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Abstract

The n-th Fiedler value of a class of graphs C is the maximum second
eigenvalue λ2(G) of a graph G ∈ C with n vertices. In this note we relate
this value to shallow minors and, as a corollary, we determine the right
order of the n-th Fiedler value for some minor closed classes of graphs,
including the class of planar graphs.

1 Introduction and Statement of Results

The Laplacian L(G) of a graph G of order n is the n × n matrix with degrees
on the diagonal and −1 for adjacent pairs of vertices (i.e. L(G) = D(G) −
A(G)). This matrix is real and symmetric hence has all of its n eigenvalues
real. As Laplacian matrices are positive semi-definite, all the eigenavalues are
non-negative. The all-one vector is clearly an eigenvector of this matrix, with
associated eigenvalue 0. The second smallest eigenvalue λ2 of L(G) is called the
algebraic connectivity of G [2], or the Fiedler value of G [5, 6].

Let C be a class of graphs. The Fiedler value of the class is the function

λ2max(C, n) = max
G∈C,|G|=n

λ2(G),

where the maximum is taken over all graphs G ∈ C with n vertices, i.e. with
order |G| = n.

The Fiedler value of a graph G is intensively studied and it has many appli-
cations. For example, we shall make use of the following connection, established
by Spielman and Teng, to embeddings of G in the Euclidean space.

∗Supported by grant ERCCZ LL-1201 of the Czech Ministry of Education and CE-ITI of

GAČR
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Lemma 1 (Embedding lemma, [5, 6]).

λ2(G) = min

∑
ij∈E(G) ‖~vi − ~vj‖2∑

i∈V (G) ‖~vi‖2
,

where the minimum is taken over all possible choices of ~v1, . . . , ~vn ∈ Rm such
that

∑
i ~vi =

~0.

In particular, if φ : V (G) → C and
∑

u∈V (G) φ(u) = 0 we have

λ2(G) ≤
∑

uv∈E(G) |φ(u)− φ(v)|2
∑

u∈V (G) |φ(u)|2
.

Barrière et al. obtained the following bound for the class of all Kh minor
free graphs:

λ2max(Kh minor free, n) ≤
{
h− 2 +O( 1√

n
) if 4 ≤ h ≤ 9

γh
√
log h+O( 1√

n
) otherwise

In this note we determine the right order of λ2max(C, n) for the class C of
Kh-minor free graphs and also for the class of planar graphs (both results extend
the results of [1]). We also extend [1] to a much broader variety of classes, such
as classes defined by forbidden subdivisions or graphs with bounded degrees.
There is nothing special about minor closed classes here. These extensions are
motivated by [4]. Particularly we prove the following:

Theorem 1. For every integer h ≥ 2 we have

h− 2 ≤ λ2max(Kh minor free, n) ≤ h− 2 +O

(
1√
n

)

Theorem 2. Let g ∈ N. Then

2 + Ω

(
1

n2

)
≤ λ2max(genus g, n) ≤ 2 +O

(
1√
n

)

This will be a consequence of a more general statement using the following
definitions and notations (see [3, 4]). Let r be a half-integer and let G be a
graph. A graph H is a shallow topological minor of G at depth r if one can find
as a subgraph of G a subdivision ofH where all the edges are subdivided at most
2r times (we call such a subdivision a ≤ 2r-subdivision of H). The set of all the
shallow topological minors of G at depth r is denoted by G ▽̃ r and we denote
by ∇̃r the topological grad of G with depth r, which is the maximum of ‖H‖/|H |
over all graphs H ∈ G ▽̃ r. Here, for a graph H = (V,E) we put |H | = |V | and
‖H‖ = |E|. Also, for a class of graphs C, we define C ▽̃ r =

⋃
G∈C G ▽̃ r and

∇̃r(C) = supG∈C ∇̃r(G).

Theorem 3. Let C be a monotone class with sub-linear separators and bounded
∇̃1/2. Let s(n) denote the maximum size of a vertex separator of graphs G ∈ C
of order at most n. Then

λ2max(C, n) ≤ ω

(
C ▽̃

1

2

)
− 1 +O

(
s(n)

n

)
.
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2 Proofs

In this section, we shall prove Theorem 3, then Theorem 1 and Theorem 2.
Following the proof of Barrière et al. [1], we state two lemmas allowing to bound
λ2(G) by the density of edges incident to a small subset of vertices of G.

Lemma 2. Let n1,1, n1,2, n2,1, n2,2 be positive integers such that

n1,1 ≤ n1,2 ≤ 2n1,1

n2,1 ≤ n2,2 ≤ 2n2,1

n1,1 + n1,2 ≤ n2,1 + n2,2 ≤ 2(n1,1 + n1,2)

Then there exist z1,1, z1,2, z2,1, z2,2 ∈ S
2 (where S

2 = {z ∈ C : |z| = 1}) such
that

n1,1z1,1 + n1,2z1,2 + n2,1z2,1 + n2,2z2,2 = 0

Proof. Let n1 = n1,1 + n1,2, n2 = n2,1 + n2,2 and n = n1 + n2. Define the real
numbers x1 = 2/3 and x2 = −n2

n1

z1, so that n1x1 + n2x2 = 0 and −2/3 ≤ x2 ≤
−1/3.

For 0 < x < 1 define the function fx : S2 → S2 such that fx(z) is the
intersection of the unit circle and of the line through z and x. Let g :]0, 1[×S2 →
R be defined by g(x, z) = fx(z)−x

x−z . Notice that g is continuous. As g(x1, 1) = 5
and g(x1,−1) = 1/5 there exists z1,1 such that g(x1, z1,1) = n1,2/n1,1. Also,
as g(x2, 1) = 1/2 and g(x2,−1) = 2 there exists z2,1 such that g(x2, z2,1) =

n2,2/n2,1. Let z1,2 = fx1
(z1,1) and z2,2 = fx2

(z2,1). Then x1 =
n1,1z1,1+n1,2z1,2

n1

and x2 =
n2,1z2,1+n2,2z2,2

n2

. Thus n1,1z1,1 + n1,2z1,2 + n2,1z2,1 + n2,2z2,2 = 0.

Lemma 3. Let C be a monotone class of graphs and let s(n) denote the maxi-
mum size of a vertex separator of a graph G ∈ C with order at most n.

Then, for every graph G ∈ C with order n there exists a subset S ⊂ V (G) of
cardinality at most s(n) + 2s(2n/3) such that:

λ2(G) ≤ e(S, V − S)

n− |S| .

Proof. Let S0 be a vertex separator of G of size at most s(n) and let (Z1, Z2)
be a partition of V − S0 such that |Z1| ≤ |Z2| ≤ 2|Z1| and no edge exists
between Z1 and Z2. Let S1 (resp. S2) be separators of size at most s(2n/3)
of G[Z1] (resp. G[S2]), let (Z1,1, Z1,2) (resp. (Z2,1, Z2,2)) be a partition of Z1

(resp. Z2) such that |Zi,1| ≤ |Zi,2| ≤ 2|Zi,1| and no edge exists between Zi,1 and
Zi,2 in G[Zi] − Si. According to Lemma 2, there exists four complex numbers

z1,1, z1,2, z2,1 and z2,2 with |zi,j | = 1 and
∑2

i=1

∑2
j=1 |Zi,j | zi,j = 0. Define

φ : V (G) → C as follows

φ(v) =

{
zi,j if v ∈ Zi,j

0 otherwise

Then we have, according to Lemma 1:

λ2(G) ≤
∑

uv∈E(G) |φ(u)− φ(v)|2
∑

u∈V (G) |φ(u)|2
=

e(S, V − S)

n− |S| ,

where S = S0 ∪ S1 ∪ S2 has cardinality at most s(n) + 2s(2n/3).
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Remark 1. If G has maximum average degree d then λ2(G) ≤ d(d+1)n. This
also follows from Lemma 3. Indeed, G has a proper coloration with d+1 colors.
If S is the union of the d smallest color classes, then V (G)− S is disconnected
hence may be easily split into four parts having approximately the same size.

We now give a general bound for the size of a bipartite subgraph of a graph
G in terms of the maximum average degree and maximum clique size of shallow
topological minors of G.

Lemma 4. Let A,B be disjoint vertices of a graph G, with |A| ≥ |B| and
n = |A|+ |B|. Then

e(A,B) ≤ (ω(G ▽̃ 1/2)− 1)n+ (∇̃0(G)− ω(G ▽̃ 1/2) + 1)(∇̃1/2(G) + 1) |B|.

In particular, if G ∈ C and C is a minor closed class with maximum average
degree d = 2∇̃0(C) and clique number ω = ω(C), we get:

e(A,B) ≤ (ω − 1)n+ (d/2 + 1)(d/2 + 1− ω) |B|.

Proof. Let ω = ω(G ▽̃
1
2 ). Partition A into A1 and A2 such that A1 contains

the vertices with degree at most ω− 1 and A2 contains the vertices with degree
at least ω.

Consider any linear ordering x1, . . . , xp of A2. We construct H ∈ G ▽̃
1
2

as follows. At the beginning, H is the empty graph with vertex set B. For
each vertex xi in A2, if xi has two neighbours u, v in B that are not adjacent
in H we (choose one such pair of vertices and) make them adjacent in H and
we continue with the next vertex of A2. If we cannot continue, this means
that all the neighbours of xi are adjacent in H . Then by construction we
have H ⊕ K1 ∈ G ▽̃

1
2 although ω(H ⊕ K1) > ω, a contradiction. Hence we

can continue until A2 is exhausted. Then we obtain H ∈ G ▽̃
1
2 such that

‖H‖ = |A2| and |H | = |B|. Hence we have |A2| ≤ ∇̃1/2(G)|B| and

e(A2, B) ≤ ‖G[A2 ∪B]‖ ≤ ∇̃0(G)(|A2|+ |B|).

As the maximum degree of vertices in A1 is ω − 1 we have e(A1, B) ≤ (ω −
1)(n− |A2| − |B|). Altogether, we get

e(A,B) = e(A1, B) + e(A2, B) ≤ (ω − 1)n+ (∇̃0(G)− ω + 1)(∇̃1/2(G) + 1)|B|.

Proof of Theorem 3. According to Lemma 3 there exists, for every graph G ∈ C
with order n, a subset S ⊂ V (G) of cardinality at most s(n) + 2s(2n/3) such

that λ2(G) ≤ e(S,V−S)
n−|S| . According to Lemma 4, we have

e(V − S, S) ≤ (ω(G ▽̃ 1/2)− 1)n+ (∇̃0(G)− ω(G ▽̃ 1/2)+ 1)(∇̃1/2(G) + 1) |S|.

As s(n) = o(n), it follows that

λ2max(C, n) ≤ ω

(
C ▽̃

1

2

)
− 1 +O

(
s(n)

n

)
.
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The lower bound of Theorem 1 follows from the following easy construction.

Lemma 5. Let H1, H2 be graphs and let H1 ⊕H2 denote the complete join of
H1 and H2. Then

λ2(H1 ⊕H2) = min(λ2(H1) + |H2|, λ2(H2) + |H1|).

Proof. Let G = H1 ⊕H2 be the complete join of H1 and H2. Then

L(G) =

(
L(H1) + |H2|I −J

−J L(H2) + |H1|I

)

Hence if x1 is an eigenvector of L(H1) with eigenvalue α1 and if x2 is an eigen-
vector of L(H2) with eigenvalue α2, both being orthogonal to the all-one vectors,
we have:

L(G)

(
x1

0

)
=

(
L(H1) + |H2|I −J

−J L(H2) + |H1|I

)(
x1

0

)
= (α1 + |H2|)

(
x1

0

)

and

L(G)

(
0
x2

)
=

(
L(H1) + |H2|I −J

−J L(H2) + |H1|I

)(
0
x2

)
= (α2 + |H1|)

(
0
x2

)

Moreover, if x is the vector with |H1| first entries equal to |H2| and the remaining
|H2| entries equal to −|H1| we have

L(G)x = nx

With the all-one vector, which is an eigenvector of L(G) with associated eigen-
value 0, we have determined the full spectrum of G. It follows that the second
smallest eigenvalue of G is

λ2(G) = min(λ2(H1) + |H2|, λ2(H2) + |H1|).

Hence we have, for n > h (as G ⊕K1 is Kh+1-minor free if G is Kh-minor
free):

λ2max(Kh+1 minor free, n+ 1) ≥ λ2max(Kh minor free, n) + 1

Proof of Theorem 1. The upper bound comes from Theorem 3. According to
Lemma 5 we have, for n ≥ h:

λ2max(Kh minor free, n) ≥ λ2(Kh−2 ⊕ (n− h+ 2)K1) = h− 2.

Lemma 6. Let A,B be disjoint vertices of a graph G, with |A| ≥ |B| and
n = |A|+ |B|. Let p ∈ N be such that K3,p is not a subgraph of G. Then

e(A,B) ≤ 2n+ (∇̃0(G)− 2)((p− 1)∇̃1/2(G)2 + ∇̃1/2(G) + 1)|B|.
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Proof. PartitionA into A1 and A2 such that A1 contains the vertices with degree
at most 2 and A2 contains the vertices with degree at least 3.

Consider any linear ordering x1, . . . , xp of A2. We construct a partition
Z0, Z1, . . . , Zp−1 of A2, p − 1 sets T1, . . . , Tp−1 of triples of vertices in B and
a graph H ∈ G ▽̃

1
2 as follows. At the beginning, H is the empty graph with

vertex set B. For each vertex xi in A2, if xi has two neighbours u, v in B that
are not adjacent in H we (choose one such pair of vertices and) make them
adjacent in H , put xi in Z0 and continue with the next vertex of A2. If xi has
three neighbours u, v, w such that {u, v, w} is not in Z1, we put {u, v, w} in Zi

and continue with the next vertex in A2. Otherwise, we try to find a triples of
neighbours of xi not in Z2, Z3, . . . , Zp−1. With this construction, all the vertices
of A2 are exhausted for otherwise we would exhibit a K3,p subgraph of G.

Then we obtain H ∈ G ▽̃
1
2 such that ‖H‖ = |Z0| and |H | = |B|. Hence

we have |Z0| ≤ ∇̃1/2(G)|B| and the number of triangles in H is at most

2∇̃0(H)2 |H | ≤ 2∇̃1/2(G)2 |B|. Each of the sets Z1, . . . , Zp−1 contains only
triples corresponding to triangles of H . Hence for 1 ≤ i ≤ p − 1 we have
|Zi| ≤ 2∇̃1/2(G)2 |B|. Altogether, we get

|A2| ≤ ∇̃1/2(G)(1 + (p− 1)∇̃1/2(G))|B|.

Moreover
e(A2, B) ≤ ‖G[A2 ∪B]‖ ≤ ∇̃0(G)(|A2|+ |B|).

As the maximum degree of vertices in A1 is 2 we have e(A1, B) ≤ 2(n− |A2| −
|B|). As e(A,B) = e(A1, B) + e(A2, B), we get

e(A,B) ≤ 2n+ (∇̃0(G)− 2)((p− 1)∇̃1/2(G)2 + ∇̃1/2(G) + 1)|B|.

We deduce the Theorem 2, which is an extension of the inequalities obtained
by Barrière et al. for planar graphs [1].

Proof of Theorem 2. According to Lemma 3 there exists, for every graph G
of genus g with order n, a subset S ⊂ V (G) of cardinality at most s(n) +

2s(2n/3) = O(
√
n) such that λ2(G) ≤ e(S,V−S)

n−|S| . As G has genus g, it does

not contain K3,4g+3 as a subgraph. Hence, according to Lemma 6, we have
e(V − S, S) ≤ 2n+O(

√
n). It follows that

λ2max(genus g, n) ≤ 2 +O

(
1√
n

)
.

For the lower bound, consider the planar graph K2 ⊕ Pn−2, for which λ2 =
4− 2 cos

(
π

n−1

)
= 2 + Θ

(
1
n2 ).

3 Concluding Remarks

Remark that the same kind of argument as in the proof of Theorem 2 could be
applied to prove that graphs that do not contain Kp,q for some p ≤ q but have

bounded ∇̃1/2 and sub-linear separators actually have λ2 bounded by p−1+o(1)
(as n → ∞).
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An interesting problem is to characterize properties of a class by means of
separating and spectral properties, see e.g. Problem 16.2 of [4]. In a sense, this
note may be seen as a step in this direction.
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