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Introduction

Two of the profound open problems in the theory of three dimensional viscous flows are the unique solvability theorem for all time and the regularity of solutions. For the three-dimensional Navier-Stokes system weak solutions are known to exist by a basic result by Leray from 1934 [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF], but the uniqueness is still open problem [START_REF] Cao | Regularity criteria for the three dimensional Navier-Stokes equations[END_REF]- [START_REF] Doering | The 3D Navier-Stokes problem[END_REF] and [START_REF] Kasyanov | A criterion for the existence of strong solutions for the 3D Navier-Stokes equations[END_REF]. Furthermore, the strong solutions for the 3D Navier-Stokes equations are unique and can be shown to exist on a certain finite time interval for small initial data and small forcing term, but the global regularity for the 3D Navier-Stokes is still open problems (see [START_REF] Deuring | Strong solutions of the Navier-Stokes system in Lipschitz bounded domains[END_REF]- [START_REF] Kasyanov | A criterion for the existence of strong solutions for the 3D Navier-Stokes equations[END_REF], [START_REF] Sell | Dynamics of Evolutionary Equations[END_REF]- [START_REF] Wang | On global regularity of incompressible Navier-Stokes equations in R 3[END_REF] and references therein). In 1933 [START_REF] Leray | Etude de diverses équations intégrales non linéaires et de quelques problemes que pose l'hydrodynamique[END_REF], Leray showed that in the absence of forcing (f = 0), all solutions of Navier-Stokes equations are eventually smooth (i.e. after some T * > 0 depending on the data). Kato and Fujita [START_REF] Kato | On the nonstationary Navier-Stokes system[END_REF] showed that a smooth solution to the three-dimensional Navier-Stokes equations exists for all time if f is small in some sense and u 0 is small in H 1 2 . In this paper, we give a new condition for global existence in time for strong solution for 3D Navier-Stokes equations with external force. We show that no singularity can occur in finite time for a large class of forcing term. We also give an extension of the time interval of regularity to the 3D Navier-Stokes equations with negligible forces [START_REF] Doering | The 3D Navier-Stokes problem[END_REF][START_REF] Foias | Navier-Stokes Equations and Turbulence[END_REF][START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF][START_REF] Temam | Navier-Stokes equations[END_REF]. This result means that the solution does not blow up at T * .

Notations and preliminaries

In this section we introduce notations and the definitions of standard functional spaces that will be used throughout the paper. We denote by H m per (Ω), the Sobolev space of periodic functions. These spaces are endowed with the inner product

(u, v) = |β|≤m (D β u, D β v) L 2 (Ω) and the norm u m = |β|≤m ( D β u 2 L 2 (Ω) ) 1 2 .
We define the spaces V m as completions of smooth, divergence-free, periodic, zeroaverage functions with respect to the H m per norms. V ′ m denote the dual space of V m .

Let P be the orthogonal projection in L 2 per R 3 3 with the range V 0 . Let A = -P △ the Stokes operator. It is easy to check that Au = -△u for every u ∈ D (A). We recall that the operator A is a closed positive self-adjoint unbounded operator.

The eigenvalues of A are {λ j } j=∞ j=1 , 0 < λ 1 ≤ λ 2 ≤ ...and the corresponding orthonormal set of eigenfunctions {w j } j=∞ j=1 is complete in V 0 Aw j = λ j w j , w j ∈ D(A), ∀j.

(2.1)

Let us now define the trilinear form b(., ., .) associated with the inertia terms

b (u, v, w) = 3 i,j=1 Ω u i ∂v j ∂x i w j dx. (2.2)
The continuity property of the trilinear form enables us to define (using Riesz representation Theorem) a bilinear continuous operator

B (u, v); V 2 × V 2 → V ′ 2 will be defined by B (u, v) , w = b (u, v, w) , ∀w ∈ V 2 . (2.3)
Recall that for u satisfying ∇.u = 0 we have

b (u, u, u) = 0 and b (u, v, w) = -b (u, w, v) . (2.4)
We recall some well known inequalities that we will be using in what follows.

Young's inequality

ab ≤ σ p a p + 1 qσ q p b q , a, b, σ > 0, p > 1, q = p p -1 . (2.5) 
Poincaré's inequality

λ 1 u 2 ≤ A 1 2 u 2 for all u ∈ V 0 , (2.6) 
λ 1 is the first eigenvalue of the Stokes operator.

Navier-Stokes equations

The conventional Navier-Stokes system can be written in the evolution form

∂u ∂t -ν△u + u.∇u = f, t > 0, div u = 0, in Ω × (0, ∞) and u (x, 0) = u 0 , in Ω. (3.1)
We recall that a Leray weak solution of the Navier-Stokes equations is a solution which is bounded and weakly continuous in the space of periodic divergence-free L 2 functions, whose gradient is square-integrable in space and time and which satisfies the energy inequality. The proof of the following theorem is given in [START_REF] Temam | Navier-Stokes equations[END_REF].

Theorem 3.1. Assume that f ∈ L 2 (0, T ; V ′ 1 ) and u 0 ∈ V 0 are given. Then there exists at least one solution u of (3.1) such that u ∈ L 2 (0, T ;

V 1 ) ∩ L ∞ (0, T ; V 0 ) , ∀T > 0.
For strong solutions, we have the following result [START_REF] Temam | Navier-Stokes equations[END_REF].

Theorem 3.2. Assume that u 0 ∈ V 1 and f ∈ V 0 are given. then there exists a T > 0 depending on u 0 1 , ν and f , such that there exists a unique strong solution u ∈ L ∞ (0, T ;

V 1 ) ∩ L 2 (0, T ; V 2 ).
This result was obtained for a type of inequality similar to u (., t)

2 1 ≤ 1 + u 0 2 1 1 -Kt (1 + u 0 1 ) 2 , (3.2) 
where K = (2

f 2 ν + c 1 ν 3 ).
Hereafter, c i ∈ N ,will denote a dimensionless scale invariant positive constant which might depend on the shape of the domain. The bound in (3.2) is only finite while

Kt (1 + u 0 1 ) 2 < 1; (3.3)
if we choose T satisfying

T < 1 K 1 + u 0 2 1 . (3.4)
The main result of this paper is given in the following theorem.

Theorem 3.3. Assume that u 0 ∈ V 1 and u is the corresponding strong solution to

(3.1) on [0, T ], then i) If f ∈ V 0 and c 8 T f 2 + c 9 u (0) 2 + arctan u (0) 1 < π 2 , (3.5) 
then u exists for each finite time T and remains smooth. ii) If f ∈ L 2 (0, T, V 0 ) and

c 10 T 0 f 2 ds + c 11 u (0) 2 + arctan u (0) 2 1 + arctan u (0) 2 1 < π 2 , (3.6) 
then u exists globally (T can be ∞) and remains smooth.

Proof. Multiplying (3.1) by △u, we have

1 2 d dt u (., t) 2 1 + ν △u 2 - Ω (u.∇u) .△u dx = (f, △u) . (3.7) 
Using schwartz and Young inequality we get

|(f, △u)| ≤ f L 2 △u L 2 (3.8) ≤ c 3 f 2 L 2 + ν 2 △u 2 L 2 .
For the nonlinear term, we use the Hölder's inequality For f ∈ V 0 , the inequality above gives

Ω (u.∇u) .△udx ≤ c 4 u L 6 ∇u L 3 △u L 2 ≤ c 5 ∇u 3 2 △u 3 2 . ( 3 
arctan y (t) ≤ c 8 T f 2 + c 9 u (0) 2 + arctan y (0) . (3.19)
The function tan y is increasing and invertible for -π 2 < y < π 2 with inverse function arctan t. Thus, for

c 8 T f 2 + c 9 u (0) 2 + arctan u (0) 2 1 < π 2 (3.20)
we apply the function tan on (3.19) to get

u (t) 2 1 ≤ tan c 8 T f 2 + c 9 u (0) 2 + arctan u (0) 2 1 . (3.21) 
The assumption (3.20) on the initial data guarantees that the right hand side of (3.21) is finite. For f ∈ L 2 (0, T, V 0 ) and for each T > 0, integrate (3. 

In particular, for

c 10 T 0 f 2 ds + c 11 u (0) 2 + arctan u (0) 2 1 < π 2 , (3.24) 
we apply the function tan on (3.23) to get It follows that the assumption (3.24) guarantees that u (t) 1 < ∞ for all t > 0.

u (t)
Recall that the classical regularity result for f = 0 [13, Theorem 3.12.] was obtained for a type of inequality similar to u (., t) (3.26)

It follows that if u 0 1 is finite, then u (., t) 1 is finite, at least for

t < ν 3 /128 u 0 4 1 . (3.27)
Consequently, we get the following result for the negligible forces.

Corollary 3.4. Assume that u 0 ∈ V 1 and u is the corresponding strong solution to (3.1) on [0, T ], then u exists globally and remains smooth for all T > 0 if Thus the solution associate to u 0 satisfies (3.37) has a global regularity. But for the same value of u (0) 1 occurs a blow up in finite time T * by the usual method (3.26). This property follows easily when u (0) approaches zero. This result gives a simple condition for global regularity and extends the known corresponding result (3.26), where a blow-up criterion in finite time T depend on u 0 for negligible forces, see [START_REF] Doering | The 3D Navier-Stokes problem[END_REF][START_REF] Foias | Navier-Stokes Equations and Turbulence[END_REF][START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF][START_REF] Temam | Navier-Stokes equations[END_REF].

c 11 u (0) 2 + arctan u (0) 2 1 < π 2 . ( 3 

3 T 0 f 2 ds + c 6 T 0 y 0 f 2
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2 1 ≤ tan c 10 T 0 f 2

 21002 ds + c 11 u (0) 2 + arctan u (0)
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Suppose first f ∈ V 0 . Setting y (t) = u (., t) Dividing (3.12) by 1 + y 2 , we have

≤ 1 and