
HAL Id: hal-00724403
https://hal.science/hal-00724403

Submitted on 20 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Generation Of Optimized And Synthesizable
Hardware Implementation From High-Level Dataflow

Programs
Khaled Jerbi, Mickaël Raulet, Olivier Déforges, Mohamed Abid

To cite this version:
Khaled Jerbi, Mickaël Raulet, Olivier Déforges, Mohamed Abid. Automatic Generation Of Optimized
And Synthesizable Hardware Implementation From High-Level Dataflow Programs. VLSI Design,
2012, 2012, pp.Article ID 298396. �10.1155/2012/298396�. �hal-00724403�

https://hal.science/hal-00724403
https://hal.archives-ouvertes.fr


Hindawi Publishing Corporation
VLSI Design
Volume 2012, Article ID 298396, 14 pages
doi:10.1155/2012/298396

Research Article

Automatic Generation of Optimized and Synthesizable Hardware
Implementation from High-Level Dataflow Programs

Khaled Jerbi,1, 2 Mickaël Raulet,1 Olivier Déforges,1 and Mohamed Abid2

1 IETR/INSA. UMR CNRS 6164, 35043 Rennes, France
2 CES Laboratory, National Engineering School of Sfax, 3038 Sfax, Tunisia

Correspondence should be addressed to Khaled Jerbi, khaled.jerbi@insa-rennes.fr

Received 16 December 2011; Revised 18 April 2012; Accepted 15 May 2012

Academic Editor: Maurizio Martina

Copyright © 2012 Khaled Jerbi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we introduce the Reconfigurable Video Coding (RVC) standard based on the idea that video processing algorithms
can be defined as a library of components that can be updated and standardized separately. MPEG RVC framework aims at
providing a unified high-level specification of current MPEG coding technologies using a dataflow language called Cal Actor
Language (CAL). CAL is associated with a set of tools to design dataflow applications and to generate hardware and software
implementations. Before this work, the existing CAL hardware compilers did not support high-level features of the CAL. After
presenting the main notions of the RVC standard, this paper introduces an automatic transformation process that analyses the
non-compliant features and makes the required changes in the intermediate representation of the compiler while keeping the same
behavior. Finally, the implementation results of the transformation on video and still image decoders are summarized. We show
that the obtained results can largely satisfy the real time constraints for an embedded design on FPGA as we obtain a throughput
of 73 FPS for MPEG 4 decoder and 34 FPS for coding and decoding process of the LAR coder using a video of CIF image size. This
work resolves the main limitation of hardware generation from CAL designs.

1. Introduction

User requirements of high quality video are growing which
causes a noteworthy increase in the complexity of the algo-
rithms of video codecs. These algorithms have to be imple-
mented on a target architecture that can be hardware or soft-
ware. In 2007, the notion of Electronic System Level Design
(ESLD) has been introduced in [1] as a solution to decrease
the time to market using high-level synthesis which is an
automatic compilation of high-level description into a low-
level one called register transfer level (RTL). The high-level
description is governed by models of computation which are
the rules defining the way data is transferred and processed.
Many solutions were developed to automate the hardware
generation of complex algorithms using ESLD. Synopsys
developed a C to gate compiler called synphony [2]. Mentor
Graphics also created a C to HDL compiler called Cata-
pult C [3, 4]. For their NIOS II, Altera introduces C2H as a
converter from C to HDL [5, 6]. To extend Matlab for hard-
ware generation from functional blocks, Mathworks created

a hardware generator for FPGA design [7]. In the university
research field, STICC laboratory in France developed a high-
level synthesis tool called GAUT that extracts parallelism
and generates VHDL code from a pure C description [8, 9].
The common point between all previously quoted tools is
the fact that they are application-specific generators which
means that they are not always efficient on an entire multi-
component system description.

In this context, CAL [10] was introduced in the Ptolemy
II project [11] as a general-use dataflow target agnostic lang-
uage based on the dataflow Process Network (DPN) Model
of Computation [12] related to the Kahn Process Network
(KPN) [13]. The MPEG community standardized the RVC-
CAL language in the MPEG RVC (Reconfigurable Video
Coding) standard [14]. This standard provides a framework
to describe the different functions of a codec as a network of
functional blocks developed in RVC-CAL and called actors.
Some hardware compilers of RVC-CAL were developed but
their limitation is the fact that they cannot compile high-level



2 VLSI Design

structures of the language so these structures have to be man-
ually transformed.

In [15], we presented an original functional method to
quicken the HDL generation using a software platform for
rapid design and validation of a high complexity dataflow
architecture but going from high to low-level representation
used to be manual. Therefore, we proposed to add automatic
transformations to make any RVC-CAL design synthesizable.

This paper extends a preliminary work presented in [16]
by introducing efficient optimizations and their impact on
the area and time consumption of the design. The transform-
ation tool analyzes the RVC-CAL code and performs the
required transformations to obtain synthesizable code what-
ever the complexity of the considered actor. In Section 2, we
explain the main advantages of using MPEG RVC standard
for signal processing algorithms and the key notions of the
RVC-CAL language and its behavioral structures and mech-
anisms. The proposed transformation process is detailed
in Section 4 and finally hardware implementation results
of MPEG4 Part2 decoder and LAR codec are presented in
Sections 5 and 6.

2. Background

Since the beginning of ISO/IEC/WG11 (MPEG) in 1988
with the appearance of MPEG-1, many video codecs have
been developed (MPEG-4 part2, MPEG SVC, MPEG AVC,
HEVC, etc.) with an increasing complexity and so they take
longer time to be produced. In addition, every standard has
a set of profiles depending on the implementation target
or the user specifications. Consequently, it became a tough
task for standard communities to develop, test, and stand-
ardize a decoder at any given time. Moreover, the standards
specification is monolithic which makes it harder to reuse or
update some existing algorithms. This ascertainment origi-
nated a new conception methodology standard called Recon-
figurable Video Coding introduced by MPEG.

In the following, we present an overview of MPEG RVC
standard and associated tools and frameworks, we also pre-
sent the main features of CAL actor language and the limita-
tions that motivated this work.

2.1. MPEG RVC. RVC presents a modular library of elemen-
tary components (actors). The most important and attractive
features of RVC are reconfigurability and flexibility. An RVC
design is a dataflow directed graph with actors as vertices
and unidirectional FIFO channels as edges. An example of
a graph is shown in Figure 1.

Actually, defining video processing algorithms using ele-
mentary components is very easy and rapid with RVC since
every actor is completely independent from the rest of the
other actors of the network. Every actor has its own schedu-
ler, variables, and behavior. The only communication of an
actor are its input ports connected to the FIFO channels to
check the presence of tokens and as explained later an inter-
nal scheduler is going to allow or not the execution of ele-
mentary functions called actions depending on their cor-
responding firing rules (see Section 3). Thus, RVC insures
concurrency, modularity, reuse, scalable parallelism, and

encapsulation. In [17], Janneck et al. show that, for hardware
designs, RVC standard allows a gain of 75% of development
time and considerably reduces the number of lines compared
with the manual HDL code. To manage all the presented
concepts of the standard, RVC presents a framework based
on the use of the following.

(i) A subset of the CAL actor language called RVC-CAL
that describes the behavior of the actors (see details
in Section 2.2).

(ii) A language describing the network called FNL (Func-
tional unit Network Language) that lists the actors,
the connections and the parameters of the network.
FNL is an XML dialect that allows a multilevel des-
cription of actors hierarchy which means that a func-
tional unit can be a composition of other functional
units connected in another network.

(iii) Bitstream syntax Description Language (BSDL) [18,
19] to describe the structure of the bitstream.

(iv) An important Video Tool Library (VTL) of actors
containing all MPEG standards. This VTL is under
development and it already contains 3 profiles of
MPEG 4 decoders (Simple Profile, Progressive High
Profile and Constrained Baseline Profile).

(v) Tools for edition, simulation, validation and auto-
matic generation of implementations:

(a) open DF framework [20] is an interpreter
infrastructure that allows the simulation of
hierarchical actors network. Xilinx contributed
to the project by developing a hardware com-
piler called OpenForge (available at http://
openforge.sourceforge.net/) [21] to generate
HDL implementations from RVC-CAL designs.

(b) open RVC-CAL Compiler (Orcc) (available at
http://orcc.sourceforge.net/) [19] is an RVC-
CAL compiler under development. It compiles
a network of actors and generates code for
both hardware and software targets. Orcc is
based on works on actors and actions analysis
and synthesis [22, 23]. In the front-end of
Orcc, a graph network and its associated CAL
actors are parsed into an abstract syntax tree
(AST) and then transformed into an inter-
mediate representation that undergoes typing,
semantic checks and several transformations in
the middle-end and in the back-end. Finally,
pretty printing is applied on the resulting IR to
generate a chosen implementation language (C,
Java, Xlim, LLVM, etc.).

At this level, the question is that why RVC-CAL and not
C? Actually, a C description involves not only the specifica-
tion of the algorithms but also the way inherently parallel
computations are sequenced, the way data is exchanged
throw inputs and outputs, and the way computations are
mapped. Recovering the original intrinsic properties of the
algorithms by analyzing the software program is impossible.



VLSI Design 3

Address

BTYPE

BTYPE

BTYPE RA

RA

MV

MV

WA

WA

halfpel

halfpel

RD
RD

WD

Buffer

Add

VID

VID

MOT

MOT

TEX

TEX

Interpolation

Figure 1: Graph example. Block diagram of the motion compensation of an MPEG 4 part 2 decoder.

FIFO FIFO

FIFO FIFO

FIFO

Actor

Actor

Actor

Actions

State

Consume/produce tokens
and modify internal states

Actions are implemented
sequentially and they can

be sequenced

Figure 2: CAL actor model.

In addition, the opportunities for restructuring transforma-
tions on imperative sequential code are very limited com-
pared to the parallelization potential available on multi-core
platforms. For these reasons, RVC adopted the CAL language
for actors specification. The main notions of this language
are presented below.

2.2. CAL Actor Language. The execution of an RVC-CAL
code is based on the exchange of data tokens between com-
putational entities (actors). Each actor is independent from
the others since it has its own parameters and finite state
machine if needed. Actors are connected to form an appli-
cation or a design, this connection is insured by FIFO chan-
nels. Executing an actor is based on firing elementary func-
tions called actions. This action firing may change the state of
the actor in case of an FSM. An RVC-CAL dataflow model is
shown in the network of Figure 2.

Figure 3 presents an example of a CAL actor realizing the
sum between two tokens read from its two input ports.

Like in VHDL, an actor definition begins by defining
the I/O ports and their types then actions are later listed.
An action begins also by defining the I/O ports it uses from
the list of ports of the actor and this definition includes the
number of tokens this action have to find in the FIFO to be

fireable. In the “sum” actor, the internal scheduler allows
action “add” only when there is at least one token in the
FIFO of port “INPUT1” and one token in the FIFO of port
“INPUT2” and this property explains how an actor can be
totally independent and can neither read nor modify the
state of any other actor. Of course, an actor may contain
any number of actions that can be governed by an internal
finite state machine. At a specific time two or more actions
may have the required conditions to be fired so the notion of
priority was introduced (see details in Section 3).

For the same behavior, an actor may be defined in dif-
ferent ways. Let us consider the “sum-5” actor of Figure 4
that reads 5 tokens in a port “IN,” computes their sum and
produces the result in a port “OUT.”

In Figure 4(a), the required algorithm is defined in only
one action. The condition of 5 required tokens is expres-
sed by the instruction “repeat 5.” Action “add” fires by con-
suming the 5 tokens from the FIFO into an internal buffer
“I.” After data storage, the algorithm of the action is applied.
Finally the action firing finishes by writing the result in the
port “OUT”.

Such description is very fast to develop and implement
on software targets but for hardware implementations a
multitoken read is not appropriate. This is the reason of



4 VLSI Design

actor sum ()
(int size=8) INPUT1 , (int size=8) INPUT2 ==> int(size=8) OUTPUT:

add: action INPUT1:[ i1 ], INPUT2[i2] ==> OUTPUT:[s]
var

int s
do

s:= i1 + i2 ;
end

end

Figure 3: Example of sum actor.

actor sum-5 () int (size=8) IN
==> int(size=8) OUT:

add: action IN:[ i ] repeat 5
==> OUT:[ s ]
var

int s := 0
do

foreach int k in 0 .. 4 do
s := s + i[k] ;

end
end

end

(a) SW-oriented definition

actor sum-5 () int (size=8) IN
==> int(size=8) OUT:

List (type: int (size=8), size = 5) data;
int counter :=0 ;

read: action IN:[ i ] ==>
do

data[counter] := i ;
counter := counter + 1 ;

end

read_done: action ==>
guard

counter = 5
do

counter := 0 ;
end

process: action ==> OUT:[ s ]
var
int s := 0

do
foreach int k in 0 .. 4 do

s := s + data[k] ;
end

end

schedule fsm state0:
state0 (read) --> state0;
state0 (read_done) --> state1;
state1 (process) --> state0;

end

priority
read_done > read;

end

end

(b) HW-oriented definition

Figure 4: Two-way definition example of sum-5 actor behavior.

developing the equivalent monotoken code of Figure 4(b).
In this description, we use a finite state machine to lock the
actor in the state “state0.” While counter¡5, only the action
“read” can be fired to store tokens one per one in “data”
buffer. Once the condition of action “read done” (counter =
5) is true, both of “read” and “read done” actions are fireable.
This is why the priority “read done ≻ read” is important
to keep the determinism of the actor. Finally, the firing of
“read done” action involves an FSM update to “state1” where
only “process” action can be fired and the actor is back to the
initial state.

3. Actor Behavior Formalism

Actor execution is governed by a set of conditions called
firing rules. Moreover, during this firing many internal

features of the actor are updated (state, state variables,
etc.). All these concepts and behavior evolutions are detailed
below. The actor execution, so called firing, is based on
the dataflow Process Network (DPN) principle [12] derived
from the Kahn Process Network (KPN) [13]. Let Ω be the
universe of all tokens values exchanged by the actors and
S = Ω∗, the set of all finite sequences in Ω. We denote the
length of a sequence s ∈ Sk by |s| and the empty sequence
by λ. Considering an actor with m inputs and n outputs, Sm

and Sn are the set of m-tuples and n-tuples consumed and
produced. For example, s0 = [λ[t0, t1, t2]] and s1 = [[t0], [t1]]
are sequences of tokens that belong to S2 and we have |s0| =
[0, 3] and |s1| = [1, 1].

3.1. Actor Firing. A dataflow actor is defined with a pair
〈 f ,R〉 such as:



VLSI Design 5

Front-end
Xlim

back-end

Automatic

transformation

RVC-CAL

IR Xlim

OpenForge Verilog

Figure 5: Automatic transformation localization in Orcc compiling
process.

(i) f : Sm → Sn is the firing function;

(ii) R ⊂ Sm are the firing rules;

(iii) for all r ∈ R, f (r) is finite.

An actor may have N firing rules which are finite
sequences of m patterns (one for each input port). A pattern
is an acceptable sequence of tokens for an input port. It
defines the nature and the number of tokens necessary for the
execution of at least one action. RVC-CAL also introduces the
notion of guard as additional conditions on tokens values. An
example of firing rule r j in S2 is

g j,k : [x] | x > 0

r j =
[

t0 ∈ g j,k, [t1, t2, t3]
]

,
(1)

Equation (1) means that if there is a positive token in the
FIFO of the first input port and 3 tokens in the FIFO of the
second input port then the actor will select and execute a fire-
able action. An action is fireable or schedulable iff:

(i) the execution is possible in the current state of the
FSM (if an FSM exists);

(ii) there are enough tokens in the input FIFO;

(iii) a guard condition returns true.

An action may be included in a finite state machine or
untagged making it higher priority than FSM actions.

3.2. Actor Transition. The FSM transition system of an actor
is defined with 〈σ0,Σ, τ,≺〉 where Σ is the set of all the states
of the actor, σ0 is the initial state, ≺ is a priority relation and
τ ⊆ Σ × Sm × Sn × Σ is the set of all possible transitions. A
transition from a state σ to a state σ ′ with a consumption of
sequence s ∈ Sm and a produced sequence s′ ∈ Sn is defined
with (σ , s, s′, σ ′) and denoted.

σ
s�→s′−→ σ ′
τ

. (2)

To solve the problem of the existence of more than one
possible transition in the same state, RVC-CAL introduced
the notion of priority relation such as for the transitions

t0, t1 ∈ τ, t0 a higher priority than t1 is written t0 ≻ t1. As

explained in [24] a transition σ
s�→s′−−→ σ ′
τ

is enabled iff:

¬∃σ p �→q−→
τ

σ ′′ ∈ τ : p ∈ S∧ σ
s�→s′−→
τ

σ ′′ ≻ σ
s�→s′−→ σ ′
τ

. (3)

This section presented and explained the main RVC-
CAL principles. In the next section we present an automatic
transformation as a solution to avoid these limitations
without changing the overall macrobehavior of the actor.

3.3. Hardware Generation Problematic. A firing rule is called
multitoken iff : ∃e ∈ |s| : e > 1 otherwise it is called a mono-
token rule. The limitation of OpenForge is the fact that it does
not support multitoken rules which are omnipresent in most
actors. The observation of Figure 4 shows the incontestable
complexity difference between the multitoken (a) and the
monotoken (b) code. Moreover, manually changing a CAL
code from high-level to low-level by creating the new actions,
variables and state machine is contradictory to the main
purpose of RVC standard which is the fact that CAL is a target
agnostic language so we have to write in CAL the same way
for hardware of software implementation. Our work consists
in automatically transforming the data read/write processes
from multitoken to monotoken while preserving the same
actor behavior. All the required actions, variables and finite
state machines are created and optimized directly in the
Intermediate representation of Orcc compiler. The following
section explains the achieved transformation mechanism.

4. Methodology for Hardware Code Generation

As shown in Figure 5, our transformation acts on the IR
of Orcc. The HDL implementation is later generated using
OpenForge.

4.1. Actor Transformation Principle. Let us consider an actor
with a multitoken firing rule r ∈ Sk such as |r| =
[r0, r1, . . . , rk−1], this rule fires a multitoken action a realizing

the transition source
a−→
τ
target and I the set of all input ports.

The transformation creates for every input port an internal
buffer with read-and-write indexes and clips r into a set R of
k firing rules so that:

∀i ∈ I,∃!ρ ∈ R :

⎧

⎪⎪⎨

⎪⎪⎩

ρ : S1 −→ S0

|r| = 1

gρ : IdxWritei − IdxReadi ≤ szi,

(4)

with ρ a monotoken firing rule of an untagged action
untaggedi, gρ is the guard of ρ, and szi the size of the
associated internal buffer defined as the closest power of 2 of
ri. This guard checks that the buffer contains an empty place
for the token to read. The multitoken action is consequently
removed, and new read actions that read one token from the
internal buffers are created. While reading tokens another
firing rule may be validated and causes the firing of an
unwanted action. To avoid the nondeterminism of such a
case, we use an FSM to put the actor in a reading loop so it
can only read tokens. The loop is entered using a transition



6 VLSI Design

actor A () int IN1 , int IN2 , int IN3 ==> int OUT1 , int OUT2:
a: action
in1:[in1] repeat 2, IN2:[in2] repeat 3, IN3:[in3] ==>
OUT1:[out1], OUT2:[out2] repeat 2
do

{treatment}
end

end

Figure 6: RVC-CAL code of actor A.

Write

Write2
Write1

Process
target

Read

Target

Read2 Read1
Source

Proc

Read3

Transition
Untagged1

Untagged2

Untagged3

Write done

Read done>

Figure 7: Created FSM macroblock.

action realizing the FSM passage source
transition−−−−−→

τ
read and

has the same priority order of the deleted multitoken action
but has no process. The read actions loop in the read state

with the transition t = read
read−−→
τ

read. Then the loop is

exited when all necessary tokens are read using a read done

action and a transition to the process state t′ = read
read Done−−−−−−→

τ

process ≻ t. The treatment of the multitoken action is put

in a process action with a transition process
process−−−−→

τ
write.

The multitoken outputs are also transformed into a writing
loop with write actions that store data directly in the output

FIFO associated with a transition w = write
write−−−→
τ

write

and a write done action that insures the FSM transition w′ =
write

write Done−−−−−−→
τ

target ≻ w.

For example, the actor A of Figure 6 is defined with
f :S3 →S2 with a multitoken firing rule:
r ∈ S3 : r = [[t0, t1], [t2, t3, t4], [t5]].
Consequently, |r| = [2, 3, 1] which means that there is an

action in A that fires if 2 tokens are present in IN1 port, 3
tokens are present in IN2 and one token is present in IN3.
The transformation creates the FSM macroblock of Figure 7.

4.2. FSM Creation Cases. We consider an example of an actor
defined as f : S3 → S2 containing the actions a1··a5 such as
a3 is the only action applying a multitoken firing rule r ∈ S3.

Creating an FSM only for action a3 is not appropriate
because a1, a2, a4, a5 will be a higher priority which may not
be true. The solution is to create an initial state containing
all the actions and add the created FSM macroblock of a3
(previously presented in Figure 7). The resulting FSM is
presented in Figure 8.

We now suppose the same actor scheduled with an initial
FSM as shown in Figure 9.

The transition t = S1
s�→s′−−→
τ

S2 is substituted with the

macroblock of a3 as shown in Figure 10.

4.3. Optimizations. To improve the transformation, some
optimization solutions were added. In the previously pre-
sented transformation method we used the untagged actions
to store data in the internal buffers, then we used read
actions to peek the required tokens from the internal buffers
using R/W indexes and masks. To preserve the schedulability,
the action is split into a transition action that contains the
firing rule and a process action that applies the algorithm.
The proposed optimization consists in making the action
reading directly from the internal buffers. The firing rule
of the action is transformed as presented in (4) to detect
the presence of enough data in the internal buffers. Let
us reconsider the basic example of the “sum-5” actor of
Figure 4 of Section 2.2. The transformation explained above
and the optimized transformation of this actor are presented
in Figure 11. This actor is transformed this way. First an
internal buffer and an untagged action are created to store
data inside the actor. The input pattern of the read action is
transformed into a connection to the internal buffer. Every
read or write from the internal buffer must be masked to
make the modulo of th buffer size since it is circular.

5. RVC Case of Study: MPEG 4 SP Intradecoder

To assess the performance of the previously presented trans-
formation, we applied it on the whole MPEG 4 simple profile
intradecoder. This choice is explained by the fact that there
exists a stable design in the VTL and also because this decoder
includes various image processing algorithms with more or
less complexity. In the following we present an overview of
this codec architecture and basic actors. We also present the
implementation results and a comparison with an academic
high-level synthesis tool called GAUT.

5.1. Concept. MPEG codecs have all a common design. It
begins with a parser that extracts motion compensation and
texture reconstruction data. The parser is then followed by
reconstruction blocs for texture and motion and a merger
as presented in Figure 12. This decoder is a full example of
coding techniques that encapsulates predictions, scan, quan-
tization, IDCT transform, buffering, interpolation, merging
and especially the very complex step of parsing.

Table 1 gives an idea about the complexity of parsers in
MPEG 4 Simple Profile and MPEG Advanced Video Coding
(AVC).



VLSI Design 7

Write

Write2 Write1

Process

Read

Read2 Read1

Proc

Read3

Init

Transition
a1a2

a4

a5
Untagged IN1

Untagged IN2

Untagged IN3

Write done

Read done

>

Figure 8: FSM with created initial state.

S0

S1

S2

a1

a4

a3

a5

a2

Figure 9: Initial FSM of an actor.

Table 1: Composition of MPEG-4 simple profile and MPEG-4
advanced video coding RVC-CAL description.

Actors Levels
Parser size Decoder size

kSLOC kSLOC

MPEG-4 SP 27 3 9.6 2.9

MPEG-4 AVC 45 6 19.8 3.9

Table 2: MPEG4 decoder area consumption.

Criterion Transformed design Optimized design

Slice flip flops 21,624/135,168 (15%) 13,575/135,168 (10%)

Occupied slices 45,574/67,584 (67%) 18,178/67,584 (26%)

4 input LUTs 68,962/135,168 (51%) 34,333/135,168 (25%)

FIFO16/RAMB16s 14/288 (4%) 14/288 (4%)

Bonded IOBs 107/768 (13%) 107/768 (13%)

Actors of Figure 12 are the main functional units some
of them are hierarchical composition of actor networks. An
actor may be instantiated more than one time so for 27 FU
there are 42 actor instantiations.

5.2. Implementation and Results. The achieved automatic
transformation was applied on MPEG4 SP intradecoder
(see design in Orcc Applications (available at http://orcc
.sourceforge.net/)) which contains 29 actors. We omitted the
inter decoder part because it is very memory consuming.
The HDL generated code was implemented on a virtex4
(xc4vlx160-12ff1148) and the area consumption results we
obtained are presented in Table 2. The removal of read

Table 3: MPEG4 decoder timing results.

Criterion
Transformed

design
Optimized

design

Maximum frequency (MHz) 26.4 26.67

Latency (µs) 381.8 306.4

Cadency (MHz) 1.9 2.33

Processing time (ms/image) 13.55 11.01

Throughput frequency (MHz) 1.8 2.2

Global image processing (FPS) 73.8 90.82

actions buffers and process actions had an important impact
on the area consumption since it has decreased about 50%.

After the synthesis of the design, we applied a simulation
stream of compressed videos. Table 3 below presents the tim-
ing results of a CIF (352× 288) image size video.

We notice that timing results were partially improved.
This is due to the presence of division operations in some
actors. In our transformation we replaced divisions by an
Euclidean division which is very costly and time consuming.
The impact is noticeable since these divisions reduced the
maximum frequency by 60%. Therefore, we applied the
transformation on the inverse discrete cosine 2D transform
(IDCT2D). We chose this actor because it contains very com-
plex algorithm, functions and procedures. We tried to com-
pare with an optimal low-level architecture designed by
Xilinx experts and also with an existing implementation
study of a direct VHDL written algorithm in [25]. For a signi-
ficant comparison, we used the same implementation target



8 VLSI Design

Transition

Write

Store

Proc

Read1

Write2
Write1

Process

Read3

Read2

S1S0

S2

a1

a5

a2

a4

Untagged IN1

Untagged IN2

Untagged IN3
Write done

Read done
>

Figure 10: Resulting FSM transformation.

actor sum-5 () int (size=8) IN
==> int(size=8) OUT:

List (type: int (size=8), size = 8) buffer;
// closest power of 2 for circular buffer
List (type: int (size=8), size = 5) data;
int readIdx := 0;
int writeIdx := 0;
int counter :=0 ;

action IN:[ i ] ==> // untagged action
guard

readIdx - writeIdx < 8
// condition that the buffer is not full

do
buffer[readIdx & 7] := i ;
// masked read index
readIdx := readIdx + 1 ;

end

read: action ==>
do

data[counter] := buffer[writeIdx & 7] ;
// masked write index
counter := counter + 1 ;

end

read_done: action ==>
guard

counter = 5
do

counter := 0 ;
end

process: action ==> OUT:[ s ]
var
int s := 0

do
foreach int k in 0 .. 4 do

s := s + data[k] ;
end
writeIdx := writeIdx + 5; // update writeIdx

end

schedule fsm state0:
state0 (read) --> state0;
state0 (read_done) --> state1;
state1 (process) --> state0;

end

priority
read_done > read;

end

end

(a) Transformed equivalent CAL

actor sum-5 () int (size=8) IN
==> int(size=8) OUT:

List (type: int (size=8), size = 8) buffer;
int readIdx := 0;
int writeIdx := 0;

action IN:[ i ] ==>
guard

readIdx - writeIdx < 8
do

buffer[readIdx & 7] := i ;
readIdx := readIdx + 1 ;

end

process: action ==> OUT:[ s ]
guard

readIdx - writeIdx > 5
var
int s := 0

do
foreach int k in 0 .. 4 do

s := s + buffer[k + (writeIdx &7)] ;
end
writeIdx := writeIdx + 5; // update writeIdx

end

end

(b) Optimized equivalent CAL

Figure 11: Transformed and optimized sum-5 actor.



VLSI Design 9

Texture decodingDC

DC

DC

DC

DC

DC

DC

DC

DC

addr

addr

addr

split

split

split

[01111001. . .]

Bitstream P
ar

se
r

pred−1

pred−1

pred−1

pred−1

pred−1

pred−1

Scan−1

Scan−1

Scan−1

AC

AC

AC

Quant-

ize−1

Quant-

ize−1

Quant-

ize−1

DCT−1

DCT−1

DCT−1

Addr

Addr

Addr

Motion compensation

Buffer

Buffer

Buffer

Interpo-

late

Interpo-

late

Interpo-

late

Add

Add

Add

M
er

ge

Decoded data

Figure 12: MPEG 4 SP architecture.

Table 4: IDCT2D timing results.

Image size Xilinx design Transformed design Optimized design VHDL design

Maximum frequency (MHz) 37 37 43 41

Latency (µs) 11.52 82.7 28.4 ∗

Cadency (MHz) 30 18.49 21.7 71

Processing time (µs/64 Tokens) 1.99 3.4 2.8 0.89

Throughput frequency (MHz) 26.62 0.72 2.43 62.4

Global image processing (FPS) 1064 31 101 2518
∗Not mentioned in the literature.

of the study which is the Xilinx Spartan 3 XC3S4000. Timing
and area consumption results comparison are presented in
Tables 4 and 5.

Obviously, Table 5 reveals that area results for the opti-
mized design are very close to those of the Xilinx low-level
design. This property is noted for all actors containing more
computing algorithms then data control and management
algorithms. Concerning the area consumption of the VHDL
design, it is expectable to find results nearby the optimal
design and clearly worse than the Xilinx design and this
is due to the synthesis constraints indicated in [25] that
favor treatment speed in spite of the surface. This is what
explains also the very high FPS rate of the design presented
in Table 4. Timing results of the other designs show that
the optimized design performances are far from the optimal
Xilinx design. This is due to the low level architecture made
by Xilinx experts which is completely different and oriented
for hardware generation. This architecture is a pipelined
set of actors realizing the IDCT2D (rowsort, fairmerge,
IDCT1D, separate, transpose, retranspose, and clip) which
is a relatively complex design compared with the high-level
IDCT2D code used for the transformation.

After comparing with the Xilinx design and a VHDL
directly written design, we compared our results with exist-
ing generation tools and we considered GAUT hardware gen-
erator. This tool is an academic high-level synthesizer from

C to VHDL. It extracts the parallelism and creates a sched-
uled dependency graph made of elementary operators.
Potentially, GAUT synthesizes a pipe-lined design with mem-
ory unit, communication interface and a processing unit.
However, like most existing hardware generators, GAUT is
not able to manage a system level design with very high com-
plexity and a variety of processing algorithms. Moreover,
there are so many restrictions on the C input code to have
a functioning design. As it was impossible to test the whole
MPEG 4 decoder we chose the IDCT2D algorithm to have a
comparison with previously presented results.

The IDCT2D is so generated with GAUT and we
obtained the results of Table 6 below.

Results show that the optimized transformation gener-
ates a better design even for the specific case of study of the
IDCT2D.

6. Still Image Codec: LAR Case of Study

The LAR is a still-image coder [26] developed at the IETR/
INSA of Rennes laboratory. It is based on the idea that the
spatial coding can be locally dependent on the activity in
the image. Thus, the higher the activity the lower the resolu-
tion is. This activity is dependent from the variation or the
uniformity of the local luminance which can be detected
using a morphological gradient. In the following, we detail



10 VLSI Design

Table 5: IDCT2D area consumption.

Criterion Xilinx design Transformed design Optimized design VHDL design

Slice flip flops 1415/55296 (2%) 4002/55296 (7%) 2113/55296 (3%) ∗

Occupied slices 1308/27648 (4%) 5238/27648 (18%) 2523/27648 (9%) 3571/27648 (12%)

4 input LUTs 2260/55296 (4%) 9861/55296 (17%) 4777/55296 (8%) 4640/55296 (8%)

Bonded IOBs 48/489 (9%) 49/489 (10%) 49/489 (10%) ∗

∗Not mentioned in the literature.

Table 6: IDCT2D area consumption with GAUT.

Criterion GAUT design Optimized design

Slice flip flops 2.080/135.168 (2%) 1.988/135.168 (2%)

Occupied slices 2.477/67.584 (3%) 2.353/67.584 (3%)

4 input LUTs 4.243/135.168 (3%) 4.458/135.168 (3%)

Bonded IOBs 627/768 (81%) 49/768 (6%)

++

Original
image

FLAT FLAT

coder decoder

coder decoder

Spectral Spectral

Transmission

Transmission

Low

resolution

image

resolution

image

Middle/high

−−

Figure 13: LAR concept.

coding principle of the LAR and we present the implement-
ation techniques and results using the automatic transforma-
tion approach.

6.1. Concept. The LAR coding is based on considering that
an image is a superposition of a global information image
(mean blocks image), and the local texture image, which is
given by the difference between the original image and the
global one. This principle is modeled by

I = I +

⎛

⎜
⎝I − I
︸ ︷︷ ︸

E

⎞

⎟
⎠, (5)

where I is the original image, I is the global information
image and I − I is the error image, E. The dynamic range of
the error image is consequently dependent on the local activ-
ity. In uniform regions, I values are close or equal to I con-
sequently I − I values are around zero with a low dynamic
range.

Considering these principles, the LAR coder concept
(Figure 13) is composed of two parts: the FLAT LAR [27]

which is the part insuring the global information coding and
the spectral part which is the error spectral coder.

Different profiles have been designed to fit with different
types of application. In this paper, we focus on the baseline
coder. Its mechanisms are detailed in the following.

The FLAT LAR. The Flat LAR is composed of 3 main parts:
the partitioning, the block mean value computation and the
DPCM (Differential Pulse Coding Modulation). In our work,
only the DPCM is not yet developed with RVC-CAL.

(i) Partitioning: in this part, a Quad-tree partitioning
is applied on the image pixels. The principle is to
consider the lowest block size (2×2) then to compare
the difference between the maximum (MAX) and the
minimum (MIN) values of the block with a threshold
(THD) defined as a generic variable for the design.
If (MAX−MIN) > THD then the actual block size is
considered. In the other case, the (N×2)×(N×2) size
block is required. this process is recursively applied
on the whole image blocks. The output of the overall
is the block size image.

(ii) Block mean values computation process: this process
is based on the Quad-tree output image. For each
block of the variable size image, a mean value is put
in the block as presented in the example of Figure 14.

(iii) The DPCM: the DPCM process is based on the
prediction of neighbor values and the quantization
of the block mean value image. The observation that
a pixel value is mostly equal to a neighbor one led
to the following estimation algorithm. If we consider
the pixels in Figure 15, X value is estimated with the
following algorithm:

If |B − C| < |A− B| then X = A else X = C.

The spectral coder, also called the texture coder, is
composed of a variable block size Hadamard transform
[28] and the Golomb-Rice [29, 30] entropy coder. The
Golomb-Rice coder is still in development with the RVC-
CAL specifications.

The Hadamard transform derives from a generalized
class of the Fourier transform. It consists of a multiplication
of a 2m × 2m matrix by an Hadamard matrix (Hm) that has
the same size. The transform is defined as follows.



VLSI Design 11

Quad tree

Original image Block size image

Block mean value image

Block mean value

process

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2
2 2 2 2

2 2 2 2

2 2 2 2

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4
4 4 4 4

4 4 4 4

4 4 4 4

910

10

10 10
1010

11 25 25

25 20

26 27

28

29 30

36

30

31
31

31
31

31
31

31
31

31
31

31
31

31
31

31
31

39 39 40

40

41

. .

. .

....

....

.... ....

........

.... ....

........

. .

. .

....

....

.... ....

........

.... ....

........

Figure 14: Block mean value process example.

A

B C

X

Figure 15: DPCM prediction of neighbor pixels.

H0 is the identity matrix so H0 = 1. For any m > 0, Hm is
then deducted recursively by:

Hm =
1√
2

∣
∣
∣
∣
∣

Hm−1 Hm−1

Hm−1 −Hm−1

∣
∣
∣
∣
∣
. (6)

Here are examples of Hadamard matrices:

H0 = 1,

H1 =
1√
2

∣
∣
∣
∣
∣

1 1
1 −1

∣
∣
∣
∣
∣

,

H2 =
1√
2

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

, and so forth.

(7)

6.2. Implementation and Results. This Section explains the
mechanisms of the Hadamard transform and the Quad-tree
used in the implementation.

6.2.1. Hardware Implementation. The LAR coding is depen-
dent from the content of the image. It applies in the Quad-
Tree a morphological gradient to extract information about
the local activity on the image. The output is the block size
image represented by variable size blocks: 2 × 2, 4 × 4 or

Image Memory
management

memory

management

memory

management

memory

management

memory

management

Quad-tree
Block size

2× 2
blocks

H1

H1

H1

H2 H3

Norm.
and

quant.

H2 input H2 output H3 input H3 output

Figure 16: LAR baseline developed model.

8 × 8. Using the block size image, the Hadamard transform
applies the adequate transform on the corresponding block.
It means that if we have a block size of 2 × 2 in the size
image this block will undergo a 2 × 2 Hadamard (H1) and
a normalization specific to the 2 × 2 blocks. This process is
identically applied for 4× 4 and 8× 8 blocks. A quantization
step, adapted to current block size, is applied on the
Hadamard output image. For each block size, a quantization
matrix is predefined. Practically, the normalization during
the Hadamard transform is postponed to be achieved with
the quantization step so that to decrease the noise due to
successive divisions.

The implemented LAR is presented in Figure 16.
As a first step, the memory management block stores the

pixels values of the original image line by line. Once an 8× 8
block is obtained, the actor divides it into sixteen 2×2 blocks
and sends them in a specific order as presented in Figure 18.

This order is very important to improve the performance
of remaining actors. In fact, considering the Figure 18, when
the tokens are so ordered the first 4 tokens correspond to the
first 2 × 2 block, the first 16 tokens to the first 4 × 4 block,
and so forth Consequently, and as presented in Figure 16, the
output of the H1 is automatically the input of the H2 and the
output of the H2 is automatically the input of the H3.

In the Quad-tree, this order is also crucial. As presented
in Figure 17, the superposition of the same actor (max for
example) three times provides in the output of the first actor
the maximum values of 2 × 2 blocks, in the output of the
second actor the maximum values of 4 × 4 block and finally
the maximum values of 8 × 8 blocks in the output of the
third one. Using the maximum values and the minimums the
morphological gradient in the Gradstep actors can process to
extract the block size image. The same tip is used to calculate
the block sums with three superposed sum actors. The block
mean value actor considers the sums and the sizes to build
the block mean value image.

We also notice that an (H2) transform can be achieved
using the (H1) results of the four 2×2 blocks constituting the
4× 4 block. The same observation can be made for the (H3)
one. This ascertainment is very important to decrease the
complexity of the process. In fact, the Hadamard transform



12 VLSI Design

Max Max Max

2× 2 4× 4 8× 8

2× 2 4× 4 8× 8

2× 2 4× 4 8× 8

Min Min Min

Sum Sum Sum

Input
image

Gradstep
process

Block mean
value process

Block mean
size image

Figure 17: Quad-tree design.

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

2× 2 block

Figure 18: Memory management unit output order.

of the LAR applies an (H1) transform for the whole image
then it applies the (H2) transform only for the 4 × 4 and
8×8 blocks and the (H3) transform only for the 8×8 blocks.
The (H2) and the (H3) transforms are different from the full
transforms as they are much less complex. Consequently, as
shown in Figure 16, we designed the H2 and the H3 using H1

actors associated with memory management units. They sort
tokens in the adequate order and, considering the block size,
whether the block is going to undergo the transform or not.

It is very important to mention that almost actors have
been developed with generic variables for memory sizes or
gradsteps which means that the design are flexible for easy
transformation from an image size to another or for adding
higher Hadamard process (H4, H5, etc.).

In [15], we added some optimizations on the processes
using a Ping-Pong memory management algorithm [31] to
pipeline the process.

6.2.2. Results and Comparison. As mentioned above, this
work aims at comparing hardware implementation perfor-
mances of the same LAR architecture generated with the
optimized automatic transformation and with a manual
transformation. The achieved automatic transformation was
applied on the 23 actors of the LAR using Orcc. The HDL

Table 7: LAR coder area consumption.

Transformation Automatic Manual

Slice flip flops 20.452/135.168 (15%) 12.157/135.168 (8%)

Occupied slices 47.576/67.584 (70%) 43.602/67.584 (67%)

4 input LUTs 59.868/135.168 (44%) 53.417/135.168 (39%)

Bonded IOBs 41/768 (5%) 41/768 (5%)

Table 8: LAR timing results.

Transformation Automatic Manual

Development time 30% 100%

Maximum frequency (MHz) 61.43 85.27

Latency (ms) 0.42 0.12

Throughput frequency (MHz) 3.5 5.6

Processing time (ms/image) 35 19

Global image processing (FPS) 34 53

generated code was implemented on a virtex4 (xc4vlx160-
12ff1148). The area consumption results obtained are pre-
sented with those of manual transformations in Table 7.

After the synthesis of the design, we applied a simulation
stream of compressed videos. Table 8 below presents the
timing results of a CIF (352× 288) image size video.

For area consumption, the difference is not considerable
for LUTs and occupied slices and it can be explained by the
fact that the transformation applies a general modification
whatever the complexity of the actor. Also, the fact of creating
an internal buffer for every input port involves more area
consumption.

Concerning the timing results, the automatic and the
manual transformed designs performances remain close and
acceptable. The latency difference is explained by the fact that
the untagged actions, as always given priority over the rest
of actions, promote the data reading. It means that, as long
as there is data in the FIFO, the untagged action fires even
if there are enough data to fire the processing actions. This
problem will also be resolved by further optimizations of the
buffer size.

7. Conclusion

This paper presented an automatic transformation of RVC-
CAL from high- to low-level description. The purpose of this
work is to find a general solution to automate the whole
hardware generation flow from system level. This transfor-
mation allows avoiding structures that are not understand-
able by RVC-CAL hardware compilers. We applied this auto-
matic transformation on the 29 actors of MPEG4 part2
video intradecoder and successfully obtained the same
behavior of the multitoken design and a synthesizable hard-
ware implementation. To change the test context, we auto-
matically transformed a high-level design of the LAR still
image codec and obtained relatively acceptable results.

Several optimization processes were added to the trans-
formation to reduce the area consumption about 50%. The
transformation process is currently generalized for all actors.



VLSI Design 13

The most important in this work is that we contributed
in making RVC-CAL hardware generation very rapid with an
average gain of 75% of conception, development, and valida-
tion time compared with manual approach. We insured that
the generation is applicable at system level whatever the com-
plexity of the actor.

Currently, improvements are also in progress to custo-
mize the transformation depending on the actor complexity
analysis. A future work will be the study of the impact of the
transformation on the power consumption of the generated
implementation.

Acknowledgments

Special thanks to Matthieu Wipliez, Damien De Saint-Jorre,
and Hervé Yviquel for their relevant contributions in the
source code.

References

[1] B. Bailey, G. Martin, and A. Piziali, ESL Design and Verification:
A Prescription for Electronic System-Level Methodology, The
Morgan Kaufmann Series in Systems on Silicon, Morgan
Kaufmann, 2007.

[2] “Synopsys: Synphony C compiler,” In ESL design and veri-
fication: a prescription for electronic system-level methodo-
logy, http://www.synopsys.com/systems/blockDesign/HLS/
pages/SynphonyC-Compiler.aspx

[3] “Mentor Graphics: Designing High-Performance DSP Hard-
ware Using Catapult C Synthesis and the Altera Accele-
rated Libraries,” In ESL design and verification: a prescrip-
tion for electronic system-level methodology, http://www
.altera.com/literature/wp/wp-01039.pdf.

[4] “Mentor Graphics: Catapult C,” In ESL design and verifica-
tion: a prescription for electronic system-level methodology,
2010, http://www.mentor.com/esl/catapult/overview.

[5] F. Plavec, Z. Vranesic, and S. Brown, “Towards compilation of
streaming programs into FPGA hardware,” in Proceedings of
the Forum on Specification, Verification and Design Languages
(FDL ’08), pp. 67–72, September 2008.

[6] D. Lau, O. Pritchard, and P. Molson, “Automated generation
of hardware accelerators with direct memory access from
ANSI/ISO standard C functions,” in Proceedings of the 14th
Annual IEEE Symposium on Field-Programmable Custom Com-
puting Machines (FCCM ’06), pp. 45–56, April 2006.

[7] T. M. Bhatt and D. McCain, “Matlab as a development
environment for FPGA design,” in Proceedings of the 42nd
annual Design Automation Conference (DAC ’05), ACM, New
York, NY, USA, 2005.

[8] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An
introduction to high-level synthesis,” IEEE Design and Test of
Computers, vol. 26, no. 4, pp. 8–17, 2009.

[9] P. Coussy, C. Chavet, P. Bomel, D. Heller, E. Senn, and E. Mar-
tin, “GAUT: a high-level synthesis tool for DSP applications,”
in High-Level Synthesis: From Algorithm to Digital Circuits, P.
C. A. Morawiec, Ed., Springer, 2008.

[10] J. Eker and J. Janneck, “CAL language report,” ERL Technical
Memo UCB/ERL M03/48, University of California at Berkeley,
2003.

[11] C. Brooks, E. Lee, X. Liu, S. Neuendorer, and Y. Zhao,
Eds., “HZ: PtolemyII—heterogeneous concurrent modeling
and design in Java (Volume 1: introduction to ptolemyII),”

Technical Memorandum UCB/ERL M04/27, University of
California, Berkeley, Calif, USA, 2004.

[12] E. A. Lee and T. M. Parks, “Dataow process networks,” Pro-
ceedings of the IEEE, vol. 83, no. 5, Article ID 773801, 1995.

[13] G. Kahn, in Proceedings of the IFIP Congress The Semantics of
a Simple Language for Parallel Programming. In Information
Processing, J. L. Rosenfeld, Ed., pp. 471–475, North-Holland,
New York, NY, USA, 1974.

[14] M. Mattavelli, I. Amer, and M. Raulet, “The reconfigurable
video coding standard,” IEEE Signal Processing Magazine, vol.
27, no. 3, pp. 159–167, 2010.

[15] K. Jerbi, M. Wipliez, M. Raulet, M. Babel, O. Deforges, and M.
Abid, “Automatic method for efficient hardware implement-
ation from rvc-cal dataflow: a lar coder baseline case study,”
Journal Of Convergence, vol. 1, Article ID 8592, 2010.

[16] K. Jerbi, M. Raulet, O. Deforges, and M. Abid, “Automatic gen-
eration of synthesizable hardware implementation from high
level RVC-CAL design,” in Proceedings of the 37th International
Conference on Acoustics Speech and Signal Processing (ICASSP
’12), pp. 1597–1600, 2012.

[17] J. Janneck, I. Miller, D. Parlour, G. Roquier, M. Wipliez, and
M. Raulet, “Synthesizing hardware from dataflow programs:
an mpeg-4 simple profile decoder case study,” Journal of Signal
Processing Systems, vol. 63, no. 2, pp. 241–249, 2009.

[18] M. Mattavelli, J. W. Janneck, and M. Raulet, “MPEG reconfig-
urable video coding,” in Handbook of Signal Processing Systems,
S. S. Bhattacharyya, E. F. Deprettere, R. Leupers, and J. Takala,
Eds., pp. 43–67, Springer, 2010.

[19] J. W. Janneck, M. Mattavelli, M. Raulet, and M. Wipliez,
“Reconfigurable video coding: a stream programming
approach to the specification of new video coding standards,”
in Proceedings of the ACM SIGMM Conference on Multimedia
Systems (MMSys ’10), pp. 223–234, New York, NY, USA,
February 2010.

[20] S. Bhattacharyya, G. Brebner, J. Eker et al., “OpenDF—a
dataflow toolset for reconfigurable hardware and multicore
systems,” in 1st Swedish Workshop on MultiCore Computing
(MCC ’08), Ronneby, Sweden, November 2008.

[21] R. Gu, J. W. Janneck, S. S. Bhattacharyya, M. Raulet, M.
Wipliez, and W. Plishker, “Exploring the concurrency of an
MPEG RVC decoder based on dataflow program analysis,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 19, no. 11, pp. 1646–1657, 2009.

[22] G. Roquier, M. Wipliez, M. Raulet, J. W. Janneck, I. D. Miller,
and D. B. Parlour, “Automatic software synthesis of dataflow
program: an MPEG-4 simplpe profile decoder case study,”
in Proceedings of IEEE Workshop on Signal Processing Systems
(SiPS ’08), pp. 281–286, Washington, DC, USA, October 2008.

[23] M. Wipliez, G. Roquier, and J. F. Nezan, “Software code gen-
eration for the RVC-CAL language,” Journal of Signal Process-
ing Systems, vol. 63, no. 2, pp. 203–213, 2011.

[24] J. Eker and J. W. Janneck, “A structured description of dataflow
actors and its application,” Technical Memorandum UCB/ERL
M03/13, Electronics Research Laboratory, University of Cali-
fornia at Berkeley, 2003.

[25] R. K. Megalingam, K. B. Venkat, S. V. Vineeth, M. Mithun,
and R. Srikumar, “Hardware implementation of low power,
high speed DCT/IDCT based digital image watermarking,”
in Proceedings of the International Conference on Computer
Technology and Development (ICCTD ’09), pp. 535–539,
November 2009.

[26] O. Déforges, M. Babel, L. Bédat, and J. Ronsin, “Color LAR
codec: a color image representation and compression scheme
based on local resolution adjustment and self-extracting



14 VLSI Design

region representation,” IEEE Transactions on Circuits and Sys-
tems for Video Technology, vol. 17, no. 8, pp. 974–987, 2007.

[27] O. Deforges and M. Babel, “LAR method: from algorithm to
synthesis for an embedded low complexity image coder,” in
Inproceedings of the 3rd International Design and Test Workshop
(IDT ’08), pp. 187–192, December 2008.

[28] J. Poncin, “Utilisation de la transformation de Hadamard pour
le codage et la compression de signaux d’images,” Annales des
Télécommunications, vol. 26, no. 7-8, pp. 235–252, 1971.

[29] R. F. Rice, “Some practical universal noiseless coding tech-
niques,” Technical Report 79–22, 1979.

[30] S. W. Golomb, “Run length codings,” IEEE Transactions on
Information Theory, vol. 12, no. 7, Article ID 399401, 1966.

[31] C. H. Chang, M. H. Chang, and W. Hwang, “A flexible two-
layer external memory management for H.264/AVC decoder,”
in Inproceedings of the 20th Anniversary IEEE International
SOC Conference, pp. 219–222, September 2007.


