
A Design by Contract Approach to Verify Access Control Policies

Hakim Belhaouari∗, Pierre Konopacki†, Régine Laleau§ and Marc Frappier‡
∗XLIM-SIC, Université de Poitiers, France

hakim.belhaouari@sic.univ-poitiers.fr
†‡GRIL, Département d’informatique, Université de Sherbrooke, Canada
{pierre.konopacki,marc.frappier}@usherbrooke.ca

§LACL, Université Paris-Est Créteil, France
laleau@u-pec.fr

Abstract—In the security domain, access control (AC) con-
sists in specifying who can access to what and how, with the four
well-known concepts of permission, prohibition, obligation and
separation of duty. In this paper, we focus on role-based access
control (RBAC) models and more precisely on the verification
of formal RBAC models. We propose a solution for this verifica-
tion issue, based on the use of the Tamago platform. In Tamago,
functional contracts can be defined with pre/postconditions and
deterministic automata. The Tamago platform provides tools
for static verifications of these contracts, generation of test
scenarios from the abstract contracts and monitoring facilities
for dynamic analyses. We have extended the platform to take
into account AC aspects. AC rules, expressed in a subset of
EB3SEC, a process algebra-based language, are translated into
pre and post conditions of new security contracts. We have
also adapted the test case generator to derive suitable test
scenarios and the monitoring framework by adding a new
security component.

Keywords-Access control specification; verification; Design
by Contract

I. INTRODUCTION

Nowadays, organisations are so dependent on the proper
functioning of their information systems (IS) that corruption,
loss of data or breaches in confidentiality, may have serious
consequences. One of the facets of IS security is concerned
with access control (AC) that defines who can access to what
and how. A number of access control models have already
been proposed. In this paper, we focus on role-based access
control models (RBAC) [1]. In such models, AC rules can
be described through the use of four concepts: permission,
prohibition, Separation of Duty (SoD) and obligation. Some
of these models make use of formal languages, allowing
verifications to be carried out at an abstract level, before
any implementation. We have developed the EB3SEC lan-
guage [2], based on process algebra, that allows designers to
specify the four kinds of AC constraints in the same model.
By now, the most critical point concerns verification of AC
constraints. Different techniques of verification exist to prove
properties on systems in general. Theorem proving allows
invariant properties to be verified but it is not easy to prove
dynamic properties, such as temporal or ordering constraints.
For these properties, model checking is more appropriate

but faces the problem of combinatorial explosion, especially
in information systems where there is a large amount of
entities [3]. An alternative for verification is to carry out tests
and the possibility to generate test scenarios from formal
models.

In this paper, we propose a solution for the verification
issue, based on the use of the Tamago platform [4]. The
Tamago language allows for the definition of functional
contracts described, on one hand, by pre and post conditions
expressed in first order logic, and on the other hand by
deterministic automata. The Tamago platform provides tools
for static verifications of these contracts, generation of test
scenarios from the abstract contracts and monitoring facil-
ities for dynamic analyses. We have extended the platform
to take into account AC aspects. AC rules, expressed in a
subset of EB3SEC, are translated into pre and post conditions
of new security contracts. We have also adapted the test case
generator to derive suitable test scenarios and the monitoring
framework by adding a new security component.

In Section II, we describe the sub-language of EB3SEC,
called ACA (Access Control lAnguage), adapted to Tamago.
Section III presents the different components of the Tamago
platform. Section IV details the extensions we have devel-
oped in the Tamago platform to consider the different kinds
of AC rules described in Section II. Section V is dedicated
to related works and Section VI draws the conclusions of
this work and the perspectives.

II. THE ACCESS CONTROL LANGUAGE ACA
An AC policy is part of the security policy of a system

that deals with who can access to what and how. Generally,
AC constraints are classified into four concepts :
• Permission allows the execution of an action.
• Prohibition forbids the execution of an action.
• Obligation links two actions. Once a person performed

one of them, he must execute the second action [5].
• Separation of duty links two actions. Once a person

performed one of them, he is not allowed to perform
the second action.

With regard to verification purpose, it is also interesting to
differentiate them according to their static/dynamic feature.

• Static AC constraints are constraints that do not
depend on the state or the evolution of the system.
Typically, static AC constraints are permissions and
prohibitions.

• Dynamic AC constraints depends on the state or
the evolution of the system. This category contains
constraints of SoD and obligation.

Contrary to existing AC modelling languages [1], [6], our
approach, called EB3SEC [2], allows designers to express
the four kinds of AC constraints in the same model. In this
paper, we present ACA (Access Control lAnguage), a subset
of EB3SEC, adapted to the input language of the Tamago
platform. It also contains the four kinds of AC constraints
but contextual constraints are excluded since they require
to extend the Tamago platform. Contextual constraints are
predicates defined on the state of the system that reduce the
range of validity of AC constraints. For instance, in a bank,
users holding role clerk can execute a validate between
8.00am and 5.00pm.

The rest of the section presents the ACA language through
the description of the case study which consists of modelling
an AC policy of a bank that wants to secure its check deposit
process. This business process can be described as follows
:

1) The action deposit must be executed for the check.
2) The actions check and register must be executed for

the check, but in any order.
3) The action cancel must be executed, or, the actions

validate and validate dir must be executed, but in any
order.

To model this AC policy, we choose an AC model derived
from RBAC [1]: our model adds to the RBAC model
the concept of organisation introduced by the OrBAC [7]
method. In ACA, designers must, at first, declare the sets
containing the users, the roles, the organisations and the
actions as follows:
users:=alphonse,boris,catherine,damien,elise,franck;
roles:=customer,clerk,banker,director;
organisations:=montreal,toronto;
actions:=deposit,cancel,check,validate,

validate_dir,register;

The set users defines active entities evolving in the
system (i.e., users that interact with the system). The set
roles stands for the roles that users can hold in the
system. For instance, in a bank, roles can be customer,
clerk, banker or director. The set organisations represents
physical branches of the bank. Indeed, in a corporation, it
is rather common that the AC policy can slightly differ
from branches to branches. Rather than duplicating roles
to consider the different branches, we prefer to add a new
element, organisations. The set actions specifies actions
that can be executed in the system and that need to be
protected by the AC policy. Note that business parameters
of the actions do not appear in the ACA model since they

are not useful to express AC constraints.
ACA allows designers to specify an AC policy that can be

applied on each instance of a business process, thus, business
parameters of actions are not required in the AC rules. If an
action appears in several AC rules, its execution must satisfy
all the AC rules where it appears.

The next element deals with the relation that links sets
users, roles and organisations, called play. It is similar to
the association User-Role assignment existing in the RBAC
model, but enhanced with the concept of organisation. The
relation play specifies who can hold which role in which
organisation. For instance, the user alphonse holds the role
customer in the branch of montreal. In our case study, the
relation play is filled with :
play :=
<alphonse,customer,montreal>,
<boris,customer,montreal>,
<boris,clerk,montreal>,
<catherine,director,montreal>,
<catherine,customer,toronto>,
<damien, banker,montreal>,
<elise,clerk,toronto>,
<franck,director,toronto>;

The next element is the definition of the relation per-
mission. This relation links the sets users, roles, organi-
sations and actions.Thanks to this association, designers
can express which role a user must hold to execute an
action in an organisation. For instance, it could help to
model that in every branches, any user who holds the role
of clerk can execute the action deposit. In our case study,
the permissions are declared as follows :
permissions :=
<_,clerk,_,deposit>,
<_,clerk,_,register>,
<_,banker,_,deposit>,
<_,banker,_,register>,
<_,banker,_,cancel>,
<_,banker,_,validate>,
<_,director,_,cancel>,
<_,director,_,validate>;
<_,director,_,validate_dir>;

The symbol means that this parameter can take any
value. To compute effective permissions, we join the rela-
tions permissions and play. The join is calculated on the
explicitly declared parameters (parameters not represented
by an). In our example, the computation of the effec-
tive permissions for the permission <_,clerk,_,deposit>

gives :
effPerm1 :=
<boris,clerk,montreal,deposit>,
<elise,clerk,toronto,deposit>,

The next declaration deals with the relation prohibitions.
It also links the sets users, roles, organisations and
actions. Opposite to permissions, prohibitions forbid people
who hold a given role to execute an action in an organisation.
For instance, in every branches the user elise, holding any
role, is forbidden to execute a cancel. The symbol ! before
a parameter denotes the negation operator.

prohibitions :=
<!elise,_,_,cancel>,
<_,_,!Toronto,validate>,
<_,!customer,_,deposit>,
<_,!customer,_,cancel>,
<_,!customer,_,validate>;

As for permissions, effective prohibitions are computed
by joining the relations prohibitions and play on explicitly
declared parameters. Effective prohibitions for the prohibi-
tion <_,_,!Toronto,validate> are :
effPro1 :=
<catherine,customer,toronto,validate>,
<elise,clerk,toronto,validate>,
<franck,director,toronto,validate>;

The next declaration deals with obligations. Contrary to
permissions and prohibitions, the concept of obligation is
not precisely defined in the literature. In our AC model,
an obligation defines an ordering constraint between two
actions, linked by the same value of one AC parameter. In
the case study, we have two obligations that force actions to
be executed by the same user.
obligations :=
OBL(user,<user,_,_,deposit>,<user,_,_,register>),
OBL(user,<user,_,_,deposit>,<user,_,_,cancel>);

The first one states that the same user must execute actions
deposit and register, holding any role in any organisation.
Recall that it is for the same instance of the business process,
that is for a given check. The second obligation stipulates
that the same user must execute the actions deposit and
cancel, holding any role in any organisation.

The last declaration of an ACA model deals with SoD
constraints. A SoD also defines an ordering constraint be-
tween two actions, but, contrary to an obligation, the value
of one AC parameter must be different. In our example, we
have two SoD.
separations :=
SOD(user,<user,_,_,deposit>,<!user,_,_,validate>),
SOD(user,<user,_,_,validate>

,<!user,_,_,validate_dir>);

The first SoD forbids the same user to execute the
actions deposit and validate for a given check. This means
that these actions must be executed by two different users
whatever the role they are holding in any organisation.

The second SoD constraint prohibits the same user to
execute validate and validate dir for a given check.

In ACA, when an action is executed, it must comply
with all AC rules that secure it. First, the action must be
permitted by at least one permission. Indeed, permissions
give the set of values that can be used by security parameters
of an action. Thus the security parameters of an action
to be executed must comply with at least one permission.
Prohibitions give the set of values that cannot be used by
security parameters of an action. Thus, to be executed, an
action must not have security parameters that match values
given by the prohibitions. Finally, an action can appear zero

or several times in obligation and SoD. Then, to be executed,
an action must also comply with all obligation and SoD
constraints where it appears.

III. THE TAMAGO PLATFORM

The Tamago platform allows rapid verifications of sys-
tems. The main idea is to add information to existing
applications in order to verify static and dynamic properties
on these applications. Up to now, Tamago considers Java
applications. The Tamago platform follows a component-
based system engineering (CBSE) approach combined with
a design by contract (DbC) approach. A Tamago project
is composed of two levels. The lower level, called busi-
ness level, contains the Java code of the application to be
verified. The upper level, called functional level, provides
contracts that must be satisfied by the business level. These
contracts are described by different kinds of entities, using a
specification language, called Tamago Contract Description
Language (CDL). This paper is only concerned by two kinds
of entities: service and component.

A. The CDL language

The CDL language is based on a model of co-algebraic
observable properties with first-order logic assertions (pre-
conditions, postconditions and invariants) and descriptions
of service behaviours [8], [9], based on finite-state automata
with conditional transitions.

The two kinds of entities depict two levels of contract.
Each level supports the verification of distinct kinds of
properties. In the rest of this section, we present the service
contract that specifies the functional semantics that can be
shared between several components and the component con-
tract for the description of the interaction between required
services.

1) Service contract: A service contract defines the func-
tional semantics of a service as a set of observable properties
and a set of methods that any provider (i.e., component)
must implement. In addition to its signature, a method
can be annotated with pre/postconditions. We also have an
inheritance mechanism in order to preserve the behavioural
subtyping for services (marked by the keyword refine).
Furthermore, invariants can also be expressed on observable
properties and/or methods. Finally, a finite state machine
(FSM) can be expressed in order to increase the expres-
siveness and reliability of analyses. This FSM describes the
service behaviour, that is, the correct ordering of methods.

Figure 1 illustrates the service DepositService written
in the CDL language. Figure 1a describes the complete
functional information of the service contract. The first
line references a refinement of an existing service (called
ACASecurity). This service comes from the core package
of the ACA extension (cf. section IV) and acts as a marker
in the Tamago-ACA mechanism during the creation of a
secure component. Then, the property (called opNumber)

service DepositService {
refine service tamago.aca.core.ACASecurity;
property read int opNumber;
method void init() {

id init;
post opNumber < 0;

}
method void deposit(tamago.ext.aca2.ACA aca) {

id deposit;
}
method void cancel(tamago.ext.aca2.ACA aca) {

id cancel;
}
method void validate(tamago.ext.aca2.ACA aca) {

id validate;
}
method void validate director(tamago.ext.aca2.ACA aca) {

id validate dir;
}
method void check(tamago.ext.aca2.ACA aca) {

id check;
post @isInState(“waiting”) ==> (opNumber > 0);

}
method void register(tamago.ext.aca2.ACA aca) {

id register;
post @isInState(“waiting”) ==> (opNumber > 0);

}
// the automaton goes here

}

(a) The functional part
(b) The automaton part

Figure 1: A service contract for the DepositService service

corresponds to an inner number used inside the bank agency
(imposed by the business layer). Initially the unique property
has a negative value, but when the state waiting is reached
(i.e., after calling the check and register methods), the
contract verifies if the property has been set to a positive
value. It will be used later in the validation process.

All the methods defined for the service are then specified.
Finally, the service behaviour is illustrated in Figure 1b. The
FSM describes the ordering of methods. In Tamago, the state
ninit denotes the initial state in all FSM. Method init is used
to initialise properties.

2) Component contract: The component contract in-
cludes part of a service contract: methods, properties and a
FSM. The main difference with a service contract is the def-
inition of dependencies between the provided services and
the required services that comes from external components.
Consequently, assertions in methods can give semantics of
the interactions between the current component and the
required services.

Figure 2 presents an extract of the component CheckDe-
posit. It provides the DepositService service and requires
three services. It is also possible to be more precise in the
specification of methods. For example, pre and postcondi-
tions can be added in the check method. The precondition
guarantees that the client is creditworthy and that the amount
of the check is positive before calling the business code of
the check method (i.e., real treatment). The postcondition
ensures that the operation is correctly treated at the bank
level (by the bank service). The postcondition of the reg-
ister method ensures that the current operation is correctly

registered in the audit trails of the bank.
These examples show the interest of the separation of

concerns and the possibility offered by Tamago to organise
the design by contract for each kind of contracts. Obviously,
we could put all contracts directly in the component by
providing the core service ACASecurity. However, the
service DepositService can be used in another situation
without the threesome (bank, user and check), for example
in the case of a money deposit that corresponds to another
component.

B. Architecture and tools

The Tamago platform provides a set of tools that can
assist developers during the design and the implementation
of software. The platform follows a Model-Driven System

component CheckDeposit{
provide service tamago.aca.bank.DepositService;
require service tamago.aca.bank.Client label user;
require service tamago.aca.bank.Check label check;
require service tamago.aca.bank.Bank label bank;
. . .
method void check(tamago.ext.aca2.ACA aca) {

id check;
pre user.isCreditworthy() ∧ check.getAmount() > 0;
post bank.isOperationChecked(this);

}
method void register(tamago.ext.aca2.ACA aca) {

id register;
post bank.getHistory().contains(this);

}
}

Figure 2: An extract of the component CheckDeposit

Engineering [10] approach as it can generate verification
code, skeletons of the business code, static analyses and test
cases generation from a CDL contract. Figure 3 summarizes
the typical development cycle for Tamago-based software.
Initially, the designer writes the CDL contract of the appli-
cation, then the first analysis allows inconsistencies to be
detected. When all inconsistencies are corrected, code can
be produced for the implementation step. With the contract
compiler, skeletons and verification code can be produced,
and with the test case generator, many test cases can be
automatically generated. When the business code is written,
tests can be executed in order to detect errors, failures and
so on in the code. Finally when the code is reliable enough,
the verification code (produced by Tamago-CC) monitors the
execution of the business code to catch the last undetectable
failures that were missed during the static analysis done by
Tamago-Check and Tamago-Test.

Implementation

detection

(Tamago−Check)

Contract

(Tamago−CDL)
Implementation

Compilation
of contract

(Tamago−CC)

Test generation
and test execution

(Tamago−Test)

Monitoring at Runtime
(Tamago framework)

Design

Inconsistencies

Figure 3: Summary of the Tamago platform

1) Static verification: In Figure 3, static analysis is
achieved by two tools: Tamago-Check and Tamago-Test.
The first one detects inconsistencies exclusively in contracts
whereas the second one finds errors in the implementation
of contracts before their deployment.

Tamago-Check takes a contract and checks syntactic ele-
ments (i.e., all IDs are defined, assertions used in pre/post
conditions call existing properties, methods and so on).
Then, it uses model checking symbolic techniques [11]
by simulating all the correct behaviours defined by the
automaton. The final output is a report with three kinds
of terminations for each behaviour: an error occurs with
explanation, the simulation finds a fix-point or the simulation
has been interrupted by reaching a limit (i.e., predefined limit
for integer or an hardware limit as a low memory).

Tamago-Test [4] assumes that a contract is correct (even
if sometimes it can detect some new inconsistencies). As

stated previously, it relies on simulation techniques. It selects
a test scenario extracted from the automaton and computes
exact test data for this scenario. In order to produce such a
scenario, Tamago-Test makes use of test strategies to choose
the scenario. By now, five strategies are proposed:
• nominal strategy randomly chooses a scenario and

random correct values.
• boundary strategy randomly chooses a scenario and

select boundary values (if possible).
• outbound strategy randomly chooses a scenario as

previously, but for the last step, it generates a wrong
security parameter in order to test the robustness of the
system.

• bad scenario strategy randomly chooses a scenario with
correct values, but at some point, it chooses an invalid
action (i.e., a missing transition) in order to see how
the implemention reacts.

• all transitions strategy tries to cover all transitions of
the automaton with one or many scenarios by taking
into account the partitionning of the assertions (pre/-
postconditions) in the contracts.

We have also developed a new constraint solver com-
ponent, called Tamago Constraint Satisfaction Problem
(Tamago-CSP), that can reason on standard enumerated
types and more complex types (e.g., the String type [12]).

2) Dynamic verification: The Tamago Contract Compiler
(Tamago-CC) produces a Java interface from a service
contract and verification code or skeletons from a component
contract. In the paper, we focus on component contracts that
are the only ones useful for code generation. The original-
ity is the absence of usual weaving techniques by using
wrappers with a hierarchical structure (called containers).
Roughly speaking, a container is a Java class that acts as
a filter to execute dynamic verifications on the associated
business class.

Figure 4 shows the class diagram of the generated archi-
tecture for our case study.

The service DepositService becomes the interface on the
top. The component contract is divided into several entities.
The first one is the component interface CheckDeposit
that corresponds to the syntactic part of the contract (name
and signatures of the methods). Any business code will
implement this interface, as the class CDepositBusiness.
The last two entities are containers. Interface CheckDe-
positContainer is the root interface of all container im-
plementations dedicated to this component. This container
has a delegate link with the component interface with
respect to the design pattern decorator [13]. On the figure,
the verification code of the functional part is the class
CheckDepositContainer plugin. The verification code im-
plements the container interface. It is generated by Tamago-
CC from the specification of the component contract (that
includes the specification of the provided services, cf. Fig.
1 and 2). At the runtime, the Tamago platform manages the

DepositService

<<interface>>

<<service>>

validate(aca : ACA)

deposit(aca : ACA)

check(aca : ACA)

register(aca : ACA)

validate_dir(aca : ACA)

cancel(aca : ACA)

CheckDeposit

<<interface>>

<<component interface>>
CheckDepositContainer

<<interface>>

<<container>>

delegate

CheckDepositContainer_plugin

<<realize>>

CDepositBusiness

<<realize>>

Figure 4: Generated architecture for the DepositService
example

correct construction of a component where the delegate in
the verification code is an instance of the business code.

IV. THE EXTENSION TAMAGO-ACA

Tamago-ACA is the extension of the Tamago framework
for access control purpose. It includes three parts. The first
one is the translator from ACA specifications into CDL
contracts. The second one deals with static verifications
and generation of relevant test scenarios. The last one,
for dynamic verifications, relies on the existing monitoring
architecture of Tamago, in order to check AC rules at
runtime.

A. CDL contracts from ACA specifications

This section presents the automatic translation from ACA
specifications into CDL contracts. The translation process
creates a new service contract for each functional service
that needs to be secured. Initially the service contract is
empty and is automatically enriched by the syntactic part
of the functional contract (methods and properties) and the
automaton. Furthermore, the translation adds two properties:
the first one for the play table of the ACA specification
and the second one, called history, to store all the methods
already executed. This property is required to manage SoD
and Obligation ACA rules.

Each method in the functional service contract
corresponds to an action in an ACA specification.
The idea is to complete the Tamago method to take
into account AC rules expressed in ACA. For each
method, we need to extract from the ACA specification
the elements that concern the corresponding action.
For example, the register action is involved in the

permissions <_,clerk,_,register> and in the obligation
OBL(user,<user,_,_,deposit> ,<user,_,_,register>).
These extracted elements are then translated into the
pre/post conditions of the method, using the following
template:

method <type> <functionality>(. . . ,ACA aca) {
pre (check aca parameters)
∧ (check permissions and prohibitions constraints)
∧ (check sod and obl constraints)

post (add this method call to the history)
}

The ACA parameter stands for the tuple
(user,role,organisation). The precondition contains three
parts. The first part verifies that the ACA parameter
is correct with regard to the play table. The second
part checks the permissions and prohibitions related to the
current method. The third part takes into account the history
of the contract in order to check the SoD and obligation
constraints related to the method. The postcondition ensures
the correct evolution of the history property in order to be
able to verify SoD and obligation constraints.

service GenDepositSecurity {
refine service tamago.aca.bank.DepositService;
property read int opNumber;
property read History history;
property read Play play;
method void init() {

id init;
post history 6= null ∧ history.size() = 0
∧ play.size() = 6
∧ play.contains(”alphonse”,”customer”,”montreal”) ∧ . . . ;

}
method void deposit(tamago.ext.aca2.ACA aca) {

id deposit;
pre play.isCorrectACA(aca) ∧ ((aca.role = “clerk”)
∧ (aca.role 6= “customer”) ∧ . . .);

post history.lastSecuParam() = aca
∧ history.lastAction() = ”deposit”;

}
method void register(tamago.ext.aca2.ACA aca) {

id register;
pre play.isCorrectACA(aca) ∧ ... ∧ history.mustDone(”deposit”)
∧ history.getSecuParamFromID(”deposit”).getUser() = aca.user;

post history.lastSecuParam() = aca ∧ history.lastAction() = ”register”;
}
. . .

}

Figure 5: Extract of the generated CDL security contract

Figure 5 presents an extract of the generated security
service that secures the DepositService service.

The refine line links the security contract to its func-
tional contract DepositService. In the Init method, the
postcondition ensures that the history is not null but its
size is zero. It also initialises the play property with the
content of the play table of the ACA specification. Actually
this content is just copied but we plan to store it in a
database. In the deposit method, the precondition checks
that: (i) the ACA parameters are contained in the play
property; (ii) these parameters match the values defined in
the permissions and don’t appear in the values defined in the

prohibitions. The postcondition ensures that the last method
contained in the history property is really a deposit. This is
necessary because deposit is involved in SoD and obligation
constraints. In the register method, the precondition checks
not only that the method is permitted and not prohibited for
the values of the security parameters, but also that a deposit
has already been executed with the same value for the user
parameter.

B. Static verification of AC rules

From the generated security contract, some verifications
can be achieved on the Tamago platform. A new tool has
been developed and integrated in the Tamago platform.
From the sets of effective permissions and prohibitions, it
checks for each action that it is always possible to find an
instantiation of the tuple (user,role,organisation) such that
the action can be executed.

The second kind of verifications concerns the generation
of test scenarios. Recall that the Tamago-Test tool produces
test scenarios with respect to a given strategy. The final
output of this activity is the production of a harness which
contains essential elements for the test (preamble, data
values, oracle, . . .). Consequently, we can translate it into a
concrete implementation: by now, we use the JUnit format
for the Java prototype, where a test method represents a full
scenario.

Tamago-Test takes into account a functional service and
its associated security service. It extracts from the functional
automaton a correct sequence of method calls in order to
build the final scenario. Existing testing tools [14], [15], [16]
generate random sequences without semantic links between
each step of a sequence, that is why we use the term
”scenario” in Tamago-Test. The way the automaton is visited
is controlled by the test strategy. For security contracts, we
can use the nominal, the bad scenario and the all transitions
strategies. Table I gives examples of scenarios generated for
a given strategy. It gives a summary of the scenarios, the
complete files can be consulted at http://code.google.com/p/
tamago/source/browse/trunk/TamagoACA2/ICECCS.

The first two lines of the table give some scenarios
obtained with the nominal strategy. Obviously, this strategy
can generate more scenarios and some parameters can be set
inside the strategy (for instance the length of the scenario,
the number of scenarios, . . .). Each scenario follows the
functional automaton, but scenarios have some differences
in the ordering of actions (e.g., in the first scenario, register
comes before check). We will detail this scenario at the end
of the section.

The third line in Table I shows an example of the bad
scenario strategy. This strategy uses the automaton and at
the second step, it chooses a nonexistent transition but with
an existing method: it calls register before deposit, which
is not allows by the automaton. If the pre/post conditions
of methods have been well designed, the execution of the

method is not possible. In our example, it is effectively
detected since the precondition of register checks that a
deposit has already been executed. This strategy allows
designers to test the robustness of the application especially
for SoD and obligation constraints.

The last lines of the table are dedicated to the all tran-
sitions strategy. This strategy tries to cover exhaustively the
automaton. Thus, nothing is needed (excepted the maximal
length of the scenario) for this strategy which computes
automatically the set of scenarios. In our example, it finds
6 scenarios.

Figure 6 illustrates an extract of the final code generated
by the testing tool for the first nominal scenario. Lines 7,
13 and 28 give the method that will be executed, with the
test preamble (empty for Step 0). Each step of the scenario
consists in setting the test data (empty for Step 0; for Step
1, lines 15 to 20; for Step 2, lines 30 to 33), calling the
business code (line 22 for Step 1, line 35 for Step 2) and
testing the oracle (lines 23-25 for Step 1, lines 36-38 for
Step 2). When executing the test, the tester has to provide
the value of aca parameters. Thus, wrong instantiations can
be detected. Obligation and SoD constraints violations can
also be detected if the correct value of aca parameters are
not provided.

For example, consider the following obligation
OBL(user,<user,_,_,deposit> ,<user,_,_,register>),
with the values of the relations permissions and play given
in Section II. The instantiation <boris,clerk,montreal>

of the aca parameters for the deposit method followed
by the instantiation <boris,clerk,montreal> of the aca
parameters for the register method is correct and will
be accepted by the test. On the contrary, the instantiation
<boris,clerk,montreal> of the aca parameters for
the deposit method following by the instantiation
<damien,banker,montreal> of the aca parameters for the
register method is not correct and will be rejected by the
test.

Note that both the functional and the AC models are
tested together. This allows us to check that AC constraints,
specifically SoD and obligations constraints, prevent actions
to be executed and then do not block the system.

C. Dynamic verifications of AC rules

The ACA extension of the Tamago platform is composed
of a library for the dynamic framework and a generator,
based on the architecture of Tamago-CC. This generator pro-
duces the code for the implementation of the new container,
called CheckDepositContainer ACA, that implements the
interface CheckDepositContainer (see Figure 4). The code
is automatically generated from the GenDepositSecurity
service.

Figure 7 illustrates the workflow in the hierarchy of
containers in order to monitor access controls and the func-
tional contract. On the left, when the user makes an action,

Strategy Scenarios
0 1 2 3 4 5

Nominal init deposit register check validate dir validate
init deposit check register validate validate dir

Bad scenario init register

All transitions

init deposit register check cancel
init deposit register check validate dir validate
init deposit register check validate validate dir
init deposit check register cancel
init deposit check register validate dir validate
init deposit check register validate validate dir

Table I: Summary of test scenario produced by Tamago-Test

1 package tamago . aca . bank ;
2 p u b l i c c l a s s T e s t D e p o s i t S e c u r i t y N o m i n a l e x t e n d s j u n i t . f ramework . T e s t C a s e {
3 / / Members V a r i a b l e s
4 p r i v a t e D e p o s i t S e c u r i t y code ;
5 . . .
6 p u b l i c vo id t e s t S c e n a r i o 0 (){
7 / / S t ep : 0 Method : i n i t T r a n s i t i o n : n i n i t−−{ i n i t}−−> i n i t i a l i z e d
8 t r y {code . i n i t () ;
9 b o o l e a n t a m a g o t e s t o r a c l e = ((code . getOpNumber () < 0) && a c a I n i t i a l i s e d) ;

10 a s s e r t T r u e (t a m a g o t e s t o r a c l e) ;}
11 c a t c h (E x c e p t i o n exc) {
12 f a i l ((” T e s t f a i l e d a t s t e p 0 . ” + exc . ge tMessage ())) ; }
13 / / S t ep : 1 Method : d e p o s i t T r a n s i t i o n : i n i t i a l i z e d −−{d e p o s i t}−−>deposed
14 t r y { / / TODO f u l f i l l t h e p a r a m e t e r : aca
15 tamago . e x t . aca2 .ACA aca ;
16 i f (! (code . g e t P l a y () . i sCorrec tACA (aca)
17 && ((” a l p h o n s e ” . e q u a l s (aca . u s e r) | | . . .)
18 && (” c u s t o m e r ” . e q u a l s (aca . r o l e) | | . . .) && . . .)
19 && ” c l e r k ” . e q u a l s (aca . r o l e) && ” ba nk e r ” . e q u a l s (aca . r o l e)
20 && ! ” c u s t o m e r ” . e q u a l s (aca . r o l e)))
21 { f a i l (” Wrong T e s t ”) ;}
22 code . d e p o s i t (aca) ;
23 b o o l e a n t a m a g o t e s t o r a c l e = (” d e p o s i t ” . e q u a l s (code . g e t H i s t o r i c () . l a s t A c t i o n ())
24 && (aca == code . g e t H i s t o r i c () . l a s t S e c u P a r a m ())) ;
25 a s s e r t T r u e (t a m a g o t e s t o r a c l e) ;}
26 c a t c h (E x c e p t i o n exc) {
27 f a i l ((” T e s t f a i l e d a t s t e p 1 . ” + exc . ge tMessage ())) ; }
28 / / S t ep : 2 Method : r e g i s t e r T r a n s i t i o n : deposed−−{r e g i s t e r}−−>r e g i s t e r e d
29 t r y { / / TODO f u l f i l l t h e p a r a m e t e r : aca
30 tamago . e x t . aca2 .ACA aca ;
31 i f (! (code . g e t P l a y () . i sCorrec tACA (aca) && ((” a l p h o n s e ” . e q u a l s (aca . u s e r) | | . . .) && . . .)
32 && code . g e t H i s t o r i c () . mustDone (” d e p o s i t ”)
33 && (code . g e t H i s t o r i c () . getSecuParamFromID (” d e p o s i t ”) . g e t U s e r () == aca . u s e r)))
34 { f a i l (” Wrong T e s t ”) ;}
35 code . r e g i s t e r (aca) ;
36 b o o l e a n t a m a g o t e s t o r a c l e = ((code . getOpNumber () > 0) && (” r e g i s t e r ” . e q u a l s (code . g e t H i s t o r i c () . l a s t A c t i o n ())
37 && (aca == code . g e t H i s t o r i c () . l a s t S e c u P a r a m ()))) ;
38 a s s e r t T r u e (t a m a g o t e s t o r a c l e) ;}
39 c a t c h (E x c e p t i o n exc) { f a i l ((” T e s t f a i l e d a t s t e p 2 . ” + exc . ge tMessage ())) ; }
40 . . . } }

Figure 6: Extract of the test case for the first nominal scenario

the access control container CheckDepositContainer ACA
catches the indirection and checks the preconditions of the
deposit method in the GenDepositSecurity service. Then
it calls the delegate CheckDepositContainer plugin that
checks the preconditions of the deposit method in the
DepositService service. If everything is okay, then the
business code of the action is executed. At the end, the
CheckDepositContainer plugin container verifies that the
effect of the business code conforms with the postconditions
of the deposit method in the DepositService service. Fi-
nally, the CheckDepositContainer ACA container verifies
that the postconditions of the deposit method in the De-

positService service are satisfied and gives back the answer
to the user. If an error occurs at the access control level
or the functional level, the CheckDepositContainer ACA
container throws an exception with details of the problem.

V. RELATED WORKS

A substantial overview of verification methods applied
to formal AC models can be found in [17]. A number of
AC modelling methods are based on UML (UMLSec [18],
secureUML [10]) since UML is widely used in IS design.
Contextual constraints can be expressed in a formal way
with OCL. Some tools have been designed to verify AC

:CDepositBusiness:CheckDepositContainer_ACA :CheckDepositContainer_plugin

deposit(<boris,clerk,montreal>)

deposit(<boris,clerk,montreal>)

action sent only if AC rules are
satisfied action sent only if functional

pre/post-conditions succeed

Figure 7: Tamago-ACA sequence diagram

policies expressed in UML/OCL. The USE tool (UML-based
Specification Environment) [19] was designed to verify
predefined properties on the model. During its verifications,
the USE tool does not take into account the evolution of
the functional parts of the IS. The SecureMOVA [20] tool
is designed with the same goal but takes into account the
evolution of the functional part of the IS.

Other works also aim at verifying AC policies. The
difference, between these works and USE or SecureMOVA,
is that they are based on the translation of AC models into
formal languages, such as Z or CSP, which are equipped with
model checking or theorem proving tools. In [21], an RBAC
model enhanced with SoD constraints is translated into
Alloy. No prohibition and no obligation can be expressed
in the model. Properties can be verified on AC policies,
but the functional part of the IS is not taken into account.
In [22], the model used to express AC policies is an RBAC
model with role hierarchy constraints. Policies expressed
with this model are translated into Alloy. Properties can
then be verified on the AC model only. In [23], an RBAC
model enhanced with dynamic SoD constraints is used to
express AC policies. These policies are translated into Z for
verification without taking into account the functional part of
the IS. In [24], the AC policies are expressed with an RBAC
model extended with contextual constraints and SoD. The
AC policy and the functional part of the IS are translated
into Z. Verifications are made on the static part of the model
and simulation techniques are used to test the accuracy of
the dynamic part. Verification and simulation are made with
the Jaza tool. In [25], an RBAC model and SoD constraints
are translated into CSP. SoD constraints are expressed in
SoDA [6]. In addition to the AC policy, the functional part
of the IS is translated into CSP. Then, properties can be
checked on the AC policy and the functional part of the IS.
In [7], [26], AC policies can be expressed with the OrBAC
extended with SoD constraints. Verifications can be made
on the model, taking into account the functional part of the
IS. All these works use model checking techniques and then
face the problem of combinatorial explosion.

In comparison, in our approach, ACA allows designers
to express AC policies with permissions, prohibitions, SoD
and obligations. Inconsistencies between permissions and
prohibitions can be detected [27]. We use the Tamago
platform to generate test scenarios to simulate the behaviour
of the dynamic part of an AC policy. For the simulation of
the dynamic part, the functional part of the IS is also taken
into account.

VI. CONCLUSION AND FUTURE WORK

This paper has addressed the problem of verification of
AC policies. We have proposed to equip the AC language,
called ACA, with verification techniques. ACA is based on
RBAC and allows the specification of permissions, prohi-
bitions, SoD and obligations in the same model. Different
kinds of verification are then possible by using the Tamago
platform, extended to consider AC properties. Extensions
of the platform have been easy to achieve since its archi-
tecture is based on components organised in hierarchical
layers. We have added an external layer to deal with AC
constraints. Furthermore, the Tamago language allows the
definition of contracts described by pre and post condi-
tions and automata. AC rules expressed in ACA have been
automatically translated into new security contracts. Static
analyses allows for the detection of inconsistencies between
AC constraints. Tamago-Test has been adapted to generate
test scenarios specific for testing AC rules. Finally dynamic
verifications can now be carried out thanks to the definition
of a new security component in the monitoring framework.
It is interesting to note that the last two points (test and
monitoring) take into account the functional and the AC
models to check the consistency of the whole system.

The next step is to provide more powerful static analyses.
Two venues are considered. First, we want to exploit the
type builder in Tamago-Test in order to teach to the un-
derlying constraint satisfaction solver the semantics of the
properties introduced in our translation, the play and his-
tory properties. Consequently, Tamago-Test could directly
produce concrete values for the generated tests and the right
instantiation in the final test code. The second venue consists
in specifying a new test strategy dedicated to AC.

Finally, a number of long-term perspectives can be con-
sidered. The first one is to extend the ACA language to
support contextual constraints in AC rules. Another one
deals with traceability between the ACA rules and their
Tamago specification. Indeed, if an ACA rule is violated
after Tamago verifications, it could be useful to send back
the error in the ACA model to correct it.

REFERENCES

[1] Role-Based Access Control, 359th ed., INCITS, ANSI,
Februar 2004.

[2] P. Konopacki, M. Frappier, and R. Laleau, “Expressing access
control policies with an event-based approach,” in CAiSE
Workshops, ser. LNBIP, C. Salinesi and O. Pastor, Eds.,
vol. 83. Springer, 2011, pp. 607–621.

[3] M. Frappier, B. Fraikin, R. Chossart, R. Chane-Yack-Fa, and
M. Ouenzar, “Comparison of model checking tools for infor-
mation systems,” in ICFEM, ser. Lecture Notes in Computer
Science, J. S. Dong and H. Zhu, Eds., vol. 6447. Springer,
2010, pp. 581–596.

[4] H. Belhaouari and F. Peschanski, “Automated generation of
test cases from contract-oriented specifications: A csp-based
approach,” in 11th IEEE High Assurance Systems Engineer-
ing (HASE). IEEE, 2008, pp. 219–228.

[5] Q. Ni, E. Bertino, and J. Lobo, “An obligation model bridging
access control policies and privacy policies,” in Proceedings
of the 13th ACM symposium on Access control models and
technologies, ser. SACMAT ’08, 2008, pp. 133–142.

[6] N. Li and Q. Wang, “Beyond separation of duty: An algebra
for specifying high-level security policies,” J. ACM, vol. 55,
no. 3, pp. 1–46, 2008.

[7] A. A. E. Kalam, S. Benferhat, A. Miège, R. E. Baida, F. Cup-
pens, C. Saurel, P. Balbiani, Y. Deswarte, and G. Trouessin,
“Organization based access control,” in Proceedings of the
4th IEEE International Workshop on Policies for Distributed
Systems and Networks, ser. POLICY ’03, 2003, pp. 120–130.

[8] A. Brown, S. Johnston, and K. Kelly, “Using service-oriented
architecture and component-based development to build web
service application,” Rational Software white paper, 2002.

[9] R. Reussner, I. Poernomo, and H. W. Schmidt, “Reasoning
about software architectures with contractually specified com-
ponents.” in Component-Based Software Quality, ser. LNCS,
vol. 2693. Springer, 2003, pp. 287–325.

[10] T. Lodderstedt, D. A. Basin, and J. Doser, “Secureuml: A
uml-based modeling language for model-driven security,” in
Proceedings of the 5th International Conference on The
Unified Modeling Language, 2002, pp. 426–441.

[11] K. L. McMillan, “Symbolic model checking,” Ph.D. disserta-
tion, Carnegie Mellon University, 1992.

[12] H. Belhaouari and F. Peschanki, “A constraint logic program-
ming approach to automated testing,” in ICLP, ser. LNCS,
vol. 5366. Springer, 2008, pp. 754–758.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns. Boston, MA: Addison-Wesley, January 1995.

[14] C. Oriat, “Jartege: A tool for random generation of unit tests
for java classes,” in 2nd International Workshop on Software
Quality - SOQUA’05, vol. 3712. Erfurt, Allemagne: LNCS,
Sept 2005, pp. 242–256.

[15] Y. Cheon, “Automated random testing to detect specification-
code inconsistencies,” in Proceedings of the 2007 Inter-
national Conference on Software Engineering Theory and
Practice, July 9-12, 2007, Orlando, Florida, U.S.A, Jul. 2007,
pp. 112–119.

[16] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed
Random Testing for Java,” in OOPSLA 2007 Companion,
Montreal, Canada. ACM, Oct 2007.

[17] Y. Ledru, A. Idani, J. Milhau, N. Qamar, R. Laleau, J.-L.
Richier, and M.-A. Labiadh, “Taking into account functional
models in the validation of is security policies,” in 1st Interna-
tional Workshop on Information Systems Security Engineering
host by CAISE, 2011.

[18] J. Juerjens, Secure Systems Development with UML.
SpringerVerlag, 2003.

[19] M. Gogolla, F. Büttner, and M. Richters, “Use: A uml-based
specification environment for validating uml and ocl,” Sci.
Comput. Program., vol. 69, no. 1-3, pp. 27–34, 2007.

[20] D. A. Basin, M. Clavel, J. Doser, and M. Egea, “Automated
analysis of security-design models,” Information & Software
Technology, vol. 51, no. 5, pp. 815–831, 2009.

[21] A. Schaad and J. D. Moffett, “A lightweight approach to spec-
ification and analysis of role-based access control extensions,”
in Proceedings of the seventh ACM symposium on Access
control models and technologies, 2002, pp. 13–22.

[22] J. Zao, H. Wee, J. Chu, and D. Jackson, “Rbac schema
verification using lightweight formal model and constraint
analysis,” in Proceedings of the 8th ACM symposium on
Access control models and technologies, 2003.

[23] C. Yuan, Y. He, J. He, and Z. Zhou, “A verifiable formal
specification for rbac model with constraints of separation of
duty,” in Information Security and Cryptology, ser. LNCS,
H. Lipmaa, M. Yung, and D. Lin, Eds., 2006, vol. 4318.

[24] Y. Ledru, N. Qamar, A. Idani, J.-L. Richier, and M.-A.
Labiadh, “Validation of security policies by the animation
of z specifications,” in SACMAT, R. Breu, J. Crampton, and
J. Lobo, Eds. ACM, 2011, pp. 155–164.

[25] D. A. Basin, S. J. Burri, and G. Karjoth, “Dynamic enforce-
ment of abstract separation of duty constraints,” in ESORICS,
ser. Lecture Notes in Computer Science, M. Backes and
P. Ning, Eds., vol. 5789. Springer, 2009, pp. 250–267.

[26] S. Ayed, N. Cuppens-Boulahia, and F. Cuppens, “Managing
access and flow control requirements in distributed work-
flows,” in Proceedings of the 2008 IEEE/ACS International
Conference on Computer Systems and Applications, pp. 702–
710.

[27] P. Konopacki, H. Belhaouari, M. Frappier, and R. Laleau,
“Specification and verification of access control policies in
eb3sec: Work in progress,” in FPS, ser. LNCS, J. Garcı́a-
Alfaro and P. Lafourcade, Eds., vol. 6888, 2011, pp. 227–233.

