(r) and all the
definitions given in this section remain unchanged.
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A distribution is spatially inhomogeneous up to a scale λ0, i.e. or spatially

homogeneous for r > λ0, if [17]
∣∣∣∣∣

1

V (R; ~x0)

∫

V (R; ~x0)
d3xρ(~x) − ρ0

∣∣∣∣∣ < ρ0 ∀R > λ0 , ∀ ~x0 . (2)

This equation defines the homogeneity scale λ0 which separates the strongly fluctuating

regime r < λ0 from the regime where fluctuations have small amplitude relative to the

asymptotic average.

Let us now discuss the characterization of two-point correlation properties.

The quantity 〈ρ(~r1)ρ(~r2)〉dV1dV2 gives the a-priori probability to find two particles

simultaneously placed in the infinitesimal volumes dV1, dV2 respectively around ~r1, ~r2.

The quantity

〈ρ(r12)〉pdV1dV2 =
〈ρ(~r1)ρ(~r2)〉

ρ0

dV1dV2 (3)

gives the a-priori probability of finding two particles placed in the infinitesimal volumes

dV1, dV2 around ~r1 and ~r2 with the condition that the origin of the coordinates is occupied

by a particle (Eq.3 is the ratio of unconditional quantities, and thus, for the roles of

conditional probabilities, it defines a conditional quantity) [17].

For a stationary and spatially homogeneous distribution (i.e., ρ0 > 0), we may

define the reduced two-point correlation function as [17]

ξ(r12) =
〈ρ(r12)〉p

ρ0
− 1 =

〈ρ(r12)〉
ρ2

0

− 1 . (4)

This function characterizes two-point correlation properties of small amplitude density

fluctuations. When spatial homogeneity has already been proved there are several

useful information that can be extracted from ξ(r), and in particular one or a few

characteristic length scales. For instance, the correlation length typically corresponds

to an exponential decay of ξ(r) of the type ξ(r) ∼ exp(−r/rc) [17].

The two-point correlation function defined by Eq.4 is simply related to the

normalized mass variance in a volume V (R) of linear size R [17]

σ2(R) =
〈M(R)2〉 − 〈M(R)〉2

〈M(R)〉2
=

1

V 2(R)

∫

V (R)
d3r1

∫

V (R)
d3r2ξ(r12) . (5)

The scale r∗ at which fluctuations are of the order of the mean, i.e. σ(r∗) = 1, is

proportional to the scale r0 at which ξ(r0) = 1 and to the scale λ0 defined in Eq.2.

For spatially uniform systems, when the volume V in Eq.5 is a real space sphere§,
it is possible to proceed to the following classification for the scaling behavior of the

normalized mass variance at large enough scales [31, 17]:

σ2(R) ∼





R−(3+n) for − 3 < n < 1

R−(3+1) log R for n = 1

R−(3+1) for n > 1

. (6)

§ The case in which the volume is a Gaussian sphere can be misleading, see discussion in, e.g., [31]
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For −3 < n < 0 (which corresponds to ξ(r) ∼ r−γ with 0 < γ = 3 + n < 3), mass

fluctuations are super-Poisson. These are, for instance, typical of systems at the critical

point of a second order phase transition [17]: there are long-range correlations and the

correlation length rc is infinite. For n = 0 fluctuations are Poisson-like and the system is

called substantially Poisson: there are no correlations (i.e., a purely Poisson distribution)

or correlations limited to small scales, i.e. of the type ξ(r) ∼ exp(−r/rc), with a finite

rc. This behavior is typical of many common physical systems, e.g., a homogeneous

gas at thermodynamic equilibrium at sufficiently high temperature. Finally for n ≥ 1

fluctuations are sub-Poisson or super-homogeneous [31, 17] (or hyper-uniform [32]). In

this case σ2(R) presents the fastest possible decay for discrete or continuous distributions

[31] and the two-point correlation function has to satisfy the following global constraint
∫ ∞

0
d3rξ(r) = 0 , (7)

(see for more details Sect.3). Examples are provided by the one component plasma,

a well-known system in statistical physics [34], and by a randomly shuffled lattice of

particles [17, 35].

Note that any uniform stochastic process has to satisfy the following condition

lim
R→∞

σ2(R) = lim
R→∞

=
1

V 2(R)

∫

V (R)
d3r1

∫

V (R)
d3r2ξ(r12) = 0 (8)

which implies that the average density ρ0, in the infinite volume limit, is a well defined

concept, i.e. ρ0 > 0 [17]. This is a weaker condition than that required by Eq.7.

2.2. Spatially inhomogeneous distributions

A distribution is spatially inhomogeneous in the ensemble (or in the infinite volume

limit) sense if λ0 → ∞. For statistically homogeneous distributions, from Eq.2, we find

that the ensemble average density is ρ0 = 0. Thus unconditional properties are not well

defined: if we consider a randomly placed finite volume in an infinite inhomogeneous

distribution, it typically contains no points. Therefore only conditional properties are

well defined, as for instance the average conditional density defined in Eq.3.

For a statistically homogeneous and isotropic fractal structure (where all points

are alike) the average conditional mass included in a spherical volume grows as

〈M(r)〉p ∼ rD: for D < 3, the average conditional density presents a scaling behavior

of the type [17]

〈ρ(r)〉p =
〈M(r)〉p

V (r)
∼ rD−3 , (9)

so that limr→∞〈ρ(r)〉p = 0. The hypotheses underlying the derivation of the Central

Limit Theorem are violated by the long-range character of spatial correlations, resulting

in a PDF of fluctuations that does not follow the Gaussian function [17, 36]. On the

contrary, the PDF typically displays “long tails” and some moments of the distribution

may diverge [37] .
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It is possible to introduce more complex inhomogeneous distributions than Eq.9, for

instance the multi-fractal distributions for which the scaling properties are not described

by a single exponent, but they change in different spatial locations [17]. Another simple

(and different !) example is given by a distribution in which the scaling exponent in

Eq.9 depends on distance, i.e. D = D(r) < 3.

3. Statistical properties of the standard model

As discussed in the introduction, the important constraint that must be valid for

any kind of matter density fluctuation field in the framework of FRW models, is

represented by the condition of super-homogeneity, corresponding in cosmology to the

so-called property of “scale-invariance” of the primordial fluctuations power spectrum

(PS)‖ [31]. To avoid confusion, note that in statistical physics the term “scale

invariance” is used to describe the class of distributions which are invariant with

respect to scale transformations. For instance, a magnetic system at the critical point

of transition between the paramagnetic and ferromagnetic phase, shows a two-point

correlation function which decays as a non-integrable power law, i.e. ξ(r) ∼ r−γ with

0 < γ < 3 (super-Poisson distribution in Eq.6). The meaning of “scale-invariance” in

the cosmological context is therefore completely different, referring to the property that

the mass variance at the horizon scale be constant (see below) [31].

3.1. Basic Properties

Matter distribution in cosmology is assumed to be a realization of a stationary stochastic

point process that is also spatially uniform. In the early universe the homogeneity scale

λ0 is of the order of the inter-particle distance, and thus negligible, while it grows during

the process of structure formation driven by gravitational clustering. The main property

of primordial density fields in the early universe is that they are super-homogeneous,

satisfying Eq.6 with n = 1. This latter property was firstly hypothesized in the seventies

[29, 30] and it subsequently gained in importance with the advent of inflationary models

in the eighties [31].

In order to discuss this property, let us recall that the fluctuations in the early

universe are taken to have Gaussian statistics and a certain PS. Since fluctuations

are Gaussian, the knowledge of the PS gives a complete statistical description of the

fluctuation field. In a FRW cosmology there is a fundamental characteristic length

scale, the horizon scale RH(t) that is simply the distance light can travel from the Big

Bang singularity t = 0 until any given time t in the evolution of the Universe. This

scale linearly grows with time. Harrison [29] and Zeldovich [30] introduced the criterion

that matter fluctuations have to satisfy on large enough scales. This is named the

‖ The PS of density fluctuations is P (~k) =
〈
|δρ(~k)|2

〉
, where δρ(~k) is the Fourier Transform of the

normalized fluctuation field (ρ(~r) − ρ0)/ρ0 [31].
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Harrison-Zeldovich criterion (H-Z); it can be written as [17]

σ2(R = RH(t)) = constant. (10)

This condition states that the mass variance at the horizon scale is constant: it can be

expressed more conveniently in terms of the PS for which Eq.10 is equivalent to assume

P (k) ∼ k (the H-Z PS) and that in a spatial hyper-surface σ2(R) ∼ R−4 [31, 17].

3.2. Physical implications of super-homogeneity

In order to illustrate the physical implications of the H-Z condition, one may

consider the gravitational potential fluctuations δφ(~r), which are linked to the density

fluctuations δρ(~r) via the gravitational Poisson equation: ∇2δφ(~r) = 4πGδρ(~r) . From

this equation, transformed into Fourier space, it follows that the PS of the gravitational

potential fluctuations Pφ(k) =
〈
|δφ̂(~k)|2

〉
is related to the density PS P (k) through

the equation Pφ(k) ∼ P (k)
k4 . The H-Z condition, P (k) ∼ k, corresponds therefore

to Pφ(k) ∝ k−3, so that the variance of the gravitational potential fluctuations,

σ2
φ(R) ≈ 1

2
Pφ(k)k3|k=R−1, is constant with k [31].

The H-Z condition is a consistency constraint in the framework of FRW

cosmology. Indeed, the FRW is a cosmological solution for a perfectly spatially and

statistically homogeneous universe, about which fluctuations represent inhomogeneous

perturbations. If density fluctuations obey to a different condition than Eq.10, and

thus n < 1 in Eq.6, then the FRW description will always break down in the past or

future, as the amplitude of the perturbations become arbitrarily large or small. Thus

the super-homogeneous nature of primordial density field is a fundamental property

independently on the nature of dark matter. This is a very strong condition to impose,

and it excludes even Poisson processes (n = 0 in Eq.6) [31] for which fluctuations in

gravitational potential diverge at large scales.

3.3. The two-point correlation function and super-homogeneity

The super-homogeneity (or H-Z) condition corresponds to the limit condition expressed

by Eq.7, which represents another way to reformulate that limk→0 P (k) = 0. This

means that there is a fine tuned balance between small-scale positive correlations and

large-scale negative anti-correlations [31, 17].

Various models of primordial density fields differ for the behavior of the PS at

large wave-lengths which is determined by the specific properties hypothesized for the

dark matter component. For example, in the Cold Dark Matter (CDM) scenario, where

elementary non-baryonic dark matter particles have a small velocity dispersion, the PS

decays as a power law P (k) ∼ k−2 at large k. For Hot Dark Matter (HDM) models,

where the velocity dispersion is large, the PS presents an exponential decay at large

k. However at small k they both exhibit the H-Z tail P (k) ∼ k which is indeed the

common feature of all density fields compatible with FRW models. The scale rc ≈ k−1
c
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at which the PS shows the turnover from the linear to the decaying behavior is fixed to

be the size of the horizon at the time of equality between matter and radiation [42].

Correspondingly, the correlation function ξ(r) of CDM (HDM) models (see Fig.1)

presents the following behavior: it is positive at small scales (decaying as ξ(r) ∼ r−1

for CDM and being almost flat for HDM), it crosses zero at rc and then it is negative

approaching zero as −r−4 (in the region corresponding to P (k) ∼ k) [17].

3.4. Baryonic acoustic oscillations

Let us now mention the baryon acoustic oscillations (BAO) scale [38]. The physical

description which gives rise to these oscillations is based on fluid mechanics and gravity:

when the temperature of the plasma was hotter than ∼ 103 K, photons were hot

enough to ionize hydrogen so that baryons and photons can be described as a single

fluid. Gravity attracts and compresses this fluid into the potential wells associated with

the local density fluctuations. Photon pressure resists this compression and sets up

acoustic oscillations in the fluid. Regions that have reached maximal compression by

recombination become hotter and hence are now visible as local positive anisotropies

in the cosmic microwave background radiation (CMBR), if the different k−modes are

assumed to have the same phase (which is the central hypothesis in this context).

For our discussion, the principal point to note is that while k−oscillations are de-

localized, the real space correlation function ξ(r) has a localized feature at the scale rbao

corresponding to the frequency of oscillations in k space. This simply reflects that the

Fourier Transform of a regularly oscillating function is a localized function. Formally

the scale rbao corresponds to a scale where a derivative of ξ(r) is not continuous [17, 39].

3.5. Size of structures and characteristic scales

In summary, there are three characteristic scales in LCDM-type models (see Fig.1). The

first is the homogeneity scale which depends on time λ0 = λ0(t), the second is the scale

rc where ξ(rc) = 0 (that is roughly proportional to the scale signing an exponential decay

of ξ(r)) which is fixed by the initial properties of the matter density field, which also

determines the third scale rbao. When the homogeneity scale is smaller than rbao, rc,

these two scales are substantially unchanged by gravitational dynamics as this is in the

linear regime. The rate of growth of the homogeneity scale can be simply computed by

using the linear perturbation analysis of a self-gravitating fluid in an expanding universe

[25]. Given the initial amplitude of fluctuations and the assumed initial PS of matter

density fluctuations, under typical assumptions one finds that λ0(tnow) ≈ 10 Mpc/h

[24].

By characterizing the two-point correlation function of galaxy distribution we can

identify three fundamental tests of standard models ¶:

¶ For the power-spectrum there are additional complications, related how galaxies are biased with
respect to the underlying density field: see [40, 33, 41] for further details.
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Figure 1. Schematic behavior of the two-point correlation function for the LCDM
case. At small scales r < r0 ≈ 10 Mpc/h (where ξ(r0) = 1) non-linear gravitational
clustering has changed the initial shape of ξ(r). At larger scales ξ(r) has been only
amplified by gravitational clustering in the linear regime. For 10 < r < rc ≈ 120
Mpc/h the correlation is positive and with small amplitude. At larger scales it is
negative and characterized by the ξ(r) ∼ −r−4 behavior. The location of rbao is fixed
by cosmological parameters: in the example shown rbao < rc as predicted by the
“concordance model” [3].

• If the homogeneity scale λ0 is much larger (i.e., a factor 5-10) than ∼ 10 Mpc/h,

then there is not enough time to form non-linear large scale structures in LCDM

models [11].

• If the the zero crossing scale of ξ(r) is much larger than ∼ 100 Mpc/h then there

is a problem in the description of the early universe physics.

• A clear test of inflationary models is given by the detection of the negative part

of the correlation function, i.e. the range of scales it behaves as ξ(r) ∼ −r−4: all

models necessarily predict such a behavior +.

4. Testing assumptions in the statistical methods

A number of different statistics, determined by making a volume average in a finite

sample, can be used to characterize a given distribution. In addition, each statistical

+ In the same range of scales the PS is expected to be linear with the wave-number, i.e. P (k) ∼ k.
However selection effects may change the behavior of the PS to constant but not the functional behavior
of ξ(r) [40, 33, 41].
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quantity can be measured by using different estimators. For this reason we have to set

up a strategy to attack the problem if a-priori we do not know which are the properties

of the given finite sample distribution. In practice, to get the correct information from

the data we have to reduce as much as possible the number of a-priori assumptions used

the statistical methods.

We limit our discussion to the case of interest, i.e. a set of N point particles (i.e.

galaxies) in a volume V . The microscopic number density can be simply written as

n(~r) =
∑N

i δ3(~r− ~ri) , where δ3(~r) is the Dirac delta function. The statistical quantities

defined in Sect.2 can be rewritten in terms of the stochastic variable

Ni(V ) =
∫

V (~yi)
d3xn(~x) , (11)

where ~yi identifies the coordinates of the center of the volume V . If the center ~yi coincides

with a point particle position ~ri, then Eq.11 is a conditional quantity. Instead, if the

center ~yi can be any point of space (occupied or not by a particle) then the statistics

in Eq.11 is unconditional and it is useful to compute, for instance, the mass variance

defined in Eq.5.

For inhomogeneous distributions, unconditional properties are ill-defined (Sect.2)

and thus we firstly analyze conditional quantities to then pass, only when spatial

homogeneity has been detected inside the given sample, to consider unconditional

ones. Therefore, in what follows we take as volume V in Eq.11 a sphere of radius r

centered in a distribution point particle, i.e., we consider the stochastic variable defined

by the number of points in a sphere ∗ of radius r centered on the ith point of the given

set, i.e. V = V (r; ~ri). The PDF P (N(r)) = P (N ; r) of the variable Ni(r) (at fixed r)

contains, in principle, information about moments of any order [43]. The first moment

is the average conditional density and the second moment is the conditional variance

[11].

However before considering the moments of the PDF we should study whether they

represent statistically meaningful estimates. Indeed, in the determination of statistical

properties through volume averages, one implicitly assumes that statistical quantities

measured in different regions of the sample are stable, i.e., that fluctuations in different

sub-regions are actually described by the same PDF. Instead, it may occur that

measurements in different sub-regions show systematic (i.e., not statistical) differences,

which depend, for instance, on the spatial position of the specific sub-regions. In such

a case the considered statistic is not stationary in space and its whole-sample average

value (i.e., any finite-sample estimation of the PDF moments) is not a meaningful

descriptor. It is in this sense that it does not provide with a useful estimation of

the ensemble average quantity.

∗ When we take a spherical shell instead of a sphere, then we define a differential quantity instead of
an integral one.
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4.1. Self-averaging

A simple test to determine whether there are systematic finite size effects affecting the

statistical analysis in a given sample of linear size L consists in studying the PDF of

Ni(r) in sub-samples of linear size ` < L placed in different spatial regions of the sample

identified by their center-points {S1, ..., SN}. When, at a given scale r < `, P (N(r), `; Si)

is the same, modulo statistical fluctuations, in the different sub-samples, i.e.,

P (N(r); `; Si) ≈ P (N(r); `; Sj) ∀i 6= j , (12)

it is possible to consider whole sample average quantities. When determinations of

P (N(r); `; Si) in different regions Si show systematic differences, then whole sample

average quantities are ill defined. In general, this situation may occur because: (i)

the lack of the property of translational invariance or (ii) the breaking of self-averaging

property due to finite-size effects induced by large-scale structures/voids (i.e., long-range

correlated fluctuations).

While the breaking of translational invariance imply the lack of self-averaging

property the reverse is not true. For instance suppose that the distribution is spherically

symmetric, with origin at r∗ and characterized by a smooth density profile, function of

the distance from r∗ [15]. The average density in a certain volume V , depends on the

distance of it from r∗: there is thus a systematic effect and Eq.12 is not satisfied. On

the other hand when a finite sample distribution is dominated by a single or by a few

structures then, even though it is translational invariant in the infinite volume limit, a

statistical quantity characterizing its properties in a finite sample can be substantially

affected by finite size fluctuations. For instance, a systematic effect is present when

the average (conditional) density largely differs when it is measured into two disjointed

volumes placed at different distances from the relevant structures (i.e., fluctuations) in

the sample. In a finite sample, if structures are large enough, the measurements may

differ much more than a statistical scattering ]. That systematic effect sometimes is

refereed to as cosmic variance [22] but that is more appropriately defined as breaking

of self-averaging properties [11], as the concept of variance (which involves already

the computation of an average quantity) maybe without statistical meaning in the

circumstances described above [11]. In general, in the range of scales in which statistical

quantities give sample-dependent results, then they do not represent fair estimations of

asymptotic properties of the given distribution [11].

4.2. Spatial homogeneity

The self-averaging test (Eq.12) is the first one to understand whether a distribution is

spatially homogeneous or not inside a given sample. As long as the PDF P (N, r) does

not satisfy Eq.12 then the distribution is spatially inhomogeneous and the moments of

the PDF are not useful estimators of the underlying statistical properties. Suppose that

] The determination of statistical errors in a finite volume is also biased by finite size effects [33, 16]
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Eq.12 is found to be satisfied up to given scale r < L. Now we can ask the question:

does the distribution become spatially homogeneous for r < L?

As mentioned in Sect.2, to answer to this question it is necessary to employ

statistical quantities that do not require the assumption of spatial homogeneity, such as

conditional ones [17, 11]. Particularly the first moment of P (N, r) provides an estimation

of the average conditional density defined in Eq.3, which can be simply written as

n(r)p =
1

M(r)

M(r)∑

i=1

Ni(r)

V (r)
=

1

M(r)

M(r)∑

i=1

ni(r) . (13)

We recall that Ni(r) gives the number of points in a sphere of radius r centered on the

ith point and the sum is extended to the all M(r) points contained in the sample for

which the sphere of radius r is fully enclosed in the sample volume (this quantity is r

dependent because of geometrical constraints, see, e.g., [11]). Analogously to Eq.13 the

estimator of the conditional variance can be written as

σ2
p(r) =

1

M(r)

M(r)∑

i=1

n2
i (r) − n(r)p

2
. (14)

In the range of scales where self-averaging properties are satisfied, one may study the

scaling properties of n(r)p and of σ2
p(r). As long as n(r)p presents a scaling behavior as

a function of spatial separation r, as in Eq.9 with D < 3, the distribution is spatially

inhomogeneous. When n(r)p ≈ const. then this constant provides an estimation of the

ensemble average density and the scale λ0, where the transition to a constant behavior

occurs, marks the homogeneity scale. Only in this latter situation it is possible to study

the correlation properties of weak amplitude fluctuations. This can be achieved by

considering the function ξ(r) defined in Eq.4.

4.3. The two-point correlation function

Before proceeding, let us clarify some general properties of a generic statistical estimator

which are particularly relevant for the two-point correlation function ξ(r). As mentioned

above, in a finite sample of volume V we are only able to compute a statistical estimator

XV of an ensemble average quantity 〈X〉. The estimator is valid if

lim
V →∞

XV = 〈X〉 . (15)

If the ensemble average of the finite volume estimator satisfies

〈XV 〉 = 〈X〉 (16)

the estimator is unbiased. When Eq.16 is not satisfied then there is a systematic offset

which has to be carefully considered. Note that the violation of Eq.12 implies that

Eq.16 is not valid as well. Finally the variance of an estimator is σX
V = 〈XV

2〉 − 〈XV 〉2.
The results given by an estimator must be discussed carefully considering its bias

and its variance in any finite sample. A strategy to understand what is the effect

of these features consists in changing the sample volume V and study finite size effects

[17, 33, 11]. This is crucially important for the two-point correlation function ξ(r) as
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any estimator ξ(r) is generally biased, i.e. it does not satisfy Eq.16 [33, 44]. This

occurs because the estimation of the sample density is biased when correlations extend

over the whole sample size, or beyond it. Indeed, the most common estimator of the

average density is

n =
N

V
, (17)

where N is the number of points in a sample of volume V . It is simple to show that its

ensemble average value can be written as [33]

〈n〉 = 〈n〉
(
1 +

1

V

∫

V
d3rξ(r)

)
. (18)

Therefore only when ξ(r) = 0 (i.e., for a Poisson distribution), Eq.17 is an unbiased

estimator of the ensemble average density: otherwise the bias is determined by the

integral of the ensemble average correlation function over the volume V .

The most simple estimator of ξ(r) is the Full-Shell (FS) estimator [33] that can be

simply written, by following the definition given in Eq.4, as

ξ(r) =
(n(r))p

n
− 1 , (19)

where (n(r))p is the estimator of the conditional density in spherical shells rather than

in spheres as for the case of Eq.13. Suppose that in a spherical sample of radius Rs, to

estimate the sample density, instead of Eq.17, we use the estimator

n =
3

4πR3
s

∫ Rs

0
(n(r))p4πr2dr . (20)

Then, by construction the estimator defined in Eq.19 must satisfies the following integral

constraint
∫ Rs

0
ξ(r)r2dr = 0 . (21)

This condition is satisfied independently of the functional shape of the underlying

correlation function ξ(r). Thus the integral constraint for the FS estimator does not

simply introduce an offset, but it causes a change in the shape of ξ(r) for r → Rs .

Other choices of the sample density estimator [33, 44] and/or of the correlation function

introduce distortions similar to that in Eq.21.

In order to show the effect of the integral constraint for the FS estimator, let us

rewrite the ensemble average value of the FS estimator (i.e., Eq.19) in terms of the

ensemble average two-point correlation function

〈ξ(r)〉 =
1 + ξ(r)

1 + 3
R3

s

∫ Rs
0 ξ(r)r2dr

− 1 . (22)

By writing Eq.22 we assume that the stochastic noise is negligible, which, of course, is

not a good approximation at any scale. However in this way we may be able to single

out the effect of the integral constraint for the FS estimator. From Eq.22 it is clear that

this estimator is biased, as it does not satisfy Eq.16 but only Eq.15.
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Figure 2. Absolute value of the estimation of the correlation function of the LCDM
model with the integral constraint described by Eq.22. The tick solid line represents
the theoretical model. The zero crossing scale correspond to the cusp ( Adapted from
[33]).

As an illustrative example, let us now consider the case in which the theoretical

ξ(r) is a given by the LCDM model. The (ensemble average) estimator given by Eq.22,

in spherical samples of different radius Rs, is shown in Fig.2. One may notice that for

Rs > rc the zero point of ξ(r) remains stable, while when Rs < rc it linearly grows

with Rs. The negative tail continues to be non-linearly distorted even when Rs > rc.

For instance, when Rs ≈ 600 Mpc/h we are not able to detect the ξ(r) ∼ −r−4 tail

that becomes marginally visible only when Rs > 1000 Mpc/h. Thus the stability of the

zero-point crossing scale should be the first problem to be considered in the analysis of

ξ(r), clearly, once spatial homogeneity has been already proved.

5. Results in the data

We briefly review the main results obtained by analyzing several samples of the Sloan

Digital Sky Survey (SDSS) [10, 12, 11, 36, 15] and of the Two degree Field Galaxy

Redshift Survey (2dFGRS) [45, 13, 14]. In both catalogues we selected, in the angular

coordinates, a sky region such that (i) it does not overlap with the irregular edges of the

survey mask and (ii) it covers a contiguous sky area. We computed the metric distance

R(z; Ωm, ΩΛ) from the redshift z by using the cosmological parameters Ωm = 0.25 and

ΩΛ = 0.75.

The SDSS catalogue includes two different galaxy samples constructing by using
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different selection criteria: the main-galaxy (MG) sample and the Luminous Red Galaxy

(LRG) sample. In particular, the MG sample is a flux limited catalogue with apparent

magnitude mr < 17.77 [46], while the LRG sample was constructed to be volume-limited

(VL) [47]. A sample is flux limited when it contains all galaxies brighter than a certain

apparent flux fmin. There is an obvious selection effect in that it contains intrinsically

faint objects only when these are located relatively close to the observer, while it contains

intrinsically bright galaxies located in wide range of distances [6]. For this reason one

constructs a volume limited (VL) sample by imposing a cut in absolute luminosity Lmin

and by computing the corresponding cut in distance rmax ≈
√

Lmin/(4πfmin), so that all

galaxies with L > Lmin, located at distances r < rmax, have flux f > fmin, and are thus

included in the sample. By choosing different cuts in absolute luminosity one obtains

several VL samples (with different Lmin, rmax). Note that we use magnitudes instead

of luminosities and that the absolute magnitude must be computed from the redshift

by taking into account both the assumptions on the cosmology (i.e. the cosmological

parameters, which very weakly perturb the final results given the low redshifts involved,

i.e., z < 0.2) and the K-corrections (which are measured in the SDSS case).

For the MG sample we used standard K-corrections from the VAGC data [48]: we

have tested that our main results do not depend significantly on K-corrections and/or

evolutionary corrections [11]. The MG sample angular region we consider is limited, in

the SDSS internal angular coordinates, by −33.5◦ ≤ η ≤ 36.0◦ and −48.0◦ ≤ λ ≤ 51.5◦:

the resulting solid angle is Ω = 1.85 sr. For the LRG sample, we exclude redshifts

z > 0.36 and z < 0.16 (where the catalogue is known be incomplete [46, 4]), so that the

distance limits are: Rmin = 465 Mpc/h and Rmax = 1002 Mpc/h. The limits in R.A α

and Dec. δ considered are: α ∈ [130◦, 240◦] and δ ∈ [0◦, 50◦]. The absolute magnitude

is constrained in the range M ∈ [−23.2,−21.2]. With these limits we find N = 41833

galaxies covering a solid angle Ω = 1.471 sr [49]. Finally for 2dFGRS, to avoid the effect

of the irregular edges of the survey we selected two rectangular regions whose limits

are [14]: in southern galactic cap (SGC) (−33◦ < δ < −24◦, −32◦ < α < 52◦), and in

northern galactic cap (NGC) (−4◦ < δ < 2◦, 150◦ < α < 210◦); we determined absolute

magnitudes M using K-corrections from [50, 14].

5.1. Redshift selection function

In order to have a simple picture of the redshift distribution in a magnitude limited

sample, we report Fig.3 galaxy counts as a function of the radial distance, in bins of

thickness 10 Mpc/h, in the northern and southern part of the 2dFGRS [14, 13]. One

may notice that a sequence of structures and voids is clearly visible, but there is an

overall trend (a rise, a peak and then a decrease of the density) which is determined

by a luminosity selection effect. Indeed, n(R) in a flux limited sample is usually called

redshift selection function, as it is determined by both the redshift distribution and

by the luminosity selection criteria of the survey. It is thus not easy, by this kind of

analysis, to determine, even at a first approximation, the main properties of the galaxy
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northern (NGC) and souther (SGC) part of the 2dFGRS magnitude limited sample.
There is a large structure at ∼ 240 Mpc/h. In the inset panel it is shown the
distribution of Ni(r; R) for r = 10Mpc/h in a VL sample in the NGC. (Adapted
from [14]).

distribution in the samples. Nevertheless, one may readily compute that there is a

∼ 30% of difference in the sample density between the northern and the southern part

of the catalogue: one needs to refine the analysis to clarify its significance. Note that

large scale ∼ 30% fluctuations are not uncommon. For instance, fluctuations have been

found in galaxy redshift and magnitude counts that are close to 50% occurring on ∼ 100

Mpc/h scales [18, 19, 20, 21].

5.2. Radial counts

A more direct information about the value of the density in a VL sample, is provided

by the number counts of galaxies as a function of radial distance n(R) in a VL sample.

For a spatially homogeneous distribution n(R) should be constant while, for a fractal

distribution it should exhibit a power-law decay, even though large fluctuations are

expected to occur given that this not an average quantity [51].

In the SDSS MG VL samples, at small enough scales, n(R) (see the left panel of

Fig.5) shows a fluctuating behavior with peaks corresponding to the main structures in

the galaxy distribution [11]. At larger scales n(R) increases by a factor 3 from R ≈ 300

Mpc/h to R ≈ 600 Mpc/h. Thus there is no range of scales where one may approximate

n(R) with a constant behavior. The open question is whether the growth of n(R) for
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R > 300 Mpc/h is induced by structures and/or by observational selection effect in

data: in principle, both are possible. For instance in [27] it is argued that a substantial

galaxy evolution causes that growth, while in [11] it is discussed that structures certainly

contribute to the observed a behavior. (Note that in mock catalogues drawn from

cosmological N-body simulations one measures an almost constant density [11, 14]).

Given that, by construction, also the LRG sample should be VL [53, 7, 4] the

behavior of n(R) is expected to be constant if galaxy distribution is close to uniform

(up to Poisson noise and radial clustering). It is instead observed that the LRG sample

n(R) shows an irregular and not constant behavior (see the right panel of Fig.5) rather

different from that found in the MG sample. Indeed, there are two main features: (i)

a negative slope between 400 Mpc/h < r < 800 Mpc/h (i.e., 0.16 < z < 0.28) and (ii)

a positive slope up to a local peak at r ∼ 950 Mpc/h (i.e., z ∼ 0.34). Note that if n(R)

were constant we would expect a behavior similar to the one shown by the mock sample

extracted from the Horizon simulation [52] (see Fig.5) [49].

An explanation that it is usually given to interpret the behavior of n(R) [7, 4],

is that the LRG sample is “quasi” VL, precisely because it does not show a constant

n(R). Thus, the unexpected trends and features of n(R) are absorbed in the properties

of the so-called “the survey selection function”, which is unknown a priori, but that

is defined a posteriori as the difference between an almost constant n(R) and the
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behavior observed. This explanation is unsatisfactory as it is given a posteriori and no

independent tests have been provided to corroborate the hypothesis that an important

observational selection effect occurs in the data, other than the behavior of n(R) itself.

A different possibility is that the behavior of n(R) is determined, at least partially, by

intrinsic fluctuations in the distribution of galaxies and not by selection effects.

Note that, by addressing the behavior of n(R) to unknown selection effects, it is

implicitly assumed that more than the 20% of the total galaxies have not be measured

for observational problems [49]. This looks improbable [53] although a more careful

investigation of the problem must be addressed. Note also that the deficit of galaxies

would not be explained by a smooth redshift-dependent effect, rather the selection must

be strongly redshift dependent as the behavior of n(R) is not monotonic. These facts

point, but do not proof, toward an origin of the n(R) behavior due to the intrinsic

fluctuations in the galaxy distribution.

5.3. Test on self-averaging properties

Galaxy counts provide only a rough analysis of fluctuations as one is unable to compute

a truly volume average quantity. In addition galaxy counts sample different scales

differently as the volume in the different redshift bins is not the same. The analysis of

the stochastic variable represented by the number of points in spheres Ni(r) an help to

overcome these problems, as it is possible to construct volume averages and because it

is computed in a simple real sphere sphere. (See an example in the inset panel of Fig.3).

Let us thus pass to the self-averaging test described in Sect.4.1. To this aim we

divide the sample into two non-overlapping regions of equal volume, one at low (L) and

the other at high (H) redshifts. We then measure the PDF PL(N ; r) and PH(N ; r) in

the two volumes ( see [15] for more details). Given that the number of independent
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Figure 6. Upper Panels: PDF of the counts in spheres in the sample defined by
R ∈ [125, 400] Mpc/h and M ∈ [−20.5,−22.2] in the DR6 and DR7 data, for two
different values of the sphere radii r = 10 Mpc/h and r = 80 Mpc/h. Lower Panels:
The same but for the sample defined by R ∈ [200, 600] Mpc/h and M ∈ [−21.6,−22.8]
and for r = 20, 120 Mpc/h. (Adapted from [15]).



Inhomogeneities in the universe 21

points is not very large at large scales (i.e., M(r) in Eq.13 not very larger than ∼ 104),

in order to improve the statistics especially for large sphere radii, we allow a partial

overlapping between the two sub-samples, so that galaxies in the L (H) sub-sample

count also galaxies in the H (L) sub-sample. This overlapping clearly can only smooth

out differences between PL(N ; r) and PH(N ; r).

We first consider two SDSS MG VL samples from the data release 6 (DR6) [11]

and then from the DR7 [15]. In a first case (upper - left panels of Fig.6), at small

scales (r = 10 Mpc/h), the distribution is self-averaging (i.e., the PDF is statistically

the same) both in the DR6 sample (that covers a solid angle ΩDR6 = 0.94 sr) than

in the DR7 sample (ΩDR7 = 1.85 sr ≈ 2 × ΩDR6 sr). Instead, for larger sphere radii

i.e., r = 80 Mpc/h, (bottom - right panels of Fig.6) in the DR6 sample, the two PDF

show clearly a systematic difference. Not only the peaks do not coincide, but the overall

shape of the PDF is not smooth displaying a different shape. Instead, for the sample

extracted from DR7, the two determinations of the PDF are in good agreement (within

statistical fluctuations). We conclude that in DR6 for r = 80 Mpc/h there are large

density fluctuations which are not self-averaging because of the limited sample volume

[11, 15]. They are instead self-averaging in DR7 because the volume is increased by a

factor two.

For the other sample we consider, which include mainly bright galaxies, the breaking

of self-averaging properties occurs only for large r, both in the DR6 and in the

DR7 samples. As mentioned above, radial distance-dependent selections, like galaxy

evolution [27], could in principle give an effect in the same direction if they tend to

increase the number density with redshift. However this would not change the main

conclusion that, on large enough scales, self-averaging is broken. Note that in the SDSS

samples for small values of r the PDF is found to be statistically stable in different

sub-regions of a given sample. For this reason we do not interpret the lack of self-

averaging properties as due to a “local hole” around us: this would affect all samples

and all scales, which is indeed not the case [15]. Because of these large fluctuations

in the galaxy density field, self-averaging properties are well-defined only in a limited

range of scales where it is then statistically meaningful to measure whole-sample average

quantities [11, 36, 15].

For the LRG sample (see Fig.7) one may note that for r = 50 Mpc/h the

determinations in the two are separate parts of the sample much closer than for lager

sphere radii. Indeed, fro r > 100 Mpc/h there is actually a noticeable difference in the

whole shape of the PDF. The fact that PH(N ; r) is shifted toward smaller values than

PL(N ; r) is related to the decaying behavior of the redshift counts (see Fig.5): most

of the galaxies at low redshifts see a relatively larger local density than the galaxies at

higher redshift.

In summary, due the breaking of self-averaging properties in the different samples

for r < 150 Mpc/h we conclude that there is no evidence for a crossover to spatial

uniformity.
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Figure 7. Upper Left Panel: PDF for r = 50 Mpc/h in the LRG sample ( Adapted
from [49]).

5.4. Probability density function and its moments

We can refine the analysis by characterizing the shape of the PDF and the scaling of its

moments. In particular, in the range of scales where self-averaging properties are found

to be satisfied, we can further characterize the shape of the PDF and the scaling of its

moments, particularly the first moment, the behavior of the average conditional density

(Eq.13) whose behavior is presented in Fig.8. In brief, it decays approximately as r−1

up to ≈ 20 Mpc/h where the decay changes to n(r) ≈ 0.011 × r−0.29 ††. Moreover,

the density n(r) does not saturate to up to ∼ 100 Mpc/h, i.e., up to the largest scales

probed in this sample where self-averaging properties have been tested to hold. In Fig.8

it is also shown the behavior of n(r) into two non-overlapping regions of equal volume:

these behaviors show the typical fluctuations affecting the estimation of this quantity.

The scaling behavior of the conditional density implies that galaxy structures are

characterized by non-trivial correlations for scales up to r ≈ 100 Mpc/h, without a

crossover towards spatial homogeneity.

To probe the whole distribution of the conditional density ni(r), we fitted the

measured PDF with Gumbel distribution via its two parameters α and β [36]. The

Gumbel distribution is one of the three extreme value distribution [54, 55]. It describes

the distribution of the largest values of a random variable from a density function with

faster than algebraic (say exponential) decay. The Gumbel distribution’s PDF is given

by

P (y) =
1

β
exp

[
−y − α

β
− exp

(
−y − α

β

)]
. (23)

††Alternatively, an almost indistinguishable fit is provided by a slow logarithmic one n(r) ≈ 0.0133
log r [36]
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Figure 8. Conditional average density n(r) of galaxies as a function of radius (R1).
Note the change of slope at ≈ 20 Mpc/h and note also that there is no flattening up
to ≈ 100 Mpc/h (in the inset panel it is shown a zoom at large scales). The statistical
significance of the last few points at the largest scales is weaker (see text). The behavior
of n(r) in two non-overlapping and equal volume regions, named R2 and R3, is also
plotted.

The mean and the variance of the Gumbel distribution (Eq.23) is µ = α + γβ, σ2 =

(βπ)2/6 where γ = 0.5772 . . . is the Euler constant.

One of our best fit for the PDF is obtained for r = 20 Mpc/h (see Fig. 9). At

larger scales the fit get worst, but the Gumbel function remains a good fit even for

r = 110 Mpc/h. Given that the main source of uncertainty is, as discussed, finite

volume systematic effects, it is not simple to determine the statistical significance of the

Gumbel fit as systematic errors are larger than statistical ones.

The fact that the PDF is clearly asymmetric, and well-fitted by a Gumbel function,

provides an additional evidence that correlations are long-range. Indeed, due to

the Central Limit Theorem, all homogeneous point distributions with short-range

correlations lead to Gaussian fluctuations [17]. It was recently conjectured [56] that

only three types of distributions appear to describe fluctuations of global observables at

criticality. In particular, when the global observable depends weakly on the system size

(e.g., logarithmically), the corresponding distribution should be a (generalized) Gumbel

[36].
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Figure 9. PDF for r = 20, 50, 80, 100 Mpc/h. The solid line corresponds to the best
fit with a Gumbel distribution.

5.5. Two-point correlation analysis

When one determines the standard two-point correlation function one makes implicitly

the assumptions that, inside a given sample the distribution is: (i) self-averaging and

(ii) spatially uniform. The first assumption is used when one computes whole sample

average quantities. The second is employed when supposing that the estimation of the

sample density gives a fairly good estimation of the ensemble average density. When

one of these assumptions, or both, is not verified then the interpretation of the results

given by the determinations of the standard two-point correlation function must be

reconsidered with great care.

To show how non self-averaging fluctuations inside a given sample bias the ξ(r)

analysis, we consider the estimator

ξ(r) + 1 = ξ(r; R, ∆R) + 1 = n(r, ∆r)p ·
V (r∗)

N(r∗; R, ∆R)
, (24)

where the second ratio on the r.h.s. is now the density of points in spheres of radius r∗

averaged over the galaxies lying in a shell of thickness ∆R around the radial distance

R. If the distribution is homogeneous, i.e., r∗ > λ0, and statistically stationary, Eq.24

should be (statistically) independent on the range of radial distances (R, ∆R) chosen.

The two-point correlation function is defined as a ratio between the average conditional

density and the sample average density: if both vary in the same way when the radial

distance is changed, then its amplitude remains nearly constant. This however does

not imply that the amplitude of ξ(r) is meaningful, as it can happen that the density

estimated in sub-volumes of size r∗ show large fluctuations and so the average conditional
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Figure 10. Left panel: The two-point correlation function in a MG-VL sample
estimated by Eq.24: the sample average density is computed in spheres of radius
r∗ = 60 Mpc/h and considering all center-points lying in a bin of thickness ∆R = 50
Mpc/h cantered at different radial distance R: R1 = 250 Mpc/h (n1

s) and R2 = 350
Mpc/h (n2

s). The case in which we have used the estimation of the sample average
N/V (ns) is also shown and it agrees with the FS estimator (adapted from [11]). Right
Panel: The Landy and Szalay [57] estimator of ξ(r) in various MG-VL sample and
in a LRG sample of the SDSS. The most evident feature is the finite-size dependence
of both the amplitude and the zero-crossing (adapted from [16]). The solid line is a
LCDM model.

density, and this occurring with a radial-distance dependence. The ξ(r) analysis gives

a meaningful estimate of the amplitude of fluctuations, only if this amplitude remains

stable by changing the relative position of the sub-volumes of size r∗ used to estimate

the average conditional density and the sample average density. This is achieved by

using the estimator in Eq.24. While standard estimators [57, 44, 33] are not able to test

for such an effect, as the main contributions for both the conditional density and the

sample average density come from the same part of the sample (typically the far-away

part where the volume is larger). We find large variations in the amplitude of ξ(r) in the

SDSS MG VL samples (see the left panel of Fig.10). This is simply an artifact generated

by the large density fluctuations on scales of the order of the sample sizes. The results

that the estimator of ξ(r) has nearly the same amplitude in different samples, e.g.,

[58, 59, 60, 61, 7, 8, 9], despite the large fluctuations of Ni(r; R), are simply explained

by the fact that ξ(r) is a ratio between the average conditional density and the sample

average density: both vary in the same way when the radial distance is changed and

thus the amplitude is nearly constant.

In the right panel of Fig.10 it is plotted the behavior of ξ(r) in samples of different

size. This clearly show that there is a finite-size dependence of both the amplitude of

the correlation function and of the zero-crossing scale. Therefore the estimator of ξ(r)

is biased by volume-dependent systematic effects that make the detection of correlation

amplitude only an estimate of their lower limit [16]. A similar conclusion was reached

by [62], i.e. that when corrections for possible systematics are taken into account the

correlation function may not be consistent with as high amplitude a peak as claimed by

[3]. To clarify this issue, as discussed above, it is necessary to consider the set of tests
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for statistical and spatial homogeneity discussed above.

Instead of investigating the origin of the fluctuating behavior of n(R), some authors

[4] focused their attention on the effect of the radial counts on the determination of the

two-point correlation function. In particular, they proposed mainly two different tests

to study what is the effect of n(R) on the determination of ξ(r). The first test consists

in taking a mock LRG sample, constructed from a cosmological N-body simulation of

the LCDM model, and by applying a redshift selection which randomly excludes points

in such a way that the resulting distribution has the same n(R) of the real sample. Then

one can compare ξ(r) obtained in the original mock and in redshift-sampled mock. [4]

find that there is a good agreement between the two. This shows that the particular

kind of redshift-dependent random sampling considered for the given distribution, does

not alter the determination of the correlation function. Alternatively we may conclude

that, under the assumption that the observed LRG sample is a realization of a mock

LCDM simulation, the n(R) does not affect the result. However, if we want to test

whether the LRG sample has the same statistical properties of the mock catalogue, we

cannot clearly proof (or disproof) this hypothesis by assuming a priori that this is true.

In other words, standard analyses ask directly the question of whether the data are

compatible with a given model, by considering only a few statistical measurements. As

it was shown by [5] the LRG correlation function does not pass the null hypothesis, i.e.

it are compatible with zero signal, implying that the volume of current galaxy samples

is not large enough to claim that the BAO scale is detected. In addition, by assuming

that the galaxy correlations are modelled by a LCDM model, one may find that the

data allow to constrain the position of the BAO scale. In our view this approach is too

narrow: in evaluating whether a model is consistent with the data, one should show that

at least the main statistical properties of the model are indeed consistent with the data.

As discussed above, a number of different properties can be considered, which are useful

to test the assumptions of (i) self-averaging and (ii) spatial homogeneity. When, inside

the given sample, the assumption (i) and/or (ii) are/is violated then the compatibility

test of the data with a LCDM model is not consistent with the properties of the data

themselves.

6. Conclusion

The statistical characterization of galaxy structures presents a number of subtle

problems. These are associated both with the a-priori assumptions which are encoded

in the statistical methods used in the measurements of galaxy correlations and in the

a-posteriori hypotheses that are invoked to explain certain measured behaviors. These

latter include for example, luminosity bias, galaxy evolution, observational selection

effects, etc. Therefore it is necessary to introduce direct tests to understand both

whether the a-priori assumptions are compatible with the data and whether it is justified

to introduce a-posteriori untested, but plausible, hypotheses to interpret the results of

the data analysis. For instance, the analysis of the simple counts as a function of
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distance, in the SDSS samples, shows clearly that the observed behavior is incompatible

with model predictions, i.e., spatial homogeneity. As mentioned above, one may assume

that the differences between the model and the observations are due to selection effects.

Then this becomes clearly the most important assumption in the data analysis that

must be stressed clearly and explicitly. In addition, one must consider whether there

is an independent way to study selection effects in the data.

On the basis of the results have presented, aiming to directly test whether spatial

and statistical homogeneity are verified inside the available samples we conclude that

galaxy distribution is characterized by structures of large spatial extension. Given that

we are unable to find a crossover towards homogeneity, the amplitude of these structures

remain undetermined and their main characteristic is represented by the scaling behavior

of their relevant statistical properties. In particular, we discussed that the average

conditional density presents a scaling behavior of the type ∼ r−γ with γ ≈ −1 up to

∼ 20 Mpc/h followed by a γ ≈ −0.3 behavior up to ∼ 100 Mpc/h. Correspondingly the

probability density function (PDF) of galaxy (conditional) counts in spheres shows a

relatively long tail: it is well fitted by the Gumbel function instead than by the Gaussian

function, as it is generally expected for spatially homogeneous, short range correlated,

density fields.

The statistical tests introduced here can thus provide direct observational evidences,

at small scales and low redshifts (when z � 1 we can neglect the important

complications of evolving observations onto a spatial surface for which we need a

specific cosmological model) of the basic assumptions used in the derivation of the FRW

models, i.e. spatial and statistical homogeneity. In this respect it is worthing to further

clarify the subtle difference between these two concepts [15]. The concordance model

of the universe combines three fundamental assumptions: (i) Einstein’s field equations

to determine the dynamics of space-time. (ii) Statistical homogeneity and isotropy, i.e.,

that “the Earth is not in a central, specially favored position” [64, 65]. This requirement

can be though to be the Copernican Principle which is a fundamental principle because

one wants to avoid any special point or direction. (iii) Spatial homogeneity: this

requirement is not a fundamental one as (ii) but plays the crucial role of simplifying the

solutions of the Einstein’s field equations.

The Cosmological Principle is usually meant to include both the requirement of

statistical homogeneity and isotropy and of spatial homogeneity: these assumptions

are often simply summarized in the requirement that the universe is homogeneous and

isotropic. However one must bear in mind the fact that the universe looks the same,

at least in a statistical sense, in all directions and that all observers are alike does not

imply spatial homogeneity of matter distribution. It is however this latter condition

that allows us to treat, above a certain scale, the density field as a smooth function, a

fundamental hypothesis used in the derivation of the FRW metric.

We have shown that galaxy distribution in different samples of the SDSS is

compatible with the assumption that this is transitionally invariant, i.e. it satisfies the

requirement of the Copernican Principle that there are no spacial points or directions.
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On the other hand, we found that there are no clear evidences of spatial homogeneity up

to scales of the order of the samples sizes, i.e. ∼ 100 Mpc/h. This implies that galaxy

distribution is not compatible with the stronger assumption of spatial homogeneity,

encoded in the Cosmological Principle. In addition, at the largest scales probed by these

samples (i.e., r ≈ 150 Mpc/h) we found evidences for the breaking of self-averaging

properties, i.e. that the distribution is not statistically homogeneous. Forthcoming

redshift surveys will allow us to clarify whether on such large scales galaxy distribution

is still inhomogeneous but statistically stationary, or whether the evidences for the

breaking of spatial translational invariance found in the SDSS samples were due to

selection effects in the data.

We note an interesting connection between spatial inhomogeneities and large

scale flows which can be hypothesized by assuming that the gravitational fluctuations

in the galaxy distribution reflect those in the whole matter distribution, and that

peculiar velocities and accelerations are simply correlated. Peculiar velocities provide

an important dynamical information as they are related to the large scale matter

distribution. By studying their local amplitudes and directions, these velocities allow us,

in principle, to probe deeper, or hidden part, of the Universe. The peculiar velocities are

indeed directly sensitive to the total matter content, through its gravitational effects, and

not only to the luminous matter distribution. However, their direct observation through

distance measurements remains a difficult task. Recently, there have been published a

growing number of observations of large-scale galaxy coherent motions which are at odds

with standard cosmological models [68, 67, 69, 70].

It is possible to consider the PDF of gravitational force fluctuations generated by

source field represented by galaxies, and test whether it converges to an asymptotic

shape within sample volumes. In several SDSS sample we find that density fluctuations

at the largest scales probed, i.e. r ≈ 100 Mpc/h, still significantly contribute to the

amplitude of the gravitational force [66]. Under the hypotheses mentioned above we

may conclude that that large-scale fluctuations in the galaxy density field can be the

source of the large scale flows recently observed.

From the theoretical point of view, it is then necessary to understand how to treat

inhomogeneities in the framework of General Relativity [65, 71, 72, 73, 74, 75, 76, 77].

To this aim one needs to carefully consider the information that can be obtained from

the data. At the moment it is not possible to get some statistical information for large

redshifts (z ≈ 1), but the characterization of relatively small scales properties (i.e.,

r < 200 Mpc/h) is getting more and more accurate. According to FRW models the

linearity of Hubble law is a consequence of the homogeneity of the matter distribution.

Modern data show a good linear Hubble law even for nearby galaxies (r < 10 Mpc/h).

This raises the question of why the linear Hubble law is linear at scales where the visible

matter is distributed in-homogeneously. Several solution to this apparent paradox have

been proposed [73, 78, 79]: this situation shows that already the small scale properties of

galaxy distribution have a lot to say on the theoretical interpretation of their properties.

Indeed, while observations of galaxy structures have given an impulse to the search
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for more general solution of Einstein’s equations than the Friedmann one, it is now a

fascinating question whether such a more general framework may provide a different

explanation to the various effects that, within the standard FRW model, have been

interpreted as Dark Energy and Dark Matter.
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