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ABSTRACT 
Design is a complex activity that can be analysed from a wide 
variety of perspectives. This paper attempts to look at the individual 
problem solving process, taking into account psychological 
arguments. We characterise some of the phases involved in the 
design process, namely the constraints identification, the 
optimisation of solution space and the reuse process. We highlight a 
three-dimensional framework of how the constraints identification 
impacts on the solution space which, in turn, determines the range 
of the components that will be eligible for reuse. We discuss this 
argument through examples from both inside and outside the 
software engineering field.  

Categories and Subject Descriptors 
 

General Terms 
Design; Human Factors 

Keywords* 
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1 INTRODUCTION 
Due to the inherent complexity of industrial-scale software 
engineering, the development of software artefacts usually relies 
upon collaboration of cognitive skills that can only be provided 
through group effort [1]. Furthermore, with the ongoing 
proliferation of information and communications technology, the 
potential for greater collaboration has become even more prevalent 
with the increase of distributed development teams [2] and the 
emergence of Open Source Software development communities 
[3]. 
Despite these trends, both long-established literature [4] and 
contemporary industrial research [5] reveals that a significant part 
of software development work remains subsumed in individual 
cognitive activity. Moreover, although many useful analysis and 
design methods/techniques have been pioneered in software 
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engineering’s relatively short history (see [6, 7, 8]), the inherent 
conceptual nature of software [9] ensures that its construction 
continues to rely upon a ‘craft-based’ element of individual 
creativity, experience, and skill [10]. However, this over-reliance on 
individual human capabilities frequently results in system failure(s) 
caused through discrete human-design faults made during the 
development and/or maintenance phases of computer-based 
systems [11]. Whilst these characteristics set software engineering 
apart from classical engineering, it has also been argued that 
important lessons can still be learned from more mature disciplines 
[12, 13]. This is the philosophy of our paper also.  
 
In respect to these concerns and characteristics of software 
engineering, this paper focuses attention upon the role of individual 
cognition and its potential for optimizing or degrading the design of 
software in computer-based systems. This involves drawing upon 
well established psychological research to emphasize a) the 
importance of constraints identification, b) its resulting influence 
upon solution finding and c) knowledge reuse during the design 
phase. These will be the three main areas covered in this paper. To 
exemplify our conceptions we draw upon both successes and 
failures in traditional and software engineering domains. 

2 DESIGN: A COGNITIVE ACTIVITY 
APPROACH 

Designing can be approached as a problem solving activity [8, 10] 
and analysed insightfully from a cognitive perspective [14, 15, 16]. 
Here, it mainly consists in discovering a solution that addresses a 
design objective, namely, by identifying the constraints imposed by 
both explicit requirements and knowledge assumptions, seeking 
options in a solution space, and investigating the possibilities for 
reuse of previous solutions.  
From a cognitive standpoint, design implies achieving a potentially 
fuzzy goal [17] that admits a variety of solutions [18]. Under this 
angle, designing implies finding paths in a solution space1, the latter 
being defined as the total number of possible intermediate steps that 
exist between the statement of the problem and its solution [19, 20]. 
Solving a design problem is particular in the sense that the solution 
space can be enormous, however some solutions to a given problem 
may already exist. So there is justifiably great interest in attempting 
solution reuse, for cost or time reasons [21]. 

                                                 
1 Psychologists usually prefer the term search space. 



 

 

In this paper, we adopt a human-centred view about design. 
Cognitive psychology provides a rewarding theoretical framework 
to explore problem solving where we revisit the activity of design 
and propose a three dimensional framework. Obviously, because of 
our individualistic psychological view of design, we do not 
consider other important influences (e.g. process feedback, 
organisational; see respectively [22, 23]). 

3 A THREE-DIMENSIONAL 
APPROACH TO DESIGN 

We wish to investigate three areas which we think can shed some 
light on the design process. Thus, the next three sub-sections will 
namely address a) constraints identification, b) optimisation of the 
solution space and c) solution reuse.  
In our view, the complete set of design constraints involves 
identification of both explicit constraints (i.e. user/customer 
imposed requirements) and implicit constraints (i.e. the designer's 
technical interpretation of these explicit constraints). However, it is 
important that the reader is aware that our interpretation and usage 
of the term ‘constraints’ is purely technical, in nature. It relates 
solely to functional attributes of the artefact and not to non-
functional attributes (such as budget, schedule, tools used etc.; 
important though they still are [24]). 
 

3.1 The Identification of the Explicit 
Constraints Imposed by Requirements 

Accurately identifying the constraints at early stages of the design 
process is of major importance as it impacts on the solution space 

(see section  3.2). If one introduces invalid constraints for the 
realisation of an artefact, the solution space will be narrowed down 
exaggeratedly, leading to a disregard for viable options. 
Conversely, if all the valid constraints are not identified, then the 
solution space erroneously widens, introducing unviable options. In 
order to give a more concrete view of these design conceptions, we 
will now consider an engineering example: the Tacoma Narrows 
bridge, in the USA.  
 
The Tacoma Narrows bridge2 
In 1940, this bridge had to establish a 2800-feet road link above 
Puget sound. Due to the strong winds present in the Narrows, the 
Washington Department of Highways had proposed a suspension 
bridge with a 25-foot-deep truss along the roadway, for a 
construction cost of $11 million. However, two engineers, Leon 
Moiseiff and Fred Lienhard, had put into practice a new 
mathematical theory (the deflection theory) for calculating loads 
and wind forces for suspension bridges. This new theory allowed 
them to reduce the amount of stiffening material from 25-foot 
trusses to 8-foot girders. The construction costs dropped to $6.4 
million and this design solution was adopted. However, the novel 
design caused the bridge to be excessively flexible and despite the 
checking cables that were added to it after its opening, it collapsed 
some 5 months later. The investigation of the cause of the failure 
concluded that ignorance of the actual dynamic effects of wind 
loads was a significant factor in the accident. Even if some bridges 
whose design relied on this theory were still standing, it was 
unsuitable for bridge building in the context of the Tacoma 
Narrows. The constraint that was not accurately identified was the 
degree of influence of wind loads on the bridge structure, in the 
context of the Narrows. It caused the designer to consider the 
deflection theory as a viable design option.  

                                                 
2 Unless otherwise noted, the source for the material exposed in 
this section is in [13]. 

The best-known cause of human cognition failure is the complexity 
of a problem [25]. However, human error can also occur because 
some important data has been disregarded in solving the problem. 
The latter is well-known in diagnosis and troubleshooting by 
doctors [26] or electronics operators [27]. Disregarding data is 
relevant to the design phase also. Bonnardel and Summer [28] 
asserted that experienced designers may forget to consider certain 
criteria for assessing features from a different perspective. 
Psychologically, this error is underpinned by the designer activating 
an experience-driven knowledge base (a schema [29]) that does not 
accurately reflect the actual problem [30, 26]. When this occurs, the 
solution space may be wider or narrower than what is technically 
optimal, leading the designers to search for solutions in a set that 
comprises either unviable options or excluding the discovery of 
viable alternatives3. It is therefore important to emphasize the 
critical role of the identification of the constraints from the initial 
set of explicit requirements.  
 
In this subsection, we have exposed our ideas about constraints and 
how errors in their identification could be accounted for by a simple 
cognitive framework. We are now going to show how constraints 
are possibly linked to the solution space. This position will be 
framed using the graphical version of the linear programming 
technique. It will be used to highlight the function linking design 
constraints and the solution space together. 
 

3.2 Optimising the Solution Space. 
Linear programming (LP) is a quantitative problem solving 
technique that can be found in many mathematical texts (see [31]) 
and often included also in management decision-making literature 
[32]. The technique is concerned with the quantitative optimisation 
of an objective when the decision variables are subject to some 
explicit and quantifiable constraints. The purpose of the following 
LP scenario is not to advocate its use in software design decision-
making. Moreover, we do not wish to imply that software design 
decision-making is strictly linear: the highly conceptual nature of 
software development has long been considered as containing non-
linear characteristics [9]. Thus we do not assume that the design 
process can be reduced to a linear mechanism. Instead we use the 
graphical version of the LP technique as an iconic model ([33] 
quoted by [24]) to represent visually the role of constraints 
identification in optimising the solution space. Only the pertinent 
details are included in the body of the paper. A full mathematical 
breakdown of the scenario is provided in the Appendix. Interested 
readers should consult [31] (chapters 17-20) for a more complete 
coverage of using the LP technique. 
 
Consider the following scenario: 

A software company that manages its software development 
operations along product lines and product families to maximize 
software component and source code reuse. A software engineer, 
as design authority, is assigned to lead the technical development 
of the new software product. This new product requires both 
novel and replicated functionality features. The explicit 
requirements govern the designer’s initial investigation and 
analysis of existing family related products to identify related 
features that will provide a good design basis. After this initial 
analysis, the designer identifies three related product components 
as reuse candidates to begin with. 

                                                 
3 Erroneously widening or narrowing the solution space can be 
caused by commission and omission errors, respectively (see 
section  5). 



 

 

 

Because this scenario involves the optimisation of only two 
decision variables (i.e. design constraints and potential reuse 
solutions) the graphical method of LP can be legitimately used. The 
LP graph below (Figure 1) maps the linear and fixed limits to 
illustrate the feasible region of the solution space for the LP 
scenario just described. The fixed straight lines (D, E & F) illustrate 
the explicit design requirements that were originally prioritised for 
the new software product. The diagonal lines (A, B & C) represent 
the linear relationships that exist between the design constraints and 
design solutions for the three reuse candidates. Collectively, they 
define the feasible solution region to search in. 

The LP graph takes into account the optimisation of the feasible 
solution region by identifying the maximal number of design 
constraints that still permit the maximum number of viable 

solutions to be considered (see Figure 3, section  5). How to identify 
this optimal solution point is clearly represented. It is achieved by 
intersecting the rightmost diagonal line at the mid-point of the 
feasible region from both horizontal and vertical axes at 90°. From 
the graph, this is when 25 design constraints are identified, giving 
37 viable reuse solutions4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: Determination of the optimal solution point with the 
graphical linear programming method. 

 
The graph in Figure 1 has some relevance with regards to the 
transition from the identification of constraints to the choice for 
solution reuse. Let us assume that the diagram reflects the optimal 
solution space region for the design scenario set. If valid design 
constraints are overlooked, this will erroneously widen the solution 
space. It may then lead to the adoption of unsuitable design reuse 
solutions that later fail during operation when the effects of critical 
constraint omissions are experienced. Equally, admitting 
redundant5 constraints will preclude viable potential solutions for 
reuse or adaptation. This erroneous narrowing of the solution space 

                                                 
4 Please note that this technique is simplified here because none 
of the decision variables involved contain coefficient factors. 
5 The meaning of redundancy used here is the classical 
definition of an unnecessary function/object, and not the usage 
from the dependability community, meaning necessary 
function/object for additional support and strengthening of a 
system [34].  

could result in unnecessary reinvention (and its consequent 
increased costs). It can even become a barrier to innovation through 
the designer(s) believing that the design problem set is unsolvable6. 
 
The LP approach allows us to discuss the first stage in design 
optimisation by demonstrating how disregarding or adding explicit 
constraints affects the solution space7. This visual example aids 
conceptualisation of the intuitive notion of the optimal point 
between design constraints and solution options. It allows the 
designer to be aware of this important trade-off and compare 
several components against each other during the process of 
solution reuse.  
We have now exposed how the aim of optimising the solution 
space could be established as a meta-design goal in its own right, 
for designers. The next section will document and discuss the 
potential catastrophic effects of deriving sub-optimal solution 
regions to search in and the selection of subsequent design reuse in 
software engineering. We will also briefly consider the fundamental 
psychological concepts involved. 
 

3.3 Reuse 
In software engineering, reuse is becoming more and more 
common practice8. Among other things, it is aimed at reducing 
costs and development time [36]. McClure [37] asserts that most of 
the code developed for an application is reusable in other 
applications, because only small proportions are program-specific. 
Nevertheless, software reuse must not be conceived as an 
immediate cut-and-paste from one program into another, as it is 
even unlikely that any component can be completely reused so 
readily [8]. Rather, the decision for reuse is supported by a 
compromise between the adaptability of the desired artefact, the 
cost of restructuring it [38] and its context of reuse. Consequently, 
poor reuse selection can frequently result in the cost of adapting an 
existing piece of software being greater than the cost involved in 
developing it from scratch [6]. These drawbacks of software 
adaptability are well known to software programmers and designers 
alike. They have become well established for a long time in the 
literature (see [4]). However, the cost and time-saving benefits of 
reusing software can prove so beneficial in large software 
engineering projects that the actual software design process may 
become overly reuse-driven. In some cases, such over reuse of 
software can result in catastrophic operational failure. The case of 
Ariane 5 explosion will now be discussed from this perspective. 
 
The Ariane 5 failure9 
On the 4th of June 1996, 42 seconds after take-off, Ariane 5 veered 
off its trajectory to such an extent that the on-board self-abort 
system triggered, causing the complete loss of the launcher. A piece 

                                                 
6 In practice, relaxing some of the constraints in order to 
voluntarily widen the solution space is always a distinct 
possibility. In this respect, we only take a snapshot and preclude 
temporal change considerations. 
7 Although we have solely adopted LP as a way to graphically 
represent our theoretical position, some similarities can be 
found with other models, e.g. dealing with the negotiation of 
requirements (see for instance the Win Win model by Boehm et 
al. [35]). 
8 Although we are aware of ad hoc forms as well as 
systematised forms of reuse, we wish to keep a generalised 
view on it. In our conception, the cognitive factors involved are 
generic, transcending the reuse mode itself. 
9 Unless otherwise noted, the source for the material in this 
section is in [39]. 
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of software (the inertial reference system), dedicated to keeping the 
launcher on trajectory during the early phase of the flight, was 
reused from the previous launcher Ariane 4. Due to Ariane 5 
having a different behaviour on the first seconds of the flight, 
unusual horizontal velocity values were generated. One of the faults 
identified resulted from a) some modules from Ariane 4 not being 
verified for exceptions when reused and b) in the faulty belief that 
the safety margin was large enough so that the software could 
handle the new values. 
 
Cognitive psychology analyses reuse from the point of view of 
reasoning by analogy [18]. In this view, solving a problem is 
achieved by identifying some similarities between the current 
problem (the target problem) and one that has been solved in the 
past (the source problem) [40, 41, 42]. One of the causes of errors 
lies in the possibility of not identifying important data in the source 
problem [43] or neglecting some discrepancies between the two 

problems' structures. The quality of the schema (see section  3.1) 
used by the designer is of relevance here. It may trigger itself in 
sub-optimal conditions, causing the analogical reasoning to be 
flawed. 
On the other hand, reuse is usually performed with testing and 
validation procedures, reducing the possibilities of such errors. So, 
beyond a mere individual explanation of reuse errors, the Ariane 5 
accident can be seen as an example of a latent10 reuse fault [23, 34]. 
In the case of Ariane 4, the horizontal velocity values could 
virtually not go beyond the limits present in the software. So, 
during the development of the inertial reference system it was 
decided that protecting it from being made inoperative by excessive 
horizontal velocity values was not necessary11. It only became a 
problem when the inertial reference system software was reused.  

4 DESCRIBING SUCCESSFUL DESIGNS 
So far we have presented our three dimensional view of design in a 
negative light: the potential for both design errors and barriers to 
innovation through sub-optimising the solution space. However, 
this need not be so. In the two cases that follow, we emphasise how 
our conception of design can explain innovative solution finding 
also. To maintain a symmetrical balance of cases used we will draw 
again on bridge building and computer orientated design problems.  
 
The Millennium bridge, Newcastle upon Tyne, UK12 
As is often the case in design, the challenge was finding a novel 
solution that would compromise optimally all the explicit 
constraints. This is recognised as 'innovative design [10]. The 
Millennium bridge would explicitly have to: 
 

1. provide cross-river access to pedestrians and cyclists; 
2. link the quaysides at only 4-5m above the Tyne level; 
3. allow 25m of headroom over a 30m-wide navigation channel; 
4. preclude any construction on the quays themselves; 
5. show some novelty. 
 

In terms of explicit technical constraints, the access to the bridge by 
pedestrians and cyclists implied that the bridge had to be built at the 
road level. But the needed 25m headroom for allowing ships to pass 
eliminated the possibility of a fixed flat pathway. Moreover, being 
barred from building anything on the quays themselves and having 

                                                 
10 Computing scientists will prefer the term dormant fault. 
11 Although the consequences of this decision were not fully 
understood. 
12 Unless otherwise noted, the source for the material in this 
section is in [44]. 

to provide a novel design surely precluded numerous reuse 
solutions such as swinging or opening bridges. The solution that the 
designers found was a curved pathway crossing that would be 
suspended by another curve. Then tilting them altogether like the 
visor of a helmet or a blinking eyelid would create enough head 
room for bigger boats to pass (Figure 2). 

 

Figure 2: The Millennium bridge. Technical diagram (Clark & 
Eyre [44]).  

 
Although it is a suitable solution for most bridges, Clarke and Eyre 
[44] explain that it was impossible to build a straight bridge that 
would satisfy all the requirements. But if you erroneously continue 
with such an idea, you will be forced to violate some explicit 
constraints. 
 
The 32-bit memory architecture of the Eagle computer13 
The design of the 32-bit Eagle architecture (in the early 1980s) 
necessitated trading-off between constraints and reusable solutions. 
In this case, a single designer had to design a pioneering 32-bit 
memory architecture and provide time-sharing security protection. 
Thus, the design had to integrate these two main explicit 
constraints, narrowing the solution space dramatically. One existing 
reuse solution (which would have violated explicit constraints) 
would have been to provide both memory location and security 
protection using separate security rings and memory addresses. 
Through critically exploring the various possibilities within the 
feasible solution space the designer innovatively perceived that the 
first 3-bits of the memory address could be used to represent both 
segment and ring number. With such a solution, the memory 
segment addresses, themselves, would indicate which areas of 
memory were to be restricted. Moreover, the implementation of this 
solution would provide 8 levels of security and intrinsically protect 
memory allocation. The innovative adaptation of established 
memory protection not only optimised explicit functional 
constraints but also non functional aspects, as the architecture also 
proved to be a simpler, cheaper, more efficient and more reliable 
system than any design previously. Again, in Tekinerdogan's view 
[10], this is innovative design. 
 
These design successes above now allow us to discuss the second 
stage (implicit constraints) in design optimisation. In both cases, the 
task of the designer is to find a way to focus and merge explicit 
constraints in such a way as to allow the determination of an 
optimal solution. In this respect, two different designers designing 

                                                 
13 Unless otherwise noted, the source for the material exposed 
in this section is in [45]. 



 

 

two different types of artefacts faced the same inevitable design 
challenge. In each case they needed to critically explore the feasible 
region guided by the explicit constraints imposed by user/customer 
requirements. However, more importantly, they were able to 
remove implicit constraints through questioning the possible 
validity or adaptability of existing engineering practice and design 
knowledge. In the case of the Millennium Bridge this was going 
beyond the design assumption that all bridge crossings must be 
straight. In the case of the 32-bit Eagle architecture it was 
disregarding the design assumption that memory segments and 
security rings must be separately represented in the architecture. 
Once the designers began to question these broad categories of 
established knowledge, they optimised the solution space by 
widening it to include innovative and viable solution options. This 
stands in stark contrast to widening the solution space erroneously 
through omissions, ignorance, or oversight, as was the case with the 
Tacoma bridge and Ariane-5.  

5 GENERAL DISCUSSION 
Having considered comparable design success and failure cases 
using our 3-dimensional view, we can now define what we mean 
by an optimal solution space and its implications for both 
dependable and innovative engineering design: 
 

1. At the explicit constraint level, this is when there exists no 
error of omission in the constraint identification process i.e. all 
valid explicit constraints are fully employed in defining the 
solution space to be searched.  

 
2. At the implicit constraint level, this is when there exist no error 
of commission (i.e. intrusion of superfluous cognitive design 
paradigms) which would result in the persistence of redundant 
constraints that restrict the act of searching for an optimal 
solution. When this is achieved, as shown in Figure 3, it provides 
the maximal degrees of freedom and minimal degrees of 
restriction in finding an innovative design solution. 
 

It is believed that design is progressively redirected and refined by 
integrating constraints imposed by a design option. As illustrated 
below, we think that constraints are spread over a continuum. The 
more constraints there are, the less possible solutions there are, 
meaning the more you have to trade-off with exiting a solution. The 
other end of the spectrum is a design region where there is no 
constraint at all. In such conditions, there is no problem either since 
a problem is defined by the constraints themselves. Error!  
 
 
 
 
 
 
 
 
 
 

Figure 3: Constraints continuum 
 
Thus, the complexity of a design problem can be thought of in 
terms of degrees of restriction and freedom allowed by the set of 
constraints imposed. As the Tacoma Narrows bridge example 
showed, design error(s) can be due to allowing too much freedom 
to your design by neglecting valid constraints. As far as the 
optimisation of the solution space is concerned, we have exposed 
our position relying on an iconic linear programming 

representation. This conception graphically represented the area 
where possible solutions exist (i.e. feasible region) and what the 
characteristics (in terms of constraints and solutions) of the optimal 
solutions are. We think that it is a straightforward and clear way to 
represent what could remain at a fuzzy and non-verbalisable state in 
the designer's mind: the concept of the optimal solution space.  
 
Although we have highlighted its potential negative effects, reusing 
previous solutions is vital in problem solving. Classically, it is said 
to improve control and provide great time and cost savings. As 
such, it has an economically attractive approach in all engineering 
disciplines. In commercial development contexts, the design 
process itself is often reuse-driven. However, this policy must not 
preclude the careful identification of constraints. It is only when the 
latter have been identified that reuse can have its most powerful and 
profitable impact on the design process. Considering a component 
for reuse without having carefully identified the constraints inherent 
to the concerned problem is a mistake for it scales down 
comprehension of design to what the component to reuse can offer. 
As already shown in the cases provided, an erroneous reuse-driven 
design approach can provoke long term losses to be hidden by 
seeking short-term benefits. 

6 LIMITS 
Whilst individual cognition plays a critical role in many 
engineering disciplines (particularly software engineering), the 
framework precludes consideration of the many group [46], 
political, economic, management and cultural influences [47] that 
are often identified as significant negative and positive influences of 
unsuccessful and successful design undertakings. Furthermore, our 
3-dimensional framework assumes that explicit requirement 
constraints can be readily and clearly elicited and understood to 
begin with. Yet, because of the highly complex and intangible 
nature of software, the elicitation of requirements has proved to be 
an error prone task in software engineering. In relation to the many 
design and specification changes that this can cause, our conceptual 
framework is largely static and does not reflect the many 
requirements changes that may take place throughout the design 
phase. Both of these real-world factors would have an uncertain 
effect upon our conceptual framework, as described in this paper. 
Nevertheless, we believe that what we have provided is a kind of 
meta-design goal that is sufficiently generic to provide the 
individual designer with some conceptual reference point of the 
salient factors to be considered and aimed for during the design 
stage.  

7 FURTHER RESEARCH 
Two orthogonal design strategies can be roughly identified. One is 
constraint-driven, ensuring that functional optimisation guides the 
design process. The other is reuse driven, which is directed by non-
functional aspects (costs, schedule, etc.). It would be interesting to 
know if such factors as visibility of constraints or complexity of the 
problem can influence the balance between these two strategies. 
Another potential direction for research is discovering the factors 
leading a designer to disregard or introduce some constraints in the 
design process. A solution to this form of human error could then 
be extremely valuable in helping to prevent computer-related 
failures and thereby further improve the dependability of computer-
based systems through increased error avoidance [48, 49, 34].  

8 CONCLUSION 
In concluding this paper it is appropriate to document what value 
we believe our 3-dimensional design framework adds to the role of 
design. Our paper first seeks to raise awareness of the importance 
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of individual cognition in influencing the success or failure of 
software design in computer based systems. Secondly, within this 
scope, we have provided the beginnings of a simple, yet useful, 
conceptual framework that considers the important and inter-related 
factors of: constraints identification; solution space optimisation; 
and design reuse. It is believed also, that this framework is 
sufficiently generic to act as a meta-conception of what the designer 
should aim for during the design of both physical and conceptual 
artefacts. Thirdly, as the design of software systems becomes 
evermore focused upon processes that build software systems from 
code-reuse and commercial off-the-shelf components (COTS), the 
nature of design, itself, will become less create-orientated and even 
more reuse and selection-orientated. Here, we would argue that we 
have demonstrated the importance of both explicit and implicit 
constraint identification in providing a set of conceptual criteria for 
guiding this selection and reuse approach. Lastly, we hope by using 
cross engineering examples and drawing upon multiple disciplines 
of engineering, psychology, and mathematics for our arguments we 
have also helped demonstrate the importance and usefulness of an 
interdisciplinary approach in explaining and exploring individual 
cognition and its role in classical and software engineering design.  
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APPENDIX 

A.1 Mathematical breakdown of linear 
programming scenario (see section  3.2) 

The role of design constraints and solution space optimization is 
modeled as follows. 
 
Overall design objective=Optimise the solution space through 
constraints identification 

Design objective function 
f
(c, s)=Decision variables of :

 Design constraints (c) Design solutions (s) 
 
The Table 1 below shows the designer's initial selection of 
candidate product family components that provide an initial basis 
for the prioritized constraints and solutions required for the new 
product. These are expressed as overriding explicit design 

requirements of the new product (see limitations D, E & F later 
marked *). 
 

Table 1: Initial component reuse selection 

Component (A) (B) (C) 
Constraints (c) 6 8 5 
Solutions (s) 3 4 2 
Derivative constraints & 
solutions  

畏 120 (c) 畏 100 (s) 為 200 (c) 

 
The table expresses that component A provides a good basis for 
satisfying 6 of the prioritized constraints and implementing 3 
required solutions with the new product (i.e. these maybe quality 
and performance factors such as portability throughout various 
other product lines and derived families etc). The bottom row 
illustrates that the component has been used in the past to satisfy 
over 120 other product design constraints, illustrating the 
reusability and flexibility of the component. 

A.2 Design Limitations 
Using the Linear Programming format, we can now illustrate the 
design limits, as follows:Design optimisation = c + s. 
The optimisation function is subject to the following limitations 
(A,B,C from Table 1 above): 
 
(A)= 6c + 3 s畏 120 Product Line/Family Constraints 
(B)= 8 c + 4 s 畏 100 Product Line/Family Solutions 
(C) = 5 c + 2 s 為 200 Product Line/Family Constraints 
 
The following represent the overriding fixed/explicit constraints 
originally set for the new software product.  
 
(D)= c 畏 10 Explicit Constraints Satisfied (*) 
(E)= s  畏 8 Explicit Solutions Satisfied (*) 
(F)= s  為 65 Product Line/Family Solutions to be
  Considered (*) 
 
The linearity of design constraints and design solutions can now be 
exemplified by representing one dimension as zero, and the other 
dimensions' coefficient as the denominator of the limitation factor. 
This is done for the reuse components (A), (B), & (C) as follows: 
 
Reuse component A 
 
 Where c = 0 then s = 40 (i.e. 120/3) 
 Where s = 0 then c = 20 (i.e. 120/6) 
 
This carried-out for reuse components 2 & 3 gives: 
 
 Reuse component B c = 12.5 & s = 25 
 Reuse component C c = 40 & s = 100 
 
The other constraints (D), (E), & (F) are all fixed to one dimension. 
All of these values are then plotted on the graph to identify the 
feasible solution region (see diagram in section 3.2.).  


