

Comparison of virulence gene profiles of isolates from sows with Coliform mastitis and healthy sows

Imke Gerjets, Imke Traulsen, Kerstin Reiners, Nicole Kemper

▶ To cite this version:

Imke Gerjets, Imke Traulsen, Kerstin Reiners, Nicole Kemper. Comparison of virulence gene profiles of isolates from sows with Coliform mastitis and healthy sows. Veterinary Microbiology, 2011, 152 (3-4), pp.361. 10.1016/j.vetmic.2011.05.002 . hal-00724207

HAL Id: hal-00724207 https://hal.science/hal-00724207v1

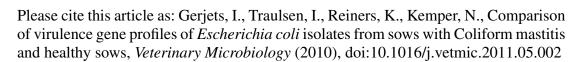
Submitted on 20 Aug 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Comparison of virulence gene profiles of *Escherichia coli* isolates from sows with Coliform mastitis and healthy sows

Authors: Imke Gerjets, Imke Traulsen, Kerstin Reiners, Nicole Kemper


PII: S0378-1135(11)00266-5

DOI: doi:10.1016/j.vetmic.2011.05.002

Reference: VETMIC 5299

To appear in: VETMIC

Received date: 4-12-2010 Revised date: 9-3-2011 Accepted date: 3-5-2011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

3

8

14

ACCEPTED MANUSCRIPT

- 1 Comparison of virulence gene profiles of Escherichia coli isolates
- 2 from sows with Coliform mastitis and healthy sows

```
4 Imke Gerjets, M. sc. agr.*1
```

- 5 Imke Traulsen, Dr. sc. agr. 1
- 6 Kerstin Reiners, Dr. sc. agr. ²
- 7 Nicole Kemper, Prof. Dr. med. vet. ³

⁹ Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, D-

- 10 **24098** *Kiel, Germany*
- ²PIC Germany GmbH, Ratsteich 31, D-24837 Schleswig Germany
- ³Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-
- 13 Wittenberg, D-06120 Halle, Germany
- 15 *Corresponding author:
- 16 phone: ++49 431 880 7432
- 17 fax: ++49 431 880 5265
- 18 mail: igerjets@tierzucht.uni-kiel.de
- 20 Correspondence address: Imke Gerjets, Institute of Animal Breeding and Husbandry,
- 21 Christian-Albrechts-Universität Kiel, Olshausenstraße 40, D-24098 Kiel, Germany,
- 22 igerjets@tierzucht.uni-kiel.de

24

23

19

Δ	h	et	ra	ct
_	u	ЭL	ıa	Lι

25

26	Coliform mastitis (CM) is not only a serious economical and animal welfare touching
27	problem in dairy cattle, but also in sows after farrowing. Due to this disease, the
28	essential adequate supply with colostrum for the growth and the health of the piglets
29	is not ensured. Besides other influencing factors, Escherichia (E.) coli is of great
30	importance as a causative agent of this multifactorial disease. In this study, E. coli
31	isolates from milk samples of healthy and CM-affected sows were examined for the
32	presence of virulence genes associated with extraintestinal E. coli strains,
33	enterotoxigenic <i>E. coli</i> and other pathogenic <i>E. coli</i> .
34	The isolated E. coli harbored mainly virulence genes of extraintestinal E. coli strains
35	(especially fimC, ompA, traT, hra, kpsMTII, iroN). The virulence gene spectrum for
36	both samples from CM-affected and healthy sows did not differ significantly.
37	Particular virulence gene profiles of E. coli isolates from diseased sows were not
38	detected.
39	This study provides novel insights into the role of <i>E. coli</i> in association with mastitis in
40	sows since it is the first time E. coli isolates from CM-affected sows' milk were
41	analysed for virulence genes. Because there were no differences in the prevalence of
42	E. coli and their virulence-associated genes between healthy and diseased sows,
43	other causative factors seem to have greater influence on the pathogenesis of
44	porcine CM.

45

46

Keywords

47 ETEC, ExPEC, multiplex PCR, swine, virulence factors

48

Introduction

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

'Coliform mastitis' (CM) is the main symptom of puerperal disorders occurring in sows after farrowing which are subsumed under the term postpartum dysgalactia syndrome (PPDS or PDS) (Gerjets and Kemper, 2009; Klopfenstein et al., 2006). The etiology of CM is multifactorial with husbandry, management, feeding and hygiene as influencing factors (Klopfenstein et al., 2006), but mainly bacteria are the causative agents for the inflammation. In bacteriological analyses, especially Escherichia (E.) coli was isolated, but the strains were not further investigated for virulenceassociated genes. Strains of E. coli can be broadly classified into three groups by their location and their characteristic virulence genes: commensal E. coli, intestinal pathogenic E. coli (IPEC) colonizing the intestine, and extraintestinal pathogenic E. coli (ExPEC) that reach extraintestinal niches like the urinary tract (Russo and Johnson, 2000). In swine, especially enterotoxigenic *E. coli* (ETEC) as a pathotype of IPEC are well described as causal agents for severe diseases like diarrhea in neonatal and weaned piglets (Casey and Bosworth, 2009). The ExPEC pathotypes are e.g. causative for urinary tract infections (uropathogenic E. coli (UPEC)) or septicaemia in pigs (Daigle et al., 1997; Krag et al., 2009; Shpigel et al., 2008). A selection of virulence genes known to be associated with ETEC, ExPEC pathotypes and shiga toxin-producing E. coli (STEC) is listed in Table 1. A new putative pathotype of ExPEC was proposed by Shpigel et al. (2008): mammary pathogenic E. coli, with as specific set of virulence genes, which are associated with mastitis in dairy animals. However, up to now epidemiological studies have not shown a common virulence gene profile for these *E. coli* so far (Kaipainen et al., 2002; Srinivasan et al., 2007; Wenz et al., 2006).

- The aim of our study was to analyse the occurrence of different virulence genes in *E.*
- 74 coli isolates associated with Coliform mastitis in sows.

75

76

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

Materials and methods

77 Animals and study design

The investigation was carried out between April 2008 and August 2010 on five multiplication herds in Germany (A - E), supervised by PIC Germany GmbH Schleswig (Table 2). The farms were of high health status and tested free from enzootic pneumonia, rhinitis, Actinobacillus pleuropneumoniae and dysentery. The number of sows housed in the farms ranged from 700 to 1,800. The sows were in different parities (1-9) and of different lines (Landrace, Large White and crossbreds, partly with Duroc). They were identified as CM-affected when their rectal temperature was above 39.5°C 24 h post partum (Furniss, 1987) and the mammary glands showed symptoms of inflammation. In addition, the appearance and the performance of the piglets were evaluated with regard to their behavior and body condition. Healthy half- or full-sib sows from the same farrowing group that farrowed closest in time served as controls. The half-sib design was chosen due to further studies on the genetic background via genotyping (Preißler et al., unpublished data). In total, 2,005 milk samples were examined (1,026 milk samples from sows with CM and 979 from healthy sows). Before gathering a collective sample of several teats, mammary glands were cleaned and disinfected with disinfection swabs containing 70% isopropyl-alcohol. The first streams of milk were discarded whereas the followings were milked on transport

swabs with Amies medium (transwab, medical wire & equipment, Corsham,

97	England). The milk samples were stored at 4°C before sending them to the
98	laboratory within 72 hours.
99	Bacteriological analysis
100	The swabs were incubated in Caso broth for 24 h at 37°C. With a plastic loop, 10 μL
101	of the enrichment were streaked onto Columbia blood agar and Endo agar (both
102	Oxoid, Cambridge, United Kingdom) and incubated aerobically another 24 h at 37°C.
103	The grown bacteria were differentiated by their morphology, haemolysis on blood
104	agar and Gram staining. Pure cultures were grown on blood agar after another 24 h
105	incubation at 37°C before biochemical confirmation to species level with the
106	identification system API (bioMérieux, Craponne, France).
107	Escherichia coli isolates were distinguished due to individual morphology on blood
108	agar and API 20E. All isolates were selected for further investigations.
109	Desoxyribonucleic acid of the identified E. coli strains was prepared by solving a few
110	colonies in 200 μL distilled water. After boiling for 10 min and centrifugation, 3 μL of
111	the supernatant was taken for PCR analysis. The presence of virulence genes
112	associated with ExPEC strains, ETEC and other pathogenic E. coli was determined
113	by multiplex PCR (mPCR) assays for all <i>E. coli</i> isolates, as described by Ewers et al.
114	(2007) and Casey and Bosworth (2009).
115	In total, 2,403 isolates were tested for the presence of 27 virulence genes for the
116	following virulence factors (Table 1): heat labile toxin (LT), heat stable toxin a and b
117	(STI, STII), Shiga toxin (Stx2e), capsular polysaccharide (neuC), group II capsule
118	antigen (kpsMTII), outer membrane protein (ompA), transfer protein (traT), heme
119	receptor gene (chuA), catecholate siderophore receptor (iroN), iron transport system
120	genes (sitD chr., sitD ep.), haemolysin A (hlyA), invasins (gimB, ibeA), serin protease

121	autotransporter (pic), different adhesins and fimbrial genes (afa/draB, fimC, hra, iha,
122	sfa/foCD, K88, K99, 987P, F41, F18) and pathogenicity-associated island marker
123	(RPai (malX)). Controls for molecular assays were avian pathogenic E. coli (APEC)
124	strain IMT2470, UPEC strains IMT7920 and IMT9267 and ETEC strains IMT204,
125	IMT19, IMT4830 and IMT3838 (Casey and Bosworth, 2009; Ewers et al., 2007),
126	kindly provided by the Institute of Microbiology and Epizootics of the Free University
127	Berlin.
128	Statistical analysis
129	The statistical analysis was performed using the procedures FREQ and CORR from
130	the Statistical Analysis System (SAS Institute Inc., 2005). Chi square-tests were used
131	to analyse differences in virulence gene frequencies between diseased and healthy
132	sows. Statistical significance was indicated in two levels: $P<0.05^*$ and $P<0.01^{**}$.
133	Pearson correlation coefficients, calculated to show associations between virulence
134	genes, were presented as heatmaps. Heatmaps representing gene prevalence were
135	generated to allow assessment of the virulence genes regarding occurrence and
136	distribution (R Development Core Team, 2009). Virulence genes in the heatmaps
137	were arranged automatically according to their means. Genes with similar means are
138	ordered close together.
139	Correlations and heatmaps were performed with only those virulence genes detected
140	in more than 1 % of the analysed <i>E. coli</i> strains.
141	
142	
143	
144	

145	Results
146	Escherichia coli strains
147	Escherichia coli was found in 70.6 % (n=724) of the milk samples of CM-affected and
148	in 77.9 % (n=762) of the milk samples of non-infected sows. In total, 1,132 E.coli
149	isolates from CM-positive samples and 1,271 isolates from CM-negative samples
150	were identified and further examined by mPCR. The median number of isolates in
151	milk samples of both diseased and healthy sows was one (Figure 1).
152	Of the 2,403 E. coli isolates, 593 harbored one virulence gene, 983 two, 357 three
153	and 369 four or more virulence genes. In 101 E. coli isolates, no virulence-associated
154	genes were found. The E. coli isolates from CM-positive as well as from negative
155	sows had a median number of two virulence genes.
156	Comparison of virulence gene profiles
157	A variety of virulence genes was identified consisting of mainly those associated with
158	ExPEC (98.9 % of <i>E. coli</i> isolates from diseased and 99.0 % of <i>E. coli</i> isolates from
159	healthy sows) (Table 1). The highest prevalence was found for the type 1 fimbriae
160	fimC (in 84.7 % of the isolates of diseased and 82.3 % of the isolates of healthy
161	sows) and for the protectins ompA and traT (in 35.3 % and 52.1 % of the isolates
162	from CM-positive, and 37.6 % and 49.8 % of the isolates from CM-negative sows,
163	respectively). Other genes identified in 9.3 to 14.8 % of the <i>E. coli</i> isolates were <i>hra</i> ,
164	kpsMTII and iroN. Almost all of the virulence-associated factors were more often
165	detected in E. coli isolates of CM-affected sows than in isolates of healthy sows,
166	except 987P, neuC, ompA and gimB.
167	The virulence genes hra, chuA, iroN and kpsMTII occurred significantly more
168	frequently in isolates of diseased animals. The same applied for particular

combinations of these genes (Table 3), except for the profiles chuA - iroN, kpsMTII -
chuA - iroN and kpsMTII - hra - chuA - iroN. Those combinations were also less
prevalent in all E. coli isolates. The greatest difference between diseased and healthy
sows was found for the virulence gene profile chuA - hra (2.7 % in E. coli of CM-
positive and 0.9 % in <i>E. coli</i> of CM-negative sampled sows, respectively). In total,
there were no obvious patterns specific for either diseased or healthy sows.
Correlations between virulence genes
Statistical analysis of associations between all virulence factors of the E. coli isolates
is shown in Figure 2. Several similar patterns in the heatmaps were visible for
virulence genes of strains from CM-positive and negative sows: the gene hlyA is
positively associated with chuA and pic; iroN is positively associated with ompA and
sitDepi, respectively. Highest positive correlations existed between the genes iroN
and sitDepi for both isolates from diseased and healthy sows. The genes traT and
fimC were also highly positive correlated, but only in E. coli isolates of CM-negative
sows.
Gene prevalence with regard to different seasons and farms
The gene traT was more often found in E. coli isolates of samples of CM-positive
sows in winter whereas STI (heat stable toxin a) was only found in summer (Figure
3). The gene chuA occurred more frequently in E. coli isolates of positive sows in
winter and autumn and iroN in summer, autumn and winter as well as kpsMTII was
always more prevalent in samples of diseased sows. All virulence genes were found
more often in E. coli isolates of diseased sows in all seasons except for ompA and
traT which were more prevalent in isolates of healthy sows in spring.

However, the differences in occurrence of the genes were greater between the seasons than between CM-positive and negative sows.

The same held true for the influence of the farms on the occurrence of virulence genes. The gene *STI* was only found in *E. coli* isolates sampled from farm A whereas *kpsMTII* was more prevalent in samples from farm D. The gene *traT* occurred more often in isolates from diseased sows. The gene prevalence on the farms differed only slightly between CM-infected and healthy sows. Differences regarding the occurrence of the mentioned virulence genes in the seasons and farms were significant (P<0.05).

Discussion

The aim of the study was to analyse and compare virulence genes of *E. coli* isolates from milk samples of CM-positive and CM-negative sows, because virulence gene profiles of *E. coli* isolates associated with mastitis has not been described so far (Kaipainen et al., 2002; Srinivasan et al., 2007; Wenz et al., 2006). *Escherichia coli* is the pathogen most frequently isolated in association with porcine puerperal disorders (Armstrong et al., 1968; Awad Masalmeh et al., 1990; Bertschinger et al., 1977a; Ross et al., 1981). It was also isolated in high frequencies in milk samples of diseased sows in this investigation as well as in milk from healthy sows.

The detailed analysis of virulence-associated genes of the *E. coli* isolates revealed

Although there were single genes or gene combinations with a greater linkage to *E. coli* isolates from milk samples of CM-affected sows, there were no specific virulence gene patterns detectable. Heatmaps were performed to allow a visualization of

only slight differences between isolates of diseased and healthy sows (P<0.05).

216	correlations among virulence genes of isolates of different CM-status, seasons and
217	farms.
218	The E. coli strains were isolated using an enrichment of the milk samples. This
219	qualitative culture procedure was used to promote the growth of the <i>E. coli</i> strains, as
220	described before for faecal samples (Hussain et al., 2010; Wu et al., 2010).
221	Regarding the actual presence of virulence genes, an influence of enrichment
222	procedures has only been described in detail for STEC (Vimont et al. 2007), but has
223	not been proven for incubation in Caso-Broth for the applied duration. However, a
224	possible influence on the quantitative proportion of different strains cannot be
225	excluded though faecal contamination of the samples was minimized by a strict
226	sampling protocol.
227	Escherichia coli strains causing acute coliform mastitis in dairy cattle originate from
228	the animal's faecally contaminated environment and infect the udder via the teat
229	canal (Eberhart, 1984). Experiments by Bertschinger et al. (1990) and Bertschinger
230	et al. (1977b), where the mammary glands of sows were protected against faecal
231	contamination, support the theory of a galactogenous route of infection via the teat
232	duct. Like bovine mastitis, porcine mastitis may also resemble urinary tract infection
233	as the infection may be ascending (Kaipainen et al., 2002). Among others, causative
234	agents of urinary tract infections (UTI) are UPEC, a pathotype of ExPEC. In contrast
235	to commensal <i>E. coli</i> isolates, UPEC harbor more virulence genes encoding virulent
236	capsule antigens, iron acquisition systems, adhesions and secreted toxins (Wiles et
237	al., 2008). The virulence genes <i>iroN</i> and <i>fimC</i> are reported as urovirulence factors
238	(Russo et al., 2002; Wiles et al., 2008) and were also identified in high percentages
239	in our study. In a survey by Won et al. (2009), the presence of 19 virulence-

240	associated genes in avian pathogenic E. coli (APEC), another pathotype of ExPEC,
241	was determined, and approximately 95 % of the APEC isolates possessed fimC.
242	However, fimC has also been frequently detected in non-pathogenic E. coli and is
243	proposed to be not highly associated with the pathogenesis of APEC-infections
244	(Kawano et al., 2006). We also found the fimbrial gene fimC in high prevalence in
245	isolates of healthy sows, confirming this theory.
246	The traT gene, detected in half of the examined E. coli strains, was found in milk of
247	CM-affected dairy cattle, too. Out of 160 Finnish isolates from cows with mastitis, 37
248	%, and out of 113 Israeli isolates, 41 % harbored traT (Kaipainen et al., 2002).
249	Nemeth et al. (1991) identified the gene in 43 % of <i>E. coli</i> strains isolated from the
250	milk of cows with mastitis. In another study by Acik et al. (2004), milk samples from
251	healthy cows and sheep were analysed and traT was present in 62.3 % of all isolates
252	(62.5 % of the isolates from cows and 60 % of the isolates from sheep).
253	All in all, a spectrum of virulence genes was present in bovine mastitis strains of E.
254	coli, but those strains do not possess specific virulence factors contributing to clinical
255	disease. Serum resistance was the only virulence property of E. coli consistently
256	associated with isolates of coliform mastitis in dairy cattle (Barrow and Hill, 1989;
257	Fang and Pyorala, 1996). A relationship between traT and serum resistance,
258	however, could not be confirmed (Nemeth et al., 1991; Vandekerchove et al., 2005).
259	The results and conclusions concerning the virulence genes related to bovine
260	mastitis are comparable to the findings of our study in sows. Specific sow factors,
261	e.g. the individual disposition of the animal, are probably more important and the host
262	defense status is generally accepted as key factor determining the outcome of the
263	disease (Burvenich et al., 2003). Current investigations deal with the genetic

264	background of CM via genotyping of diseased and healthy sows (Preißler et al.,
265	unpublished data).
266	In conclusion, a variety of virulence genes was detected among the E. coli isolates
267	for both samples from CM-positive and negative sows. The identified virulence genes
268	belonged mainly to the large group of genes related to ExPEC, but a categorization
269	into the pathotype ExPEC only by virulence gene typing was not possible. Many
270	virulence-associated factors (e.g. for iron-uptake systems, fimbriae and other
271	adhesions) are fitness factors which help the bacteria to adapt to and successfully
272	colonize the host so that the line between virulence and fitness properties of E. coli
273	strains is very thin (Dobrindt, 2005).
274	The results of our study support the hypothesis that any given E. coli strain, even
275	those considered to be non-pathogenic, can cause coliform mastitis in sows, if further
276	adversely environmental, genetic or other influencing factors promoting infection are
277	present.
278	
279	Acknowledgements
280	This research project was funded by the German Federal Ministry of Education and
281	Research (BMBF) in the research programme "FUGATO - Functional Genome
282	Analysis in Animal Organisms," project "geMMA – structural and functional analysis
283	of the genetic variation of the MMA-syndrome" (FKZ0315138).
284	Prof. Dr. Lothar Wieler, Dr. Christa Ewers and Ines Diehl from the Institute of
285	Microbiology and Epizootics of the Free University Berlin are greatly acknowledged
286	for their technical support with the mPCR assays and for providing the control strains.

287	We also wish to thank Jens Wolfmueller and Evelyn Lass for technical assistance
288	and especially all farmers involved for their help with the sample acquisition.
289	
290	References
291	
292	Acik, M.N., Yurdakul, N.E., Cakici, L., Onat, N., Dogan, O., Cetinkaya, B., 2004. traT
293	and CNF2 genes of Escherichia coli isolated from milk of healthy cows and
294	sheep. Res. Vet. Sci. 77, 17-21.
295	Armstrong, C.H., Hooper, B.E., Martin, C.E., 1968. Microflora associated with
296	agalactia syndrome of sows. Am. J. Vet. Res. 29, 1401-1407.
297	Awad Masalmeh, M., Baumgartner, W., Passering, A., Silber, R., Hinterdorfer, F.,
298	1990. Bakteriologische Untersuchungen bei an puerperaler Mastitis (MMA-
299	Syndrom) erkrankten Sauen verschiedener Tierbestände Österreichs
300	(Bacteriological studies in sows with pueperal mastitis in different herds in
301	Austria). Tierarzt. Umsch. 45, 526-535.
302	Barrow, P.A., Hill, A.W., 1989. The virulence characteristics of strains of <i>Escherichia</i>
303	coli isolated from cases of bovine mastitis in England and Wales. Vet.
304	Microbiol. 20, 35-48.
305	Bertschinger, H.U., Bürgi, E., Eng, V., Wegmann, P., 1990. Lowering of the incidence
306	of puerperal mastitis in the sow by protection of the mammae from
307	contamination. Schweiz. Arch. Tierheilkd. 132, 557-566.
308	Bertschinger, H.U., Pohlenz, J., Hemlep, I., 1977a. Mastitis metritis agalactia
309	syndrome (milk fever) in sows. II. Bacteriological findings in spontaneous
310	cases. Schweiz. Arch. Tierheilkd. 119, 223-233.

311	Bertschinger, H.U., Pohlenz, J., Middleton Williams, D.M., 1977b. Investigations on
312	the mastitis metritis agalactia syndrome (milk fever) in sows. III. Induction of
313	Klebsiella mastitis by teat inoculation. Schweiz. Arch. Tierheilkd. 119, 265-
314	275.
315	Burvenich, C., Van Merris, V., Mehrzad, J., Diez-Fraile, A., Duchateau, L., 2003.
316	Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res. 34,
317	521-564.
318	Casey, T.A., Bosworth, B.T., 2009. Design and evaluation of a multiplex polymerase
319	chain reaction assay for the simultaneous identification of genes for nine
320	different virulence factors associated with Escherichia coli that cause diarrhea
321	and edema disease in swine. J. Vet. Diagn. Invest. 21, 25-30.
322	Daigle, F., Dozois, C.M., Jacques, M., Harel, J., 1997. Mutations in the f165(1)A and
323	f165(1)E fimbrial genes and regulation of their expression in an Escherichia
324	coli strain causing septicemia in pigs. Microb. Pathog. 22, 247-252.
325	Dobrindt, U., 2005. (Patho-)genomics of Escherichia coli. Int. J. M. Microbiol. 295,
326	357-371.
327	Eberhart, R.J., 1984. Coliform mastitis. Vet. Clin. North. Am. 6, 287-301.
328	Ewers, C., Li, G.W., Wilking, H., Kiessling, S., Alt, K., Antao, E.M., Laturnus, C.,
329	Diehl, I., Glodde, S., Homeier, T., Bohnke, U., Steinruck, H., Philipp, H.C.,
330	Wieler, L.H., 2007. Avian pathogenic, uropathogenic, and newborn meningitis-
331	causing Escherichia coli: How closely related are they? Int. J. M. Microbiol.
332	297, 163-176.
333	Fang, W., Pyorala, S., 1996. Mastitis-causing Escherichia coli: Serum sensitivity and
334	susceptibility to selected antibacterials in milk. J. Dairy Sci. 79, 76-82.

335	Furniss, S.J., 1987. Measurement of rectal temperature to predict mastitis, metritis
336	and agalactia (MMA) in sows after farrowing. Prev. Vet. Med. 5, 133-139.
337	Gerjets, I., Kemper, N., 2009. Coliform mastitis in sows: A review. J. Swine. Health
338	Prod. 17, 97-105.
339	Hussain, M.I., Wani, S.A., Nagamani, K., Fayaz, I., Mir, M.A., Nabi, A., Qureshi, K.,
340	Khan, M.A., Nishikawa, Y. 2010. Isolation and characterization of
341	enteroaggregative, enterotoxigenic, diffusely adherent Escherichia coli and
342	Salmonella Worthington from human diarrhoeic faecal samples in Kashmir
343	and Secundarbad, India. Wolrd J. Microbiol. Biotechnol. 26, 1883-1889.
344	Kaipainen, T., Pohjanvirta, T., Shpigel, N.Y., Shwimmer, A., Pyorala, S., Pelkonen,
345	S., 2002. Virulence factors of Escherichia coli isolated from bovine clinical
346	mastitis. Vet. Microbiol. 85, 37-46.
347	Kawano, M., Yaguchi, K., Osawa, R., 2006. Genotypic analyses of Escherichia coli
348	isolated from chickens with colibacillosis and apparently healthy chickens in
349	Japan. Microbiol. Immunol. 50, 961-966.
350	Klopfenstein, C., Farmer, C., Martineau, G.P., 2006. Diseases of the mammary
351	glands and lactation problems. In: Straw, B.E., Zimmermann, J.J., Taylor, D.J.
352	(Eds.), Diseases of swine, Iowa State University Press, Ames, pp. 833-860.
353	Krag, L., Hancock, V., Aalbaek, B., Klemm, P., 2009. Genotypic and phenotypic
354	characterisation of Escherichia coli strains associated with porcine
355	pyelonephritis. Vet. Microbiol. 134, 318-326.
356	Nemeth, J., Muckle, C.A., Lo, R.Y.C., 1991. Serum resistance and the traT gene in
357	bovine mastitis-causing Escherichia coli. Vet. Microbiol. 28, 343-351.

R, Development Core Team, 2009. R - A language and environment for statistical 358 359 computing. R - Foundation for Statistical Computing. Vienna Austria. http://www.r-project.org/. 360 Ross, R.F., Orning, A.P., Woods, R.D., Zimmermann, B.J., Cox, D.F., Harris, D.L., 361 1981. Bacteriologic study of sow agalactia. Am. J. Vet. Res. 42, 949-955. 362 Russo, T.A., Johnson, J.R., 2000. Proposal for a new inclusive designation for 363 extraintestinal pathogenic isolates of Escherichia coli: ExPEC. J. Infect. Dis. 364 181, 1753-1754. 365 Russo, T.A., McFadden, C.D., Carlino-MacDonald, U.B., Beanan, J.M., Barnard, T.J., 366 367 Johnson, J.R., 2002. IroN functions as a siderophore receptor and is a urovirulence factor in an extraintestinal pathogenic isolate of Escherichia coli. 368 369 Infect. Immun. 70, 7156-7160. SAS, 2005. Version 9.1, SAS Institute, Cary, NC, USA. 370 Shpigel, N.Y., Elazar, S., Rosenshine, I., 2008. Mammary pathogenic Escherichia 371 372 coli. Curr. Opin. Microbiol. 11, 60-65. 373 Srinivasan, V., Gillespie, B.E., Lewis, M.J., Nguyen, L.T., Headrick, S.I., Schukken, Y.H., Oliver, S.P., 2007. Phenotypic and genotypic antimicrobial resistance 374 patterns of Escherichia coli isolated from dairy cows with mastitis. Vet. 375 376 Microbiol. 124, 319-328. Vandekerchove, D., Vandemaele, F., Adriaensen, C., Zaleska, A., Hernalsteens, 377 J.P., De Baets, L., Butaye, P., Van Immerseel, F., Wattiau, P., Laevens, H., 378 379 Mast, J., Goddeeris, B., Pasmans, F., 2005. Virulence-associated traits in 380 avian Escherichia coli: Comparison between isolates from colibacillosis-381 affected and clinically healthy layer flocks. Vet. Microbiol. 108, 75-87.

382	Vimont, A., Vernozy-Rozand, C., Montet, M.P., Bavai, C., Fremaux, B., Delignette-
383	Muller, ML., 2007. Growth of shiga-toxin producing Escherichia coli (STEC)
384	and bovine feces background microflora in various enrichment protocols. Vet.
385	Microbiol. 123, 274-281.
386	Wenz, J.R., Barrington, G.M., Garry, F.B., Ellis, R.P., Magnuson, R.J., 2006.
387	Escherichia coli isolates' serotypes, genotypes, and virulence genes and
388	clinical coliform mastitis severity. J. Dairy Sci. 89, 3408-3412.
389	Wiles, T.J., Kulesus, R.R., Mulvey, M.A., 2008. Origins and virulence mechanisms of
390	uropathogenic Escherichia coli. Exp. Mol. Pathol. 85, 11-19.
391	Won, G.Y., Moon, B.M., Oh, I.G., Matsuda, K., Chaudhari, A.A., Hur, J., Eo, S.K., Yu,
392	I.J., Lee, Y.J., Lee, Y.S., Kim, B.S., Lee, J.H., 2009. Profiles of virulence-
393	associated genes of avian pathogenic Escherichia coli isolates from chickens
394	with colibacillosis. J. Poult. Sci. 46, 260-266.
395	Wu, Y., Hinenoya, A., Taguci, T., Nagita, A., Shima, K., Tsukamoto, T., Sugimoto, N.,
396	Asakura, M., Yamasaki, S. 2010. Distribution of virulence genes related to
397	adhesins and toxins in shiga toxin-producing Escherichia coli strains isolated
398	from healthy cattle and diarrheal patients in Japan. J. Poult. Sci. 46, 260-266.

Table 1: Prevalence of virulence-associated genes in $\it E.~coli$ isolates from healthy/ diseased sows (* $\it P<0.05$)

Gene(s)/categories		prevalence of virulence-associated genes (%)				<i>P</i> -value
		E. coli isolates (n = 1,271) of CM-negative sows	no. of farms with isolates with the respective gene	E. coli isolates (n = 1,132) of CM-positive sows	no. of farms with isolates with the respective gene	
Adhesins	E DE0					
afa / dra	ExPEC	-	-	-	-	-
fimC	ExPEC	82.30	4	84.72	4	0.1112
hra*	ExPEC	11.33	4	14.84	4	0.0106
iha	ExPEC	0.16	2	0.18	2	0.9077
sfa / foc	ExPEC	0.08	1	0.18	2	0.4971
K99 (fanA)	ETEC	-	-	-	-	-
K88 (faeG)	ETEC	0.08	1	0.09	1	0.9367
987P (fasA)	ETEC	0.08	1	-	-	0.3443
F18 (fedA)	ETEC	-	-	0.09	1	0.2892
F41 (fedA subunit)	ETEC	-	-	-	-	-
Iron acquisition						
chuA*	ExPEC	4.80	4	6.71	4	0.0434
iroN*	ExPEC	9.28	5	12.37	5	0.0148
sitD chr.	ExPEC	0.24	3	0.62	3	0.1461
sitD epi.	ExPEC	5.74	5	6.27	5	0.5858
Protectins						
neuC	ExPEC	0.39	2	0.18	2	0.3251
kpsMT II*	ExPEC	9.99	4	13.07	4	0.0178
ompA	ExPEC	37.61	5	35.34	5	0.2480
traT	ExPEC	49.80	5	52.12	5	0.2568
Toxins						
hlyA	ExPEC	1.65	4	2.56	3	0.1189
Enterotoxins						
STII	ETEC	-	-	0.18	1	0.1338
STI	ETEC	2.28	2	1.94	1	0.5658
LT	ETEC	-	-	0.09	1	0.2892
Shiga Toxins						
Stx2e	STEC	-	-	-	-	-
Invasins						
gimB	ExPEC	0.08	1	0.00	-	0.3452
ibeA	ExPEC	0.63	3	0.97	2	0.3443
Miscellaneous						
pic	ExPEC	0.63	4	1.33	3	0.0804
malX (RPai)	ExPEC	-	-	0.18	1	0.1338

Table 2: Number of milk samples and *E. coli* isolates of five different farms

farm	number of	milk samples	number of <i>E. coli</i> isolates		
	CM-negative	CM-positive	CM-negative	CM-positive	
Α	498	501	600	477	
В	13	15	16	21	
С	276	323	460	481	
D	25	20	32	27	
Е	167	167	163	126	
total	979	1,026	1,271	1,132	

Table 3: Prevalence of virulence gene profiles in *E. coli* isolates from clinically CM-diseased and healthy sows (*P<0.05, **P<0.01)

Virulence gene profile	prevalence of <i>E. coli</i> is	<i>P</i> -value			
		gene profile from:			
	samples $(n = 979)$ of	samples ($n = 1,026$) of			
	CM-negative sows	CM-positive sows			
kpsMTII*	9.99	13.07	0.0178		
chuA*	4.80	6.71	0.0434		
hra*	11.33	14.84	0.0106		
iroN*	9.28	12.37	0.0148		
kpsMTII, chuA**	0.87	2.21	0.0068		
kpsMTII, hra**	2.44	4.42	0.0073		
kpsMTII, iroN**	1.42	3.09	0.0052		
chuA, hra**	0.94	2.65	0.0014		
chuA, iroN	0.24	0.44	0.3823		
hra, iroN*	1.34	2.65	0.0204		
kpsMTII, chuA, hra*	0.63	1.59	0.0231		
kpsMTII, chuA, iroN	0.08	0.27	0.2634		
kpsMTII, hra, iroN**	0.31	1.33	0.0052		
chuA, hra, iroN*	-	0.35	0.0339		
kpsMTII, chuA, hra, iroN	-	0.27	0.0663		

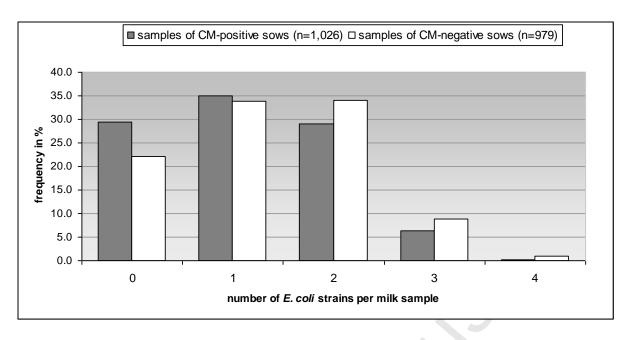


Figure 1: Number of E. coli isolates in milk samples from CM-positive and negative sows

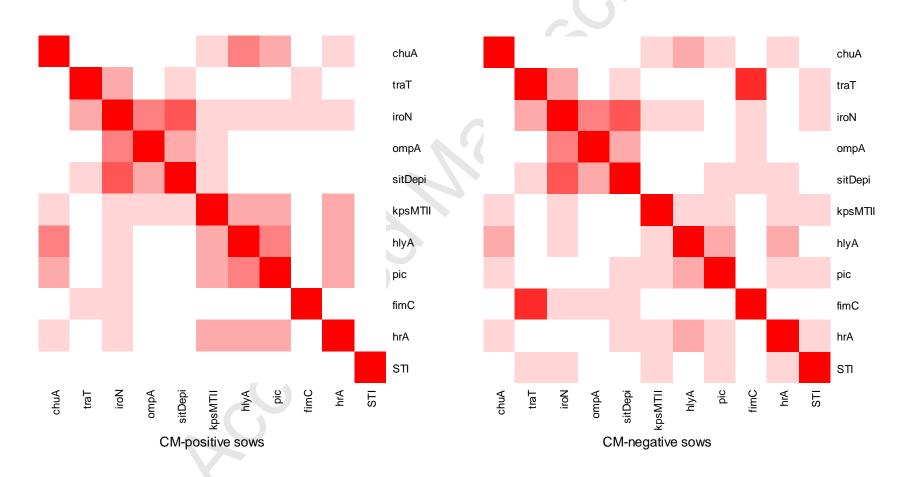


Figure 2: Statistical associations between 12 virulence-associated genes from *E. coli* isolates of CM-positive and CM-negative sows. Colours range from light red (little associated) to dark red (highly associated) (p<0.05). Gaping spaces indicate no significant correlation between virulence genes.

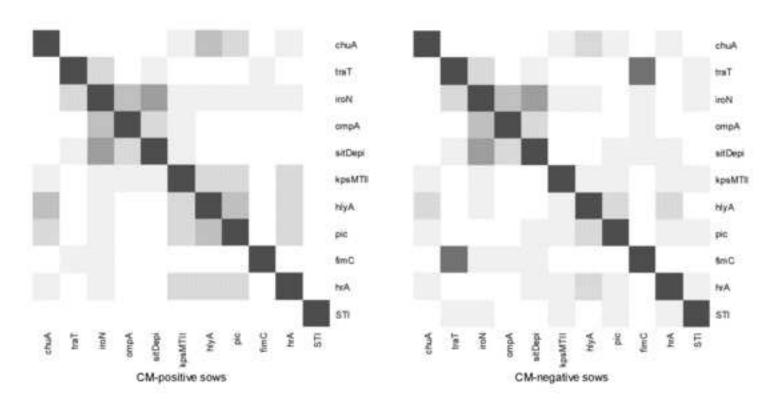


Figure 2: Statistical associations between 12 virulence-associated genes from E. coli isolates of CM-positive and CM-negative sows. Colours range from light grey (little associated) to dark grey (highly associated) (p<0.05). Gaping spaces indicate no significant correlation between virulence genes.

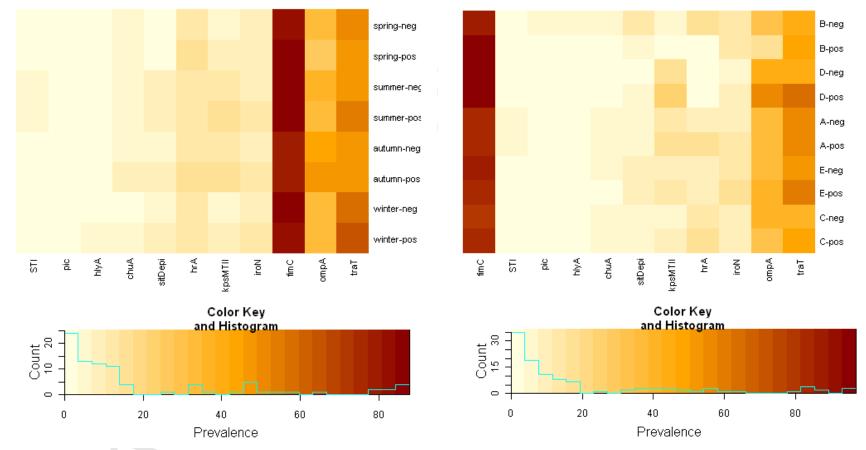


Figure 3: Heatmaps representing gene prevalence in *E. coli* isolates (n=2,403) of different CM-status (neg, pos), seasons (spring, summer, autumn, winter) and farms (A, B, C, D, E). Colours range from light yellow (gene found in 1 - 5 % of the isolates) to dark red (gene found in 80 - 88 % of the isolates).

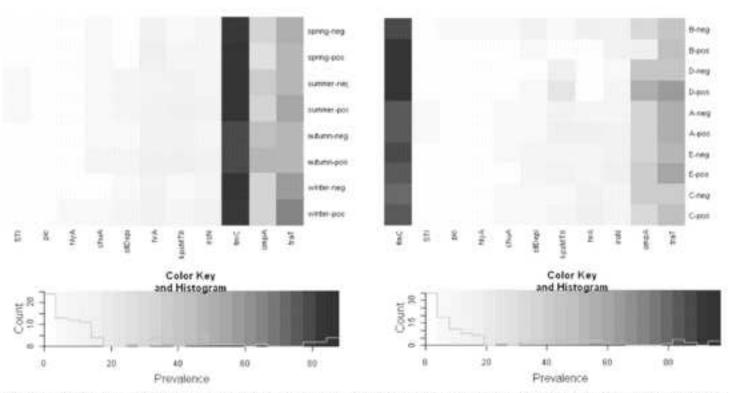


Figure 3: Heatmaps representing gene prevalence in E. coli isolates (n=2,403) of different CM-status (neg, pos), seasons (spring, summer, autumn, winter) and farms (A, B, C, D, E). Colours range from light grey (gene found in 1 - 5 % of the isolates) to dark grey (gene found in 80 - 88 % of the isolates).