
HAL Id: hal-00724086
https://hal.science/hal-00724086

Submitted on 17 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bridging industrial design and software engineering
through constraints identification, solution space

optimisation and reuse.
Denis Besnard, Anthony T. Lawrie

To cite this version:
Denis Besnard, Anthony T. Lawrie. Bridging industrial design and software engineering through
constraints identification, solution space optimisation and reuse.. ACM Symposium on Applied Com-
puting - SAC 2002, Mar 2002, Madrid, Spain. p. 732-738. �hal-00724086�

https://hal.science/hal-00724086
https://hal.archives-ouvertes.fr

BESNARD, D. & LAWRIE, A. T. (2002). Bridging industrial design and software engineering through constraints identification, solution space optimisation
and reuse. Proceedings of the ACM Symposium on Applied Computing, Madrid, Spain (pp. 732-738).

Bridging industrial design and software engineering
through constraints identification,

solution space optimisation and reuse.

Denis Besnard
Centre for Software Reliability

Department of Computing Science
University of Newcastle upon Tyne

Newcastle upon Tyne NE1 7RU, UK
tel. 00 +44 (0) 191 222 8058

Denis.Besnard@ncl.ac.uk

Anthony T. Lawrie
Centre for Software Reliability

Department of Computing Science
University of Newcastle upon Tyne

Newcastle upon Tyne NE1 7RU, UK
tel. 00 +44 (0) 191 222 6858
A.T.Lawrie@ncl.ac.uk

ABSTRACT
Design is a complex activity that can be analysed from a wide
variety of perspectives. This paper attempts to look at the individual
problem solving process, taking into account psychological
arguments. We characterise some of the phases involved in the
design process, namely the constraints identification, the
optimisation of solution space and the reuse process. We highlight a
three-dimensional framework of how the constraints identification
impacts on the solution space which, in turn, determines the range
of the components that will be eligible for reuse. We discuss this
argument through examples from both inside and outside the
software engineering field.

Categories and Subject Descriptors

General Terms
Design; Human Factors

Keywords*
Industrial design, software enginering, cognitive psychology,
human-error, design faults.

1 INTRODUCTION
Due to the inherent complexity of industrial-scale software
engineering, the development of software artefacts usually relies
upon collaboration of cognitive skills that can only be provided
through group effort [1]. Furthermore, with the ongoing
proliferation of information and communications technology, the
potential for greater collaboration has become even more prevalent
with the increase of distributed development teams [2] and the
emergence of Open Source Software development communities
[3].
Despite these trends, both long-established literature [4] and
contemporary industrial research [5] reveals that a significant part
of software development work remains subsumed in individual
cognitive activity. Moreover, although many useful analysis and
design methods/techniques have been pioneered in software

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.

SAC 2002, Madrid, Spain
© 2202 ACM 1-58113-445-2/02/03...$5.00.

engineering’s relatively short history (see [6, 7, 8]), the inherent
conceptual nature of software [9] ensures that its construction
continues to rely upon a ‘craft-based’ element of individual
creativity, experience, and skill [10]. However, this over-reliance on
individual human capabilities frequently results in system failure(s)
caused through discrete human-design faults made during the
development and/or maintenance phases of computer-based
systems [11]. Whilst these characteristics set software engineering
apart from classical engineering, it has also been argued that
important lessons can still be learned from more mature disciplines
[12, 13]. This is the philosophy of our paper also.

In respect to these concerns and characteristics of software
engineering, this paper focuses attention upon the role of individual
cognition and its potential for optimizing or degrading the design of
software in computer-based systems. This involves drawing upon
well established psychological research to emphasize a) the
importance of constraints identification, b) its resulting influence
upon solution finding and c) knowledge reuse during the design
phase. These will be the three main areas covered in this paper. To
exemplify our conceptions we draw upon both successes and
failures in traditional and software engineering domains.

2 DESIGN: A COGNITIVE ACTIVITY
APPROACH

Designing can be approached as a problem solving activity [8, 10]
and analysed insightfully from a cognitive perspective [14, 15, 16].
Here, it mainly consists in discovering a solution that addresses a
design objective, namely, by identifying the constraints imposed by
both explicit requirements and knowledge assumptions, seeking
options in a solution space, and investigating the possibilities for
reuse of previous solutions.
From a cognitive standpoint, design implies achieving a potentially
fuzzy goal [17] that admits a variety of solutions [18]. Under this
angle, designing implies finding paths in a solution space1, the latter
being defined as the total number of possible intermediate steps that
exist between the statement of the problem and its solution [19, 20].
Solving a design problem is particular in the sense that the solution
space can be enormous, however some solutions to a given problem
may already exist. So there is justifiably great interest in attempting
solution reuse, for cost or time reasons [21].

1 Psychologists usually prefer the term search space.

In this paper, we adopt a human-centred view about design.
Cognitive psychology provides a rewarding theoretical framework
to explore problem solving where we revisit the activity of design
and propose a three dimensional framework. Obviously, because of
our individualistic psychological view of design, we do not
consider other important influences (e.g. process feedback,
organisational; see respectively [22, 23]).

3 A THREE-DIMENSIONAL
APPROACH TO DESIGN

We wish to investigate three areas which we think can shed some
light on the design process. Thus, the next three sub-sections will
namely address a) constraints identification, b) optimisation of the
solution space and c) solution reuse.
In our view, the complete set of design constraints involves
identification of both explicit constraints (i.e. user/customer
imposed requirements) and implicit constraints (i.e. the designer's
technical interpretation of these explicit constraints). However, it is
important that the reader is aware that our interpretation and usage
of the term ‘constraints’ is purely technical, in nature. It relates
solely to functional attributes of the artefact and not to non-
functional attributes (such as budget, schedule, tools used etc.;
important though they still are [24]).

3.1 The Identification of the Explicit
Constraints Imposed by Requirements

Accurately identifying the constraints at early stages of the design
process is of major importance as it impacts on the solution space

(see section 3.2). If one introduces invalid constraints for the
realisation of an artefact, the solution space will be narrowed down
exaggeratedly, leading to a disregard for viable options.
Conversely, if all the valid constraints are not identified, then the
solution space erroneously widens, introducing unviable options. In
order to give a more concrete view of these design conceptions, we
will now consider an engineering example: the Tacoma Narrows
bridge, in the USA.

The Tacoma Narrows bridge2
In 1940, this bridge had to establish a 2800-feet road link above
Puget sound. Due to the strong winds present in the Narrows, the
Washington Department of Highways had proposed a suspension
bridge with a 25-foot-deep truss along the roadway, for a
construction cost of $11 million. However, two engineers, Leon
Moiseiff and Fred Lienhard, had put into practice a new
mathematical theory (the deflection theory) for calculating loads
and wind forces for suspension bridges. This new theory allowed
them to reduce the amount of stiffening material from 25-foot
trusses to 8-foot girders. The construction costs dropped to $6.4
million and this design solution was adopted. However, the novel
design caused the bridge to be excessively flexible and despite the
checking cables that were added to it after its opening, it collapsed
some 5 months later. The investigation of the cause of the failure
concluded that ignorance of the actual dynamic effects of wind
loads was a significant factor in the accident. Even if some bridges
whose design relied on this theory were still standing, it was
unsuitable for bridge building in the context of the Tacoma
Narrows. The constraint that was not accurately identified was the
degree of influence of wind loads on the bridge structure, in the
context of the Narrows. It caused the designer to consider the
deflection theory as a viable design option.

2 Unless otherwise noted, the source for the material exposed in
this section is in [13].

The best-known cause of human cognition failure is the complexity
of a problem [25]. However, human error can also occur because
some important data has been disregarded in solving the problem.
The latter is well-known in diagnosis and troubleshooting by
doctors [26] or electronics operators [27]. Disregarding data is
relevant to the design phase also. Bonnardel and Summer [28]
asserted that experienced designers may forget to consider certain
criteria for assessing features from a different perspective.
Psychologically, this error is underpinned by the designer activating
an experience-driven knowledge base (a schema [29]) that does not
accurately reflect the actual problem [30, 26]. When this occurs, the
solution space may be wider or narrower than what is technically
optimal, leading the designers to search for solutions in a set that
comprises either unviable options or excluding the discovery of
viable alternatives3. It is therefore important to emphasize the
critical role of the identification of the constraints from the initial
set of explicit requirements.

In this subsection, we have exposed our ideas about constraints and
how errors in their identification could be accounted for by a simple
cognitive framework. We are now going to show how constraints
are possibly linked to the solution space. This position will be
framed using the graphical version of the linear programming
technique. It will be used to highlight the function linking design
constraints and the solution space together.

3.2 Optimising the Solution Space.
Linear programming (LP) is a quantitative problem solving
technique that can be found in many mathematical texts (see [31])
and often included also in management decision-making literature
[32]. The technique is concerned with the quantitative optimisation
of an objective when the decision variables are subject to some
explicit and quantifiable constraints. The purpose of the following
LP scenario is not to advocate its use in software design decision-
making. Moreover, we do not wish to imply that software design
decision-making is strictly linear: the highly conceptual nature of
software development has long been considered as containing non-
linear characteristics [9]. Thus we do not assume that the design
process can be reduced to a linear mechanism. Instead we use the
graphical version of the LP technique as an iconic model ([33]
quoted by [24]) to represent visually the role of constraints
identification in optimising the solution space. Only the pertinent
details are included in the body of the paper. A full mathematical
breakdown of the scenario is provided in the Appendix. Interested
readers should consult [31] (chapters 17-20) for a more complete
coverage of using the LP technique.

Consider the following scenario:

A software company that manages its software development
operations along product lines and product families to maximize
software component and source code reuse. A software engineer,
as design authority, is assigned to lead the technical development
of the new software product. This new product requires both
novel and replicated functionality features. The explicit
requirements govern the designer’s initial investigation and
analysis of existing family related products to identify related
features that will provide a good design basis. After this initial
analysis, the designer identifies three related product components
as reuse candidates to begin with.

3 Erroneously widening or narrowing the solution space can be
caused by commission and omission errors, respectively (see
section 5).

Because this scenario involves the optimisation of only two
decision variables (i.e. design constraints and potential reuse
solutions) the graphical method of LP can be legitimately used. The
LP graph below (Figure 1) maps the linear and fixed limits to
illustrate the feasible region of the solution space for the LP
scenario just described. The fixed straight lines (D, E & F) illustrate
the explicit design requirements that were originally prioritised for
the new software product. The diagonal lines (A, B & C) represent
the linear relationships that exist between the design constraints and
design solutions for the three reuse candidates. Collectively, they
define the feasible solution region to search in.

The LP graph takes into account the optimisation of the feasible
solution region by identifying the maximal number of design
constraints that still permit the maximum number of viable

solutions to be considered (see Figure 3, section 5). How to identify
this optimal solution point is clearly represented. It is achieved by
intersecting the rightmost diagonal line at the mid-point of the
feasible region from both horizontal and vertical axes at 90°. From
the graph, this is when 25 design constraints are identified, giving
37 viable reuse solutions4.

Figure 1: Determination of the optimal solution point with the
graphical linear programming method.

The graph in Figure 1 has some relevance with regards to the
transition from the identification of constraints to the choice for
solution reuse. Let us assume that the diagram reflects the optimal
solution space region for the design scenario set. If valid design
constraints are overlooked, this will erroneously widen the solution
space. It may then lead to the adoption of unsuitable design reuse
solutions that later fail during operation when the effects of critical
constraint omissions are experienced. Equally, admitting
redundant5 constraints will preclude viable potential solutions for
reuse or adaptation. This erroneous narrowing of the solution space

4 Please note that this technique is simplified here because none
of the decision variables involved contain coefficient factors.
5 The meaning of redundancy used here is the classical
definition of an unnecessary function/object, and not the usage
from the dependability community, meaning necessary
function/object for additional support and strengthening of a
system [34].

could result in unnecessary reinvention (and its consequent
increased costs). It can even become a barrier to innovation through
the designer(s) believing that the design problem set is unsolvable6.

The LP approach allows us to discuss the first stage in design
optimisation by demonstrating how disregarding or adding explicit
constraints affects the solution space7. This visual example aids
conceptualisation of the intuitive notion of the optimal point
between design constraints and solution options. It allows the
designer to be aware of this important trade-off and compare
several components against each other during the process of
solution reuse.
We have now exposed how the aim of optimising the solution
space could be established as a meta-design goal in its own right,
for designers. The next section will document and discuss the
potential catastrophic effects of deriving sub-optimal solution
regions to search in and the selection of subsequent design reuse in
software engineering. We will also briefly consider the fundamental
psychological concepts involved.

3.3 Reuse
In software engineering, reuse is becoming more and more
common practice8. Among other things, it is aimed at reducing
costs and development time [36]. McClure [37] asserts that most of
the code developed for an application is reusable in other
applications, because only small proportions are program-specific.
Nevertheless, software reuse must not be conceived as an
immediate cut-and-paste from one program into another, as it is
even unlikely that any component can be completely reused so
readily [8]. Rather, the decision for reuse is supported by a
compromise between the adaptability of the desired artefact, the
cost of restructuring it [38] and its context of reuse. Consequently,
poor reuse selection can frequently result in the cost of adapting an
existing piece of software being greater than the cost involved in
developing it from scratch [6]. These drawbacks of software
adaptability are well known to software programmers and designers
alike. They have become well established for a long time in the
literature (see [4]). However, the cost and time-saving benefits of
reusing software can prove so beneficial in large software
engineering projects that the actual software design process may
become overly reuse-driven. In some cases, such over reuse of
software can result in catastrophic operational failure. The case of
Ariane 5 explosion will now be discussed from this perspective.

The Ariane 5 failure9
On the 4th of June 1996, 42 seconds after take-off, Ariane 5 veered
off its trajectory to such an extent that the on-board self-abort
system triggered, causing the complete loss of the launcher. A piece

6 In practice, relaxing some of the constraints in order to
voluntarily widen the solution space is always a distinct
possibility. In this respect, we only take a snapshot and preclude
temporal change considerations.
7 Although we have solely adopted LP as a way to graphically
represent our theoretical position, some similarities can be
found with other models, e.g. dealing with the negotiation of
requirements (see for instance the Win Win model by Boehm et
al. [35]).
8 Although we are aware of ad hoc forms as well as
systematised forms of reuse, we wish to keep a generalised
view on it. In our conception, the cognitive factors involved are
generic, transcending the reuse mode itself.
9 Unless otherwise noted, the source for the material in this
section is in [39].

C

Feasible
Region

120

110

100

90

80

50

70

60

40

30

20

10

20 50 10 30 40 60 70 80 90 100 110 120

Optimal
Solution Point

A B C

D

E F

Design
Constraints

Design Solutions

of software (the inertial reference system), dedicated to keeping the
launcher on trajectory during the early phase of the flight, was
reused from the previous launcher Ariane 4. Due to Ariane 5
having a different behaviour on the first seconds of the flight,
unusual horizontal velocity values were generated. One of the faults
identified resulted from a) some modules from Ariane 4 not being
verified for exceptions when reused and b) in the faulty belief that
the safety margin was large enough so that the software could
handle the new values.

Cognitive psychology analyses reuse from the point of view of
reasoning by analogy [18]. In this view, solving a problem is
achieved by identifying some similarities between the current
problem (the target problem) and one that has been solved in the
past (the source problem) [40, 41, 42]. One of the causes of errors
lies in the possibility of not identifying important data in the source
problem [43] or neglecting some discrepancies between the two

problems' structures. The quality of the schema (see section 3.1)
used by the designer is of relevance here. It may trigger itself in
sub-optimal conditions, causing the analogical reasoning to be
flawed.
On the other hand, reuse is usually performed with testing and
validation procedures, reducing the possibilities of such errors. So,
beyond a mere individual explanation of reuse errors, the Ariane 5
accident can be seen as an example of a latent10 reuse fault [23, 34].
In the case of Ariane 4, the horizontal velocity values could
virtually not go beyond the limits present in the software. So,
during the development of the inertial reference system it was
decided that protecting it from being made inoperative by excessive
horizontal velocity values was not necessary11. It only became a
problem when the inertial reference system software was reused.

4 DESCRIBING SUCCESSFUL DESIGNS
So far we have presented our three dimensional view of design in a
negative light: the potential for both design errors and barriers to
innovation through sub-optimising the solution space. However,
this need not be so. In the two cases that follow, we emphasise how
our conception of design can explain innovative solution finding
also. To maintain a symmetrical balance of cases used we will draw
again on bridge building and computer orientated design problems.

The Millennium bridge, Newcastle upon Tyne, UK12
As is often the case in design, the challenge was finding a novel
solution that would compromise optimally all the explicit
constraints. This is recognised as 'innovative design [10]. The
Millennium bridge would explicitly have to:

1. provide cross-river access to pedestrians and cyclists;
2. link the quaysides at only 4-5m above the Tyne level;
3. allow 25m of headroom over a 30m-wide navigation channel;
4. preclude any construction on the quays themselves;
5. show some novelty.

In terms of explicit technical constraints, the access to the bridge by
pedestrians and cyclists implied that the bridge had to be built at the
road level. But the needed 25m headroom for allowing ships to pass
eliminated the possibility of a fixed flat pathway. Moreover, being
barred from building anything on the quays themselves and having

10 Computing scientists will prefer the term dormant fault.
11 Although the consequences of this decision were not fully
understood.
12 Unless otherwise noted, the source for the material in this
section is in [44].

to provide a novel design surely precluded numerous reuse
solutions such as swinging or opening bridges. The solution that the
designers found was a curved pathway crossing that would be
suspended by another curve. Then tilting them altogether like the
visor of a helmet or a blinking eyelid would create enough head
room for bigger boats to pass (Figure 2).

Figure 2: The Millennium bridge. Technical diagram (Clark &
Eyre [44]).

Although it is a suitable solution for most bridges, Clarke and Eyre
[44] explain that it was impossible to build a straight bridge that
would satisfy all the requirements. But if you erroneously continue
with such an idea, you will be forced to violate some explicit
constraints.

The 32-bit memory architecture of the Eagle computer13
The design of the 32-bit Eagle architecture (in the early 1980s)
necessitated trading-off between constraints and reusable solutions.
In this case, a single designer had to design a pioneering 32-bit
memory architecture and provide time-sharing security protection.
Thus, the design had to integrate these two main explicit
constraints, narrowing the solution space dramatically. One existing
reuse solution (which would have violated explicit constraints)
would have been to provide both memory location and security
protection using separate security rings and memory addresses.
Through critically exploring the various possibilities within the
feasible solution space the designer innovatively perceived that the
first 3-bits of the memory address could be used to represent both
segment and ring number. With such a solution, the memory
segment addresses, themselves, would indicate which areas of
memory were to be restricted. Moreover, the implementation of this
solution would provide 8 levels of security and intrinsically protect
memory allocation. The innovative adaptation of established
memory protection not only optimised explicit functional
constraints but also non functional aspects, as the architecture also
proved to be a simpler, cheaper, more efficient and more reliable
system than any design previously. Again, in Tekinerdogan's view
[10], this is innovative design.

These design successes above now allow us to discuss the second
stage (implicit constraints) in design optimisation. In both cases, the
task of the designer is to find a way to focus and merge explicit
constraints in such a way as to allow the determination of an
optimal solution. In this respect, two different designers designing

13 Unless otherwise noted, the source for the material exposed
in this section is in [45].

two different types of artefacts faced the same inevitable design
challenge. In each case they needed to critically explore the feasible
region guided by the explicit constraints imposed by user/customer
requirements. However, more importantly, they were able to
remove implicit constraints through questioning the possible
validity or adaptability of existing engineering practice and design
knowledge. In the case of the Millennium Bridge this was going
beyond the design assumption that all bridge crossings must be
straight. In the case of the 32-bit Eagle architecture it was
disregarding the design assumption that memory segments and
security rings must be separately represented in the architecture.
Once the designers began to question these broad categories of
established knowledge, they optimised the solution space by
widening it to include innovative and viable solution options. This
stands in stark contrast to widening the solution space erroneously
through omissions, ignorance, or oversight, as was the case with the
Tacoma bridge and Ariane-5.

5 GENERAL DISCUSSION
Having considered comparable design success and failure cases
using our 3-dimensional view, we can now define what we mean
by an optimal solution space and its implications for both
dependable and innovative engineering design:

1. At the explicit constraint level, this is when there exists no
error of omission in the constraint identification process i.e. all
valid explicit constraints are fully employed in defining the
solution space to be searched.

2. At the implicit constraint level, this is when there exist no error
of commission (i.e. intrusion of superfluous cognitive design
paradigms) which would result in the persistence of redundant
constraints that restrict the act of searching for an optimal
solution. When this is achieved, as shown in Figure 3, it provides
the maximal degrees of freedom and minimal degrees of
restriction in finding an innovative design solution.

It is believed that design is progressively redirected and refined by
integrating constraints imposed by a design option. As illustrated
below, we think that constraints are spread over a continuum. The
more constraints there are, the less possible solutions there are,
meaning the more you have to trade-off with exiting a solution. The
other end of the spectrum is a design region where there is no
constraint at all. In such conditions, there is no problem either since
a problem is defined by the constraints themselves. Error!

Figure 3: Constraints continuum

Thus, the complexity of a design problem can be thought of in
terms of degrees of restriction and freedom allowed by the set of
constraints imposed. As the Tacoma Narrows bridge example
showed, design error(s) can be due to allowing too much freedom
to your design by neglecting valid constraints. As far as the
optimisation of the solution space is concerned, we have exposed
our position relying on an iconic linear programming

representation. This conception graphically represented the area
where possible solutions exist (i.e. feasible region) and what the
characteristics (in terms of constraints and solutions) of the optimal
solutions are. We think that it is a straightforward and clear way to
represent what could remain at a fuzzy and non-verbalisable state in
the designer's mind: the concept of the optimal solution space.

Although we have highlighted its potential negative effects, reusing
previous solutions is vital in problem solving. Classically, it is said
to improve control and provide great time and cost savings. As
such, it has an economically attractive approach in all engineering
disciplines. In commercial development contexts, the design
process itself is often reuse-driven. However, this policy must not
preclude the careful identification of constraints. It is only when the
latter have been identified that reuse can have its most powerful and
profitable impact on the design process. Considering a component
for reuse without having carefully identified the constraints inherent
to the concerned problem is a mistake for it scales down
comprehension of design to what the component to reuse can offer.
As already shown in the cases provided, an erroneous reuse-driven
design approach can provoke long term losses to be hidden by
seeking short-term benefits.

6 LIMITS
Whilst individual cognition plays a critical role in many
engineering disciplines (particularly software engineering), the
framework precludes consideration of the many group [46],
political, economic, management and cultural influences [47] that
are often identified as significant negative and positive influences of
unsuccessful and successful design undertakings. Furthermore, our
3-dimensional framework assumes that explicit requirement
constraints can be readily and clearly elicited and understood to
begin with. Yet, because of the highly complex and intangible
nature of software, the elicitation of requirements has proved to be
an error prone task in software engineering. In relation to the many
design and specification changes that this can cause, our conceptual
framework is largely static and does not reflect the many
requirements changes that may take place throughout the design
phase. Both of these real-world factors would have an uncertain
effect upon our conceptual framework, as described in this paper.
Nevertheless, we believe that what we have provided is a kind of
meta-design goal that is sufficiently generic to provide the
individual designer with some conceptual reference point of the
salient factors to be considered and aimed for during the design
stage.

7 FURTHER RESEARCH
Two orthogonal design strategies can be roughly identified. One is
constraint-driven, ensuring that functional optimisation guides the
design process. The other is reuse driven, which is directed by non-
functional aspects (costs, schedule, etc.). It would be interesting to
know if such factors as visibility of constraints or complexity of the
problem can influence the balance between these two strategies.
Another potential direction for research is discovering the factors
leading a designer to disregard or introduce some constraints in the
design process. A solution to this form of human error could then
be extremely valuable in helping to prevent computer-related
failures and thereby further improve the dependability of computer-
based systems through increased error avoidance [48, 49, 34].

8 CONCLUSION
In concluding this paper it is appropriate to document what value
we believe our 3-dimensional design framework adds to the role of
design. Our paper first seeks to raise awareness of the importance

No
solution
region

No

problem
region

Increasing degrees of freedom

Increasing degrees of restriction

Design Constraints

of individual cognition in influencing the success or failure of
software design in computer based systems. Secondly, within this
scope, we have provided the beginnings of a simple, yet useful,
conceptual framework that considers the important and inter-related
factors of: constraints identification; solution space optimisation;
and design reuse. It is believed also, that this framework is
sufficiently generic to act as a meta-conception of what the designer
should aim for during the design of both physical and conceptual
artefacts. Thirdly, as the design of software systems becomes
evermore focused upon processes that build software systems from
code-reuse and commercial off-the-shelf components (COTS), the
nature of design, itself, will become less create-orientated and even
more reuse and selection-orientated. Here, we would argue that we
have demonstrated the importance of both explicit and implicit
constraint identification in providing a set of conceptual criteria for
guiding this selection and reuse approach. Lastly, we hope by using
cross engineering examples and drawing upon multiple disciplines
of engineering, psychology, and mathematics for our arguments we
have also helped demonstrate the importance and usefulness of an
interdisciplinary approach in explaining and exploring individual
cognition and its role in classical and software engineering design.

9 ACKNOWLEDGEMENTS
This paper was written at the University of Newcastle upon Tyne
within the DIRC project (http://www.dirc.org.uk) on dependability
of computer-based systems. The authors wish to thank Prof. Cliff
Jones for his influencing initial design comments that helped
motivate the writing of this paper. The authors also wish to thank
Budi Arief, Jim Armstrong, Cristina Gacek and anonymous
reviewers for useful comments; and the sponsor EPSRC for
funding this research.

10 REFERENCES
[1] Sallis, P., Tate, G. & MacDonell, S. (1995). Software

Engineering: Practice, Management, Improvement. Addison-
Wesley, Sydney, Australia.

[2] Herbsleb, J. D., Finholt, T. A., & Grinter, R. E. (2001). An
Empirical Study of Global Software Development: Distance
and Speed. Proceedings of the 23rd International Conference
of Software Engineering, Toronto, Canada, 12-19th May 2001
(pp. 81-90).

[3] Raymond, E. S. (1999) The Cathedral and the Bazaar:
Musings on Linux and Open Source by an Accidental
Revolutionary. O’Rielly & Associates, California, USA.

[4] Weinberg, G. M. (1971). The psychology of computer
programming. Van Nostrand Reinhold, London.

[5] Robillard, N. & Robillard, P. (2000). Types of collaborative
work in software engineering. The Journal of Systems and
Software, 53, 219-224.

[6] Pressman, R. S. (1992). Software engineering. A
practitioner's approach. McGraw-Hill, London.

[7] Bell, D. (2000). Software engineering: A programming
approach. 3rd edition. Addison-Wesley, U.K.

[8] Sommerville, I. (2001). Software engineering. Sixth edition.
Addison-Wesley, Wokingham, UK.

[9] Brooks, F. P. (1995). The mythical man month: Essays on
software engineering. Anniversary Edition. Addison-Wesley,
New York, NY.

[10] Tekinerdogan, B. (2000). Synthesis-Based Software
Architecture Design, PhD thesis, Dept. of Computer Science,
University of Twente, The Netherlands.

[11] Health & Safety Committee (1998). The use of computers in
safety-critical applications. HMSO, UK.

[12] Leveson, N. (1994). High pressure steam engines and
computer software. IEEE Computer, 27, 65-73.

[13] Holloway, C. M. (1999). From bridges and rockets. Lessons
for software systems. Proceedings of the 17th International
System Safety Conference, August 1999 (pp. 598-608).

[14] Brooks, R (1999). Towards a theory of the cognitive
processes in computer programming. International Journal
in Human-Computer Studies, 51, 197-211.

[15] Von Maryhauser, A. & Vans, A., M. (1995). Program
comprehension during software maintenance and evolution.
Computer, 28, 44-55.

[16] Westerman, S. J., Shryane, N. M., Crawshaw, C. M. &
Hockey, G. R. J. (1997). Engineering cognitive diversity. in
F. Redmill & T. Anderson (Eds). Safer Systems. Proceedings
of the 5th Safety-critical Systems Symposium, Brighton, UK
(pp. 111-120).

[17] Whitefield, A. (1990). Human-computer interaction models
and their roles in the design of interactive systems. in P.
Falzon (Ed). Cognitive ergonomics: Understanding, learning
and designing human-computer interaction. Academic Press,
London (pp. 7-25).

[18] Burkhardt, J. M. & Détienne, F. (1994). La réutilisation en
génie logiciel: une définition d'un cadre de recherche en
ergonomie cognitive. In proceedings of ERGO IA 94,
Biarritz, France (pp. 83-95).

[19] Cordier, F., Denhière, G., George, C., Crépault, J., Hoc, J.-
M., Richard, J.-F. (1990). Connaissances et représentations.
in J.-F. Richard, C. Bonnet & R. Ghiglione: Traité de
psychologie cognitive 2. Bordas, Paris (pp. 35-102).

[20] Newell, A. & Simon, H., A. (1972). Human problem solving.
Englewood Cliffs, N.J., Prentice Hall.

[21] McDermid, J. (1991). Software engineer's reference book.
Butterworth-Heinerman, Oxford.

[22] Gilb, T. (2000). The ten most powerful principles for quality
in (software and) software organisations for dependable
systems. In F. Kornneef & M. Van der Meulen (Eds).
SAFECOMP 2000, Springer-Verlag, Heidelberg (pp. 1-13).

[23] Reason, J. (1995). Managing the risks of organisational
accidents. Aldershot, Ashgate.

[24] Jackson, M. (2001). Problem frames. Addison Welsey,
London, UK.

[25] Amalberti, R. (1996). La conduite de systèmes à risques.
Presses Universitaires de France, Paris.

[26] Schanteau, J. (1992). How much information does an expert
use? Is it relevant? Acta Psychologica, 51, 75-86.

[27] Besnard, D. (2000). Expert error. The case of troubleshooting
in electronics. In F. Kornneef & M. Van der Meulen (Eds).
SAFECOMP 2000, Springer-Verlag, Heidelberg (pp. 74-85).

[28] Bonnardel, N. & Summer, T. (1996). Supporting evaluation
in design. Acta Psychologica, 91, 221-244.

[29] Reason, J. (1990). Human error. Cambridge University
Press, Cambridge.

[30] Reason, J. (1987). A preliminary classification of mistakes. in
J. Rasmussen, K. Duncan & J. Leplat. (eds). New technology
and human error. John Wiley & Sons Ltd, Chichester.

[31] Lucey, T. (1992). Quantitative techniques. DP Publications,
UK.

[32] Cooke, S. & Slack, N. (1991). Making management
decisions. Prentice-Hall,UK.

[33] Ackoff, R. L. (1962). Scientific method: Optimizing applied
research decisions. Wiley.

[34] Randell, B. (2000). Facing up to faults. The Computer
Journal, 43, 95-106.

[35] Boehm, B., Egyed, A., Kwan, J., Port, D., Shah, A. &
Madachy, R. (1998). Using the Win Win spiral model: A
case study. IEEE Computer, 31, 33-44.

[36] Richards, D. (2000). The reuse of knowledge: a user-centred
approach. International Journal of Human-Computer
Studies, 52, 553-579.

[37] McClure, C. (1992). The three Rs of software automation.
Re-engineering, repository, reusability. Prentice Hall,
Englewoods Cliffs, NJ.

[38] Buratto, F. & Chabaud, C. (1994). Etude exploratoire du
processus de réutilisation de données chez un concepteur
d'achitecture informatique débutant. In proceedings of ERGO
IA 94, Biarritz, France (pp. 69-82).

[39] Lions, J. L. (1996). Ariane 5 Flight 501 failure. Report by the
enquiry board.
http://www.cs.berkeley.edu/~demmel/ma221/ariane5rep.html

[40] Catrambone, R. & Holyoak, K. J. (1989). Overcoming
contextual limitations on problem-solving transfer. Journal of
Experimental Psychology: Learning, memory and Cognition,
15, 1147-1156.

[41] Novick, L. R. & Holyoak, K. J. (1991). Mathematical
problem solving by analogy. Journal of Experimental
Psychology: Learning, Memory and Cognition, 17, 338-415.

[42] Gick, M. L. & McGarry, J. (1992). Learning from mistakes:
inducing analoguous solution failures to a source problem
produces later successes in analogical transfer. Journal of
Experimental Psychology, 18, 623-639.

[43] Novick, L. R. (1988). Analogical transfer, problem similarity
and expertise. Journal of Experimental Psychology:
Learning, Memory and Cognition, 14, 510-520.

[44] Clark, G. M. & Eyre, J. (2001). The Gateshead Millennium
bridge. The Structural Engineer, 79, 30-35.

[45] Kidder, T. (1981). The Soul of a New Machine. Back Bay
Books, USA.

[46] Carroll, J. (1997). Human computer interaction: psychology
as a science of design. International Journal of Human-
Computer Studies. 46, 501-522.

[47] Hollan, J., Hutchins, E. & Kirsh, D. (2000). Distributed
cognition: toward a new foundation for human-computer
interaction research. ACM Transactions on Computer-
Human Interaction, 7, 174-196.

[48] Laprie, J.-C. (1992). Dependability: Basic Concepts and
Terminology. Springer-Verlag Wien, New York.

[49] Neumann, P. G. (1995). Computer-related risks. Addison-
Wesley, New York, NY.

APPENDIX

A.1 Mathematical breakdown of linear
programming scenario (see section 3.2)

The role of design constraints and solution space optimization is
modeled as follows.

Overall design objective=Optimise the solution space through
constraints identification

Design objective function
f
(c, s)=Decision variables of :

 Design constraints (c) Design solutions (s)

The Table 1 below shows the designer's initial selection of
candidate product family components that provide an initial basis
for the prioritized constraints and solutions required for the new
product. These are expressed as overriding explicit design

requirements of the new product (see limitations D, E & F later
marked *).

Table 1: Initial component reuse selection

Component (A) (B) (C)
Constraints (c) 6 8 5
Solutions (s) 3 4 2
Derivative constraints &
solutions

畏 120 (c) 畏 100 (s) 為 200 (c)

The table expresses that component A provides a good basis for
satisfying 6 of the prioritized constraints and implementing 3
required solutions with the new product (i.e. these maybe quality
and performance factors such as portability throughout various
other product lines and derived families etc). The bottom row
illustrates that the component has been used in the past to satisfy
over 120 other product design constraints, illustrating the
reusability and flexibility of the component.

A.2 Design Limitations
Using the Linear Programming format, we can now illustrate the
design limits, as follows:Design optimisation = c + s.
The optimisation function is subject to the following limitations
(A,B,C from Table 1 above):

(A)= 6c + 3 s畏 120 Product Line/Family Constraints
(B)= 8 c + 4 s 畏 100 Product Line/Family Solutions
(C) = 5 c + 2 s 為 200 Product Line/Family Constraints

The following represent the overriding fixed/explicit constraints
originally set for the new software product.

(D)= c 畏 10 Explicit Constraints Satisfied (*)
(E)= s 畏 8 Explicit Solutions Satisfied (*)
(F)= s 為 65 Product Line/Family Solutions to be
 Considered (*)

The linearity of design constraints and design solutions can now be
exemplified by representing one dimension as zero, and the other
dimensions' coefficient as the denominator of the limitation factor.
This is done for the reuse components (A), (B), & (C) as follows:

Reuse component A

 Where c = 0 then s = 40 (i.e. 120/3)
 Where s = 0 then c = 20 (i.e. 120/6)

This carried-out for reuse components 2 & 3 gives:

 Reuse component B c = 12.5 & s = 25
 Reuse component C c = 40 & s = 100

The other constraints (D), (E), & (F) are all fixed to one dimension.
All of these values are then plotted on the graph to identify the
feasible solution region (see diagram in section 3.2.).

