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Asstract. FOrN =5, 6 and 7, using the classification of perfect quadratic form
we compute the homology of the Voronoi cell complexes agdab the modular
groupsSLy(Z) andGLy(Z). From this we deduce the rational cohomology of
those groups and some information abKptZ), whenm= 5,6 and 7.

1. INTRODUCTION

Let N > 1 be an integer and I&Ly(Z) be the modular group of integral ma-
trices with determinant one. Our goal is to compute its coblogy groups with
trivial coefficients, i.e.H4(SLy(Z), Z). The caseN = 2 is well-known and follows
from the fact thatSLy(Z) is the amalgamated product of two finite cyclic groups
([29], [7], 1.7, Ex.3, p.52). The casH = 3 was done in [31]: for ang > O the
groupHY(SLs(Z),2) is killed by 12. The cas&l = 4 has been studied by Lee and
Szczarba in [19]: modulo 2, 3 and 5—-torsion, the cohomolagugH9(SL4(Z), Z)
is trivial wheneverg > 0, except thati3(Sly(Z), Z) = Z. In Theorem 7.3 below,
we solve the casds =5, 6 and 7.

For these calculations we follow the method of [19], i.e. vee the perfect
forms of Voronoi. Recall from [34] and [20] that a perfectrfoin N variables is
a positive definite real quadratic formon RN which is uniquely determined (up
to a scalar) by its set of integral minimal vectors. Voronaied in [34] that there
are finitely many perfect forms of rari, modulo the action 06Ly(Z). These are
known forN < 8 (see 82 below).

1991Mathematics Subject ClassificatiodlH55,11F75,11F06,11Y99,55N91,19D50, 20J06,57-
04.
Key words and phrases?erfect forms, Voronoi complex, group cohomology, modgtaups,
Steinberg modules, K-theory of integers, machine calmriat
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Voronoi used perfect forms to define a cell decompositiorhefdpacexy; of
positive real quadratic forms, the kernel of which is defimegr Q. This cell
decomposition (cf. 83) is invariant und8ty(Z), hence it can be used to compute
the equivariant homology oKy, modulo its boundary. On the other hand, this
equivariant homology turns out to be isomorphic to the gsodp(SLn(Z), Sin),
whereSty is the Steinberg module (see [6] and 83.4 below). FinallyeB&serre
duality [6] asserts that the homolody.(SLy(Z), Sty) is dual to the cohomology
H*(SL(Z), Z) (modulo torsion).

To perform these computations fbf < 7, we needed the help of a computer.
The reason is that the Voronoi cell decompositioXpigets soon very complicated
whenN increases. Forinstance, whidn= 7, there are more than two million orbits
of cells of dimension 18, modulo the action 8ky(Z) (see Figure 2 below). For
this purpose, we have developed a C library [23], which ugdl 22] for some
functionalities. The algorithms are based on exact methasgs result we get the
full Voronoi cell decomposition of the spac&g for N < 7 (with eitherGLy(Z)
or SLy(Z) action). Those decompositions are summarized in the fgamd tables
below. The computations were done on several computerg difierent processor
architectures (which is useful for checking the results) for N = 7 the overall
computational time was more than a year.

The paper is organized as follows. In 82, we recall the Vortimeory of perfect
forms. In 83, we introduce a complex of abelian groups thatalethe “Voronoi
complex” which computes the homology groudg(SLn(Z), Sty). In 84, we ex-
plain how to get an explicit description of the Voronoi coewin rankN = 5, 6
or 7, starting from the description of perfect forms avd#ain the literature (es-
pecially in the work of Jaquet [15]). In Figures 1 and 2 we Bigphe rank of
the groups in the Voronoi complex and in Tables 1-5 we giveelbmentary divi-
sors of its diferentials. The homology of the Voronoi complex (hence tloeigs
Hq(Sn(Z), Sty) ) follows from this. It is given in Theorem 4.3.

We found two methods to test whether our computations aredor First,
checking that the virtual Euler characteristic Sify(Z) vanishes leads to a mass
formula for the orders of the stabilizers of the cellsXf (cf. 84.5). Second, the
identity d,_1 o dy = O for the diferentials in the Voronoi complex is a non-trivial
equality when these fierentials are written as explicit (large) matrices.

In 85 we give an explicit formula for the top homology grouptbé Voronoi
complex (Theorem 5.1). In 86 we prove that the Voronoi compleGLs5(Z) is a
direct factor of the Voronoi complex @ Lg(Z) shifted by one. In 87 we explain
how to compute the cohomology 8ty (Z) andGLy(Z) (modulo torsion) from our
results on the homology of the Voronoi complex in 84. Our nmrasult is stated
in Theorem 7.3. In 88 we compute some homology groupsIg§(Z) with coef-
ficients the Steinberg module. In 89, we use these resultstteggne information
onKmy(Z), whenm = 5,6 and 7. Some of these results had already been announced
in [10].

Acknowledgments: The first two authors are particularly indebted to the IHES
for its hospitality. The second author thanks the InstifoteExperimental Math-
ematics (Essen), acknowledging financial support by the BR@Gthe European
Commission as well as hospitality of the Newton InstituteCimmbridge and the
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MPI for Mathematics in Bonn. The authors are grateful to BoAbert, J.-G. Du-
mas, M. Dutour, D.-O. Jaquet, J.-C. Kbnig, J. Martinet, Srikdp A. Rahm, J-
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Notation: For any positive integen we let S,, be the class of finite abelian
groups the order of which has only prime factors less thamuoaleton.
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2. VORONOI'S REDUCTION THEORY

2.1. Perfect forms. Let N > 2 be an integer. We lafy be the set of positive
definite real quadratic forms iN variables. Giverh € Cy, let m(h) be the finite
set of minimal vectors o, i.e. vectorsy € ZN, v # 0, such thah(v) is minimal.
A form h is calledperfectwhenm(h) determinesh up to scalar: ifh’ € Cy is such
thatm(h’) = m(h), thenh’ is proportional tch.

Example 2.1 The formh(x,y) = x* + y?> has minimum 1 and precisely 4 minimal
vectors=(1,0) and+(0,1). This form is not perfect, because there is an infinite
number of positive definite quadratic forms having theseimmhvectors, namely
the formsh(x,y) = x% + axy+ y* wherea is a non-negative real number less than
1. By contrast, the forrh(x, y) = x? + xy+ y? has also minimum 1 and has exactly
6 minimal vectors, viz. the ones above an(l,—1). This form is perfect, the
associated lattice is the “honeycomb lattice”.

Denote byCy, the set of non-negative real quadratic formsR3hthe kernel of
which is spanned by a proper linear subspac@™fby Xy, the quotient ofCy, by
positive real homotheties, and by: C{, — XJ, the projection. LeXy = m(Cy)
andoXy = X, — Xn. LetI" be eitherGLy(Z) or SLy(Z). The groupl” acts onCy
andXy, on the right by the formula

h-y=9'hy, yel, heCy,

whereh is viewed as a symmetric matrix andlis the transpose of the matrix
Voronoi proved that there are only finitely many perfect fertniodulo the action
of I' and multiplication by positive real numbers ([34], Thm.30L

The following table gives the current state of the art on tigneeration of perfect
forms.

rank [1|2|3[4|5|6]| 7 8 9
#classes1|1(1(2(3|7(33|10916[> 500000

The classification of perfect forms of rank 8 was achieved byoDr, Schirmann
and Vallentin in 2005 [9], [28]. They have also shown thatank 9 there are at
least 500000 classes of perfect forms. The correspondassiication for rank 7
was completed by Jaquet in 1991 [15], for rank 6 by Barned¢2}ank 5 and 4 by
Korkine and Zolotarev [16], [17], for dimension 3 by Gaus3][&nd for dimension
2 by Lagrange [18]. We refer to the book of Martinet [20] for maletails on the
results up to rank 7.

2.2. A cell complex. Givenv e ZN — {0} we letV e C}, be the form defined by
Ux) = (V| x?, xeRN,
where { | X) is the scalar product of andx. Theconvex hull in X of a finite

subseB c ZN — {0} is the subset oK§, which is the image under of the quadratic
forms 3 4;Vj € Cy, wherevj € Bandd; > 0. For any perfect fornh, we let

o(h) cJ X, be the convex hull of the sen(h) of its minimal vectors. Voronoi
proved in [34], §88-15, that the celts(h) and their intersections, dsruns over
all perfect forms, define a cell decompositionX(f, which is invariant under the
action ofI". We endowX§, with the correspondin@W-topology. Ifr is a closed
cellin X§, andh a perfect form withr c o-(h), we letm(z) be the set of vectongin
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m(h) such that/Ties int. Any closed celkr is the convex hull ofn(r), and for any
two closed c ellg, 7" in X{, we havem(r) n m(z’) = m(z N 7’).

3. THE VORONOI COMPLEX

3.1. An explicit di fferential for the Voronoi complex. Letd(N) = N(N+1)/2-1
be the dimension ok}, andn < d(N) a natural integer. We denote By, = X;(I')
a set of representatives, modulo the action’pbf those cells of dimension in
X, which meetXy, and byZ, = X,(I') c Z(I') the cellso for which any element
of the stabilizel’, of o in T preserves the orientation. L€} be the free abelian
group generated by,. We define as follows a map

dn Vn - Vn_l .

For each closed cett in X{, we fix an orientation otr, i.e. an orientation of
the real vector spacR (o) of symmetric matrices spanned by the formngvith
v e m(o). Leto € X, and letr’ be a face o which is equivalent under to
an element irx,_; (i.e. 7 neither lies on the boundary nor has elements in its
stabilizer reversing the orientation). Given a positivai®®’ of R(r') we get a
basisB of R(c) o R(7’) by appending td’ a vectorv, wherev € m(c) — m(’).
We lete(r’, o) = =1 be the sign of the orientation &fin the oriented vector space
R(o) (this sign does not depend on the choice)of

Next, letr € X,_1 be the (unique) cell equivalent t6 and lety € T be such that
7 =71 -v. We definen(r, 7) = 1 (resp.n(r, 7’) = —1) wheny is compatible (resp.
incompatible) with the chosen orientationsRifr) andR(7’).

Finally we define

(1) (@)= ), D nn7)e o),

TEZn_l il

wheret’ runs through the set of faces @fwhich are equivalent to.

3.2. A spectral sequence.According to [7], VII.7, there is a spectral sequence
Epq converging to the equivariant homology groUﬁ§+q(X* ,0X{;Z) of the ho-
mology pair Ky, 9X{), and such that

Epq= P Ha(Tr Zo).

*
o€Xy

whereZ, is the orientation module of the ce#t and, as abovag is a set of
representatives, modulg of the p-cells o in X{, which meetXy. Notice that the
action ofT',, onZ is given byn described above. SineemeetsXy, its stabilizer
I', is finite and, by Lemma 7.1 in 87 below, the orderIgfis divisible only by
primesp < N+1. Therefore, wheq s positive, the grouply(I'-, Z) lies inSn1.
WhenI',- happens to contain an element which changes the orientstionthe
groupHo(T's, Z) is killed by 2, otherwiseHo(T',-, Z,) = Z,). Therefore, modulo

Sy, we have
Er]i() = @Zo‘,

o€Xn

and the choice of an orientation for each eeljives an isomorphism betweErﬁ(0
andV,.
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3.3. Comparison. We claim that the dferential

di: Eno = En_1o
coincides, up to sign, with the magh defined in 3.1. According to [7], VII,
Prop. (8.1), the dierentiald} can be described as follows.

Let o € X5 and letr’ be a face obr. Consider the group,» = I'; N T and
denote by
tO’T' : H*(FO" Z(r) - H*(F(r‘r’a Z(r)
the transfer map. Next, let
Usp - H*(ra"r’a Za’) - H*(r‘r’a ZT’)

be the map induced by the natural nidp — Z., together with the inclusion
I'or C I, Finally, letr € X* | be the representative of titieorbit of 7/, lety e T
be such that’ = -y, and let

Vgt H*(FT’sZT’) - H*(FTa ZT)

be the isomorphism induced lyy Then the restriction o to H.(T',., Z,) is equal,
up to sign, to the sum

(2) Z Vrrz Uy t(r‘r’ s
T/

wheret’ runs over a set of representatives of faces ofiodulorl’,,.
To compared} with d,, we first note that, when € X,_1,
Verg ol HO(FT’9ZT’) =Z - HO(FTa Z‘r) =Z
is the multiplication byr(z, 7’), as defined in 83.1. Next, whene X, the map
Ugr @ HO(FO'T’sz') =2y =7Z— HO(FT’a ZT’) =Z
is the multiplication bys(r’, o), up to a sign depending amonly. Finally, the
transfer map
trr 1 Ho(To, Zs) = Z — Ho(Tyr, Zo) = Z
is the multiplication by I, : T'sr]. Multiplying the sum (2) by this number
amounts to the same as taking the sum over all facesas in (1). This proves
thatd, coincides, up to sign, with onEX o = V. m]
In particular, we get thatl, ; o d, = 0. Note that this identity will give us a
non-trivial test of our explicit computations of the comyle

Notation: The resulting complex\{,, d,) will be denoted by Var, and we call
it the Voronoi complex

3.4. The Steinberg module. Let Ty be the spherical Tits building &Ly overQ,
i.e. the simplicial set defined by the ordered set of non-peoper linear subspaces
of QN. The reduced homologh4(Tn,Z) of Ty with integral codicients is zero
except wherg = N — 2, in which case

Hn-2(Tn. Z) = Sty
is by definition the Steinberg module [6]. According to [3BTop. 1, the relative
homology groupsHq(Xy,, 0Xy;; Z) are zero except whesp= N - 1, and

H-1(X}0, 9X3;2) = St
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From this it follows that, for alm e N,
Hi(X%: 0X3: Z) = Hm-nea (T, Sty)

(see e.g. [30], 83.1). Combining this equality with the jjweg sections we con-
clude that, modul®Sp;1,

(3) Hm—N+1(Fa StN) = Hm(Vorl") .

4. THE VORONOI COMPLEX IN DIMENSIONS 5, 6 AND 7

In this section, we explain how to compute the Voronoi coxgaeof rankN < 7.

4.1. Checking the equivalence of cellsAs a preliminary step, we develop an
effective method to check whether two celtsando’ of the same dimension are
equivalent under the action ®f The cello (resp. ¢’) is described by its set of
minimal vectoram(o’) (resp.m(c”’)). We letb (resp.b’) be the sum of the forme ~
with v e m(o) (resp.m(c”)). If o ando” are equivalent under the actionothe
same is true fob andb’, and the converse holds true since two cells of the same
dimension are equal when they have an interior point in commo

To compareb andb’ we first check whether or not they have the same determi-
nant. In case they do, we Idt (resp.M’) be the set of numbetgx) with x € m(o)
(resp. b’(x) with x € m(¢”)). If b andb’ are equivalent, then the sd and M’
must be equal.

Finally, if M = M” we check ifb andb’ are equivalent by applying an algorithm
of Plesken and Souvignier [24] (based on an implementati@oavignier).

4.2. Finding generators of the Voronoi complex.In order to comput&, (and

Xx), we proceed as follows. FiX < 7. Let® be a set of representatives of the
perfect forms of ranlN. A choice of® is provided by Jaquet [15]. Furthermore,
for eachh € P, Jaquet gives the lish(h) of its minimal vectors, and the list of all
perfect formsh’y (one for each orbit unddr,)), whereh’ € £ andy € I, such
thato(h) ando(l')y share a face of codimension one. This provides a complete
list Cﬁ of representatives of codimension one faces(in).

From this, one deduces the full Iiﬁ]1 of faces of codimension one in(h)
as follows: first list all the elements in the automorphisrougrT';(); this can
be obtained by using a second procedure implemented by @oewri[24] which
gives generators for, ). We represent the latter generators as elements in the
symmetric groupsy, whereM is the cardinality ofn(h), acting on the sat(h) of
minimal vectors. Using those generators, we let GAP [12[dikthe elements of
I'»(n), vViewed as elements of the symmetric group above.

The next step is to create a shortl’ﬁl,2 of codimension 2 facets af(h) by
intersecting all the translates undgy of codimension 1 facets with each member
of Cﬁ and only keeping those intersections with the correct rawkN) — 2). The
resulting shortlist is reasonably small and we apply thegdare of 4.1 to reduce
the shortlist to a set of representati\@n%of codimension 2 facets.

We then proceed by induction on the codimension to defing ﬁ'ﬁsnf cells of
codimensionp > 2 in o(h). Given?'hp, we IetCﬁ C Thp be a set of representatives
for the action ofl. We then IetThIO+1 be the set of cellg N 7, with ¢ € Thl,
andr € Cﬁ. As a result, we get directly the cellular structure of thevtéggnt

space Xy, X))/ without computing the full cellular structure &§; which is not
required (and of greater computational complexity).
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n als5|6| 7|8 9 |10 12| 12 | 13 | 14 | 15 [ 16 | 17 | 18| 19| 20
3*(Glsz)) | 2| 5| 10| 16 23| 25 | 23 | 16 | 9 4 3

20 (GLs(2)) 11 7|6 |1 0 2 3

34 (GLe(Z)) 310 | 28| 71| 162 | 329 | 589 | 874 | 1066 | 1039 | 775 | 425 | 181 | 57 | 18 | 7
20 (GLs(2)) 3 | 46 | 163 | 340 | 544 | 636 | 469 | 200 | 49 | 5

3% (SLe(Z)) 3|10 | 28| 71| 163 | 347 | 691 | 1152 | 1532 | 1551 | 1134 | 585 | 222 | 62 | 18 | 7
0 (Sle(Z)) 3 |10| 18| 43 | 169 | 460 | 815 | 1132 | 1270 | 970 | 434 | 114 | 27 | 14 | 7

Ficure 1. Cardinality ofZ, andX} for N = 5,6 (empty slots de-

note zero).
n 6 7 8 9 10 11 12 13 14 15 16
pod 6 28 115 467 1882 7375 26885 | 87400 | 244029 | 569568 | 1089356
PO 1 60 1019 8899 47271 | 171375 | 460261 | 955128
n 17 18 19 20 21 22 23 24 25 26 27
zr | 1683368 | 2075982 | 2017914 | 1523376 | 876385 | 374826 | 115411 | 24623 | 3518 352 33
X, | 1548650 | 1955309 | 1911130 1437547 | 822922 | 349443 | 105054 | 21074 | 2798 305 33

Ficure 2. Cardinality ofZ, andX} for GL7(Z) .

Next, we letX} be a system of representatives modilm the union of the sets

Cﬂ(N)_”,h € . We then compute generators of the stabilizer of each calfin
with the help of another algorithm developed by Plesken amavignier in [24],
and we check whether all generators preserve the orientafithe cell. This gives
us the sek, as the set of those cells which pass that check.

Proposition 4.1. The cardinality ofE, and X% is displayed in Figure 1 for rank
N = 5,6 and in Figure 2 for rank N= 7.

Remark 4.2 The first line in Figure 1 has already been computed by Bafut (c
[3], p-409, second column of Table 2). The running time fer¢bmputation of the
cell structure (with the diierentials and the checking) fof = 7 using [23] was 18
months on several servers including quadri-processorpuatars, while folN = 6
this can be done in a few seconds.

4.3. The differential. The next step is to compute theldirentials of the Voronoi
complex by using formula (1) above. In Table 3, we give infation on the dter-
entials in the Voronoi complex of rank 6. For instance th@sddine, denoteds,

is about the dferential fromVy; to V1. In the baseX 1 andXqq, this diferential is
given by a matrixA with Q = 513 non-zero entries, witlm = 46 = cardgyg) rows
andn = 163 = cardgq;) columns. The rank of\ is 42, and the rank of its kernel
is 121. The elementary divisors &fare 1 (multiplicity 40) and 2 (multiplicity 2).
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Al Q] n] m]rank] ker | elementary divisorg

d,[0[1]0 o] 1

ds | 1] 1] 1 1] 0 1(1)

ds | O 1] 1 ol 1

[ oo 1 ol O

ds | 0]1] 0 0o 1

d | 221 1| 1 2(1)
Tasie 1. Results on the rank and elementary divisors of tiedi
entials forSLs(Z).

A ] Q[n]m]rank] ker | elementary divisorg

ds| 0[1] 0 o] 1

d | 2|71 1] 6 1(1)

do | 18| 6] 7 50 1 1(4), 2(2)

du| 5|1 6 1| 0 1(2)

do| O[O 1 0| ©

ds| O[2] 0 ol 2

du| 4|31 2 21 1 5(1), 15(1)

TasLe 2. Results on the rank and elementary divisors of tiedi
entials forGLs(Z) .

The cases 08L4(Z), GLs(Z) andSLs(Z) are treated in Table 1, Table 2 and Ta-
ble 4, respectively.

Our results on the ffierentials in rank 7 are shown in Table 5. While the ma-
trices are sparse, they are not sparse enoughfficiemt computation. They have
a poor conditioning with some dense columns or rows (this ésrssequence of
the fact that the complex is not simplicial and non-simpliciells can have a large
number of non-trivial intersections with the faces). Weéiabitained full informa-
tion on the rank of the dlierentials. For the computation of the elementary divisors
complete results have been obtained in the case of matficisercept fom = 19.

For this case, the computational cost is currently too higte computations have
required a full year on a parallel computer (including cliegk Forn = 19 alone,
the computational cost is equivalent to 3 CPU-years on @&nuprocessor. See
[8, 33] for a detailed description of the computations.

4.4. The homology of the Voronoi complexesFrom the computation of the dif-
ferentials, we can determine the homology of Voronoi compRecall that if we
have a complex of free abelian groups
with f andg represented by matrices, then the homology is

ker@)/Im(f) = Z/hZ & - - - & Z/d,Z & 7P~k -rank@)

whereds, ..., d; are the elementary divisors of the matrix fof
We deduce from Tables 1-5 the following result on the homptafdhe Voronoi
complex.
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' A] Q@ | n ] m [rank] ker | elementary divisors |
do| 17] 46| 3 3] 43 1(3)
d. | 513|163| 46| 42| 121 1(40), 2(2)
di, | 2053 340 163 | 120 220 1(120)
dis | 4349 544|340 | 220 324 1(217), 2(3)
dis | 6153 636 | 544 | 324 | 312 | 1(320), 2(1), 6(2), 12(1
dis | 5378 469 | 636 | 312 | 157 1(307), 2(3), 60(2)
dis | 2526 200 | 469 | 156 | 44 1(156)
d- | 597 49| 200| 44| 5| 1(41),3(1), 6(1), 36(1
ds| 43| 5| 49 5] 0 1(5)
TasLe 3. Results on the rank and elementary divisors of thiedi
entials forGLg(Z) .
[ A] @ | n | m Jrank] ker | elementary divisors ]
d, 12] 10 3 3] 7 1(3)
ds 48| 18] 10 71 11 1(7)
do | 140| 43| 18| 11| 32 1(11)
do| 613] 169| 43| 32137 1(32)
d. | 2952| 460| 169 | 136 324 1(129), 2(6), 6(1)
do | 7614| 815| 460| 323 492 1(318), 2(3), 4(2)
dis | 12395] 1132 815 | 491 641 1(491)
dis | 14966 | 1270 1132 641 629 1(637), 3(3), 12(1)
dis | 12714] 970 | 1270 629 | 341 | 1(621), 2(5), 6(1), 60(2
dis | 6491| 434 970 339 95 1(338), 2(1)
di; | 1832] 114| 434| 95| 19 1(92), 3(2), 18(1)
d | 257| 27| 114| 19| 8 1(17), 2(2)
dio 62| 14| 27 8] 6 1(7), 10(1)
dho 28 71 14 6 1 1(1), 3(4), 504(2)
TasLe 4. Results on the rank and elementary divisors of thiedi
entials forSLs(Z) .

Theorem 4.3. The non-trivial homology of the Voronoi complexes assedidb
GLn(Z) with N = 5,6 moduloSs is given by:

Ha(Morglyz) =2, if n=9,14,
Hn(VorgLyz) = Z, if n=10,1115,
while in the case S(Z) we get, modul®, that
Z, if n=101112 20,
72, if n=15.
Furthermore, for N= 7 we get, moduldz, that

Z if n=121318 22 27,
0 otherwise

Hn(VorSL5(Z)) ~ {

Hn(MorgL, @) = {

Notice that, ifN is odd, SLy(Z) andGLn(Z) have the same homology modulo
S,. Notice also that, for simplicity, in the statement of thedhem we did not use
the full information given by the list of elementary divisan Tables 1-5.
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LA Q | n | m | rank | ker | elementary divisors |
dig 8 60 1 1 59 1
di1 1513 1019 60 59 960 1(59)
dio 37519| 8899 1019 960| 7939 1(958), 2 (2)
di3 356232 47271 8899 7938 39333 1(7937),2(1)
dig 1831183| 171375 47271 39332 | 132043 1(39300), 2 (29), 4 (3
dis | 6080381| 460261| 171375| 132043| 328218 1(131993), 2(46), 12 (4
die | 14488881 955128| 460261| 328218| 626910 1(328183), 2 (33), 4(1), 12(1
di7; | 25978098| 1548650 955128| 626910 921740 1(626857), 2(52), 4 (1
dis | 35590540] 1955309| 1548650 921740| 1033569| 1 (921637), 2 (100), 42 (2), 252 (1)
dig | 37322725| 1911130| 1955309| 1033568 877562 1(1033458), 2 (110
dyo | 29893084| 1437547| 1911130| 877562| 559985 1(877526), 2 (33),6 (3
Op | 18174775| 822922| 1437547| 559985 262937 1 (559895), 2 (88), 6 (2
0, | 8251000| 349443| 822922| 262937| 86506 1 (262835), 2 (98), 4 (3), 12 (1)
s | 2695430 105054| 349443| 86505| 18549 1 (86488), 2 (12), 6 (3), 42 (1), 84 (1)
Ors | 593892| 21074| 105054| 18549| 2525 1(18544), 2 (4), 4 (1
Oos 81671| 2798| 21074| 2525 273 1 (2507), 2 (18)
as 7412 305 2798 273 32 1(258), 2 (7), 6 (7), 36 (1
a7 600 33 305 32 1| 1(23), 2 (4), 28 (3), 168 (1), 2016 (1)

TasLe 5. Results on the rank and elementary divisors of the dif-
ferentials forGL7(Z), middle entries are cited from the thesis of
A. Urbanska [33]. The elementary divisors fhg were computed

by B. Boyer and J.-G. Dumas using refinements of the techaique
described in [8].

4.5. Mass formulae for the Voronoi complex. Let y(SLn(Z)) be the virtual Euler
characteristic of the grouplLy(Z). It can be computed in two ways. First, the mass
formula in [7] gives

_ 1 d(N) 1
M) = YD = B )
ek T n=N oexk T

whereE is a family of representatives of the cells of the Voronoi pter of rank
N modulo the action o6Ly(Z), andT', is the stabilizer ob- in SLy(Z). Second,
by a result of Harder [14], we know that

N
x(S(@) = [ [¢a-1,
k=2

hencey(SLy(Z)) = 0if N > 3.

A non-trivial check of our computations is to test the conitpbtly of these two
formulas, and the corresponding check for rahk= 5 had been performed by
Batut (cf. [3], where a proof of an analogous statement, for I, but instead
pertaining towell-roundedforms, which in our case are precisely the one&jn
is attributed to Bavard [4]).

If we add together the tern]é;l for cells o of the same dimension to a single
term, then we get foN = 6, starting with the top dimension,
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45047 10633 6425 12541

1451520 11520 576 192
7438673 3841271 9238 266865 14205227 14081573

"734560 8640 | 15 448 ' 34560 69120
830183 205189 61213 1169 17 1

T 11520 ~ 11520 T 20736 3840 1008 2880
= x(Sls(Z)) = 0.

ForN = 7 we obtain similarly

290879 13994381 31815503 1362329683 6986939119

T107520° 103680 13824 | 69120 69120
7902421301 340039739981 174175928729 132108094091

23040 414720 120060 69120
27016703389 13463035571 14977461287 22103821919

13824 8640 | 15360 46080
8522164169 17886026827 1764066533 101908213 12961451

26080 322560 138240 46080 46080
10538393 162617 721 43

T 7414720 ' 103680 11520 32256
= x (SLy(2)) = 0.

5. EXPLICIT HOMOLOGY CLASSES

5.1. Equivariant fundamental classes.

Theorem 5.1. The top homology group ddh)(Vorsy,z) ® Q) has dimension 1.
When N= 4, 5, 6 or 7, itis represented by the cycle

1
;m[o'],

whereo runs through the perfect forms of rank N and the orientatibeaxh cell
is inherited from the one of YT

Proof. The first assertion is clear since, by (3) above and (6) belevhave

Hd(N)(VorSLN(Z) Q)= Hd(N)_N+1(SLN(Z), Sy Q) = HO(SLN(Z), Q) =Q.

In order to prove the second claim, write th&eiiential between codimension 0
and codimension 1 cells as a matiof sizeny x ng, with nj = [Zqny-i ()| denoting
the number of codimensiancells in the Voronoi cell complex. It can be checked
that in each of the; rows of A there are precisely two non-zero entries. Moreover,
the absolute value of the, ()-th entry ofA is equal to the quotienf’;,|/|T';| (an
integed), whereoj € Zqn)(I) andr; € Xgn)-1(I). Finally, one can multiply some
columns by-1 (which amounts to changing the orientation of the corredpw
codimension 0 cell) in such a way that each row has exactlyposdive and one
negative entry. O
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Example 5.2 ForN = 5 the diferential matrixdy 4 (cf. Table 2) between codimen-
sion 0 and codimension 1 is given by

40 0 -15
40 -15 0/}’

so the kernel is generated by, 88) = 11520 335, Ta Tap)» While the orders of

the three automorphism groups are 3840, 1440 and 1440 cteshe

Example 5.3. Similarly, the diferentialdyg : Vog — Vg for rankN = 6 (cf. Table
3) is represented by the matrix

0 0 9% 0 0 0 -21
3240 0 0 0 -22 0 O
0 0O 1440 0 O0 -3 O
0 0 0O 18 0 -6 O
-12960 O 0 0O 0 12 O
-3240 0 0 9 0 0 O
0 -360 O 1 0 0 O
-4320 0 0 12 0 0 Of
0 0 960 -6 0 O O
0 -216 9% 0 O O O
-45 45 0 0O o0 0 O
—2592 0O 1152 0 O O ©
-3240 O 1440 0 O O O
-432 0 192 0 O O O

Its kernel is generated by
(28,28,63,100804320 30240 288)
while the orders of the corresponding automorphism grovpsraspectively,
1036801036804608Q 288 672 96, 10080,
and we note that 2803680= 63-46080= 10080 288 = 4320672 = 30240 96.

5.2. An explicit non-trivial homology class for rank N = 5. The integer kernel
of the 7x 1-matrix ofdy for GLs(Z), given by (Q0,0,0,-1,0, 1), is spanned by
the image ofd;g (the latter being given, up to permutation of rows and colsymn
by the transpose of the matrix (4) below), together witt(21, -1, -1,1,1). The
latter vector therefore provides the ¢lbgients of a non-trivial homology class in
Ho(VorGLyz) = H>(GLs(Z), Z) (moduloSs), given as a linear combination of cells
(in terms of minimal vectors) as follows:

2¢([e1, €, €3, €13, €3, €34, €14, €45, €35, €25])
+¢([e1, €, €3, €4, €24, €34, €5, €15, €35, €1245] )
—¢([e1, €12, €, €23, €3, €34, €14, €45, €35, €25])
—¢([e1, &, €3, €4, €14, €24, €34, €5, €35, €1245] )
—¢([eq, €12, €, €13, €3, €14, €4, U, €45, V])
+¢([e1, €, €3, €14, €24, €34, €5, €15, €35, €1245] )
+¢([e1, €, €3, €4, €24, €34, €25, €35, €1245, €1345) ) -
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where we denote the standard basis vecto®°iby e, and we puej = g + ¢,
8j = —6+€j andegj = 6+ej+e+e;, aswell asl = es—e;—eg andv = es—er—e3.

6. SPLITTING OFF THE VORONOI COMPLEX VOIN FROM VOIN41 FOR SMALL N

In this section, we will be concerned with= GLy(Z) only and we adopt the
notationZ,(N) = X,(GLn(Z)) for the sets of representatives.

6.1. Inflating well-rounded forms. Let A be the symmetric matrix attached to
a formhin CJ. Suppose the cell associated Aois well-rounded i.e., its set
of minimal vectorsS = S(A) spans the underlying vector spak€. Then we
can associate to it a forrh with matrix A = ('g m?A)) in C§,;, Wherem(A)
denotes the minimum positive valueAbnZN. The setS of minimal vectors oA
contains the ones fror8, each vector being extended by ah+{ 1)-th coordinate
0. Furthermore$S contains the additional minimal vectoggy,1 = +(0,...,0,1),
and hence it spar&N*!, i.e., A is well-rounded as well. In the following, we will
call forms likeA as well as their associated celidlated

The stabilizer oh in GLy(Z) thereby embeds into the onefoinside GLy,1(Z)
(at least modula:Id) under the usual stabilization map.

Note that, by iterating the same argumertimes, A induces a well-rounded
form also inZ} (N + r) which, forr > 2, does not belong tB,(N +r) since there is
an obvious orientation-reversing automorphism of the tefldorm, given by the
permutation which swaps the last two coordinates.

6.2. The caseN = 5.

Theorem 6.1. The compleXorg4z) iS isomorphic to a direct factor oforg,z),
with degrees shifted by 1.

Proof. The Voronoi complex o6Ls5(Z) can be represented by the following weighted
graph with levels
0: P P2 P3

-15 1 40 40 5 -15
1: o} o}
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Here the nodes in ling(marked on the left) represent the elementBdm)-;(5),
i.e. we have 3, 2,0, 1, 6, 7 and 1 cells in codimensions 0, 1, 2, 3 and 6, re-
spectively, and arrows show incidences of those cells,entilmbers attached to
arrows give the corresponding incidence multiplicitie$nc® entering the muilti-
plicities relating codimensions 4 and 5 would make the grapfer unwieldy, we
give them instead in terms of the matrix corresponding tadifferentiald,o con-
necting dimension 10 to 9 (columns refer, in this orderqrgo. ey ag, while rows
refer tool, ..., o9

5 0 50 -1 0 0
0 2 0 2-2 0 0
2 22 1.0 0 0 0

4) O 0 2 10 0 ol
1 -2 101 0 0
0 4 0 0 0 -1 -1

As is apparent from the picture, there are two connected oaemis in that
graph. The corresponding graph f8Lg(Z) has three connected components, two
of which are "isomorphic" (as weighted graphs with levets}hie one above for
GLs(Z), except for a shift in codimension by(B.g. codimension 0 cells B, (5)
correspond to codimension 5 cellsig(6)), i.e. a shift in dimension by 1.

In fact, it is possible, after appropriate coordinate tfamaations, to identify
the minimal vectors (viewed up to sign) of any given cell im tlvo inflated com-
ponents ok, (6) alluded to above with the minimal vectors of another egilich is
inflated from one irE,(5), except preciselgneminimal vector (up to sign) which
is fixedunder the stabilizer of the cell.

Let us illustrate this correspondence for the top-dimeraicello- of the perfect
form P} € £14(5), also denotedP(5, 1) in [15] andDs in [19], with the listm(P})
of minimal vectors given already at the end of §5.2.

Using the algorithm described in 84.1, the correspondifigtied cello- in Z15(6)
can be found to be, in terms of its 21 minimal vectors of thdguérform Pfl3 in
Jaquet’s notation (see [15] and 85.2 for the full m{Pé)),



16 Bi. ELBaz-VINceNT, H. GANGL anD C. SOULE

Vi Vo Vg Vs Vip Vap  Viz  Vig  Vig  Viz  Vig Voo  Voq4 Vo5 Vpg Vo7 Vo9 V33 V34  V3s  Vsg

1 -1 0 -1 0 0 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1
0 1 -1 0 0 0 -1 0 1 0 1 1 0 1 0 1 0 0 1 0 1
0 0 1 1 0o -1 0 0 -1 0 0 -1 0 0 -1 -1 0 -1 -1 0 -1
0 0 0 0 1 0 0 o -1 -1 -1 0 0 0 -1 -1 -1 0 0 0 -1
0 0 0 0 0 1 1 i -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 -1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2
The transformation

0O -1 -1 0 O 0

O 0 -1 0 -1 -1

0O O 0 1 0 1

Yo 0 0o 1 0 o0

0O O 1 -1 O 0

-1 -1 -1 0 -1 O

sendss to (0,0, 0,0, 0, 1) and sends each of the other vectors to the corresponding
one of the form ¥, 0) wherev is the corresponding minimal vector fé’é (in the
order given above).

One can verify that the other two perfect forrlﬁé‘and Pg (denoted by Voronoi
As and ¢, respectively) give rise to a corresponding inflated celEig(6) in a
similar way.

Concerning the cells gfositivecodimension irk,(5), it turns out that these all
have a representative which is a facetinFurthermore, the matrix induces an
isomorphism from the subcomplex Bf(6) spanned by and all its facets to the
complex obtained by inflation, as in 6.1 above, from the demppanned bys
and all its facets. Finally, one can verify that the cellacled toPg and Pg are
conjugate, after inflation, to cells Ey5(6), and that the dierentials for Vog, and
Vorg, agree on these. This ends the proof of the theorem. O

6.3. Other cases. A similar situation holds foE,(3) andZ,(4), but asz,(3) con-
sists of a single cell only, the picture is far less significan

For N = 4, there is only one cell leftover iB,(4), in fact inZg(4), and it is
already inflated fronts(3). Hence its image ix7(5) will allow an orientation
reversing automorphism and hence will not show u@-i(b). This illustrates the
remark at the end of 6.1.

Finally, for N = 6, the cells in the third component of the incidence graph for
GLg(Z) mentioned in the proof of Theorem 6.1 above appear, in gdlébrm, in
the Voronoi complex fofGL7(Z) which inherits the homology of that component,
since in the weighted graph &L;(Z), which is connected, there is only one in-
cidence of an inflated cell with a non-inflated one. Therefweedo not have a
splitting in this case.

7. Tae COHOMOLOGY OF MODULAR GROUPS

7.1. Preliminaries. Recall the following simple fact:

Lemma 7.1. Assume that p is a prime andg GLn(R) has order p. Then
N+ 1.
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Proof. The minimal polynomial ofj is the cyclotomic polynomiakP=1 + xP-2 +
---+1. By the Cayley-Hamilton theorem, this polynomial dividies characteristic
polynomial ofg. Thereforep— 1 < N. O

We shall also need the following result:

Lemma 7.2. The action ofGLN(R) on the symmetric spaceyfreserves its ori-
entation if and only if N is odd.

Proof. The subgroup GL(R)* c GLn(R) of elements with positive determinant
is the connected component of the identity, therefore isgmees the orientation
of Xn. Any g € GLn(R) which is not in Gly(R)* is the product of an element
of GLn(R)* with the diagonal matrixx = diag (-1, 1,...,1), so we just need to
check where preserves the orientation ¥fy. The tangent spaceXy of Xy at the
origin consists of real symmetric matrices= (m;) of trace zero. The action af
is given bym- & = e! me (cf. §2.1) and we get

(M- &)ij = m;

unless = 1orj=1andi # j, in which caserfi- £)i; = —-mjj. Letd;; be the matrix
with entry 1 in rowi and columnj, and zero elsewhere. A basisKy consists of
the matricesyi; + dji, i # ], together withN — 1 diagonal matrices. For this basis,
the action ofe mapsN — 1 vectorsv to their opposite-v and fixes the other ones.
The lemma follows. O

7.2. Borel/Serre duality. According to Borel and Serre ([6], Thm. 11.4.4 and
Thm. 11.5.1), the group = SLy(Z) or GLn(Z) is a virtual duality group with
dualizing module

HYN(T, Z[T]) = SR Z,

wherev(N) = N(N — 1)/2 is the virtual cohomological dimension bfandZ is the
orientation module oKy. It follows that there is a long exact sequence

(5) ---— Hn([, Sty) —» H'MN(,Z) —» AN, Z) — Hy o (T, Sty) — - -

whereH* is the Farrell cohomology df [11]. From Lemma 7.1 and the Brown
spectral sequence ([7], X (4.1)) we deduce HHa(T", Z) lies in Sy.1. Therefore

(6) Hn(T, Sty) = HY™-(T, Z), moduloSn,1.
WhenN is odd, then Gi(Z) is the product of Sk(Z) by Z/2, therefore
HM(GLN(Z),Z) = H™(SLn(Z), Z) , moduloS,.

WhenN is even, then the action of GI(Z) on Z is given by the sign of the deter-
minant (see Lemma 7.2) and Shapiro’s lemma gives

(7) H™(SLn(Z), Z) = H™(GLn(Z), M),
with

_ GLN(Z) — _ -
M = IndSLNN(Z) Z=7®7, moduloSs.
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7.3. The cohomology of modular groups.WhenI' = SLy(Z) or GLn(Z), where

N < 7, we knowH™(T", Z) by combining (3) (end of §3.4), Theorem 4.3 and (6).
As shown above, this allows us to compute the cohomologdywith trivial coef-
ficients. The results are given in Theorem 7.3 below.

Theorem 7.3. (i) ModuloSs we have

Z if m=0,5,

H (SLs(Z)’Z):{o otherwise

(i) ModuloS7 we have

z if m=0,58,

H™(GLe(Z),Z) = .
(GLe(2).7) {O otherwise

and
Z? if m=5,
HM(SLs(2),Z) =372 if m=0,89,10,
0 otherwise

(i) ModuloS7 we get that

z if m=0,5091415

H™(SL,(Z),Z) = )
(Sk(2).2) {o if 1<m<20.

For the proof of the final statement on integral conomologgduo S7) we use
the fact that there are no primgs> 7 that divide the elementary divisors of the
corresponding dierentials or the order of the stabilizer of a celBigy_m.

Remark 7.4. Morita asks in [21] whether the class of infinite ordeHA(G Ls(Z), Z)
survives in the cohomology of the group of outer automompkisf the free group
of rank six.

Remark 7.5. It was shown by A. Borel [5] that, foN large enoughtH%(SLy(Z), Q)
has dimension one. In view of Theorem 7.3 it is tempting téelvelthat the restric-
tion map fromH>(SLy(Z), Q) to H3(SLs(Z), Q) is an isomorphism. We have been
unable to show that. An analogous statement hold$f{SLy(Z), Q). Theorem
7.3 suggests that the non-trivial cohomology class alreadyrs wherN = 6 and
7,i.e., in the “non-stable range".

8. HoMOLOGY OF MODULAR GROUPS WITH COEFFICIENTS IN THE STEINBERG MODULE

In this section we compute some homology group& bf(Z) with codficients
the Steinberg module. Note that, whidre 1, the grougHo(GLn(Z), S ty) vanishes
[19].

Theorem 8.1. (i) ModuloS, we have

(8) H3(GLs(Z), St) = Z
and

9) H3(GLy4(Z),St) = Z.
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(i) The following groups lie itSy:
Ha(GL2(Z),St),  Hs(GLz(Z), St),
H4(GLs(Z), St),
H2(GL4(Z), St) ,
Hi(GLs(Z), S6),  H2(GLs(2), Sk),
H1(GLe(Z), St) -

(i) The groups H(GLs(Z), S) and H(GL;(Z), St) lie in Ss.

In order to prepare for the proof, we first compute severahsen the spectral
sequenceE[l)q of 83.2. This is done in five lemmas, dealing Wih.4(Z), GLs5(Z),
GLg(Z) (separating the casgs+ g = 6 andp + g = 7) andGLy(Z), respectively.

We will show that theE terms of the respective equivariant spectral sequences,
in the desired ranges, are all zero modulo some torsionedggsostlyS,) which

will allow us to deduce the claims. The general strategy isoHews: if G is

the stabilizer of a cell, we will construct the maximal notrsabgroupH of G
which acts trivially on the cell. The quotie@/H will be in S,. Hence, using

the LyndoriHochschildSerre spectral sequence (denoted LHS in the remaining of
the paper), the computation of the homology@fwvith codficients inZ (i.e., Z
endowed with th&s-action on the cell) will be reduced to the computation of the
homology ofH with trivial coefficients. It will result that, in general, the corre-
sponding homology groups lie ii,. We start by giving two general lemma, with
straightforward proofs, that will be systematically use@ur arguments.

Lemma 8.2. LetT be a subgroup of Gl(Z) and leto- be a cell of£*(T'), for some
n. Letl’,- be the stabilizer of the ceft in T'. Then there exists a normal subgroup
H of ', acting trivially on the celb- and with quotienT’,./H isomorphic taz/2.

Proof. The action on the cell is given by(see §3.1). It defines a morphidrp —
Z/2 mappingy to n(y - o, o). We defineH to be the kernel of this map. O

Lemma 8.3. Consider a short exact sequence of finite groups
1-H-G->Q-1.

Assume (t S for some prime p. Let M be a G-module and k a positive integer.
If Hi(H, M) € S;, for all positive i< k, then H(G, M) € Sp,.

Now, we can compute the relevant parts of the equivariarttsgesequences of
83.2.

Lemma 8.4. The terms E,, E},, E2,, E}, and B, of the equivariant spectral
sequence associatedlfo= GL4(Z) lie in S,.

Proof. e Computation of gl. According to [19], Lemma 3.2, the sBf (SLu(Z))
consists of four cells, denoteaq6 (i=234,5)inop.cit.

The stabilizer ofrg in PGLy(Z) is isomorphic taS, x S3 (op.cit., p.121),
each factor acting non-trivially on the orientation moduferg. It follows
thatStat(o-g) contains a subgroup isomorphic& and preserving the ori-
entation ofag. Therefore, modul®,, we get

Hi(Stal{o?), Z) = H1(S3,2).
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From the exact sequence
1—>7Z2/3— &3 — Z/2 — 1
we deduce that, modulSy,
H1(S3,Z) = Ho(Z/2,H1(Z2/3,Z)) = 0.

The stabilizerStal:(cri) in GL4(Z) has order 32. Therefore its first homology
group lies inS».

The cello-g of [19] (p.110) has its stabilizer (6 L4(Z)) generated by the
matrices

0 0 0 1 11 1 1 100 1 0
1 -1 0 - 0 -1 -2 - 01 0 -1 -1
1=l 1 1 1| %250 0o o 1" ®7|lo 0 0 1" ® |0 o
1 0 0 0 00 1 0 001 0 0 0

Denote byG; this group. Itis of order 288 2°-32. All the generators have
a non-trivial action on the cell, excepgf». Let Hy be the subgroup db,
generated by 1023, 922 andgz 102.4. By constructionH; acts trivially on
the cell. Using GAP, we can check thdj is normal inG, and the quotient
G2/Hy is isomorphic tdz/2. Furthermore, the derived subgrouphf is
isomorphic tdZ/6 x Z/3 and its abelianization is isomorphicZg4 x Z/2.
As a resultH1(G,Z) = Ho(Z/2,H1(H2,Z)) = Ho(Z/2,Hi(H2;Z)) = 0
mod 82.

The last cell to consider isg. Let G4 be the stabilizer of this cell. A set
of generators 064 is given by the matrices

1 0 0 O 00 0 D

0 -1 0 0 0100

%1=lg o -1 of %20 0 1 of

0o 0 0 -1 100 0
1 1 1 1 1 0 0 0 1 0 0 0
0 -1 0 -1 0O 1 0 0 1 0 -1 -1
%s=1p o0 -1 1]’ %s=lg o0 1 of %1 1 0 -1
0o 0 0 1 1 -1 -1 -1 0 0 0 1

Its order is 96= 2° - 3. The groupG, is isomorphic tdZ/2 x Z/2 x Ga.
Among the generators, only,3 and gs5 have a non-trivial action. The
subgroup generated W4 1, 94,2, 944, 943045 IS normal and isomorphic to
Z/2 x S4. Its abelianization is isomorphic 8/2 x Z/2. We deduce that
H1(G4,Z) = Ho(Z/2,H1(Z/2 x S4,Z)) = 0 modS,, and this ends the
computations ofg ;.

e Computation of &, and E;,. According to [19], Lemma 3.2, the set

24(SL(2)) consists of the three cells}, o4 ando. The stabilizer ot

in PGLy4(Z) is isomorphic toSs (op.cit., p.121). ModulaS,, the group

Hx(Stal{o%), Z) is thus a quotient of(Z/5,Z) & Hx(Z/3,Z) = 0.
Furthermore, the alternating subgrollp c S5 preserves the orienta-

tion of 0'3 ([19], Lemma 3.4), and it is equal to its commutator subgroup
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Therefore, moduld,,
Hy(Stal(c}), Z) = Ho(Z/2, H1(¥s, Z)) = 0.

e Computation of ;. The only cell inz3(GL4(2)) is the cello of [19],

Lemma 3.2. The action cStat(o-g) on the orientation module is not trivial
([19], Lemma 3.3). According to [30], §3.2, we have

Ha(Stal{o3), Z) = H3(4,Z) = Z/3
moduloS,, and the diferential
d : Ha(Stal{o3),Z) — Hs(Stalo3),Z)

is surjective. ThereforEi3 lies inSo.
« Computation of E,. Modulo Sz, we get thalE], = Ha(Stal{c3),Z) is a
quotient ofH»(Z/3,Z) = 0.
m|

Lemma 8.5. The terms £, E},, E1, and B, of the equivariant spectral se-
guence associated o= GLs(Z) are zero moduldS,.

Proof. e Asnone of the cells af} has its orientation preserved by the action
of its stabilizer (see Fig.1), we haE%O =0 modSs,.

e Computation ofEé’l. We need to know the groug(Staly(c), Z) for all
five cellso € XZ (cf. Table 2). Up to equivalence undélLs(Z), these cells
are contained iIﬁr(Pé) , WherePg is the perfect form of rank 5 described in
[20], 86.4 (and mentioned above at the end of §6.2). We witlotie these
five cells byo withi=1,...,5.

Analyzing the celb]. First, let us describer;. The 15 minimal vectors
of Pf.) are given below, together with their label:

=
)
w
N
ol
o
~
o}
©

10 11 12 13 14 15

1000100010 O 1 1 0 1
01 00O01O0O0OO0OT11TTC0 1 0 1 1
001 00O01O0O0OO0CLT1 0 1 1 1
000060111100 O0 O 1 1 1 1
ooo0o000O0OI11 1 1 1 1 1 1

The vertices of the ceti] are the forms/‘wherev is one of the vectors
labelled by 1, 2, 3, 4, 5 and 8. SBf = Staly(c7). A set of generators of
G/ is given by the following six matrices @ Ls(Z), of respective order 6,
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2,2,2,2,6:
-1 0 0 1 -1 0 0 1 -1 0 0 1
0 0-100 0 100 0 1 0 00

g.=[0 0 0 0 1, g,={0 00 0 1,g,=/0 0 -1 0 Of,
0 0 0 10 0 001 0 0 0 10
0 1 0 0 0 010 0 0 0O
0 00 -1 0001 0 001
0 10 0 0100 0 100

g4=/0 0 1 0 0.0;5=|0 0 10 g=[0 0 1 0
-1 00 O 1000 -1 00 1
0 00 O 0000 0 000

7
924

021 =

The order ofG} is 576 = 2° - 32. Thus,a priori, we could expect some
3—torsion in the homology of this group. Ortj;i2 andg’L6 have a trivial
action on the cells. Using GAP [12], we get that the gr@ipis isomor-
phic toZ/2 x Z/2 x S3 x S4. Let H; be the subgroup of’ generated
by 01 5. 916 91191 3-911914- 91191 5- By construction this subgroup has
trivial action on the cell. It is normal and has order 288. \Wert have
G}/H] = Z/2. Furthermore, the derived subgroupktf is isomorphic to
Z/3x U4 and the quotienkd’ /[H1, H1] is isomorphic to the product of three
copies ofZ/2. Thus the first homology group &f; with trivial coeficients

is zero modulaS,. By Lemma 8.3, we get

H1(G},Z) = Ho(Z/2,H1(H;Z)) =0 mod S,.

Analyzing the celb;,. The celld?, is given by the vectors labelled by 1, 2,

3,5, 6 and 8. Denote its stabilizer Bj. A set of generators @/, consists
of the following six matrices oG Ls5(Z), of respective order 2, 4, 4, 4, 2, 2:

-1 0 0 0 O 000 1 000 1 0O
0 -1 0 0 O 110-10 110-1 0
0 0 -1 0 0f,g,={0 00 0 1,g,=[0 01 0 ol
0 0 0 -1 0 010 0 010 0 O
0 0 0 0 -1 001 0 000 0 -1
000 1 -1 00 0 100 0
110-10 0 10 0 010 0
001 0 0o, gs=|/0 01 0 0, ge={0 01 0 0.
010 0 0 10-10 110-10
000 O 0 00 O 000 O

The order of the stabilizer is 38427 - 3.

Using GAP we get tha®), is isomorphic tdZ/2 x S4 x Dg. The generators
951: 9>, andg; ¢ act trivially on the cell. Consider the subgrottj of G,
generated by, ,, 0, ,, U6 923954 and 953% 5- This subgroup is normal
and acts trivially on the cell. Its order is 192, thus the gmitG’,/H; is of
order 2. We can check with GAP that the abelianizatiohlfs isomorphic
to (Z/2)°. We deduce, by Lemma 8.3, that

H1(G% Z) = Ho(Z/2;H1(H5;Z)) =0 modS,.

Analyzing the celb;. The celloy is given by the vectors labelled by 2, 3,
5, 6, 8, 9. Denote its stabilizer lfy;. A set of generators db; consists of
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the following three matrices d@bLs(Z), of respective order 2, 10, 4:

-1 0 0 0 O 0O 0 0 1 000 1 O
0 -1 0 0 O 0 0 00 110-1 0
0 0 -1 0 0|, g5,=[{0 0 10 0,g;;=/0 0 1 0 of.
0 0 0 -1 0 -1 0 01 010 0 O
0O 0 0 0 -1 0O -1 0 1 1 00 0 -1

The order of the stabilizer is 488 2° - 3. 5. Using GAP, we see that the
group G5 is isomorphic t0Z/2 x Z/2 x Ss. Among the generators only
U53 has a non-trivial action on the cell. Let us consider the sulgy of
Gj, denotedH;, generated b)g’&l, 35 and g§’32. The subgrouH; acts
trivially on the cell, it is normal and isomorphic #/2 x Z/2 x As. Thus
G;/H; = Z/2 and, as, is perfect forn > 5, the abelianization ofi} is
isomorphic tdZ/2 x Z/2. By Lemma 8.3, we get

H1(Gj5; Z) = Ho(Z/2;H1(H5,Z)) =0 modS;.
Analyzing the celt,. The cello is given by the vectors labelled by 1,

2,3,7,11, 12. A set of generators of its stabilizer is giverhe following
two matrices of5Ls(Z), of respective order 6, 2:

0 0 0 0 -1 0 0 1 O
0 0 0 -1 1 0 0 0 1 -1
9,=(-1 -1 -1 1 1,9g,=(0 -1 -1 1 1}
0 -1 0 0 1 0 0 0 1 0
-1 0 0 O 0 -1 0 1 0

The order of the stabilizer is 248 2* - 3. 5. DenoteG,, this group, which
is isomorphic tdzZ/2 x Ss. Only the generatog, , acts non-trivially on the
cell. LetH; be the subgroup generated %{12 andg; ,. This subgroup is
normal and isomorphic t@/2 x %s. So, as above, we gét1(G);Z) = 0
mod So.

Analyzing the celt;. The cellog is given by the vectors labelled by 2,
3,5,7,9, 10. A set of generators of its stabilizer, den@ggdis given by
the following three matrices @Ls(Z), of respective order 6, 6, 2:

0 0 0 O -1 -1 0 0 1 0 00
0 0 1 -10 0 0 0 0 0 -1 000
-1 -1 0 1 1,¢,=[{0 0 -1 0 0], gy=0 0 1 0
0 -1 0 0 1 0 0 0 -10 0 0 01
-1 0 0 O 0 -1 0 O 0 -1 00

The stabilizer is of order 1446 25.32.5. The group is isomorphic to
Z]2 x Sg. Among the generators ong’S’3 has a non-trivial action. The
subgroup generated tg(t,’l andgij’2 is normal, it acts trivially oro; and is
isomorphic taz/2 x Ag. So we geH1(GL;Z) =0 modS,.

Computation ofEiz. The setZ} consists of two cells contained (up to
equivalence) irar(Pf.)). We will denote those cells by withi = 1,2.

Analyzing the celt; and the cellr},. The cell7] is given by the vectors
labelled by 1, 2, 3, 4 and 8 inn(Pé). A set of generators of its stabilizer is
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given by the following three matrices GfLs(Z), of respective order 2, 6, 2:

0000 0-100 1000 0
000 1 0 0 00 0100 O
t17=|0 0 1 0 0O, ;=0 0 0 1 0, tusz=[{0 0 1 0 o
0100 0 0 10 0001 0
1000 1 0 00 0000 -1

The order of the stabilizer is 3849 28 - 3. 5. Furthermore, only; » has a
non-trivial action on the cell.
The cell7) is given by the vectors 1, 2, 7, 11 and 12. A set of genera-

tors of its stabilizer is given by the following three magscofGLs(Z), of
respective order 6, 4, 2:

0 0 0 O 10 -1 0 1 10 0 0 0
0 0 0-11 0 0 0 -1 1 01 0 0 O
1 -1 0 0 0,t2={0 1 0 0 0,t3={0 0 0 1 -1].
0 -10 0 1 0 0 -1 0 1 00 0 1 0
1 0 1 -1 0 0 1 0 -10 00-110

The order of the stabilizer is 384928 - 3- 5.

We need to analyze the first and second homology groups ofahiiz
ers ofr} andr,,. Using GAP, it is possible to show that these two stabilizers
are isomorphic. Set

2 1, 42
hya = ty5tata ot aty ptiaty ptaatiotin =

O, OO0OO0O

|
hiz = tiatisty stratystiatiotin =

OO0OOoORrOo
OO,I_\OO

1,2 2
ho1 = toataaty5ts 1t oty =

OO OO
RPOPFr OO

0
0
1
0
0
0
0
0
0
0 -1
0
0
-1
0
0
0
-1
0
-1

0
1
ho2 = 3ty 1toato5ts, = |0
0

0O 0 -1 0 O

Then the group generated hy; andh; 2 (resp.hz 1 andhy ) is isomorphic
to Stal{r}) (resp. Stak{r})). We can check that the mapping sendmg

resp.hy 2) to hy 1 (resp.hy2) defines a group isomorphism. Hence iffsies
to considerr]. LetH be the subgroup generated ty, t; 3, (t1,1t1,2)2 and
(tpst12)?. ThenH is normal, of order 1920 and it acts trivially of). Using
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GAP, we can check that its abelianization is isomorphiZt8. Using a
composition series fad, we get a short exact sequence

0-(Z/2° > H - UAs > 1.

The homology ofZ/2)° is trivial moduloS, except

Ho((Z/2)°, Z) = Ho((Z/2)°, Z) =

But asls is simple, we deduce that it acts trivially ¢ty((Z/2)°, Z). Since
H;i(Us, Z) lies in S, for i = 1,2 [32], we deduce that

Hi(Us, Hj((Z/2)°, Z)) =0 modS,,withi + j =12

Using the LHS spectral sequence associated to the above seqeence,
we getHi(H,Z) = 0 moduloS; and by Lemma 8.3H;(Stal{r}).Z) = 0
mod S, fori =1, 2.

O

Lemma 8.6. The terms Igl and Eéo of the equivariant spectral sequence associ-
ated toI' = GLg(Z) are zero modulds,.

Proof. The claim thatE}

is zero modulaS; is again a consequence of the fact

that none of the cells d*(G Ls(Z)) has its orientation preserved by the action of
its stabilizer. It remains to show thE@l is zero modulaSs.

From our computations (cf. Fig.1), we know tha{(GLe(Z)) has three cell repre-
sentatives which can be chosen msar{ePl) We will denote these three cells by
7i (i = 1, 2,3). Here is the ordered list of minimal vectorsl%é‘that we shall use:

1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18
1 -1 0 0 1 0 O 0 -1 0 0 O O-1 0 1 1 O
6011-1 00 0 -1 0 0O O O -1 0 0 1 0 1

0 0 01 1 1-1 O 0o 0 -1 0 0o O -1 0 O

0O 0 0o 0 0 O 1 1 1 -1 0 0 O O -1 -1 -1

0 0o 0 0 0o 0 O O o 1 1 1 1 1-1 -1 -1

0 0o 0 0 0o 0 O O 0o 0 o O o o 1 1 1

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
11 o0 1 0 1 0 1 O 1 O 1 O O 1 O o0 1
1 o 1 1 o0 0 1 0 1 1 O O 1 O O 1 o0 1
0o -1 -1-1 0 0 O -1-1-1 0 O 0 -1-1-1 0 -1
-1 0 o0 o0 o0 O o-1-1-1-1-1-1 0 0 0 0 -1
-1 1 -1 -1 -1 -1 -1 0 0 O O O O O O O o0-1
111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2

Analyzing the celr;. The cellr; can represented by the vectors 1, 15, 24, 25,
31, 34. SeG; = Staly(r1). A set of generators db, consists of the following
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four matrices ofsLg(Z), of respective order 4, 6, 4, 2:

10 0 0 0 0O 1 1 -1 0 0 -1
00 0 0 1 1 00 1 0 0 1
00 0 1 0 0O 0 -1 -1 -1 0 0

91=1g 0 12 0o o0 o'%fo 0o o 1 o of
0 0 -2 -2 -1 -2 0 1 0 -1 -1 -2
0 -1 0 0 1 2 00 0 0 0 1
0 -1 1 0 0 1 1 -2
1 0 -1 -2 0 -1
1 -1 0 0 0 1

O3 =

[eNeNeNel

[cNeoNoN ol
OOoORroOooo
el NeoNoNoNa)

0
0o 2 0 0 -1 -2
1 -1 -1 -2 0 O

The order ofG; is 46080= 21°. 32 .5, Onlyg; 3 has a non-trivial action on the
cell. Consider the subgroug; of G; generated bys 1,912, 91.4 and gl,lgl,g)z.
Then by construction, this subgroup acts trivially on thik désing GAP, we can
check thatG; is isomorphic toGMg(Z), the subgroup of monomial matrices of
GLg(Z) (semi-direct product oBg and{+1}°), andH; is normal, isomorphic to
the semi-direct product Mg and{+1}°. Thus the quotienG/H; is isomorphic
toZ/2. Then, by the computation of the abelianization of semealiproducts, we
get thatH,/[H1, H1] = Z/2. We deduce that1(H1, Z) lies in S, and by Lemma
8.3, we conclude that;(G1, Z) lies in S».

Analyzing the cell,. The cellr, is given by the vectors 15, 24, 25, 28, 29,
34. SetG, = Staly(r2). A set of generators db, consists of the following four
matrices ofGLg(Z), of respective order 4, 6, 2, 2:

000 1 0 O 1 -1 -1 -1 -1 0
01 0 1 0 O 0 1 1 -1 0 0
0 0 1 -1 0 0 0O 0 0 1 0 O
®1=1g 0 1 0o 1 1'% |0 0 -1 1 o of
0 0 -1 -1 0 -1 0 0 0 0 1 O
10 -1 1 -1 0 0 1 1 -2 -1 -1
1 0 0 0 0 1 0 0 0 0 O
0 -1 -2 00 0 0 1 0 0 0 O
00 1 00 0 0 1 0 0 O
®2:=1o0 0 0 1 0 ®%4=10 0 o 1 o0 o
0 2 2 0 1 1 -1 -2 -1 -1 -1
0 -2 -2 00 0 0 0 0 0 1

The order ofG; is 7680 = 2° . 3. 5. Only the generatorgy 3 and gy 4 have

a non-trivial action on the cell. Denote Ity, the subgroup oG, generated by
9%,1’ gg’z, 023 andgy 4. ThenH; acts trivially on the cell and can be checked, using
GAP, to be normal and of order 3840. Furthermore, its abiekdion is isomor-
phic toZ/2xZ/2. Using Lemma 8.3 as above, we deduce Hhd6,, Z) lies inS».

Analyzing the celts. The cellrs is given by the vectors 2, 15, 25, 28, 29, 34. Set
G3 = Staly(r3). A set of generators @3 consists of the following three matrices
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of GLg(Z), of respective order 6, 6, 2:

00 0 0 1 0O 1 -1 -2 0 -1 0
0 0 -1 -1 -1 -2 0 0 1 -1 -1 0
00 0 1 0 1 0O 0 0 0 1 O

B1=lp 0 1 1 o 1I"® o 0o 1 1 1 1|
0 -1 0 0 0 1 0 1 0 0 0 -1
11 0 -1 0 -2 0 0 0 -1 -1 0

1 0 0 0 0 O
0O 1 0 0 0 O
o o 1 0 0 o
=10 o 0o 1 o o
1 -1 -2 -1 -1 -1

0O 0 0 0 0 1

The order 0fGs is 46080= 20.3?. 5 and it is isomorphic t&;. Only g33 has
a trivial action on the cell. The subgroup @§ generated bgg’l, gg’z, 031032 and
033 acts trivially on the cell, and using GAP, we can check tha isomorphic to
H1i. As a result, we conclude thek; (Gs, Z) lies inS,. As all the terms oEé’1 lies
in S,, the lemma is proved. O

Lemma 8.7. The terms E,, E;, and £, of the equivariant spectral sequence
associated td" = GLg(Z) are zero modul@Ss.

Proof. Looking at the table of representatives KJj(I') (cf. Figure 1), we see that
there are three-&cells, ten 6-cells and twenty-eight 7cells. None of the 7-cells
has its orientation preserved by its stabilizer. ThiggStaly(o-),Z) lies in S, for

all o € 7(I'). Among the 6-cells, only one has a stabilizer with 7-torsion. It is
the cell given by the minimal vectors

1 5
-1
0o -
1
0
0
0 O

Ol

(RN

12

OO OFr O w
O O ol
O O ok

0
0
1
0
1
0

[cNeoNeoNolNol
oOoOoOr o
R = O
b O R

from Pg. We will denote byGy its stabilizer. It is generated by the following
matrices:

00 0 0 0 1 1 0 -1 0 0 0
11 1 1 1 1 o 1 1 1 1 1
0O 0 0 0 1 O 0O 0 0 0 -1 0

W1=lp 1 -1 -1 -1 -1]"%2=|0 1 0o o0 o ol
0 0 0 -1 -1 -1 O 0 0 0 0 -1
o0 1 1 1 1 0O 0 0 -1 0 O

1 0 00 O
0 -1 00 0
oo 100
W3=1p 1 0 1 0
0 0 00 1
0 0 00O

all of which have a non-trivial action on the cell. The orddérGy is 10080 =
2°x32x5x 7. From a composition series 6f, we can deduce the exact sequence

1-H->Gy—>Z/2-1
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whereH = A7 x Z/2 andH is generated bgo , g and-Id. Hence the action
of H on the cell is trivial. Furthermore, the quotleHV[H H] is isomorphic to
Z/2. From the previous data, we deduce by a spectral sequegememt that
H1(Go,Z) = 0 modsS,. Finally, among the 5cells, none of them has a stabilizer
with 7-torsion. Lemma 8.7 follows. O

Lemma 8.8. The terms %1 and E%O of the equivariant spectral sequence associ-
ated tol' = GL(Z) are zero moduldSs.

Proof. Looking at the table of representative fof(I') (cf. Figure 2), we see that
there are twenty-eight-€ells, none of them having its orientation preserved by the
action of its stabilizer. As a result, we can deduce Eﬂa; 0 modSz2. Among

the six 6-cells, only three have a stabilizer of order dblesby 7.They are the ones
to investigate.

1. The first cell is given by the following seven minimal vasto

1 2 3 4 5 6 7
1 1 1 1 1 2 1
1 1 1 1 2 1 1
-1 -1 -1 0 -1 -1 -1
-1 -1 0 -1 -1 -1 -1
-1 0 -1 -1 -1 -1 -1
o -1 -1 -1 -1 -1 -1
2 2 2 2 2 2 2

of P§. A set of generators for its stabilizer, that we will denoyeG, consists of
the following matrices

0O 00 0 0 1 -1 -1 -1 -1 -1 -1 -1 1
0 00 010 O 0O 0O O 0O o0 -1 1
0O 0 01 0 0 O 0 0 0 0O -1 O 0
0i2=/0 0 1 0 0 0 O, g»=/0 O O -1 O O Of,

01 0 0 0 0 O 0O 0 -1 0 0 0 O
1 0 0 00 0O 1 0 0 1 1 1 1 0
0 000 O 0 1 o 1 1 1 1 1 o

1 0 0 0 OO O 1 0 0 OO0 0O O

0 00 0 0 1 -1 01 0 0 0 O0 O

0 0 001 0 O 0 0 00 0 1 -1
03=(0 0 0 1 0 0 O, s=|0 O O O 1 O Of,

0 01 0 0 O O 0 0 01 0 0 O

01 0 0 0 0 1 0O 01 0 0 0 1

0O 0 00O O 0 1 0O 0 0 0 O 0 1

1 0 0 0O OO O 1 0 0 OO0 0O O

01 0 0 0 0 O 01 0 0 0 0 o

0 01 0 0 O O 0 01 0 0 0 O
0gs5={0 0 0 0 0 1 -1|, e=|0 0O O 1 0 O Of.

0 00 010 O 0 0 0 0 0 1 -1

0 001 0 0 1 0 00 0O 1 0 1

0 0 00O O 0 1 0O 0 0 0 O 0 1

The groupG; is of order 10080= 2° x 32 x 5 x 7. The generatorgy 1, g1.2, 015
andgs ¢ have a non-trivial action on the cell. A composition serié&e is given
by

14U7 <4 G7 <Gy,
with G1/S7 = Z/2. The groupl; is generated bygy 1012)? andgs 3, and S is
generated by 1012)?, 913 andgy 1. Using these generators, we deduce that the
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action of?l; on the cell is trivial, while the one @& is not. There are two spectral
sequences:

Hi(Z/2;Hj(S7;Z)) = Hi.j(G1; 2),
Hi(Z/2;Hj(U7; Z)) = Hi.j(G7;Z).

The action ofil7 is trivial and this group is perfect, so we gei(S7;2) = 7/2.
We deduce thatl;(G1;Z) =0 modS,.

2. The second cell is given by the minimal vectors

1 2 3 5 8 12 23
-1 -1 0 0 0 0 O
-1 0 -1 0 0 0 oO
-1 0 0 -1 0 0 O
-1 0 0 0 -1 0 O
-1 0 0 0O 0 -1 O
-1 0 0 0O O o0 1
3 1 1 1 1 1 O

from P%z. We will denote its stabilizer b{,, which is of order 645126 21 x
3 x 5x 7. A set of generators faB, is given by

0O 0 0 0 0 1 0O 1 -1 -1 0 -1 0 -1
0 0 0 0 -1 1 0 0 0 0 0 0 -1 0
0O 0 0 -1 0 1 0 0 0 0 0 -1 0 0

®i1=|{0 0 -1 0 0 1 O0f, g=|/0 0 -1 0 0 0 oOf,
0 -1 0 0 0 1 0 0 -1 0 0 0 0 O
0 -1 -1 -1 -1 1 -1 0 -1 -1 -1 -1 0 -1
-1 0 0 0 0 -3 -1 0 1 1 -1 1 1 0

10000 0
01000 O
00100 O
®s=|0 0 0 1 0 0
000O0T1 O
1111 1-11
000O0GO0 O

Only g22 has a non-trivial action on the cell. Using a compositionesefor Gy,
we get the exact sequence

1-H-G,—>Z/2->1

Using GAP, we can show thét is generated bgy 1, 023 andggz. It follows that
the action ofH on the cell is trivial. We have the following spectral sequeen

B2 = Hi(Z/2;Hj(H; 2)) = Hit (G2 D).

Furthermore, the groupl/[H, H] is isomorphic toZ/2. As a result, we get that
H1(G2;Z) =0 modSs,.
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3. The last cell is given by the minimal vectors

1 2 3 4 5 6 7
0 -1 0o 0O O 0 O
0o 0o -1 0 O 0 O
0o 0 0 -1 0o 0 O
o 0 0 O -1 0 O
0o 0o 0 O o0 -1 0
o 0 0 O O 0 -1
11 1 1 1 1 1

from P33, We will denote its stabilizer b@s. Its order is 645126 211x 3?x5x 7.
The groupGs is spanned by the following six matrices:

-1 0 0 0O O o0 O 0 0 0 0 0 1

0o -1 0 0 O 0 O 0 0 0 0 1 O

o 0 -1 0 O O o 0 0 01 0O
1=/0 0 O -1 0 O Of,gs2=|l0 0 1 0 0 O

o o o o0 -1 0 O 01 0 0 0 O

o o0 o O o0 -1 o 1 0 0 0 0O

o 0 O O O 0 -1 0 0 00O OO

11 1 1 1 1 1 1 00 0 0O

0o 0o 0 o O 1 O 0 0 0 0 0 1

0o 0 0 O 1 0 ©O 0 0 0 0 1 O
03=(0 0 0O 1 0 0 Of, gga=|0 0 0 1 0 O ,

0o 0o 1 o 0 o0 O 0 01 0 0O

0 1 0 O O o0 o 01 0 0 0 O

o -2 -2 -2 -2 -2 -1 0 0 00O O

1 0 0 0 O O 1 0 0 O O 0 O

0 -1 0 0 0 O o 1 0 o0 o0 o0 o0

0 0 0 0 0 1 o 0 1 o0 0 o0 0
0s=/0 0 0 0 1 O ,e=|{0 O 0O 1 0 0 Of.

0 0 01 0O o o0 o0 o 1 o0 O

0 0 1 0 0 O o o0 o o0 o0 1 o

0 2 0 0 0O -2 -2 -2 -2 -2 -2 -1

Only the generatorgs 2, andgs 3 have a non-trivial action on the cell. The groups
G, andGg3 turn out to be isomorphic. Hence the previous argumentsapjly to
Gs.

We have an exact sequence

1-H -G3—>2Z/2-1,

whereH’ is generated bys 1, 934, 935 andgs s, together with the produds 293 3.
As aresult, the action df’ on the cell is trivial. Moreover, the quotiehlt /[H’, H’]
is isomorphic tdz/2 and we deduce that;(Gs; Z) lies in So. O

Now we are ready to complete the proof of Theorem 8.1

Proof. (of Theorem 8.1).

e In rank 2, we shall prove thatl4(GL,(Z), St) and H5(GLy(Z), Sb) lie in
S,. Let Z be the orientation module of the symmetric spageand let
H*(GLx(Z), Z) be the Farrell cohomology @L»(Z) [11]. From (5) in §7.2
it follows that

Ha(GL2(Z), Sb) = H™3(GLx(2), Z),
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and
Hs(GLy(Z), St) = H4(GLyx(2),Z) .

As to the first claim, since the only 3-group containedsib,(Z) is, up to
conjugation,Z/3, we get

H™3(GLx(Z),Z) c H>(Z/3,Z) =0
As to the second clainG Ly(Z) is an extension
1 — Sz — GL(Z) — A — 1

with A = Z/2, andSLy(Z) is the amalgamated product@f4 andZ/6 along
Z/2 (see [29]). Therefore

H=%(SLx(Z),Z) = H4(GLy(2),Z) ® H4(GLx(Z), Z)
(see §7.2) and, modulS,,
H-4(SLx(2),Z) = Z/3.

Let B be a generator ofi~4(SLy(Z),Z) = Z/3. SinceH4(SLx(2),Z) is
spanned bys?, the action ofA on this group is trivial. Therefore

H 4GLx(2).2) =Z/3
moduloS; andH4(SLx(Z), Z) lies in S,.

In rank 3, we know from [31], Thm. 5(iii), thati3(GL3(Z), St) = Z modulo
S,. Moreover, from op.cit., Thm. 5(ii), we have

Ha(GLs(Z), St) = H?(GL3(2),2).

whereH* denotes the Farrell conomology, and from op.cit., Corgl{gron
p.9, we know that

H?(GL3(2),Z) liesinS,.

In rank 4, we know from [19], Lemma 3.3, thaf, is empty whenp < 3,
henceE;, = 0 whenp < 3. We proved in Lemma 8.4 th&s , lies in
So whenq >0 andp +0=50rp+q = 6. According to [19], Propo-
sition 3.1, E3, = Z andE3, = 0 moduloSz Therefore, modulaSy,
H3(GL4(2), St4) Zande(Gu(Z) St) =

In rank 5, we see in Fig.1 thal is empty wherp < 4. Therefore

Elq = @ Hq(rm Z)

*
o€y

vanishes ifo < 4. On the other hand, sind&g(G L5(Z)) is empty, the group
o lies inS,. We proved in Lemma 8.5 th& 1 is in Ss. ThereforeEl
I|es inS, whenN =5andp+q=5, henceHl(G Ls(Z), St) lies in S».
Similarly, we know from Lemma 8.5 thzﬁl’q isin S, whenp > 4 and
p + q = 6. ThereforeH,(GLs(Z), Sk) lies in S».
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e Inrank 6,=% is empty andEg ; = 0 whenp < 5.
Lemma 8.6 shows that ali‘q’;’q =0whenp>5andp+q=6.
ThereforeH,(GLg(Z), S§) lies in S».
Whenp+q=7andp > 5, Lemma 8.7 shows thﬂ%’q lies inSs. There-
fore Hy(GLg(Z), St) is in Ss.

e Inrank 7,X3 is empty andzl[l)’q = 0 whenp < 6 (see Fig.1). On the other
hand, we know from Lemma 8.8 th&}, andE3 lie in Ss. Therefore
Hl(G L7(Z), St7) lies in Ss.

O

9. APPLICATION TO K-THEORY

The homology of the general linear group with fia@ents in the Steinberg
module can also be used to compute kh¢heory of Z. Let P(Z) (resp. Pn(Z))
be the exact category of fréemodules of finite rank (resp. of rank at mads},
let Q (resp. Qn) be the category obtained froR(Z) (resp. Pn(Z)) by the Q-
construction [25], and [eBQ (resp.BQy) be its classifying space. A definition of
higherK-theory [25] is

Km(Z) = mm:1(BQ), m=>0.

On the other hand, Quillen proved in [26] that there are loraresequences

(10) -+ = Hm(BQn-1,Z) = Hn(BQn.Z) = Hm-n(GLN(Z), Stn)
— Hn1(BON-1,Z) = - - -,

and, according to Lee and Szczarba [19}(GLn(Z), Sty) = 0 whenN > 1.
Therefore we can comput§(Z) if we understand the Hurewicz map

hm : Km(Z) = Hme1(BQ, Z)

and if we compute the group$m,1-n(GLN(Z), Sty) for all N < m.

9.1. On the Hurewicz morphism. Let BQ = BQFZ) be the classifying space
of Quillen’s Q-construction on the exact categd®{Z) of finitely generated free
Z-modules. By definition, for every integer > 1,

Km-1(Z) = mm(BQ).
In this section we shall be interested in the kei@glof the Hurewicz map
hm : 1m(BQ) — Hn(BQ),

whereH(X) stands foHn(X; Z).

Proposition 9.1. The groups gand C; lie in S, and G lies in Ss.
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9.2. Proof. To prove this proposition, we use a morphism of spectra
K(&E) — K(Z)

introduced by Rognes in [27], 8 4, whefds the category of finite sets. At level
zero this morphism is the map

Zx B — ZxBGLUZ)",

wherex,, is the infinite symmetric groufg; L(Z) is the infinite general linear group
overZ, and () is the+-construction of Quillen. Lep be the fiber of that map and
consider the fibration

(11) B——~ BQ

|

¢
whereB is the first level ofK(E). Whenm > 1, the group
is them-th homotopy group of spheres by the Bayfatiddy'Quillen theorem. The
map
im = Km(Z)
is an isomorphism modul®, whenm < 4. Therefore the long exact sequence
deduced from (11)

(12) v o o Km(Z) = Aamea(@) » 7y g — -
implies thatr () lies in S; whenm < 5.

From [1] Theorem 1.5, which remains valid modulo a Serres;ladollows that
the kernel of the Hurewicz map

mm(¢) — Hm(¢)

lies inS, whenm = 6,7 or 8. On the other handg andng lie in Sz, while 75 lies
in Ss. Using (12), this implies that the kernel of the map

Km-1(Z) = 7m(¢)
lies in S, (respSs) whenm = 6 or 7 (resp. 8). The commutative diagram

Km-1(Z) —— 7tm(¢)

SO

Hm(BQ) —— Hm(¢)
concludes the proof.

Theorem 9.2. We have K(Z) = Z modS,;, Kg(Z) lies inS», and K;(Z) lies in Ss.

Proof. e First we computeKs(Z). From Theorem 8.1, (i) and (ii), we know
that, moduloSs,, the groupHg_n(GLn(Z), Sty) vanishes whemN < 5 and
N # 3, and thaH3(GLs(Z), St) = Z.
The exact sequence (10) fir= 2 reads
He(BQ,Z) — He(BQ2,Z) — Ha(GLo(Z), Sk) —
—  Hs(BQu,Z) — Hs(BQz, Z) — H3(GLa(Z), Sb)
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SinceHm(BQ1, Z) = 0 whenm > 0, H3(GLy(Z), Sb) = H3(GLy(Z), Sb) is
finite, andH4(GLx(Z), Sb) lies in Sz, we conclude thaHg(BQy, Z) lies in
S» andHs(BQy, Z) is finite.

The exact sequence (10) fr= 3 gives

He(BQz, Z) — He(BQs, Z) — H3(GLs(Z), S) — Hs(BQ, Z),
thereforeHg(BQs, Z) = Z moduloS,.

On the other hand, we deduce from (10) with= 5, 6, 7 and from The-
orem 8.1 that, modul &>,

HG(BQ, Z) = HG(BQE,, Z) = HG(BQ4, Z) ,

asH;(GLs(Z), St) andH1(GLg(Z), St) are finite.
Now consider the exact sequence (10)Nbe 4.

Ha(GL4(Z), St)—Hs(BQs, Z) — He(BQu, Z) — H2(GL4(Z), St),

where the last group is i, by Theorem 8.1(ii).

If @ were not zero modul®; then we would conclude thitg(BQ, Z) =
Hg(BQa, Z) is finite. But this is impossible sind€s(Z) ®z Q = Q (Borel)
and the Hurewicz map

he . K5(Z) — HG(BQ, Z)

has finite kernel.
Thereforea = 0 moduloS,, and

Hes(BQ Z) = He(BQs3,Z) = Z

moduloS,. The Hurewicz maphg is an isomorphism modulo torsion, and
its kernelCg lies in S, (Proposition 9.1) . Thereforés(Z) is the direct sum
of Z and a finite 2-group.
Next, we computeg(Z).
From Theorem 8.1(ii), we know thadd;_n(GLn(Z), Sty) lies in S, when
N # 4, and, according to Theorem 8.1(i), we hadg(GL4(Z), St) = Z
moduloSs.

From the exact sequence (10) fdr= 2, 3, we conclude from (9) that
H7(BQs, Z) lies in S,. The exact sequence fbr = 5 gives

H/(BQs,Z) — H7(BQu,Z) — H3(GLu(Z), Sty) —
% He(BQs,Z) — He(BQu, 2)

Sincea = 0 moduloS,, we getH7(BQy, Z) = H3(GL4(Z), St) = Z modulo
S». Using the exact sequence (10) fdr = 5 and 6, we conclude that
H7(BQ,Z) = Z moduloS,.

SinceKg(2) is finite (Borel) and the kerndél; of the Hurewicz map

h7 . KG(Z) — H7(BQ, Z)

lies in S, we get thaKg(Z) is a finite 2-group.
Finally, we show thaK(Z) lies inSs. From Lemma 8.5 we deduce that the
groupsky, for GLn(Z), N < 5,1 > 1, lie in Ss whenq > 0.

Using Theorem 8.1 and Lemma 8.8, we conclude lthak (GLn(Z), Sty)
lies in S5 whenN < 7. This implies thaHg(BQ, Z) is in S5 and, since the
kernelCg of hg lies in S5 (Proposition 9.1), we conclude thig(Z) has no
p—torsion withp > 5.
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O

Remark 9.3 These three are already knowk;(Z) = Z, Kg(Z) = 0 andK+(Z) =
Z/240 (see [35]). The groulg(Z) still remains unknown.
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