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Abstract. Recently, inhomogeneous generalisations of the Friedmann � Lemaître
� Robertson � Walker cosmological models have gained interest in the astrophysical
community and are more often employed to study cosmological phenomena. However,
in many papers the inhomogeneous cosmological models are treated as an alternative to
the FLRWmodels. In fact, they are not an alternative, but an exact perturbation of the
latter, and are gradually becoming a necessity in modern cosmology. The assumption
of homogeneity is just a �rst approximation introduced to simplify equations. So
far this assumption is commonly believed to have worked well, but future and more
precise observations will not be properly analysed unless inhomogeneities are taken into
account. This paper reviews recent developments in the �eld and shows the importance
of an inhomogeneous framework in the analysis of cosmological observations.
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1. Introduction

For this article, we de�ne inhomogeneous cosmological models as follows: they are those

exact solutions of Einstein's equations that contain at least a subclass of nonvacuum and

nonstatic Friedmann � Lemaître � Robertson � Walker (FLRW) solutions as a limit. The

reason for this choice is that such FLRW models are universally recognised as a good

�rst approximation to a realistic description of our actual Universe, so it makes sense to

consider only those other models that have a chance to be a still better approximation.

Models that do not include an FLRW limit would not easily ful�l this condition.

Among the models so de�ned we chose for a more detailed description only the

Lemaître [103] � Tolman [159] (LT) and Szekeres [154] models because they were

the basis for the greatest number of papers aimed at physical and astrophysical

interpretation. The other inhomogeneous models are only partly listed and some of

them are brie�y described.

The LT and Szekeres models describe the evolution of the Universe in the post-

recombination era, in which only gravitational interactions play a role. The matter

source in them is dust, i.e. a perfect �uid with zero pressure (the generalisation to

nonzero cosmological constant is known, but less frequently used). Thus, they should not

be considered for application to pre-recombination epochs, in which the pressure cannot

be neglected. In particular, they should not be applied to the in�ationary epoch. Also,

they are not suitable for including �dark energy� in any other form than cosmological

constant. On the contrary, these models are sometimes used to explain observational

results attributed to the �dark energy� by e�ects of inhomogeneities in ordinary matter.

They are meant to be a replacement for the linearised perturbations of the FLRWmodels

and for methods describing backreactions with the help of averaged quantities. Because

of their symmetries (LT) and quasi-symmetries (Szekeres) they apply to less general

situations than the perturbative calculations, but their advantage is that they ful�l the

Einstein equations exactly. Therefore, as long as we believe that general relativity is the

correct theory of gravitation, the inhomogeneous models can be extrapolated arbitrarily

far into the future and are not constrained by any �regimes�.

The main body of this review is devoted to a description of those observed e�ects

that can be explained using the LT and Szekeres models. The penultimate section deals

with misuses, errors and misconceptions existing in the literature on the inhomogeneous

models.

2. Exact solutions of Einstein's equations that can be applied as

inhomogeneous cosmological models

The total number of papers in which such solutions were derived or discussed was

approx. 750 until 1994 [89]. No-one has updated that statistic. No generalisations

of models known until 1994 have been reported in later years. However, the Lemaître

[103] � Tolman [159] (LT) models have become popular as a basis for astrophysical
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considerations, and the same is happening recently with the Szekeres [154] models. The

current number may well be over 1000. We begin by recalling the general classi�cation

scheme [89].

(1) The Szekeres - Szafron (S�S) family [154, 152]

These models are invariantly de�ned by the following properties [153]:

1. They obey the Einstein equations with a perfect �uid source.

2. The �ow-lines of the perfect �uid are geodesic and nonrotating.

3. The hypersurfaces orthogonal to the �ow-lines are conformally �at.

4. The Ricci tensor of those hypersurfaces has two of its eigenvalues equal.

5. The shear tensor has two of its eigenvalues equal.

Because of property 2, in comoving coordinates the pressure depends only on

time. Thus the barotropic equation of state, the most popular one in the astrophysics

community, reduces the Szafron metric to the Friedmann � Lemaître � Robertson �

Walker (FLRW) class. The only nontrivial solutions in the S�S family that can be

reasonably applied in cosmology are the Szekeres metrics [154], in which the source is

dust (a perfect �uid with zero pressure). This is a good model for the later phases of

the evolution of the Universe, in which gravitation plays a dominant role and large-scale

hydrodynamical processes have come to an end.

The metric of the Szekeres solutions is, in units in which c = 1,

ds2 = dt2 − e2α(t,x,y,r)dr2 − e2β(t,x,y,r)
(
dx2 + dy2

)
. (1)

The coordinates of (1) are comoving so that uµ = δµ
0. There are two families of Szekeres

solutions, depending on whether β,r = 0 or β,r 6= 0. The �rst family is a simultaneous

generalisation of the Friedmann and Kantowski�Sachs models [84]. So far it has found

no application in astrophysical cosmology, and we shall not discuss it here. The metric

functions in the second family are

eβ = Φ(t, r)eν(r,x,y),

eα = h(r)Φ(t, r)β,r ≡ h(r) (Φ,r +Φν,r ) ,

e−ν = A(r)
(
x2 + y2

)
+ 2B1(r)x + 2B2(r)y + C(r), (2)

where Φ(t, r) is a solution of

Φ,t
2 = −k(r) +

2M(r)

Φ
+

1

3
ΛΦ2; (3)

Λ is the cosmological constant, while h(r), k(r), M(r), A(r), B1(r), B2(r) and C(r) are

arbitrary functions obeying

g(r)
def
= 4

(
AC − B1

2 − B2
2
)

= 1/h2(r) + k(r), (4)

where g(r) is another arbitrary function of the coordinate r de�ned as above. The mass

density in energy units is

κρ =
(2Me3ν) ,r
e2β (eβ) ,r

; κ = 8πG/c4. (5)
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The bang time function tB(r) follows from (3):

Φ∫

0

dΦ̃√
−k + 2M/Φ̃ + 1

3
ΛΦ̃2

= t − tB(r). (6)

The Szekeres metric has in general no symmetry, but acquires a 3-dimensional

symmetry group with 2-dimensional orbits when A, B1, B2 and C are all constant.

The sign of g(r) determines the geometry of the (constant t, constant r) 2-surfaces.

The geometry is spherical, planar or hyperbolic (pseudo-spherical) when g > 0, g = 0

or g < 0, respectively. With A, B1, B2 and C being functions of r, the surfaces r =

const within a single space t = const may have di�erent geometries, i.e. they can be

spheres in one part of the space and surfaces of constant negative curvature elsewhere,

the curvature being zero at the boundary.

The sign of k(r) determines the type of evolution when Λ = 0; with k > 0 = Λ the

model expands away from an initial singularity and then recollapses to a �nal singularity;

with k < 0 = Λ the model is either ever-expanding or ever-collapsing; k = 0 = Λ is the

intermediate case corresponding to the `�at' Friedmann model. Similarly to g, k can

have di�erent signs in di�erent regions of the same space. The sign of k(r) in�uences

the sign of g(r). Since 1/h2 in (4) must be non-negative, we have the following: with

g > 0 (spherical geometry), all three types of evolution are allowed; with g = 0 (plane

geometry), k must be non-positive (only parabolic or hyperbolic evolutions are allowed);

and with g < 0 (hyperbolic geometry), k must be strictly negative, so only the hyperbolic

evolution is allowed. The geometry of the latter two classes is poorly understood [77, 90],

and therefore not explored for cosmological applications. Only the quasi-spherical model

has been well investigated, and has found applications in the study of the early Universe

[73, 119], structure formation [20, 21], supernova [27] and cosmic microwave background

(CMB) [23] observations, light propagation [93]. In [93] it was shown that two rays sent

from the same source at di�erent times to the same observer pass through di�erent

sequences of intermediate matter particles. The change of object position in the sky,

due to this e�ect, should be observable in the future.

The quasi-spherical Szekeres models can be imagined as deformations of the

spherically symmetric models after which the spheres (still identi�able in the Szekeres

geometry) are no longer concentric. The mass-density distribution may be interpreted

as a superposition of a mass monopole and a mass dipole [56, 134].‡

(2) The Lemaître and Lemaître � Tolman models

(2.a) The Lemaître model

The Lemaître metric [103] describes a spherically symmetric inhomogeneous �uid

‡ A special case of this may be interpreted as a pure mass dipole, but then the density is necessarily
negative over approx. half of each sphere, and the physical interpretation of such an object is unknown.
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with anisotropic pressure.§ In comoving coordinates it has the following form

ds2 = eA(t,r)dt2 − eB(t,r)dr2 − R2(t, r)
(
dϑ2 + sin2 ϑdϕ2

)
. (7)

The Einstein equations reduce to:

κR2R,r ρ = 2M,r, (8)

κR2R,tp = −2M,t, (9)

where (R,t , R,r )
def
= (∂R/∂t, ∂R/∂r), p is the pressure, ρ is the mass density in energy

units, and M(t, r) is de�ned by:

2M = R + e−ARR,t
2 − e−BRR,r

2 − 1

3
ΛR3. (10)

In the Newtonian limit, Mc2/G is equal to the mass inside the shell of radial

coordinate r. However, in curved space it is not an integrated rest mass, but the active

gravitational mass that generates the gravitational �eld. As can be seen from (9), in

the expanding Universe the mass decreases with time. The function B can be written

in the following form [19]

eB(t,r) =
R,r

2(t, r)

1 + 2E(r)
exp




t∫

t0

dt̃
2R,t(t̃, r)[

ρ(t̃, r) + p(t̃, r)
]
R,r (t̃, r)

p,r (t̃, r)


 , (11)

where E(r) is an arbitrary function. The equations of motion T αβ
;β = 0 reduce to

T 0α
;α = 0 ⇒ B,t +4

R,t
R

= − 2ρ,t
ρ + p

, (12)

T 1α
;α = 0 ⇒ A,r = − 2p,r

ρ + p
, (13)

T 2α
;α = T 3α

;α = 0 ⇒ ∂p

∂θ
= 0 =

∂p

∂φ
. (14)

The Lemaître model has been employed to study the conditions of the early Universe

[72], the mass of the Universe [3], supernova observations [102], structure formation and

the impact of pressure gradients on shell crossing singularities [33].

(2.b) The Lemaître-Tolman model

In the special case of dust with the cosmological constant, the above equations

reproduce the Lemaître�Tolman (LT) model [103, 159]. When p,r = 0, equation (13)

implies A,r = 0, which means that the component g00 can be scaled to 1, and, using

(11), the metric (7) becomes

ds2 = dt2 − R,2r
1 + 2E

dr2 − R2(t, r)
(
dϑ2 + sin2 ϑdϕ2

)
. (15)

Equation (10) becomes then identical to (3):

R,t
2 = 2E +

2M

R
+

Λ

3
R2. (16)

§ The subclass of isotropic pressure is usually credited to Misner and Sharp [118], and occasionally to
Podurets [135].
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Because the pressure is zero, the mass does not depend on time. The mass density follows

from (8), and the bang time function tB(r) is given by (6), with (−k, Φ) replaced by

(2E, R).

For reviews of applications of the LT models see [89, 134, 32]. Selected examples:

formation of black holes [96, 68], of galaxy clusters [94, 95], superclusters [29], cosmic

voids [31], interpretation of supernova observations [45, 79, 5, 47, 4, 63, 16, 41, 42, 112,

22, 111, 40, 69, 70, 53, 62, 15, 35, 64], CMB [2, 176, 165, 137, 51, 120], redshift drift

[163, 9], and averaging (see the contributions by Buchert, Räsänen, and Wiltshire in

this issue).

Some of these applications will be discussed in Sec. 4.

(3) The Stephani � Barnes (S�B) family

This is the family of perfect �uid solutions with zero shear, zero rotation and

nonzero expansion. It consists of two collections of solutions:

(3a) The conformally �at solution:

ds2 = D2dt2 − V −2(t, x, y, z)(dx2 + dy2 + dz2), (17)

where:

D = F (t)V,t /V, (18)

V =
1

R

{
1 +

1

4
k(t)

[
(x − x0(t))

2 + (y − y0(t))
2 + (z − z0(t))

2]
}

, (19)

F (t), R(t), k(t), x0(t), y0(t) and z0(t) are arbitrary functions of time, F is related to the

expansion scalar θ by θ = 3/F , and k(t) is a generalisation of the FLRW curvature

index k, it can change sign during evolution. The matter density and pressure are:

κρ = 3kR2 + 3/F 2 def
= 3C2(t), (20)

κp = −3C2(t) + 2CC,t V/V,t . (21)

This solution was found by Stephani [147]; it is the most general conformally �at solution

with a perfect �uid source and nonzero expansion. As seen from (20) � (21), the matter

density in it depends only on the comoving time, while the pressure depends on all

the coordinates. In general, the solution has no symmetry. In Refs. [36, 37, 54, 98] it

was shown that the source has the thermodynamics of a single-component perfect �uid

only if the metric (20) � (21) is specialised so that it acquires an at least 3-dimensional

symmetry group acting on at least 2-dimensional orbits. The FLRW limit follows when

the functions k, x0, y0 and z0 are all constant.

The arbitrary functions of time cause that the evolution of the spacetime is

not determined. This is because no equation of state was imposed on (20) � (21).

Unfortunately, the two types of equations of state that are most often used in cosmology

and astrophysics (dust, p = 0, and a barotropic equation of state, f(p, ρ) = 0) both

reduce (20) � (21) to a FLRW model.
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(3b) The Petrov type D solutions

Equations (20) and (21) still apply here, but now V (t, x, y, z) is determined by the

following equation (resulting from the Einstein equations):

wuu/w
2 = f(u), (22)

where f(u) is an arbitrary function. The variable u and the function w are related to

the coordinates x, y, z, and to the function V (t, x, y, z) as follows:

(u, w) =





(r2, V ) for spherically symmetric models;

(z, V ) for plane symmetric models;

(x/y, V/y) for hyperbolically symmetric models,

(23)

where r2 = x2 + y2 + z2. These three classes of models were found by Barnes [12],

but the spherically symmetric case was known much earlier (and rediscovered many

times over, see [89] for a full list). The Einstein equations were reduced to the form

(22) by Kustaanheimo and Qvist [100]. With f(u) = 0, the Barnes models all become

conformally �at and are then subcases of the Stephani solution.

Many papers discussed methods of solving (22) and examples of particular solutions,

but with no relation to cosmology. An interesting application was a counterexample to

the Ehlers � Geren � Sachs (EGS) theorem [48, 13] � it was shown that almost isotropic

CMB is also possible in an inhomogeneous universe.

One member of the Barnes family of solutions, found by McVittie [116], is worth

noting here:

ds2 =

[
1 − µ(t, r)

1 + µ(t, r)

]2

dt2 − R2(t)
[1 + µ(t, r)]4
(
1 + 1

4
kr2

)2

[
dr2 + r2

(
dϑ2 + sin2 ϑdϕ2

)]
, (24)

where : µ(t, r) =
m

2rR

√
1 +

1

4
kr2,

m and k being arbitrary constants and R(t) being an arbitrary function. In the case

m = 0 this solution reproduces the whole FLRW class, and when (k, R) = (0, 1) it

reproduces the Schwarzschild solution. So, it is an exact superposition of the FLRW

and Schwarzschild metrics, with a perfect �uid source. It was published in 1933 (!).

A few authors attempted to apply this solution to observational cosmology.

However, all those attempts were fallacious. McVittie's discussion of the in�uence

of cosmic expansion on planetary orbits was coordinate-dependent. Järnefelt's

perturbative discussions of the same problem [89] produced no conclusive result because

the author did not de�ne a length unit that would be unchanging in time. Later,

McVittie [117] applied his solution to a discussion of stellar collapse, but the case k = 0

that he discussed has a spatially homogeneous density, so is unrealistic. Noerdlinger and

Petrosian [123] considered the problem of whether clusters or superclusters of galaxies

participate in the cosmological expansion. Their discussion was mostly Newtonian; they

used the McVittie solution only to estimate the relativistic correction to the result.

The disadvantage of this solution, shared with the whole S�B family, is that it

contains an arbitrary function of time, and so does not de�ne any evolution law for the
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Universe. One way out of this is to impose an equation of state � but so far no-one had

a workable idea on what this equation should be. A barotropic equation f(ρ, p) = 0

reduces the McVittie solution to pure FLRW.

The subcase k = 0 is of little interest for cosmology because, similarly to the

Stephani [147] solution, it has spatially homogeneous mass density, and so its whole

inhomogeneity is hidden in pressure gradients. So far, nobody has provided a physical

interpretation of this situation.

Global properties of the McVittie solution were discussed by Sussman [151]. He

showed that the seemingly self-evident interpretation (a point particle in an expanding

Universe) is not consistent with the global geometry. The set r = 0 is a null boundary,

and its intersection with any t = constant hypersurface H is at an in�nite geodesic

distance from any other point of H.

More recently, there appeared a collection of papers discussing global properties of

the McVittie solution, and some generalisations of it, for example by Nolan [124, 125],

Carrera and Giulini [44] and Kaloper et al. [82]. However, from the point of view of

cosmology, the results of these papers would require clari�cation, for which there is not

enough space in this review, for the following reasons:

1. They discuss the physically uninteresting subcase k = 0.

2. They treat the McVittie solution as if it were the only existing candidate for a

model of a black hole embedded in a FLRW Universe. They overlook the fact that it is a

member of the large Barnes family that might be surveyed for more such examples. They

also overlook the fact that the LT and Szekeres models do contain subcases describing

black holes in a cosmological background, which are physically much better understood,

see for example Ref. [96].

3. They are involved in a tangle of polemics, the later authors pointing out alleged

errors in the earlier papers. Consequently, an extended re-analysis would be necessary

in order to sort out who is right.

4. Some errors in the most recent papers are evident. Examples:

(4a) Carrera and Giulini [44] cite Sussman [151] and Gautreau [71] as examples of

a �confusion� about interpreting the McVittie solution as a point particle in a FLRW

Universe. In truth, Sussman was the �rst to point out and resolve this confusion, while

Gautreau's paper has nothing to do with McVittie (it used the LT model to discuss the

in�uence of cosmic expansion on planetary orbits).

(4b) Kaloper et al. [82] claim that there is some kind of singularity where invariants

built of second derivatives of the Riemann tensor diverge; they call it a �very soft�

singularity. In this, they revive the infamous �weak singularity� concept of Vanderveld

et al. [166], which was proven in Refs. [32] and [97] to be no singularity at all; see also

sec. 7 of the present text.

(4) Generalisations of the LT and Barnes models

For the LT model and for the whole Barnes class generalisations were found in which

the matter source is a charged dust, or, respectively, a charged perfect �uid obeying
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the Einstein � Maxwell equations. These do not seem to have a direct application

in cosmology, so we do not review them here; see Refs. [89] and [134] for overviews.

Nevertheless, the charged LT solution has interesting physical properties [134, 91, 92].

In addition, several generalisations of the LT and Barnes models were found, in which

the source has nonzero viscosity or heat conduction. The physical interpretation of these

in a cosmological context is less clear; see Ref. [89] for a review.

(5) Other models

The list that might be given here depends on how one de�nes a cosmological model.

In Ref. [89] it was proposed that the term �cosmological model� may denote only such a

solution of Einstein's equations that contains a nontrivial member of the FLRW class as

a limiting case. We shall stick to this terminology here, thereby eliminating more than

1500 papers [89] whose authors used the term �cosmological model� for their results. In

Ref. [89] this de�nition was used in a strict formal way, which resulted in listing a large

number of metrics, most of which do not seem to have any relation to observational

cosmology because, for example, they contain �elds of unclear interpretation, often

coupled together in ways that are di�cult to interpret. Examples of those are brie�y

listed here to give the reader an idea about the wealth of the existing material.

(5a) Models with null radiation

These are superpositions of the FLRW models with various vacuum solutions, like

those of Schwarzschild, Kerr, Kerr � Newman, etc. The superpositions are not perfect

�uid solutions, and their energy-momentum tensors were interpreted ex post as mixtures

of perfect �uid with null radiation (whose energy-momentum tensor is Tµν = τkµkν with

kµkµ = 0), sometimes also with electromagnetic �eld. The solutions were in fact guessed

in the course of exercises in metric-building and interpreting. As a result, the di�erent

contributions to the source are coupled through common constants so that, for example,

the null radiation can in some cases vanish only if either the perfect �uid component or

the inhomogeneity on the FLRW background go away. In particular, the superposition

of the Schwarzschild and FLRW solutions in this family is di�erent from the McVittie

solution [116]. This activity was started by Vaidya [164], who found a superposition

of the Kerr and FLRW solutions, and the probably most sophisticated composite was

found by Patel and Koppar [132]; it is an in�nite sequence of perturbations of the �at

FLRW background whose �rst-order term is the Kerr solution.

(5b) The �sti�-�uid� models

These are solutions of the Einstein equations with a 2-dimensional Abelian

symmetry group acting on spacelike orbits, in which the perfect �uid source obeys

the �sti� equation of state�, energy density = pressure (the source can be alternatively

interpreted as a massless scalar �eld). It was claimed that these models apply to the

early Universe, but the real reason behind the popularity of this activity was that

such solutions can be relatively simply generated from vacuum solutions with the same

symmetry, of which many are known. This activity began with the paper by Tabensky
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and Taub [157], and the probably most sophisticated example of an explicit solution

was given by Belinskii [14]. See [89] for an extended review.

(5c) Examples of other solutions (see [89] for a full list)

1. The Petrov type N perfect �uid solutions of Oleson [129].

2. A few simple examples of spherically symmetric perfect �uid solutions with

shear, expansion and acceleration being all nonzero, see Ref. [89].

3. Examples of algebraically special solutions de�ned by requirements imposed on

the degenerate principal null congruence of the Weyl tensor [89].

4. Anisotropic soliton-like perturbations propagating on the �at FLRW background

(the pressure has di�erent values for di�erent directions). The most elaborate example

of an explicit solution was given by Diaz, Gleiser and Pullin [55].

In this article we will discuss only those exact inhomogeneous cosmological models

that allow for testable observational predictions. For more exhaustive discussions the

reader is referred to [89, 134, 32].

3. Distance measurements

The concept of distance lies at the root of almost all cosmological observations whose

interpretation strongly depends on this quantity. The distance however depends on

the assumed model of the universe and on the matter distribution in it. The e�ect

of inhomogeneities on the measured distance has been addressed frequently after the

papers by Kristian & Sachs [99] and Dyer & Roeder [57] were published (see also

[136] and references therein). For example, Partovi & Mashhoon [130] showed that

the inhomogeneities a�ect the second order coe�cient in the series expansion of the

luminosity distance, i.e. the deceleration parameter. Using the same line of calculations

Pascual-Sánchez argued that in such a case the deceleration parameter can be negative

just due to the presence of inhomogeneities [131]. However, cosmologists often disregard

the e�ect of inhomogeneities and just apply the FLRW relation. The `justi�cation' is:

1) even if density variations are large, the �uctuations of the gravitational potential

are small and therefore the perturbation scheme can be applied, and 2) since the

perturbations are Gaussian, they vanish after averaging, and therefore they should have

little impact on observations. However, as shown by Sachs [140], the equation for the

angular diameter distance DA is

d2DA

ds2
= −(|σ|2 +

1

2
Rαβk

αkβ)DA, (25)

where σ is the shear, Rαβ is the Ricci tensor and Rαβk
αkβ = κTαβkαkβ. In the case of

dust (p = 0), in the comoving and synchronous coordinates, Rαβkαkβ = κρk0k0. As seen,

the distance does depend on density �uctuations (not on the gravitational potential),

and secondly, even if the perturbations vanish after averaging (i.e. 〈ρ〉 = 〈ρb + δρ〉 = ρb,

where ρb is the background density), they do modify the distance and the �nal result

deviates from the homogeneous solution ρ = ρ(t). This is a consequence of (25). This
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means that one needs to know an exact model to calculate the distance � a statistical

information about the density distribution, like the matter power spectrum, is not

su�cient to calculate it. The matter power spectrum can only be used (within the

linear regime) to estimate �uctuations around the mean distance-redshift relation, to

be precise 〈∆2
D〉 (where ∆D is given by (26)). Thus, this method does not provide any

information about the change of ∆D, which as mentioned above, very often is assumed

to be zero. Apart from the above mentioned 2 arguments sometimes people quote

Weinberg's argument [169] that although for a single case the distance is modi�ed by

the inhomogeneities, but due to photon conservation, when averaged over large enough

angular scales the overall e�ect is zero. A detailed discussion why this kind of reasoning

should not apply is presented in [60].

To show how matter inhomogeneities a�ect the distance let us consider the following

examples:

(i) A large-scale inhomogeneous matter distribution (Gpc-scale) whose volume average

does not vanish, 〈δρ〉 6= 0. This is the giant void model with best �t parameters as

presented in [35] (the reader is referred there for more details).

(ii) Small-scale inhomogeneities (Mpc-scale) whose volume average vanishes, 〈δρ〉 = 0.

However, the average of the density �uctuations along the line of sight is not zero

〈δρ〉1D 6= 0. The model is based on the Swiss-Cheese model presented in [24] and

the reader is referred there for more details.

(iii) As above but now the distance is calculated within the weak lensing approximation,

and is based on the model presented and discussed in [25].

(iv) Small-scale inhomogeneities (Mpc-scale) whose volume average vanishes, 〈δρ〉 = 0.

Also, the average of density �uctuations along the line of sight is zero, 〈δρ〉1D = 0.

The model is based on the Swiss-Cheese model presented in [26].

The results in terms of the distance corrections, δD, are presented in Fig. 1. The

distance correction δD is de�ned by the following relation

DA = D̄A(1 + ∆D), (26)

where D̄A is the distance in the homogeneous (background) model. As seen, the

correction is of the order of a few percent, thus, owing to the increasing precision of

the observations, the inhomogeneities need to be taken into account.

Below we will discuss several examples showing how inhomogeneities can in�uence

our interpretation of cosmological observations. As we cannot discuss here every single

paper that deals with this issue we will just focus on some major developments and refer

only to a few (not all) papers dealing with this problem. We will also omit the Stephani

models in our review as being less physically motivated.

4. The direct method

The studies of inhomogeneities and their e�ect on observations can be divided in 3

approaches: direct methods, the inverse problem and the averaging approach. Only
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Figure 1. The distance correction. Roman numbers refer to the labels of the models
discussed in this section. Models (ii)-(iv) are based on the Swiss-Cheese models with
Mpc-scale inhomogeneities hence large �uctuations for low redshifts.

the �rst two will be discussed in this review � for the averaging approach see the

contributions by Buchert, Räsänen, and Wiltshire in this issue. In the �rst approach a

model is speci�ed by a set of a priori chosen parameters and the observational data is

used to �nd the best �t for these parameters. In the second approach the observational

data is used to de�ne the model with no a priori constraints imposed on it.

4.1. Giant void models

The giant void con�gurations are characterised by underdensity pro�les increasing with

radius on Gpc scales. One of the �rst and simplest models was the one discussed by

Tomita [160, 161, 162]. He considered a model consisting of a low-density inner and a

higher density outer homogeneous regions connected at some redshift and showed that

such a con�guration can explain the supernova dimming. After 2006 the number of

papers concerning the giant void models rapidly increased. Assuming a density pro�le

and an expansion rate, or a shape of the bang time function, one analyses cosmological

observations to constrain the parameter space of the giant void. However, the particular

constraints strongly depend on the assumed parameterisations, and almost every single

paper introduced its own. As it is impossible to discuss all of them, we will focus here

on three examples:

(i) The GBH void model [69] is de�ned by the following functions

M(r) =
1

2
H0(r)

2Ωm(r)R3
0 & k(r) = H0(r)

2(Ωm(r) − 1)R2
0, (27)

where

Ωm(r) = Ωout +
(
Ωin − Ωout

) (
1 − tanh[(r − r0)/2∆r]

1 + tanh[r0/2∆r]

)
, (28)
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Figure 2. Supernova constraints on the size and depth of giant void models. Dashed
line: the GBH model (27), solid line: the BW model (30), and dotted line: the ZMS
spline model (31).

H0(r) = Hout +
(
Hin − Hout

) (
1 − tanh[(r − r0)/2∆r]

1 + tanh[r0/2∆r]

)
. (29)

There are 6 parameters here, Ωout determined by the assumption of asymptotic

�atness, Ωin determined by LSS observations, Hout determined by CMB

observations, Hin determined by HST observations, r0 characterizing the size of

the void, ∆r characterizing the transition to uniformity. But in the GBH model it

is assumed that Ωout = 1.

(ii) Bolejko and Wyithe class I model [35] is de�ned by

ρ(t0, r) = ρb

[
1 + δρ − δρ exp

(
− r2

σ2

)]
, & tB = 0. (30)

where ρb = Ωm × (3H2
0 )/(8πG). It contains 4 parameters: H0, Ωm, δρ, σ. In [35] it

was assumed that Ωm = 0.3 but here we will allow this parameter to vary.

(iii) The spline model of Zibin, Moss, and Scott [176, 120] is de�ned by

ρ(t0, r) = ρEdS(1 + δ), & tB = 0, (31)

where δ is given by a three-point cubic spline to the initial density �uctuation

δj = δti,rj
= and j = 1, 2, 3. By construction, r1 = 0 = δ3. Thus the model depends

on 5 free parameters: δ1, δ2, r2, r3 and ρEdS which just depends on H0.

Using cosmological observations (like supernovae and CMB, etc.) one can constrain

the range of the above parameters. Usually three parameters are most interesting: the

size and depth of the void and the local value of H0. In order to compare the constraints

from these 3 parameterisations let us assume that the depth is just the density contrast

(δ = 1 − ρout/ρin) and the radius of a void is de�ned as a place (at the current instant)
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where the density contrast becomes smaller than −0.1 as we proceed from outside into

the void.

The constraints on δ and Rv from the supernova observations‖ are presented in

Figure 2. As seen, using di�erent parameterisations one obtains di�erent constraints.

For example, a void of size Rv = 1.5 Gpc and δ = −3 is consistent with the constraints

coming from (30), but is excluded by those coming from (27).

Apart from supernovae it is common to include the CMB constraints. However,

up to date no one has performed the full CMB analyses within the LT framework. In

the standard approach (the FLRW framework) the CMB data is analysed using the

temperature anisotropy power spectrum given by the covariance of the temperature

�uctuation expanded in spherical harmonics

Cl = 4π

∫
dk

k
Pi|∆l(k, η0)|2 (32)

where ∆l(k, η0, µ) is the transfer function, Pi is the initial power spectrum, η0 is the

conformal time today and µ is the angle µ = k.n/k (with n the unit vector in the

direction of the emission of the radiation). On large scales the transfer function is of the

form ∆l(k, η0) = ∆LSS
l (k) + ∆ISW

l (k), where ∆LSS
l (k) is the contribution from the last

scattering surface given by the Sachs-Wolfe e�ect and the temperature anisotropy, and

∆ISW
l (k) is the contribution due to the change in the gravitational potential along the

line of sight, known as the integrated Sachs-Wolfe (ISW) e�ect. The ISW e�ect depends

on the growth of the perturbations within the considered model. As the perturbative

scheme within the LT model is still in its infancy [175, 50] (see also the contribution by

Clarkson in this issue) it is impossible to estimate the ISW e�ect in the conventional way.

However, the ISW e�ect is only important for low ` and is expected to be smaller than

the cosmic variance ∆Cl/Cl = ±(2/(2`+1))1/2. Another e�ect that is hard to estimate,

but expected to be within the cosmic variance limits, is the e�ect of the reionisation.

Therefore, the analysis of the CMB within the LT framework is done as follows:

it is assumed that the generation of the CMB anisotropies at the last scattering is the

same as in the standard model. As the post-decoupling e�ects (like the ISW e�ect or

reionisation) are expected to be smaller than cosmic variance, one does not estimate

these e�ects within the LT framework, but uses standard codes like CMBFAST [144]

or CAMB [104]. Therefore, if one does not change the initial power spectrum then the

shape and amplitude of the Doppler peaks is just governed by Ωch
2, Ωbh

2, Ωkh
2 (i.e., the

physical densities of cold dark mater, baryonic matter and curvature) [38, 58]. Finally,

as the angular diameter distance maps the physical position of the peaks to peaks in the

angular power spectrum Cl as a function of the multipole `, one needs to �t the angular

diameter distance to the last scattering surface. Thus, the only di�erence between the

standard analysis of the CMB and the analysis within the LT model is the change of

distance to last scattering. Other e�ects have not been taken into account because of

‖ The constraining function is χ2 =
∑

i
(µi−µ0)

2

σ2
i

, where µi and σi correspond to the measurements of

the 557 supernovae [6], µ0 is the distance modulus in the considered model.
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lack of a fully developed perturbative scheme within the LT framework, though the

change of initial power spectrum was considered in [120, 122].

From the above description it is apparent that such an analysis only weakly

constrains the giant void [51]. To successfully �t the CMB data one just needs to

�t Ωch
2, Ωbh

2, Ωkh
2 (in the region that emitted CMB) and the distance to the last

scattering surface. This however, as argued in [35], can be achieved by changing the

properties of the model outside the void. The region from which the CMB was emitted

is currently approximately 13 Gpc away from us, therefore its Ωch
2, Ωbh

2, Ωkh
2 are not

related to a void which has a radius of ∼ 3 Gpc. Similarly, the distance to the last

scattering instant can be tuned by the properties of the model outside the void.

In most cases, however, one does not consider any modi�cation outside the void and

just assumes that the Universe (from our Galaxy up to the last scattering) is described

by the chosen parametrisation, such as for example (27) or (31). Such a procedure leads

to large systematics. For example, if the background (i.e the model far away from the

void) is assumed to be the Einstein-de Sitter model then in order to have a good shape of

the CMB power spectrum a low value of the expansion rate is required. This is because

the proper shape of the power spectrum requires that Ωmh2 ≈ 0.13, so if one assumes

that Ωm = 1 then one gets h ≈ 0.4. This, on the other hand, has strong implications

for the void. To �t the supernovae one needs a �uctuation of the expansion rate of

amplitude δH ≈ 0.1 − 0.2 [63, 35], so this implies that the local expansion rate is low,

i.e. H0 ≈ 45 km s−1 Mpc−1 [120] or H0 ≈ 60 km s−1 Mpc−1 [69]. This, when combined

with local measurements of H0, seems to rule out the giant void. The assumption of

an Einstein-de Sitter background also impairs the BAO analysis like the one in [120].

When the assumption of spatial �atness is relaxed one obtains better results, see for

example [17].

The local expansion rate within the LT region is also important for the age

considerations. A small H0 implies a large age of the Universe [120]. On the contrary,

a large H0 and Λ = 0 imply a shorter age. Thus H0 ≈ 70 km s−1 Mpc−1 gives the

age of 11 − 12 Gyr. This was discussed in [101], where it was shown that the current

measurements do not put tight constraints on the model.

Actually, in an LT model, due to the shear, the anisotropy in the expansion increases

as the void grows and becomes nonlinear. Hence, physical length scales, and in particular

the sound horizon at the drag epoch, which are isotropic in a FLRW model, become

more and more di�erent in the radial and transverse direction. This is the reason why

the Einstein-de Sitter background is suspected not to be a good approximation for the

calculation of the BAO in the case of huge (Gpc) voids.

Di�erent tests have been proposed in the literature to rule out or con�rm the giant

void proposal. The stronger constraints compared to other observational probes are the

kinematic Sunyaev-Zeldovich (kSZ) e�ects [150] that can be observed on distant galaxy

clusters. Since these clusters are o� the centre of the LT Universe, there should be a

large CMB dipole in their frame of reference which would manifest itself for us as a kSZ

e�ect. Such a test was performed by the authors of [70] who showed that observations
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of nine clusters with large error bars can rule out LT models with voids of size greater

than ∼ 1.5 Gpc. More recently, using the observational data from the the South Pole

Telescope and the Atacama Cosmology Telescope, Zhang & Stebbins [174] put tighter

constrains on the size of a void ∼ 850 Mpc. However, the paper uses the �Hubble

bubble� void model (i.e. based on a 2-region FLRW model, with negative curvature

inside and spatially �at outside). Also, if one introduces non-adiabatic perturbations

then the observational constraints are relaxed [172].

Another test uses the spectral distortion of the CMB black-body spectrum [43]. A

large local void causes ionised gas to move outward, in motion relative to the frame of

the CMB. This produces a Doppler anisotropy in the frame of the gas. A large void

will imply large anisotropies which will be re�ected back at us as spectral distortions.

The test has been performed in [43], using the particular case of �Hubble bubble� void

models. Large voids with large density contrasts are thus ruled out. However, the test

has only been applied to the Hubble bubble class of models and other models may evade

this test.

The void can also be tested directly by means of galaxy surveys as the one reported

in [87]. Here, a deep, wide-�eld near-infrared survey is presented and explored to provide

implications for local large scale structure. The results suggest that local structures may

exist on scales up to 300 Mpc.

In the papers cited above, the observer has been assumed to be located at the

centre of the LT model. But one can �nd in the literature some models where he/she is

assumed to be o� the centre. However, the CMB low multipoles put stringent limits on

the distance he/she can be from the centre. This has been studied in [4, 18, 143] using

di�erent LT models. Using SN Ia data alone, it can be concluded that the observer can

be displaced at most 15% of the void scale radius from the centre [4, 18]. But when one

takes into account the induced anisotropies in the CMB temperature, the combination

of the CMB dipole measurement and the SNe Ia data imposes very strict constraints on

how far from the centre the observer can be located, i. e. no more than 1% of the void

scale radius [18].

For more details on observational constraints on giant void models see the

contributions by Zibin and Marra & Notari in this issue.

4.2. Non-void models � the e�ect of expansion

Giant voids are not the only con�gurations that can be used to �t cosmological

observations. There is a group of LT models that are de�ned by the assumption of a

homogeneous density distribution at the present instant and a Gpc-scale inhomogeneous

expansion rate. Such a con�guration was �rst considered in [22]. A homogeneous density

pro�le at the current instant does not imply a homogeneous pro�le at all times. Also

the bang time function in such cases is of high negative amplitude, around 1-2 Gyr at

2 Gpc [22]. The in�uence of inhomogeneous expansion on the luminosity distance was

further studied in more detail by Enqvist and Mattsson [63]. In their set of di�erent
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LT models the observer is located at the centre and the universes are de�ned by an

inhomogeneous expansion rate and a homogeneous density pro�le in some cases and in

other cases by an inhomogeneous expansion and homogeneous tB.

The analysis of cosmological observations within this type of models implies that

they have a better goodness of �t than giant void models [63, 35]. The amplitude of

the �uctuations of the expansion needed to �t the observations was found to be around

δH ≈ 0.1 − 0.2 [63, 35]. This seems to imply that an inhomogeneous expansion rate is

very important, since, as shown in [22], models with a homogeneous expansion rate and

Λ = 0 cannot successfully �t supernova data.

This property can be linked to the result of Krasi«ski and Hellaby [95, 31]

that velocity perturbations are more e�cient at generating structures than density

perturbations.

4.3. Swiss-Cheese models

An alternative way of modelling inhomogeneities is the Swiss-Cheese approach. Instead

of assuming that the whole universe is modelled by a single inhomogeneity of Gpc-scale,

smaller inhomogeneous patches that are matched with each other are considered.

The Einstein and Straus [65] type Swiss-cheese models were used to study, among

other e�ects, the in�uence of inhomogeneities on the magnitude-redshift relation

[83, 126, 127, 128]. However, since Schwarzschild's is a static solution, any in�uence

of the expansion of the vacuoles remains weak in such models, and the magnitude of the

reported e�ects is very low (as an example, Nottale [127], using a very simpli�ed such

model, found an observable ampli�cation by medium density clusters or by superclusters

of galaxies of only a tenth of a magnitude).

The recent appearance in the literature of models of Universe in which the

inhomogeneities are represented by LT regions within a homogeneous background, where

the matter is assumed continuously distributed, with densities both below and above

the average, allows us to account for this vacuole expansion. The �rst authors, to our

knowledge, to have considered such LT Swiss-cheese models to deal with the dark energy

problem were Kai et al. [81]. However, their aim was to reproduce an accelerated

expansion (which is only an artifact of the homogeneity assumption), and not the

observed luminosity distance-redshift relation. Therefore, the constraints they found

on their model cannot be considered as relevant for cosmological purpose.

Other LT Swiss-cheese models have been proposed to deal with the same dark

energy problem [41, 42, 15, 112, 111]. The best results were obtained by Marra et al.

[112, 111], who considered a model where holes with radius 350 Mpc are inserted into

an Einstein-de Sitter background. Each hole exhibits a low density interior, surrounded

by a Gaussian density peak near the boundary that matches smoothly to the exterior

Friedmann density, and such that the matter density in the centre is roughly 104 times

smaller than in the Friedmann background. To have a realistic evolution, it is also

demanded that there are no initial peculiar velocities. This implies 0 < E(r) � 1.
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Evolving this model from the past to the present day, the inner almost empty region

expands faster than the background, and the interpolating overdense region is squeezed

by it. The density ratio between the background and the interior of the hole increases

by a factor of 2. The evolution is realistic. Matter is falling toward the peaks in density.

Overdense regions start contracting and become thin shells, mimicking structures, while

underdense regions become larger, mimicking voids, and eventually they occupy most

of the volume. The propagation of photons is studied in three cases: the observer is

just outside the last hole, in the Friedmann region, looking at photons passing through

the holes; the observer is on a high density shell; the observer is in the centre of a hole.

The observables calculated are the redshift z(λ), the angular diameter distance DA(z),

the luminosity distance DL(z) and the corresponding distance modulus ∆m(z). In this

model, inhomogeneities are able to mimic at least partly the e�ects attributed to dark

energy.

The last scenario described above has some similarity to the one considered years

ago by Sato and coworkers [108, 142, 109, 110, 141]. Maeda, Sasaki and Sato [108]

considered a spherical void represented by a low-density FLRW region surrounding the

centre of symmetry, itself surrounded by a LT transition region, in turn surrounded by a

FLRW background with a higher density which has positive curvature and recollapses.

The void has a tendency to expand forever, but it is eventually swallowed up in the

�nal singularity of the background FLRW region. Sato and Maeda [142] have shown

that spherical symmetry is a stable property in the expansion of voids, i.e. initially

nonspherical voids become more spherical during their expansion. Maeda and Sato

[109, 110] investigated the expansion of a shell of zero thickness and �nite surface density

of matter inside a spatially homogeneous dust medium with di�erent densities on each

side of the shell. They derived the equation of motion of the shell and the equation for

mass-accumulation in the shell. They solved these equations numerically for the three

types of FLRW background. The dependence of the enlargement of the void on the time

of its formation was derived. In general, the earlier the formation time, the larger the

enlargement. Moreover, the enlargement is increased for higher background density.

When studying the light propagation within Swiss Cheese models an important role

is played by the proper randomisations. In some papers, like in the model by Marra et

al., structures are lined up. However, as shown in [41, 42, 167, 156, 25] if one allows

for randomisation of structures and angles at which light rays enter the structures, then

the e�ect of inhomogeneities on the distance-redshift relation is reduced.

An intriguing result was presented in [52], where the Swiss Cheese model was

constructed using the Schwarzschild solution. Their approach is a generalisation of

the Lindquist & Wheeler model [105] and aims in describing the matter content of

the Universe, which in fact is not a continuous �uid. The result, however, is that the

distance to a given redshift in this model is smaller than in a homogeneous perfect �uid

model. Thus in order to �t the supernova data, more dark energy is needed. For more

details see the contribution by Clifton in this issue.

To escape the spherical symmetry of the vacuoles, a generalisation to the Szekeres
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Swiss-cheese models was proposed in [27]. As a �rst step, and for simplicity, particular

classes of axially symmetric quasi-spherical Szekeres holes were used to reproduce the

apparent dimming of the supernovae of type Ia. The results were compared with

those obtained in the corresponding LT Swiss-cheese models. Although the quantitative

picture is di�erent, the qualitative results are comparable, i.e, one cannot fully explain

the dimming of the supernovae using small scale (∼ 50 Mpc) inhomogeneities. To �t

successfully the data, structures of at least ∼ 500 Mpc size are needed. However, this

result might be an artifact of axial light rays in axially symmetric models (the model

is not fully general). This work is a �rst step toward using the Szekeres Swiss-cheese

models in cosmology.

5. The inverse problem

The inverse problem is conceptually di�erent from the direct approach. Here one

does not parametrise a model and look for the best �t values of assumed parameters.

Instead, one uses observations to specify the functions that de�ne the model. This

idea was pursued by Kristian & Sachs [99], who were the �rst to consider how to use

observations to determine the geometry the Universe. They used series expansions in

powers of the diameter distance and focused on such observables like redshift, image

distortion, number density, and proper motion. The problem was revived by Ellis et al

[61, 149, 107, 8]. They considered the �uid-ray tetrad and focused on the spherically

symmetric case and its perturbations. For the review and pedagogical presentation of

the �uid-ray tetrad problem see [76].

5.1. Distance

The simplest version of the inverse problem is just to take the distance measurements

(angular or luminosity) and use it to de�ne the model. This approach is mostly based

on the LT model. However, to de�ne such model one needs 2 functions. This means that

using just distance measurements one of the other functions needs to be speci�ed by an

ansatz instead of by observations. The simplest ansatz is to assume a spatially �at LT

model. An LT model with E(r) = 0 = Λ was considered in [45, 79, 166]. The model

was �tted to the luminosity distance-redshift relation alone. This implies constraints

on tB(r) which were given either in terms of constraints on the lower order derivatives

of tB(r) taken at the observer as in [45] or in terms of di�erential equations which were

numerically solved as in [79, 166]. Reference [79] also presented an algorithm de�ning

the LT model from distance measurements and the assumption tB = 0.

The aim of this approach was to show that supernova observations alone imply

neither dark energy nor accelerated expansion of the universe. However, by imposing

additional constraints some tried to argue otherwise. For example if one imposes

smoothness conditions, i.e. density pro�le at the origin with vanishing �rst derivative,

then one obtains that the luminosity distance within the LT model and the FLRW
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model are the same up to the second order [158], which implies that the deceleration

parameter for pure dust models must be positive. This, however, does not have any

serious cosmological implications as, �rstly, density does not need to be smooth [139],

and, secondly, models with a smooth density pro�le can also �t the data without dark

energy (for example most of the giant void models have a smooth density distribution,

see Sec. 4.1).

The inverse problem that uses the angular diameter distances (this relates also to

Sec. 5.2 � 5.6) has di�culties at the apparent horizon (AH), where dR̂/dz = 0. As this

quantity can appear in the denominator (with another quantity vanishing at the AH in

the numerator) this can cause problems when numerically solving the equations. This

is not a drawback of the model, as improperly claimed in [166], and this can be dealt

with in several ways. One of the solutions is to employ the Taylor expansion at the AH

[106, 114, 30]. Another approach is based on solving the equations on both sides of the

AH and choosing such solutions that approach each other [171]. In [46] the problem was

solved by �tting polynomials to the functions M(r) and E(r) and using them as initial

conditions for the direct method.

The existence of the AH can in fact be useful as it puts additional constraints that

must hold at this location. For example for the Lemaître model (and its subcase the LT

model) we have [3]

6M = 3R − ΛR3. (33)

A generic set of data will not obey the above relation. Also, as discussed in [121, 170],

there are some other relations that will not be satis�ed by generic data because real

observational data is always accompanied by systematics. Thus, these relations can be

used to estimate a correction for systematics so that a consistent solution is obtained.

The algorithm for such corrections is presented and discussed in [106, 114, 30].

5.2. Distance and galaxy number counts

An algorithm which shows how to de�ne an LT model based on distance and number

count data was �rst presented in [121]. The algorithmwas further developed in [106, 114]

but no real observational data has been used. In [46] this algorithm was applied to D(z)

and n(z) of the same form as in the ΛCDM model. In such a case the model obtained

does not exhibit a giant void. The density at the current instant in this case is slowly

increasing up to δ ≈ 0.05 and then is decreasing with an overall pro�le more resembling

a hump than a void. The bang time function is negative and decreasing to around -2

Gyr at 4 Gpc.

In [88], the same goal of reconstructing a LT model from the luminosity-distance-

redshift relationship and the light-cone matter density as a function of redshift that

matches the �ducial ΛCDM model was pursued. The results exactly agree with those of

[46]. Another result of this paper is that the LT model whose DL(z) and ρ(z) functions

exactly match those of the �ducial ΛCDM model has singular initial conditions for R,r,
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which means that R,r → +∞ when the bang time is approached away from the center,

i. e., R,r (r 6= 0, tB(r)) = +∞.

5.3. Distance and expansion rate

Reference [46] also described an algorithm for de�ning a model based on distance and

expansion rate observations. Again it was assumed that D(z) and H(z) are the same as

in the ΛCDM model. The results suggested a model with a hump rather than a void,

with a decreasing bang time function.

5.4. Distance and age of the universe

The �rst attempt to use real data to de�ne the LT model was presented in [30]. Up to

date there are no precise measurements of galaxy number counts, also the measurements

of H(z) [145, 148] are based on the assumption that tB = 0 and cannot be used to de�ne

a general LT model. Therefore an algorithm for de�ning a LT model from distance and

age measurements is given in [30]. The paper discusses two separate cases with and

without the cosmological constant. In the case of Λ = 0 the results are somewhere

between the giant void and hump con�gurations, i.e. the present-day density pro�le

initially increases as in giant void models, but then decreases. However, due to poor

data at high redshift one cannot have con�dence in the model at large distances. The

constraints on tB are not tight and are consistent with either increasing or decreasing

pro�les. When Λ 6= 0 the results suggest a very slowly increasing pro�le, but are

consistent with a homogeneous con�guration.

5.5. Distance and redshift drift

An algorithm de�ning an LT model based on distance and redshift drift data (both as

functions of redshift) can be found in [10]. The model uses the �uid-ray tetrad approach

[76].

5.6. Distance, galaxy number counts, and age of the universe

To specify the LT model one needs to know 2 functions and 1 parameter (the

cosmological constant, which usually, within the LT framework, is set to be zero). Ref.

[28] presented the algorithm how to specify the LT model with the cosmological constant

based on the distance, galaxy number counts, and age of the universe data. Using 3

sets of data allows to break the degeneracy (described in Secs. 5.2 and 5.3) between the

ΛCDM model and zero-Λ LT model.

5.7. Consistency between observations

Another approach to study observations (instead of directly �tting a model with them)

is based on checking the consistency between observations, i.e. to check if the relation
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between observations is as given by the cosmological model. Ribeiro and Stoeger

considered the consistency between the galaxy luminosity function, and corresponding

galaxy number counts [138]. In a follow-up paper they showed that such an analysis

strongly depends on the distance de�nition used [1]. Clarkson, Bassett & Lu [49] studied

the relation between H(z) and D(z) data. They found that if the Universe is almost

homogeneous on large scales, then the expansion rate and distance are not independent

but are related. Thus, by studying relations between observations one can test the large

scale homogeneity of the Universe. An additional problem arises when the observed

objects evolve. A discussion of a possible distinction between the e�ect of evolution and

inhomogeneity was presented in [74].

The motivation for the consistency checks is that the relation between di�erent sets

of observational data does not have to be the same as in the cosmological model that we

assume to analyse the data. In [28] it was shown how using 3 di�erent sets of data we

can test consistency between observations and the underlying background cosmological

models.

6. What if the cosmological constant is not zero?

In most of the literature applying inhomogeneous models to �t the observations the

cosmological constant has been set to be zero. Actually, the aim of these works was to get

rid of the impenetrable dark energy component. However, if, for some theoretical reason,

coming for example from particle physics, a nonzero cosmological constant appeared to

be part of the Universe energy budget, the e�ect of the inhomogeneities observed in

the Universe should still be taken into account to build a proper cosmological model.

Actually, the studies realised up to now show that their in�uence is not negligible.

Marra and Paakkonen [113] studied the giant void models with a non-zero

cosmological constant. Their conclusion is that if ΩΛ ≈ 0.7 then large voids are excluded

by cosmological observations. On the other hand, large voids (Rv ∼ 3 Gpc) with

ΩΛ ≈ 0 − 0.3 are consistent with the data.

Models with Mpc-scale inhomogeneities and cosmological constant were considered

in [27], where it is shown that smaller values of Λ (than when homogeneity is assumed)

are su�cient to �t the data. This is because small-scale inhomogeneities lead to an

increase of the distance (see also Fig. 1) hence less dark energy is needed [27]. However,

if the CMB constraints are taken into account, the opposite is true � in order to have

a good �t more dark energy is needed (than when homogeneity is assumed) [26]. Also,

as shown in [7], adding inhomogeneities to a model with the cosmological constant can

actually improve the �t to the data, compared to purely homogeneous models.

The above mentioned studies are based on the direct approach. The �rst inverse

approach with the pre-assumed cosmological constant was presented in [30]. The full

inverse problem that uses the data to derive also the value of the cosmological constant

was discussed in Ref. [28].
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7. Formation of black holes

When studying black holes it is commonly assumed that these objects can be described

using the Schwarzschild or Kerr metrics. This approach has the following caveats: (1)

these space-times are asymptotically �at while the real Universe is not; (2) these black

holes do not evolve, they exist unchanged from t = −∞ to t = +∞, while real black

holes accrete mass.

The solution for the �rst problem are superpositions of the FLRW models with

stationary black holes such as the Swiss cheese Einstein�Straus [65] con�guration. Still,

such black holes do not evolve, they exist ab initio and their masses do not change,

whereas in cosmology we are interested in evolving black holes and in their formation.

An LT model can solve both these problems. Its �rst application to a study of the

formation of black holes was presented in [96], and then followed by [68, 67]. Using it, one

can study the evolution of primordial black holes or both the formation and evolution.

For the most detailed analysis see [80]. The process analysed in detail in Refs. [96] and

[80] was predicted by Bondi [39] already in 1947. A black hole is formed because rapidly

collapsing matter forces the light rays to also converge toward the �nal singularity. A

black hole with mass comparable to those at the centres of galaxies may form either

out of a localised mass-density perturbation, or out of a localised velocity perturbation,

or around a pre-existing wormhole [96]. In each case, an apparent horizon is formed

because of the rapid collapse, and the collapse is caused either by gravitational attraction

of the initial condensation, or by the initial �uctuation of velocity that magni�es itself

in the course of collapse.

So far the problem was not considered beyond the LT models. Although the collapse

within the Szekeres model was studied [155] it was only within the asymptotically �at

models, not within a cosmological background.

8. Observational predictions

There are a number of potentially observable e�ects that could occur only when

inhomogeneities are present and do not exist in the Friedmann models. The best known

among them is gravitational lensing (see paragraphs 4 and 5 of Sec. 10). In this section

we are not going to discuss the e�ects that are most often modelled using perturbative

methods, like gravitational lensing or the Rees�Sciama e�ect. Instead, we will focus on

the less known e�ects, in particular those that can potentially be used to distinguish

between Gpc-scale inhomogeneous models and homogeneous models with dark energy.

Thus, the list below is very selective and does not include all possible observational

tests.

• Redshift drift

As the Universe evolves, the redshifts of astronomical objects change with time. For

the ΛCDM model ∆z > 0 for z < 2. For the giant void models (which are the most

popular alternative among the inhomogeneous models) ∆z is expected to be negative
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for all z. Thus, a detection of a negative redshift drift for all z would be a proof against

dark energy. However, the converse is not true, as there are Gpc-scale inhomogeneous

models that also have ∆z > 0 for low z [173].

• Galaxy number counts

The galaxy distribution on small scales is very inhomogeneous, with large �uctuations in

number counts. However, with the increasing amount of data we should be able to detect

an overall trend of n(z). In this case it will be possible to see if the overall behaviour

is consistent with the prediction of homogeneous models. Although a detection of a

Gpc-scale inhomogeneous trend would be an argument against large-scale homogeneity,

the converse argument does not hold as there are inhomogeneous models that can have

the same n(z) as homogeneous models [46].

• Kinematic Sunyaev-Zel'dovich e�ect

The existence of a Gpc-scale inhomogeneity leads to an additional (compared to a

homogeneous scenario) peculiar velocity of galaxy clusters. As discussed in Sec. 4.1, the

present data already puts tight constraints on the size of such an inhomogeneity. Thus,

with new data coming from the Planck mission, the giant void models will be put to

the test.

• Lyα observations

Observations of Lyα lines in spectra of distant quasars provide information about the

amount of light elements. These observations can be used to constrain cosmological

parameters, for example the D/H ratio is very sensitive to Ωbh
2. The accurate analysis of

the observations is di�cult as the amount of light elements also depends on astrophysical

processes. However, it is believed that low metallicity objects should have the deuterium

to hydrogen ratio unchanged from the time of the primordial nucleosynthesis.

Within a homogeneous universe Ωbh
2 should be everywhere the same. The

observations, however, show a large scatter in the data which is also not consistent

with the WMAP data [133]. A conventional explanation of this phenomenon is that the

errors in the individual measurements of D/H may have been underestimated [146, 133].

As this may be true, in the future, with a large amount of data and more precise

observations, it will be possible to detect if the variation of Ωbh
2 is real.

• Dark �ow

In the standard approach, the galaxy velocity �eld is described using linear perturbations

of the Friedmann model. Within this framework, �ows of large amplitude on a scale

beyond 100 Mpc are exceptional. However, observations show that such a �ow exists

on scales of at least 150 Mpc [168, 66]. Although such a �ow is hard to explain using

linear methods, it may still be consistent with the standard cosmological model. But if

this �ow extends to even larger scales, the ΛCDM model will not be able to account for

it.

Recently, Kashlinsky et al. reported the existence of �ows on scales over at least

800 Mpc [85, 86]. The result of their analysis is subject to large systematics and so far
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has not been con�rmed by any other group. However, if such a �ow is con�rmed, then

this will put the ΛCDM model at odds with the data.

• Maximum of the diameter distance

The position of the maximum of the angular distance puts additional constraints on

a model, see (33). This relation combines the distance, mass and the cosmological

constant [75]. Thus it may serve as a consistency check and may be used to rule out

the models that do not meet this criterion. Also, the position itself can be di�erent

for di�erent types of models. For example, the giant void models have typically the

maximum around z ≈ 1 while the ΛCDM model has a maximum around z = 1.6 [35].

• Non-repeatable light paths (non-RLPs).

In Ref. [93] it was shown that within inhomogeneous models generic light rays do not

have repeatable paths: two rays sent from the same source at di�erent times to the same

observer pass through di�erent sequences of intermediate matter particles. This e�ect

is a consequence of nonzero shear in the �ow of the cosmic medium and does not exist

in the Robertson�Walker models. This shows that RLPs are very special and in the real

Universe should not exist. As a consequence, cosmological objects should change their

positions in the sky. Although the e�ect is small, in principle it is detectable.

The existence of this e�ect may also have consequences in applying averaging

schemes. Within an averaging scheme, an inhomogeneous distribution is approximated

with a uniform (averaged) model. As a �st approximation it is assumed that light

propagates along null geodesics of a homogeneous model (the only di�erence is that the

evolution of the model is governed by the Buchert rather than Friedmann equations).

However, if geodesics that join the observer and the source proceed at di�erent times

though di�erent sequences of intermediate matter particles, then the path of the light

ray within an average geometry may not be a geodesic anymore.

9. Pervasive errors and misconceptions

Many astrophysicists tolerate a loose approach to mathematics and physics. Papers

written in such a style planted errors and misconceptions in the literature, which were

then uncritically cited in other papers and came to be taken as established facts. In

this section we present a few most damaging misconceptions (marked by black squares

�) together with their explanations (marked by large asterisks ∗).

� The LT models that explain away dark energy with matter inhomogeneities contain

a �weak singularity� at the centre [166], where the scalar curvature R has the property

gµνR;µν → ∞.

∗ gµνR;µν → ∞ is not a singularity by any accepted criterion in general relativity [97].

It only implies a discontinuity in the derivative of mass density by distance � a thing

quite common in Nature (e.g. on the surface of the Earth). At the centre, gµνR;µν → ∞
implies a conical pro�le of density � also a nonsingular con�guration.
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� Decelerating inhomogeneous models with Λ = 0 cannot be �tted to the same

distance�redshift relation that implies acceleration in ΛCDM. This is because a certain

equation connecting the deceleration parameter q4 to density, expansion and shear

prohibits q4 < 0 [78].

∗ The equation derived in [78] (formally analogous, but inequivalent, to the

Raychaudhuri equation) is based on approximations that are not explicitly spelled

out [97]. An approximate equation cannot determine the sign of anything. If the

approximations are taken as exact constraints imposed on the LT model, they imply

zero mass density, i.e. the Schwarzschild limit. Moreover, the q4 of [78], although it

coincides with the deceleration parameter in the Friedmann limit, is not a measure of

deceleration in an inhomogeneous model (it is de�ned by the Taylor expansion of the

luminosity�redshift relation). Refs. [30, 46, 79] provide an explicit demonstration that

a decelerating LT model with Λ = 0 can be �tted to exactly the same distance - redshift

relation that holds in the ΛCDM model. This relation is reproduced by a spatially

inhomogeneous expansion pattern, without any dark energy.

� There is a �pathology� in the LT models that causes the redshift-space mass density

to become in�nite at a certain location (called �critical point�) along the past light cone

of the central observer [166].

∗ The �critical point� is the apparent horizon (AH), at which the past light cone

of the central observer begins to re-converge toward the past. This re-convergence had

long been known in the FLRW models [59, 115], and the in�nity in density is a purely

numerical artifact � a consequence of trying to integrate past AH an expression that

becomes 0/0 at the AH. Ways to handle this problem are known [106, 114, 46].

� Fitting the LT model to cosmological observations, such as number counts or the

Hubble function along the past light cone, results in predicting a huge void, at least

several hundred Mpc in radius, around the centre (see discussion in Sec. 4.1).

∗ The implied huge void is a consequence of handpicked constraints imposed on the

arbitrary functions of the LT model, for example a constant bang time tB. With no a

priori constraints, the giant void is not implied [46].

� The bang time function must be constant because dtB/dr 6= 0 generates decaying

inhomogeneities, which would have to be �huge� in the past, and this would contradict

the predictions of the in�ationary models (private communication from the referees of

[46]).

∗ While it is true that in models with dtB/dr 6= 0 the early universe was very

inhomogeneous, it does not mean that such models could not be realistic (so far they

are consistent with observations after all). Although in the current paradigm the

early universe undergoes in�ation that is supposed to leave it very homogeneous, the

occurrence of in�ation is not in any way proven. In�ationary models are just one of

hypotheses that compete for observational con�rmation. Thus, using them to justify or

reject some other hypotheses may sound dogmatic and is in fact un-scienti�c.
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10. Discussion and future prospects

We have seen that one can �nd in the literature a number of models constructed

with exact inhomogeneous solutions of Einstein's equations which �t the available

observational data as properly as (and sometimes better than) the standard ΛCDM

model.

The LT model with a central observer, which is sometimes criticised as being at odds

with the Copernican Principle, must be, in our view, only considered as an intermediate

model where the angular inhomogeneities have been smoothed around the observer and

only the radial inhomogeneities have been taken into account (an example of such a

situation is presented and discussed in [34]). Moreover, the use of oversimpli�ed LT

models can create another false idea and false expectation. The false idea is that there

is an opposition between the ΛCDM model, belonging to the FLRW class, and the LT

model or in general, inhomogeneous models: it is believed that either one or the other

could be `correct', but not both. This putative opposition can then give rise to the

expectation that more, and more detailed, observations will be able to tell us which one

to reject. In truth, there is no opposition. The inhomogeneous models, like for example

the LT model with its two arbitrary functions of one variable, are huge, compared to

FLRW, families of models that include the Friedmann models as a very simple subcase.

The fact, demonstrated in several papers, that even a Λ = 0 LT model can mimic Λ 6= 0

in an FLRW model, additionally attests to the �exibility and power of the LT model.

Thus, if the Friedmann models, ΛCDM among them, are considered good enough for

cosmology, then the LT models can only be better: they constitute an exact perturbation

of the Friedmann background, and can reproduce the latter as a limit with an arbitrary

precision. The right question to ask is not �which model to reject: FLRW or LT?�,

but �how close to their FLRW limits must the LT arbitrary functions be to satisfy the

observational constraints?�.

Nature does not create objects that ful�l mathematical assumptions with perfect

precision. Objects in mechanics or electrodynamics that are described as spherically

symmetric have this symmetry only up to some degree of approximation. An �ideal gas�

in thermodynamics is nearly ideal only at su�ciently low pressure. An �incompressible

�uid� ..., and so on. Why should the Universe be an exception and be exactly

homogeneous in the large (and exactly spatially �at in addition)?

In fact, we already have qualitative evidence that our observed Universe is not

FLRW: the gravitational lenses. The FLRW models are conformally �at, so the null

geodesics in them are conformal images of the null geodesics from the Minkowski

spacetime. In this spacetime, null rays sent from a common origin never intersect

again. So, in a conformally �at spacetime null rays issuing from a common source can

intersect again only in such points that are singularities of the conformal mapping (and,

consequently, of the spacetime itself). Then, however, the positions of the points of

second intersection are determined by the geometry of spacetime, and not just by the

initial points and directions of the rays, as is the case in a gravitational lens (where, in
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addition, there is no spacetime singularity at the intersection point). Hence, a spacetime

containing a gravitational lens cannot be conformally �at.

Gravitational lenses are observed in our Universe at the distance scales, at which the

FLRW approximation is supposed to already apply, namely the lensing objects and the

sources of lensed rays are quasars. So, our Universe does not have the FLRW geometry

at large scales.

One more qualitative evidence of our Universe being non-FLRW on large scales

may be provided by the e�ect of non-repeatable light paths, described in Ref. [93].

It is strange that a large part of the astrophysical community is comfortable with

the idea of linearised perturbations around homogeneous models, but reacts with strong

negative emotions to exact perturbations represented by inhomogeneous models.

In the future, the LT models will be used to extract the cosmic metric from

observations. This programme has been initiated in [106, 114, 28]. This is the full

inverse problem. To date it has assumed that the metric has the LT form, as a relatively

simple case to start from, but the long term intention is to remove the approximation

of spatial symmetry.

All known exact solutions of the Einstein equations which can be of cosmological

use possess some symmetries or quasisymmetries. The only way to overcome such

shortcomings is to obtain a fully operational, exact and inhomogeneous solution of

these equations. This can only be achieved using numerical relativity and we suspect

that this will be the new way of dealing with cosmology in the years to come.
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