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Abstract This work is concerned with the characterization of the statistical de-
pendence between the components of random elasticity tensors that exhibit some
given material symmetries. Such an issue has historically been addressed with no
particular reliance on probabilistic reasoning, ending up in almost all cases with
independent (or even some deterministic) variables. Therefore, we propose a con-
tribution to the field by having recourse to the Information Theory. Specifically,
we first introduce a probabilistic methodology that allows for such a dependence
to be rigorously characterized and which relies on the Maximum Entropy (Max-
Ent) principle. We then discuss the induced dependence for the highest levels of
elastic symmetries, ranging from isotropy to orthotropy. It is shown for instance
that for the isotropic class, the bulk and shear moduli turn out to be independent
Gamma-distributed random variables, whereas the associated stochastic Young
modulus and Poisson ratio are statistically dependent random variables.
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1 Introduction

This work is devoted to the characterization of the statistical dependence for the
components of random elasticity tensors. Such randomness can be encountered for
several reasons, among which:

– The presence of uncertainties while modeling the experimental setup in either
forward simulations or inverse identification.

– The lack of scale separation for heterogeneous random materials, hence result-
ing in the consideration of mesoscopic, apparent properties.

In the former case, one may consider uncertainties on a macroscopic elasticity
tensor, whereas the second situation may involve the construction of probabilistic
models for mesoscale random fields with values in the set of elasticity tensors (see
[16] and the references therein). In practice, such a construction can be carried
out by introducing a non-linear transformation acting on a set of homogeneous
Gaussian random fields (see [24] for details about the overall methodology, as
well as [4] [5] [6] for further applications to random fields of elasticity tensors).
The aforementioned mapping can be defined by specifying the family of first-
order marginal distributions for the random field and thus requires the probability
distribution of random elasticity tensors to be defined. In this paper, we focus on
the stochastic modeling of elasticity tensors which exhibit a.s. (almost surely) some
material symmetry properties. In such cases, one typically wonders whether or not
the considered elastic moduli may be modeled as dependent random variables: are
the random Young modulus and Poisson ratio, associated with random isotropic
tensors, statistically dependent? If so, how should such a dependence be integrated
without introducing any modeling bias (i.e. model uncertainties)?

In this context, uncertainty propagation is often based on strong assumptions
regarding the probability distributions, which are mostly chosen for the sake of
theoretical and numerical convenience rather than deduced from a probabilistic
reasoning. Consequently, such models arguably suffer from end-user’s subjectivity
and may be questionable from both a mechanical and mathematical standpoint.

In this work, we address such an issue from the point of view of Information

Theory and construct a prior stochastic model for the elasticity tensor. More specif-
ically, we introduce a probabilistic methodology, based on a particular decompo-
sition of the elasticity tensors, which allows for the aforementioned dependence to
be rigorously characterized and discussed for the highest levels of elastic symme-
tries, ranging from isotropy to orthotropy (see [2], among others, for a discussion
about the definition of such symmetries). Fundamental mathematical properties
of random elasticity tensors, such as variance finiteness, are further taken into
account in order to ensure the physical consistency of the model.

This paper is organized as follows. Sect. 2 is devoted to the overall probabilis-
tic methodology. In particular, the tensor decomposition is introduced and the
framework of Information Theory, together with the Maximum Entropy principle,
is briefly stated. The induced general form for the prior probability distributions
of the random components is then explicitly given. In Sect. 3, we derive the prob-
ability distributions for the random components of elasticity tensors exhibiting
various symmetry properties and highlight the resulting statistical dependence. It
is shown that the latter depends on the retained parametrization (i.e. on the choice
of the tensor decomposition), as well as on the considered class of symmetry.



Statistical dependence for the components of random elasticity tensors 3

2 Probabilistic modeling of elasticity tensors

2.1 Notations

Throughout this paper, we use double (e.g. [[C]]) and single (e.g. [C]) brackets
to denote fourth-order and second-order elasticity tensors respectively, the latter
being defined with respect to the Kelvin matrix representation (see [13] for a
discussion). We denote by M+

n (R) the set of all the (n×n) real symmetric positive-
definite matrices.

2.2 Tensor decomposition

Let Ela be the set of all the fourth-order elasticity tensors verifying the usual
properties of symmetries and positiveness. Hereafter, we denote by Elasym ⊆ Ela
the subset of all the fourth-order elasticity tensors belonging to the material sym-
metry class ‘sym’. It is well-known that any element [[Csym]] ∈ Elasym can be
decomposed as

[[Csym]] =
N∑
i=1

ci[[Esym
(i)]], (1)

where {[[Esym
(i)]]}Ni=1 is a tensor basis of Elasym and {ci}Ni=1 is a set of coefficients

satisfying some algebraic properties related to the positiveness of [[Csym]].
Extending the aforementioned decomposition to the case of random elasticity

tensors, we then denote by [[Csym]] the random variable with values in Elasym,
the probability distribution of which is sought, and similarly write

[[Csym]] =
N∑
i=1

Ci[[Esym
(i)]], (2)

where {Ci}Ni=1 is now a set of random variables whose probability distributions
and mutual statistical dependence must be defined.

The definition of tensor basis for various classes of symmetry has been largely
investigated within the past four decades and we refer the interested reader to the
literature available on this subject (see Section II.B of [28], as well as [11]). In this
paper, we make use of Walpole’s derivations and follow the notations and formalism
proposed in [27], allowing for simplified algebraic operations on tensors in Ela. Such
representations have been used to define projection operators onto subsets of Ela
with given symmetries in [15], for instance. For the sake of self-readability, the
expressions for tensor basis {[[Esym

(i)]]}Ni=1 will be recalled for all the symmetry
classes investigated in Sect. 3. A stochastic elasticity matrix [Csym] can then be
modeled as a Msym

n (R)-valued random variable (with Msym
n (R) ⊆M+

n (R)) and can
be written as

[Csym] =
N∑
i=1

Ci[Esym
(i)], (3)

wherein [Esym
(i)] is the deterministic matrix representation of the fourth-order

basis tensor [[Esym
(i)]] (which is not orthonormal, except for the isotropic case

[27]) and Msym
n (R) = span([Esym

(1)], . . . , [Esym
(N)]). Thus, the construction of a
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probabilistic model for the random elasticity tensor [[Csym]] is strictly equivalent
to the construction of a model for the random coordinates C1, . . ., CN , and such
an issue is now to be addressed in Sect. 2.3.

2.3 Methodology for the probabilistic model derivation

Let C = (C1, . . . , CN ) be the RN -valued second-order random variable correspond-
ing to the modeling of the random coordinates of [Csym] onto {[Esym

(i)]}Ni=1.
We denote by PC its unknown probability distribution, which is defined by a
probability density function (p.d.f.) pC with respect to the Lebesgue measure
dc = dc1 . . .dcN , PC(dc) = pC(c)dc. We denote by S the support of pC. It is
worthwhile to note that because of the a.s. positive-definiteness of [Csym], S is a
part, possibly unbounded, of RN , the definition of which basically depends on the
considered material symmetry class.

The prior probability model for random vector C is constructed by having re-
course to the Maximum Entropy (MaxEnt) principle, which is a general stochastic
optimization procedure derived within the framework of Information Theory [20]
and which allows for the explicit construction of probability distributions under a
set of constraints defining some available information [7] [8]. The definition of the
latter turns out to be the cornerstone of the approach, for it aims at ensuring the
objectivity of the model. At this stage of writing, let us simply assume that all the
constraints related to such information can be put in the form of a mathematical
expectation:

E{f(C)} = h, (4)

where c 7→ f(c) is a given measurable mapping from RN into Rq and h is a given
vector in Rq. It is assumed that one of the constraints in Eq. (4) corresponds to
the normalization condition of the p.d.f. (see Eq. (8)). Let Cad be the set of all the
integrable functions from S ⊂ RN into R+ such that Eq. (4) is satisfied and let
E(p) be the so-called Shannon measure of entropy of p.d.f. p:

E(p) = −
∫
S
p(c) ln(p(c)) dc. (5)

The MaxEnt principle then reads:

pC = arg max
p∈Cad

E(p). (6)

In other words, the probability density function estimated by the MaxEnt princi-
ple is the function which maximizes the uncertainties under the set of constraints
stated by Eq. (4). Consequently, this approach is intended to yield the most ob-
jective probabilistic model and has been successfully used in various fields of ap-
plication (see [10] [9] [21] and the references therein, for instance). We assume
that the optimization problem stated by Eq. (6) is well-posed in the sense that
the above constraints are algebraically independent (see Appendix B), so that the
optimization problem given by Eq. (6) admits at most one solution. Under this
assumption (which is satisfied hereafter), the general form of the solution for the
stochastic optimization problem (6) can be obtained by introducing a set of La-
grange multipliers and by proceeding to the calculus of variations, whereas the
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uniqueness of the solution Lagrange multiplier (the existence of which must be
studied) can be deduced from a standard argument of optimization for a strictly
convex function which is associated with E and the constraints (see Appendix B
for the construction of such a strictly convex function). Below, we assume that
such a solution Lagrange multiplier exists (see the discussion in Appendix B).

In the case of elasticity tensors, three fundamental properties are worth taking
into account, that are:

P1: the mean value of the tensor, denoted by [Csym], is given (and could correspond
to the nominal, expected value);

P2: the elasticity tensor, as well as its inverse, has a finite second-order moment
(for physical consistency);

P3: the p.d.f. pC satisfies the usual normalization condition.

Although additional information could be considered, the information defined
above basically corresponds to the most basic properties satisfied by [C] (since
P2 and P3 are a.s. mathematical properties and P1 corresponds to the very first
property that may be estimated from experimental measurements) and thus, the
consequence of such constraints on the statistical dependence of the random com-
ponents is of primary importance. Mathematically, the properties P1 and P3 can
be written as

E{C} = c, c = (c1, . . . , cN ) (7)

and ∫
S
pC(c) dc = 1, (8)

while the second property P2 can be stated as (see [22] [23]):

E

{
log

(
det

(
N∑
i=1

Ci[Esym
(i)]

))}
= νC, |νC| < +∞, (9)

where νC is a given parameter (q = N+2). Let λ(1) ∈ Aλ(1) ⊂ RN , λ(2) ∈ Aλ(2) ⊂ R
and λ(0) ∈ R+ be the Lagrange multipliers associated with constraints (7), (9) and

(8) respectively. Let λ = (λ(1), λ(2)) ∈ Aλ, with Aλ = Aλ(1) × Aλ(2) , and let λ
(0)
sol

and λsol = (λ
(1)
sol , λ

(2)
sol ) be the solution Lagrange multipliers such that Eqs. (8), (7)

and (9) are satisfied. It can be shown that the p.d.f. pC takes the general form (see
also [7] for random vectors and [1] for similar results in case of random matrices
[14], for instance)

pC(c) = 1S(c)ksol exp{− < λsol,g(c) >RN+1}, (10)

in which:

– c 7→ 1S(c) is the characteristic function of S, i.e. 1S(c) = 1 if c ∈ S, 0 otherwise;

– ksol = exp{−λ(0)sol} is the normalization constant;

– c 7→ g(c) is the mapping defined on S, with values in RN+1, such that g(c) =
(c, ϕ(c));

– the mapping ϕ : S −→ R is given by

ϕ(c) = log

(
det

(
N∑
i=1

ci[Esym
(i)]

))
. (11)
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The existence of the lagrange multiplier λsol (as well as its value, should it exist)
can be numerically studied, either by substituting λ for λsol in Eq. (10) and by
minimizing (with respect to some given metric) the discrepancy between the left-
and right-hand sides of Eqs. (7) and (9), or by minimizing the convex function
introduced in Appendix B. The mathematical expectations can be computed by
using a numerical Monte Carlo integration, for instance. In addition, this approach
requires the use of an efficient random generator and the use of a Markov Chain
Monte Carlo technique [18] is a natural choice to this aim [25]. It should be noticed
that the admissible space Aλ for the Lagrange multipliers must be defined in
order to preserve the integrability of the p.d.f. (10) at both the origin and infinity.
Once the p.d.f. has been determined (by solving Eq. (6)), it can then be seen in
practice that the level of statistical fluctuations of the random elasticity matrix,
characterized by a scalar parameter δC defined as

δ2C = E{‖[Csym]− [Csym]‖2F}/‖[Csym]‖2F, (12)

depends on the prescribed mean value c and on the Lagrange multiplier associated
with the constraint given by Eq. (9) (see [22]). The constant νC could therefore
be reparametrized in terms of the mean value c and dispersion parameter δC.

The p.d.f. pC can be finally rewritten as:

pC(c) = 1S(c)ksol exp
{
−λ(2)solϕ(c)

} N∏
i=1

exp
{
−λ(1)sol i

ci

}
. (13)

The statistical dependence of the random components can then be characterized, in
view of Eq. (13), by studying the separability of mapping c 7→ ϕ(c). It is interesting
to note that this dependence intrinsically depends on the retained parametrization,
as the latter yields a particular form for the determinant involved in the definition
of the mapping ϕ (see Eq. (11)).

Before discussing such an issue further, it is instructive to note that typi-
cal assumptions used in practical applications consist in imposing the mean and
second-order moments of all the random coordinates. In this case, a straightfor-
ward analogy with the previous derivations allows us to write the p.d.f. pC as

pC(c) = 1S(c)k
N∏
i=1

exp
{
−λ(1)sol i

ci − λ
(2)
sol i

ci
2
}
, (14)

where λ
(2)
sol ∈ Aλ(2) ⊆ RN is the Lagrange multiplier associated with the constraint

on second-order moments and k is the normalization constant. Using such infor-
mation, one therefore ends up with random coordinates whose mutual statistical
dependence can be defined by studying the separability of c 7→ 1S(c). Subse-
quently, it will be shown that the invertibility constraint stated by P2, which is
absolutely fundamental in order to ensure physical consistency, also creates some
statistical dependence structure that is specific to the symmetry class.

In the next section, we investigate the statistical dependence between the ran-
dom coefficients induced by the MaxEnt principle (for which the available informa-
tion is stated by properties P1, P2 and P3), for the sixth highest levels of material
symmetry (i.e. from isotropic to orthotropic symmetries). The case of the mono-
clinic symmetry is less attractive, since it is barely encountered in practice (except
for crystallographic considerations), and the case of triclinic materials has been
considered in [26].
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Remark on correlation structure. Let [[R]] be the fourth-order covariance tensor of
random matrix [C], defined as:

[[R]] = E{([C]− [C])⊗ ([C]− [C])}. (15)

with [C] = E{[C]} the mean value of [C]. Notice that the term [[R]]αβαβ then
represents the variance of random variable [C]αβ . The correlation structure de-
scribed by [[R]] is then completely characterized by the probability distributions
of random components {Ci}i=Ni=1 and tensor basis {[Esym

(i)]}i=Ni=1 , since

[[R]]αβα′β′ = E


N∑
i=1

N∑
j=1

C∗i C
∗
j [Esym

(i)]αβ [Esym
(j)]α′β′

 (16)

with C∗i = Ci− ci. When all the random components are statistically independent
from one another, Eq. (16) simplifies to:

[[R]]αβα′β′ =
N∑
i=1

Vi[Esym
(i)]αβ [Esym

(i)]α′β′ , (17)

in which Vi denotes the variance of Ci.

3 Results

For notational convenience, let us set λ
(1)
sol = (λ1, . . . , λN ), λ

(2)
sol = λ. For calculation

purposes and without loss of generality, any triad (a,b, c) of mutually orthonormal
vectors makes reference to the canonical basis in R3 (i.e. a = (1, 0, 0) for instance).
Whenever the definition of a specific axis is required, we take this vector as (0, 0, 1).

3.1 Isotropic symmetry

Let the isotropic random elasticity matrix [C] be decomposed as

[C] = 3C1[E(1)] + 2C2[E(2)], (18)

where C1 and C2 are the random bulk and shear moduli, [E(1)] and [E(2)] being
the matrix representation of the classical fourth-order symmetric tensors [[E(1)]]
and [[E(2)]] defined by

[[E(1)]]ijk` = (1/3)δijδk`, [[E(2)]]ijk` = [[I]]ijk` − [[E(1)]]ijk`,

in which [[I]] represents the fourth-order symmetric identity tensor ([[I]]ijk` =
(δikδj` + δi`δjk)/2).

Proposition 1 For the isotropic class, the bulk and shear random moduli C1 and C2

involved in the tensor decomposition given by Eq. (18) are statistically independent

Gamma-distributed random variables, with respective parameters (1 − λ, c1/(1 − λ))
and (1 − 5λ, c2/(1 − 5λ)), where c1 and c2 are the given mean values of C1 and C2

and λ ∈]−∞, 1/5[ is a model parameter controlling the level of statistical fluctuations.
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Proof. From Eq. (18), one can deduce that:

ϕ(c) = log{96 c1c2
5}. (19)

It follows that
pC(c) = pC1

(c1)× pC2
(c2), (20)

with
pC1

(c1) = 1R+(c1) k1 c1
−λ exp{−λ1c1} (21)

and
pC2

(c2) = 1R+(c2) k2 c2
−5λ exp{−λ2c2}, (22)

where k1 and k2 are positive normalization constants. Thus, the random bulk
and shear moduli are Gamma-distributed statistically independent random vari-
ables, with parameters (α1, β1) = (1− λ, 1/λ1) and (α2, β2) = (1− 5λ, 1/λ2). The
normalization constants k1 and k2 are then found to be k1 = λ1

1−λ/Γ (1 − λ)
and k2 = λ2

1−5λ/Γ (1 − 5λ), while it can be deduced that c1 = (1 − λ)/λ1 and
c2 = (1− 5λ)/λ2. �

The coefficients of variation of the bulk and shear moduli are then given by
1/
√

1− λ and 1/
√

1− 5λ respectively, showing that the two moduli do not exhibit
the same level of fluctuations.

Let E and ν be the random Young modulus and Poisson ratio associated with
the isotropic random elasticity tensor, defined as E = 9C1C2/(3C1 + C2) and
ν = (3C1−2C2)/(6C1+2C2). The joint p.d.f. (e, n) 7→ pE,ν(e, n) of random variables
E and ν can be readily deduced from Eqs. (20), (21) and (22) and is found to be
given by

pE,ν(e, n) = 1S(e, n)

(
e

3(1− 2n)

)−λ(
e

2(1 + n)

)−5λ
e

2(1 + n)2(1− 2n)2
(23)

× exp

{
−λ1

e

3(1− 2n)
− λ2

e

2(1 + n)

}
,

with S =]0,+∞[×]−1, 1/2[. Consequently, the random Young modulus and Poisson
ratio turn out to be statistically dependent random variables.

3.2 Cubic symmetry

Let (a,b, c) be the unit mutually orthogonal vectors defining the crystallographic
directions of the cubic system and let the random elasticity matrix [C] exhibiting
cubic symmetry be decomposed as

[C] = C1[E(1)] + C2[E(2)] + C3[E(3)], (24)

where:

– [E(1)] is the matrix form of tensor [[E(1)]] defined in Sect. 3.1;
– [E(2)] and [E(3)] are the matrix representations of fourth-order tensors [[E(2)]] =

[[I]] − [[S]] and [[E(3)]] = [[S]] − [[E(1)]], with [[S]]ijk` = aiajaka` + bibjbkb` +
cicjckc`.
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Proposition 2 For the cubic case, the random components C1, C2 and C3 involved in

the tensor decomposition given by Eq. (24) are statistically independent and Gamma-

distributed, with respective parameters (1 − λ, c1/(1 − λ)), (1 − 3λ, c2/(1 − 3λ)) and

(1− 2λ, c3/(1− 2λ)), where c1, c2 and c3 are the given mean values of C1, C2 and C3

and λ ∈]−∞, 1/3[ is a model parameter controlling the level of fluctuation.

Proof. From Eq. (24), it can be shown that:

ϕ(c) = log{c1c23c32}. (25)

Therefore, it follows that

pC(c) = pC1
(c1)× pC2

(c2)× pC3
(c3), (26)

with

pC1
(c1) = 1R+(c1) k1 c1

−λ exp{−λ1c1}, (27)

pC2
(c2) = 1R+(c2) k2 c2

−3λ exp{−λ2c2}, (28)

and

pC3
(c3) = 1R+(c3) k3 c3

−2λ exp{−λ3c3}, (29)

where k1, k2 and k3 are positive normalization constants. It can be deduced
that the random moduli C1, C2 and C3 are Gamma-distributed statistically in-
dependent random variables, with respective parameters (α1, β1) = (1 − λ, 1/λ1),
(α2, β2) = (1−3λ, 1/λ2) and (α3, β3) = (1−2λ, 1/λ3). The expressions for the nor-
malization constants and mean values directly follow, yielding the general form of
the p.d.f. �

3.3 Transversely Isotropic symmetry

Let n be the unit normal orthogonal to the plane of isotropy and let [C] be de-
composed as

[C] = C1[E(1)] + C2[E(2)] + C3([E(3)] + [E(4)]) + C4[E(5)] + C5[E(6)], (30)

where [E(1)], . . ., [E(6)] are the matrix representations of the fourth-order tensors
defined as [[E(1)]] = [p] ⊗ [p], [[E(2)]] = 1

2 [q] ⊗ [q], [[E(3)]] = 1√
2
[p] ⊗ [q], [[E(4)]] =

1√
2
[q]⊗[p], [[E(5)]] = [q]�[q]−[[E(2)]] and [[E(6)]] = [[I]]−[[E(1)]]−[[E(2)]]−[[E(5)]].

In these expressions, the two second-order symmetric tensors [p] and [q] are defined
by [p] = n ⊗ n and [q] = [I] − [p], with [I] the second-rank symmetric identity
tensor and � the usual symmetrized tensor product, defined by 2([A]� [B])ijk` =
[A]ik[B]j` + [A]i`[B]jk for any second-order tensors [A] and [B].

Proposition 3 For the transverse isotropic case, the random components Ci, i =
1, . . . , 5, involved in the tensor decomposition given by Eq. (30) are such that:



10 Johann Guilleminot, Christian Soize

(i) the components C1, C2 and C3 are statistically dependent random variables whose

joint p.d.f. (c1, c2, c3) 7→ pC1,C2,C3
(c1, c2, c3) is given by:

pC1,C2,C3
(c1, c2, c3) = 1S(c1, c2, c3) k (c1c2 − c32)

−λ
exp{−

3∑
i=1

λici}, (31)

in which

S = {(x, y, z) ∈ R+ ×R+ ×R such that xy − z2 > 0}

and k is a normalization constant.

(ii) the components C4 and C5 are statistically independent and Gamma-distributed,

with respective parameters (1 − 2λ, c4/(1 − 2λ)) and (1 − 2λ, c5/(1 − 2λ)), where

c4 and c5 are the given mean values of C4 and C5 and λ ∈] −∞, 1/2[ is a model

parameter controlling the level of statistical fluctuations.

(iii) the random variables A = (C1, C2, C3), C4 and C5 are statistically independent.

Proof. It can be shown that

ϕ(c) = log{(c1c2 − c32)c4
2c5

2}, (32)

so that the p.d.f. pC takes the form

pC(c) = pC1,C2,C3
(c1, c2, c3)× pC4

(c4)× pC5
(c5), (33)

with pC1,C2,C3
defined by Eq. (31) and

pC4
(c4) = 1R+(c4) k4 c4

−2λ exp{−λ4c4}, (34)

pC5
(c5) = 1R+(c5) k5 c5

−2λ exp{−λ5c5}. (35)

Therefore, the random components C1, C2 and C3 are statistically dependent and
are jointly distributed with respect to the p.d.f. given by Eq. (31), whereas C4

and C5 are Gamma-distributed statistically independent random variables with
parameters (α4, β4) = (1 − 2λ, 1/λ4) and (α5, β5) = (1 − 2λ, 1/λ5). The definition
of the support S is readily deduced from the a.s. positive-definiteness of the ran-
dom elasticity tensor. �

Unlike the cases of isotropic and cubic symmetries, it is seen that some of the
components of a random elasticity matrix exhibiting transverse isotropy are statis-
tically dependent, the remaining components being independent from all others. It
is also interesting to notice that the two components C4 and C5 exhibit the same
level of statistical fluctuations, with a coefficient of variation equal to 1/

√
1− λ.

3.4 Tetragonal symmetry

Let (a,b, c) be unit mutually orthogonal vectors, with c identified as a principal
axis of symmetry.
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3.4.1 General case

The most general definition of a tensor basis for the tetragonal symmetry neces-
sitates the consideration of the tensors {[[E(i)]]}i=4

i=1 and [[E(6)]] (renumbered as
[[E(9)]]), introduced for the transversely isotropic class (taking the principal axis of
symmetry c as n; see Sect. 3.3). It further requires the definition of four additional
tensors given by:


[[E(5)]]ijk` = (aibj + biaj)(akb` + bka`)/2

[[E(6)]]ijk` = (aiaj − bibj)(aka` − bkb`)/2
[[E(7)]]ijk` = (aibj + biaj)(aka` − bkb`)/2
[[E(8)]]ijk` = (aiaj − bibj)(akb` + bka`)/2

. (36)

The tetragonal random elasticity tensor can be written as

[C] = C1[E(1)] + C2[E(2)] + C3([E(3)] + [E(4)]) (37)

+C4[E(5)] + C5[E(6)] + C6([E(7)] + [E(8)]) + C7[E(9)],

in which the matrix representations of the aforementioned tensors is used.

Proposition 4 For the tetragonal case (parametrized by seven moduli), the random

components Ci, i = 1, . . . , 7, involved in the tensor decomposition given by Eq. (37)

are such that:

(i) the components C1, C2 and C3 are statistically dependent random variables whose

joint p.d.f. (c1, c2, c3) 7→ pC1,C2,C3
(c1, c2, c3) is given by:

pC1,C2,C3
(c1, c2, c3) = 1S(c1, c2, c3) k (c1c2 − c32)

−λ
exp{−

3∑
i=1

λici}, (38)

in which

S = {(x, y, z) ∈ R+ ×R+ ×R such that xy − z2 > 0}

and k is a normalization constant.

(ii) the components C4, C5 and C6 are statistically dependent random variables whose

joint p.d.f. (c4, c5, c6) 7→ pC4,C5,C6
(c4, c5, c6) is given by:

pC4,C5,C6
(c4, c5, c6) = 1S(c4, c5, c6) k∗ (c4c5 − c62)

−λ
exp{−

6∑
i=4

λici}, (39)

where k∗ is a normalization constant.

(iii) the component C7 is a Gamma-distributed random variable, with parameters (1 −
2λ, c7/(1 − 2λ)), where c7 is the given mean value of C7 and λ ∈] −∞, 1/2[ is a

model parameter controlling the level of statistical fluctuations.

(iv) the three random variables A = (C1, C2, C3), B = (C4, C5, C6) and C7 are statis-

tically independent.
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Proof. For the tetragonal symmetry and seven-parameters decomposition, one
has:

ϕ(c) = log{(c1c2 − c32)(c4c5 − c62) c7
2}. (40)

Consequently, it follows that:

pC(c) = pC1,C2,C3
(c1, c2, c3)× pC4,C5,C6

(c4, c5, c6)× pC7
(c7), (41)

with

pC1,C2,C3
(c1, c2, c3) = 1S(c1, c2, c3) k (c1c2 − c32)

−λ
exp{−

3∑
i=1

λici}, (42)

pC4,C5,C6
(c4, c5, c6) = 1S(c4, c5, c6) k∗ (c4c5 − c62)

−λ
exp{−

6∑
i=4

λici}, (43)

and

pC7
(c7) = 1R+(c7) k7 c7

−2λ exp{−λ7c7}. � (44)

3.4.2 Reduced parametrization

The tetragonal class is often considered as being parametrized by six coefficients.
Indeed, such a representation can be readily obtained from the previous one (see
Eq. (37)) by a specific rotation, such that the coefficient C6 vanishes [3]. The tensor
decomposition then reads:

[C] = C1[E(1)] + C2[E(2)] + C3([E(3)] + [E(4)]) (45)

+C4[E(5)] + C5[E(6)] + C6[E(9)],

Proposition 5 For the tetragonal case with reduced parametrization, the random com-

ponents Ci, i = 1, . . . , 6, involved in the tensor decomposition given by Eq. (45) are

such that:

(i) the components C1, C2 and C3 are statistically dependent random variables whose

joint p.d.f. (c1, c2, c3) 7→ pC1,C2,C3
(c1, c2, c3) is given by:

pC1,C2,C3
(c1, c2, c3) = 1S(c1, c2, c3) k (c1c2 − c32)

−λ
exp{−

3∑
i=1

λici}, (46)

in which

S = {(x, y, z) ∈ R+ ×R+ ×R such that xy − z2 > 0}

and k is a normalization constant.

(ii) the components C4, C5 and C6 are statistically independent and Gamma-distributed,

with respective parameters (1−λ, c4/(1−λ)), (1−λ, c5/(1−λ)) and (1−2λ, c6/(1−
2λ)), where c4, c5 and c6 are the given mean values of C4, C5 and C6, and

λ ∈]−∞, 1/2[ is a model parameter controlling the level of statistical fluctuations.

(iv) the random variables A = (C1, C2, C3), C4, C5 and C6 are statistically indepen-

dent.
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Proof. One has:

ϕ(c) = log{(c1c2 − c32)c4c5c6
2}. (47)

Therefore, the p.d.f. pC takes the form

pC(c) = pC1,C2,C3
(c1, c2, c3)× pC4

(c4)× pC5
(c5)× pC6

(c6), (48)

with

pC1,C2,C3
(c1, c2, c3) = 1S(c1, c2, c3)k(c1c2 − c32)

−λ
exp{−

3∑
i=1

λici}, (49)

pC4
(c4) = 1R+(c4) k4 c4

−λ exp{−λ4c4}, (50)

pC5
(c5) = 1R+(c5) k5 c5

−λ exp{−λ5c5} (51)

and

pC6
(c6) = 1R+(c6) k6 c6

−2λ exp{−λ6c6}. � (52)

3.5 Trigonal symmetry

In order to investigate the statistical dependence of the random components for
the trigonal symmetry (which is basically referred to as the hexagonal one in [27]),
let us consider three unit vectors denoted by a, b and c, such that c is orthogonal
to the plane spanned by a and b, an angle of 2π/3 being left between the latter.
Here, the values a = (1, 0, 0), b = (−1/2,

√
3/2, 0) and c = (0, 0, 1) have been

retained.

3.5.1 General case

Let us introduce the following symmetric second-order tensors
[s] =

√
2/3(a⊗ a + a⊗ b + b⊗ a)

[t] =
√

2/3(b⊗ b + a⊗ b + b⊗ a)
[u] = (1/

√
2)(c⊗ a + a⊗ c)

[v] = −(1/
√

2)(c⊗ b + b⊗ c)

,

from which the four symmetric tensors
[[E(5)]] = (4/3)([s]⊗ [s] + [t]⊗ [t]− (1/2)[s]⊗ [t]− (1/2)[t]⊗ [s])

[[E(6)]] = (4/3)([u]⊗ [u] + [v]⊗ [v]− (1/2)[u]⊗ [v]− (1/2)[v]⊗ [u])

[[E(7)]] = (4/3)([s]⊗ [u] + [t]⊗ [v]− (1/2)[t]⊗ [u]− (1/2)[s]⊗ [v])

[[E(8)]] = (4/3)([u]⊗ [s] + [v]⊗ [t]− (1/2)[u]⊗ [t]− (1/2)[v]⊗ [s])

(53)

and the two unsymmetric tensors{
[[E(9)]] = (2/

√
3)([s]⊗ [v]− [t]⊗ [u])

[[E(10)]] = (2/
√

3)([v]⊗ [s]− [u]⊗ [t])
(54)
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can be defined. The random elasticity tensor is now decomposed as:

[C] = C1[E(1)] + C2[E(2)] + C3([E(3)] + [E(4)]) (55)

+C4[E(5)] + C5[E(6)] + C6([E(7)] + [E(8)])

+C7([E(9)] + [E(10)]),

wherein the matrix set {[E(i)]}i=4
i=1 coincides with the one introduced for the trans-

verse isotropy case (see Sect. 3.3), setting n = c, and [E(i)] is the matrix form of
fourth-order tensor [[E(i)]].

Proposition 6 For the trigonal case (parametrized by seven moduli), the random com-

ponents Ci, i = 1, . . . , 6, involved in the tensor decomposition given by Eq. (55) are

such that:

(i) the components C1, C2 and C3 are statistically dependent random variables whose

joint p.d.f. (c1, c2, c3) 7→ pC1,C2,C3
(c1, c2, c3) is given by:

pC1,C2,C3
(c1, c2, c3) = 1S(c1, c2, c3) k (c1c2 − c32)

−λ
exp{−

3∑
i=1

λici}, (56)

in which

S = {(x, y, z) ∈ R+ ×R+ ×R such that xy − z2 > 0}

and k is a normalization constant.

(ii) the components C4, C5, C6 and C7 are statistically dependent random variables

whose joint p.d.f. (c4, . . . , c7) 7→ pC4,...,C7
(c4, . . . , c7) is given by:

pC4,...,C7
(c4, . . . , c7) = 1S∗(c4, . . . , c7) k∗ (c4c5 − c62 − c72)

−2λ
(57)

× exp{−
7∑
i=4

λici},

where

S∗ = {(x, y, z, w) ∈ R+ ×R+ ×R×R such that xy − z2 − w2 > 0}

and k∗ is a normalization constant.

(iii) the random variables A = (C1, C2, C3) and B = (C4, C5, C6, C7) are statistically

independent.

Proof. For the trigonal symmetry case, the mapping ϕ is defined as:

ϕ(c) = log{(c1c2 − c32)(c4c5 − c62 − c72)
2}. (58)

The p.d.f. pC is then given by:

pC(c) = pC1,C2,C3
(c1, c2, c3)× pC4,...,C7

(c4, . . . , c7), (59)

with

pC1,C2,C3
(c1, c2, c3) = 1S(c1, c2, c3) k (c1c2 − c32)

−λ
exp{−

3∑
i=1

λici}, (60)
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and

pC4,...,C7
(c4, . . . , c7) = 1S∗(c4, . . . , c7) k∗ (c4c5 − c62 − c72)

−2λ
(61)

× exp{−
7∑
i=4

λici}.

The definitions of S and S∗ follow from the positive-definiteness of [C]. �

3.5.2 Reduced parametrization

As for the tetragonal class, the number of parameters for the trigonal symmetry
can be reduced to six by an appropriate transformation (rotation), ending up with
the following decomposition of the random elasticity tensor:

[C] = C1[E(1)] + C2[E(2)] + C3([E(3)] + [E(4)]) (62)

+C4[E(5)] + C5[E(6)] + C6([E(7)] + [E(8)]).

Proposition 7 For the trigonal case with reduced parametrization, the random com-

ponents Ci, i = 1, . . . , 6, involved in the tensor decomposition given by Eq. (62) are

such that:

(i) the components C1, C2 and C3 are statistically dependent random variables whose

joint p.d.f. (c1, c2, c3) 7→ pC1,C2,C3
(c1, c2, c3) is given by:

pC1,C2,C3
(c1, c2, c3) = 1S(c1, c2, c3) k (c1c2 − c32)

−λ
exp{−

3∑
i=1

λici}, (63)

in which

S = {(x, y, z) ∈ R+ ×R+ ×R such that xy − z2 > 0}

and k is a normalization constant.

(ii) the components C4, C5 and C6 are statistically dependent random variables whose

p.d.f. (c4, c5, c6) 7→ pC4,C5,C6
(c4, c5, c6) is given by:

pC4,C5,C6
(c4, c5, c6) = 1S(c4, c5, c6) k∗ (c4c5 − c62)

−2λ
exp{−

6∑
i=4

λici}, (64)

where k∗ is a normalization constant.

(iii) the random variables A = (C1, C2, C3) and B = (C4, C5, C6) are statistically

independent.

Proof. For the trigonal symmetry case with the reduced parametrization, the
mapping ϕ turns out to be such that:

ϕ(c) = log{(c1c2 − c32)(c4c5 − c62)
2}. (65)

Consequently, the p.d.f. pC now writes

pC(c) = pC1,C2,C3
(c1, c2, c3)× pC4,C5,C6

(c4, c5, c6), (66)
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with

pC1,C2,C3
(c1, c2, c3) = 1S(c1, c2, c3)k(c1c2 − c32)

−λ
exp{−

3∑
i=1

λici} (67)

and

pC4,C5,C6
(c4, c5, c6) = 1S(c4, c5, c6)k∗(c4c5 − c62)

−2λ
exp{−

6∑
i=4

λici}. (68)

The definition of S follows from the positive-definiteness of [C]. �

3.6 Orthotropic symmetry

Denoting as (a,b, c) the unit mutually orthogonal vectors defining the crystallo-
graphic directions, let us consider the following fourth-order tensors:

[[E(11)]] = a⊗ a⊗ a⊗ a, [[E(12)]] = a⊗ a⊗ b⊗ b, [[E(13)]] = a⊗ a⊗ c⊗ c

[[E(21)]] = b⊗ b⊗ a⊗ a, [[E(22)]] = b⊗ b⊗ b⊗ b, [[E(23)]] = b⊗ b⊗ c⊗ c

[[E(31)]] = c⊗ c⊗ a⊗ a, [[E(32)]] = c⊗ c⊗ b⊗ b, [[E(33)]] = c⊗ c⊗ c⊗ c

and 
[[E(4)]]ijk` = (aibj + biaj)(akb` + bka`)/2

[[E(5)]]ijk` = (bicj + cibj)(bkc` + ckb`)/2

[[E(6)]]ijk` = (cibj + aicj)(cka` + akc`)/2

.

The orthotropic random elasticity tensor is expanded as

[C] = C1[E(11)] + C2[E(22)] + C3[E(33)] (69)

+C4([E(12)] + [E(21)]) + C5([E(23)] + [E(32)]) + C6([E(31)] + [E(13)])

+C7[E(4)] + C8[E(5)] + C9[E(6)]

where again, use is made of the matrix representations for the tensor basis.

Proposition 8 For the orthotropic case, the random components Ci, i = 1, . . . , 9,

involved in the tensor decomposition given by Eq. (69) are such that:

(i) the components Ci, i = 1, . . . , 6 are statistically dependent random variables whose

joint p.d.f. (c1, . . . , c6) 7→ pC1,...,C6
(c1, . . . , c6) is given by:

pC1,...,C6
(c1, . . . , c6) = 1S(Mat(c1, . . . , c6)) k det (Mat(c1, . . . , c6))

−λ (70)

× exp{−
6∑
i=1

λici},

in which S = M+
3 (R), k is a normalization constant and the mapping Mat : R6 →

M3(R) is defined as:

Mat(c1, . . . , c6) =

 c1 c4 c6
c4 c2 c5
c6 c5 c3

 .
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(ii) the components C7, C8 and C9 are statistically independent random variables and

Gamma-distributed, with respective parameters (1−λ, c7/(1−λ)), (1−λ, c8/(1−λ))
and (1 − λ, c9/(1 − λ)), where c7, c8 and c9 are the (known) mean values of C7,

C8 and C9 λ ∈]−∞, 1[ is a model parameter controlling the level of fluctuation.

(iii) the random variables A = (C1, . . . , C6), C7, C8 and C9 are statistically indepen-

dent.

Proof. We have

ϕ(c) = log{c7c8c9 det (Mat(c1, . . . , c6))}, (71)

so that

pC(c) = pC1,...,C6
(c1, . . . , c6) (72)

×pC7
(c7)× pC8

(c8)× pC9
(c9).

The proof immediately follows using similar arguments as for the previous sym-
metry classes. �

4 Synthesis

The structures of statistical dependence for all material symmetry classes (up to
orthotropy), induced by the MaxEnt principle, are summarized in Tab. 1.

At this stage, it is worth noticing that for the two symmetry classes offering
a reduced parametrization, namely the tetragonal and trigonal ones, one finally
ends up with the same probability distribution for the random elasticity matrix
[C] (should the latter be calculated making use of the tensor decomposition), since
the prior probability distribution is invariant under orthogonal transformations in
M+
n (R) (corresponding to a change of the coordinate system). Finally, it should

be pointed out that if for a given coordinate system (in which the tensor basis is
represented), another tensor basis is used, the joint probability density function of
the coordinates in this new tensor basis can be readily deduced (from the results
derived in Sect. 3) by using the theorem related to the image of a measure.

5 Conclusion

In this work, we have investigated the statistical dependence between the compo-
nents of random elasticity tensors exhibiting a.s. material symmetry properties.
Such an issue is of primary importance for both theoreticians and experimental-
ists, allowing for the definition of either models or identification procedures that
are mathematically sound and physically consistent. While the subject was his-
torically addressed by using arbitrary probability distributions (by assuming, for
instance, that the Young modulus is a log-normal random variable and that the
Poisson ratio is deterministic, for the isotropic case), we subsequently proposed
to characterize the dependence structure by invoking the framework of Informa-
tion Theory and the Maximum Entropy principle. A probabilistic methodology
has then been proposed and yields the general form for the joint probability dis-
tribution of the random coefficients. In a second step, we discussed the induced
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dependence for the highest levels of elastic symmetries (ranging from isotropy to
orthotropy) when constraints on first- and second-order moments are integrated
within the formulation. It is shown that the statistical dependence intrinsically
depends on the retained parametrization, and that the higher the level of elastic
symmetry, the larger the number of statistically dependent moduli. The isotropic
class is an instructive example, as it is shown that the bulk and shear moduli are in-
dependent, Gamma-distributed random variables, whereas the associated random
Young modulus and Poisson ratio are statistically dependent random variables.
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A Definition of the Gamma probability distribution

A positive univariate random variable X is said to be Gamma-distributed with parameters
(α, β) ∈ R+

∗ ×R+
∗ , X ∼ G(α, β), if its probability density function (p.d.f.) x 7→ pX(x), defined

from R+ into R+, writes (see [17] for instance):

pX(x) =
1

Γ (α)βα
xα−1 exp{−x/β},

in which u 7→ Γ (u) represents the gamma function defined as:

Γ (u) =

∫ ∞
0

tu−1 exp{−t} dt.

B Existence and uniqueness of a solution to the maximum entropy

principle

Let S be an unbounded open part of RN . Let Cfree be the space of all the integrable positive-
valued functions on S. Therefore, any function p in Cfree such that

∫
S p(c)dc = 1 is the

probability density function of a RN -valued random variable, the support of which is S. Let
f : RN ⊃ S → RN ×R×R ' Rq (with q = N + 2) and h ∈ RN ×R×R ' Rq be the mapping
and vector respectively defined as

f(c) = (c, ϕ(c), 1), h = (c, νC, 1), (73)

wherein ϕ, c and νC are defined in Sect. 2.3. Here, we consider the following constraint equa-
tion: ∫

S
f(c)p(c) dc = h, p ∈ Cfree. (74)

Let Cad be the subset of Cfree such that:

Cad = {p ∈ Cfree,
∫
S
f(c)p(c) dc = h}. (75)

Note that any element of Cad is then a probability density function on RN with support S.
Let us consider the following optimization problem corresponding to the MaxEnt principle:

psol = arg max
p∈Cad

E(p), (76)

where E(p) is the Shannon entropy of p.d.f. p (see Eq. (5)). In the sequel, we will demonstrate
that under some given assumptions, the problem defined by Eq. (76) has at most one solution,
the explicit form of which will be constructed while deriving the proof.



20 Johann Guilleminot, Christian Soize

The very first step of the proof consists in assuming that there exists a unique solution,
which is denoted as psol, to the above optimization problem. The functionnals

p 7→
∫
S
fi(c)p(c) dc− hi, i ∈ {1, . . . , q}, (77)

are continuously differentiable on Cfree and are assumed to admit psol as a regular point (see for
instance p. 187 of [12]). The constraints defined by Eq. (74) are classically taken into account
by using the Lagrange multiplier method. We then introduce the vector λ = (λ1, . . . , λq) ∈
Aλ ⊂ Rq (note that Aλ is more precisely defined below), such that (λ1, . . . , λq − 1) is the
Lagrange multiplier associated with the constraints given by Eq. (74), hence yielding the
following Lagrangian L:

L(p,λ) = E(p)−
N+1∑
i=1

λi

(∫
S
fi(c)p(c) dc− hi

)
− (λq − 1)

(∫
S
p(c) dc− 1

)
. (78)

For convenience, the vector λ is now referred to as the Lagrange multiplier. Following the
Theorem 2, p. 188, of [12], it can be deduced that there exists a Lagrange multiplier λsol such
that the functional (p,λ) 7→ L(p,λ) is stationary at psol for λ = λsol.

In a second step, we address the explicit construction of a family Fp of p.d.f., indexed by
λ, that renders p 7→ L(p,λ) extremum. We further prove that this extremum is unique and
turns out to be a maximum. For any λ fixed in Aλ, it can first be deduced from the calculus
of variations (see for instance the Theorem 3.11.16, p. 341, in [19]) that the aforementionned
extremum, denoted by pλ, reads as:

pλ(c) = 1S(c) exp{− < λ, f(c) >Rq}. (79)

The admissible space Aλ is thus defined such that pλ is integrable on S. For any fixed value
of λ, the uniqueness of this extremum directly follows from the uniqueness of the solution
for the Euler equation that is derived from the calculus of variations. Upon calculating the
second-order derivative with respect to p, at point pλ, of the Lagrangian, it can be shown that
this extremum is, indeed, a maximum.

In a third step, we now prove that if there exists a Lagrange multiplier λsol in Aλ such
that the solution of the constraint equation in λ, defined by Eq. (74), is satisfied, then λsol is
unique. Using Eq. (79), Eq. (74) is rewritten as:∫

S
f(c) exp{− < λ, f(c) >Rq} dc = h. (80)

It is assumed that the optimization problem stated by Eq. (76) is well-posed in the sense that
the constraints are algebraically independent, that is to say that there exists a bounded subset

S̃ of S, with ∫
S̃

dc > 0,

such that for any nonzero vector v in Rq , one has∫
S̃
< v, f(c) >2

Rq dc > 0. (81)

Note at this stage that the constraints considered in this paper do satisfy such a property, as
will be shown at the end of the proof. Let us further consider the function λ 7→ H(λ) defined
as:

H(λ) =< λ,h >Rq +

∫
S

exp{− < λ, f(c) >Rq} dc. (82)

The gradient ∇H of H is then given by

∇H(λ) = h−
∫
S
f(c) exp{− < λ, f(c) >Rq} dc, (83)
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so that any solution of ∇H(λ) = 0 satisfies Eq. (80) (and conversely). Below, it is assumed
that H admits at least one critical point. The Hessian matrix [H′′(λ)] reads as:

[H′′(λ)] =

∫
S
f(c)⊗ f(c) exp{− < λ, f(c) >Rq} dc. (84)

Since S̃ ⊂ S, it turns out that for any nonzero vector v in Rq :

< [H′′(λ)]v,v >Rq ≥
∫
S̃
< v, f(c) >2

Rq exp{− < λ, f(c) >Rq} dc > 0, (85)

where use has been made of Eq. (81). Therefore, the function λ 7→ H(λ) is strictly convex,
hence ensuring the uniqueness of the critical point of H (should it exist). Under the aforemen-
tioned assumption of algebraic independence for the constraints, it follows that if a Lagrange
multiplier λsol (such the constraint given by Eq. (80) is fullfiled) exists, then λsol is unique
and corresponds to the solution of the following optimization problem:

λsol = arg min
λ

H(λ), (86)

where H is the strictly convex function defined by Eq. (82). It is worth noticing that:

– The existence of λsol for the isotropic and cubic cases can be very easily studied (and
generally demonstrated) by performing a parametric analysis on scalar parameter λ (see
the propositions 1 and 2), which must be such that the Eq. (9) is satisfied (since the
constraints on the mean values are all readily fullfiled through the reparametrization of
the probability density functions).

– The computation (and then, the existence) of λsol has been successfully addressed within
a computational framework and for the class of transversely isotropic elasticity matrices
in [6].

In a fourth step, it can be finally deduced that if λsol exists, then there exists a unique
p.d.f. psol which is the solution of the optimization problem stated by Eq. (76) and whose
expression is given

psol(c) = 1S(c) exp{− < λsol, f(c) >Rq}. (87)

For completeness, it is worth pointing out that discussions and sketches of proofs related
to the existence and uniqueness of the solution to the MaxEnt optimization problem in more
general situations (that is, when the assumption about the algebraic independence of the
constraints is relaxed) can be found elsewhere. However, these situations fall beyond the scope
of this paper. In order to conclude the proof, it remains to demonstrate that the considered
constraints (see Eqs. (7), (8) and (9)) are algebraically independent. For this purpose, note
that Eq. (81) can be rewritten as

∀v ∈ Rq , v 6= 0, < [AS̃ ]v,v >Rq > 0, (88)

where the (q × q) matrix [AS̃ ] is defined as:

[AS̃ ] =

∫
S̃
f(c)⊗ f(c) dc. (89)

It is therefore necessary to demonstrate that for each symmetry class, there exists at least

one bounded subset S̃ in S such that the associated matrix [AS̃ ] is positive-definite. Such a

characterization can be numerically carried out very easily, and some examples of subsets S̃
for which [AS̃ ] is positive-definite are given in Tab. 2 for all the material symmetry classes
considered in this paper (here, the integrals are computed by using the Monte-Carlo method
with 108 realizations, which is the value ensuring the convergence of the estimator). �
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Symmetry class S̃ Smallest eigenvalue of [AS̃ ]

Isotropy ]0, 1]2 0.014288

Cubic ]0, 1]3 0.008280

Tr. Isotropy [1, 2]2×]− 1, 1[×[1, 2]2 0.003051

Tetragonal∗ [1, 2]2×]− 1, 1[×[1, 2]2×]− 1, 1[×[1, 2] 0.008116

Trigonal∗ [1, 2]2×]− 1, 1[×[1, 2]2×]−
√

0.5,
√

0.5[2 0.010155

Orthotropic [10, 11]3 × [0.1, 0.5]3×]0, 1]3 0.000016

Table 2 Examples of subsets S̃ for the considered material symmetry classes. The symbol ∗

means that the extended parametrization is considered.
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