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Introduction

Decision trees [START_REF] Breiman | Classification And Regression Trees[END_REF] (classification trees for categorical labels and regression trees for numerical ones) are popular classifiers, due to their simplicity, efficiency and readability. The construction of usual decision trees relies on classical probability theory. However, classical methods are not always fully adequate to deal with some problems. Among these problems are [START_REF] Abellan | Upper entropy of credal sets. Applications to credal classification[END_REF] the fact that all kinds of uncertainties (either in input or output) cannot be modeled faithfully by classical probabilities and (2) the fact that frequencies of occurrence are only sensible to proportions in sample and not to its size.

Outside the fact that the relation between input and outputs may be non-deterministic, a classifier may have to deal with three different possible levels of uncertainty: in inputs, in outputs, and uncertainty due to the fact that the learned classifier is an estimation of the ideal one, due to a limited amount of knowledge or data. In this work, we mainly address the third kind, where the estimation quality translates into imprecision of belief functions.

Belief function theory [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF] offers a convenient framework to deal with all these problems. For instance, Elouedi et al. [START_REF] Elouedi | Belief decision trees: theoretical foundations[END_REF] propose different ways to adapt decision trees in the TBM framework to deal with uncertain outputs during the tree construction. In this work, we extend another approach also using belief functions proposed by Denoeux and Skarstein Bjanger [START_REF] Denoeux | Induction of decision trees from partially classified data using belief functions[END_REF] that can cope with uncertain outputs and imprecision arising from limited sample size. In this sense, this approach is closer to some imprecise probabilistic approaches [START_REF] Abellan | Upper entropy of credal sets. Applications to credal classification[END_REF] that naturally integrate sample size information in their construction.

As the Denoeux and Skarstein Bjanger method only concerns 2-class problems, we extend this methodology to any number of classes. For multi-class problems, we propose three ways of doing such an extension:

• combining belief functions provided by sets of 2-class trees [START_REF] Quost | Pairwise Classifier Combination using Belief Functions[END_REF] • direcltly building multinomial belief functions using the Imprecise Dirichlet Model (IDM) [START_REF] Utkin | Extensions of belief functions and possibility distributions by using the imprecise dirichlet model[END_REF] • direcltly building multinomial belief functions using Denoeux's proposal [START_REF] Denoeux | Constructing belief functions from sample data using multinomial confidence regions[END_REF] Section 2 presents the needed background about decision trees and Denoeux and Skarstein Bjanger method. Section 3 then extends this methodology to the multiclass case. Finally, in Section 4 we compare new classifiers with classical CART and discuss the effects of method parameter on experiment results basis'.

Background

In this section, we present the necessary background.

Decision trees

Let (X,Y ) be a random vector where X = (X 1 , ..., X J ) ∈ X = X 1 × . . . × X J represents the features (continuous or discrete) and Y ∈ Y = {Y 1 , . . . ,Y K } the class to predict. From a sample E = {(X 1 ,Y 1 ), . . . , (X n ,Y n )}, decision tree methods build iteratively a model of (X,Y ) by building a partition of X . Here, we consider binary trees (i.e. CART-like models), where each split provide two children.

The method works as follow: from a root node containing the whole learning sample, the optimal split (among all the variables and their values) in term of information gain is searched. The information gain IG corresponding to splitting on variable X k with value α is computed as follows:

IG(k, α) = i(t 0 ) -p L i(t 1 ) -p R i(t 2 ) (1) 
where i(t) is an impurity measure of a node t, t 0 the root node, t 1 and t 2 its child nodes, p L is the proportion of the samples in t 0 verifying the condition X k < α (i.e., p L = n L/n where n is the sample size in t 0 and n L the samples such that X k < α). p R = 1p L is the sample proportion not verifying it. The selected splitting value (k, α) is then the one maximizing IG (computed as a gain in purity).

The method is then applied recursively on each child nodes until no possible information gain superior to a preestablished threshold can be made. In this case, the node becomes a leaf predicting the most frequent class of the leaf sample.

The information gain (or impurity measure) is calculated using Gini-index for CART algorithm or Shanon entropy for C4.5's one (Quinlan [11]). Both of these functions measure the homogeneity in term of classes. They both use the frequencies of the different classes in the node samples, however these frequencies do not depend on the sample size (provided class proportions remain the same). In contrast, the method of Denoeux and Skarstein Bjanger and its impurity measure, that we recall now, do change with the sample size.

Denoeux and Skarstein Bjanger method for 2-class datasets

This method use the same principle as CART, but differs in the computation of information gain: first, they use mass functions instead of simple frequencies and second, they use an impurity measure mixing non-specifity (imprecision) and conflict (variability).

To build the mass functions, they use Dempster's approach to Bernouilli (DaBt) trials that induces the following mass function:

   m DaBt ({Y 1 }) = n 1 n+1 m DaBt ({Y 2 }) = n 2 n+1 m DaBt (Y ) = 1 n+1 , (2) 
where n is the number of samples and n 1 , n 2 are the number of samples whose class is Y 1 ,Y 2 , respectively. They then propose to use the following impurity measure [START_REF] Klir | Uncertainty and information: foundations of generalized information theory[END_REF], applied to m DaBt :

U λ (m) = (1 -λ )N(m) + λ D(m) (3) 
where

N(m) = ∑ A⊆Y m(A) log 2 |A| is the non-specificity and D(m) = -∑ A⊆Y m(A) log 2 BetP(A)
the variability. The two parts are weighted by λ ∈ [0, 1]. Note that as the size n of the sample increases, m(Y ) (the imprecision) decreases. When using U λ as impurity measure i(t), the information gain (1) can be negative. This gives a natural stopping criterion when building the tree, that is no split is done if all possible information gains are negative. Usually, λ value can be fixed by an optimization procedure (see Section 4). Table 1 shows results obtained with CART-classification trees and with classification trees based on Denoeux and Skarstein Bjanger method. The stopping criteria is the following: keep splitting while IG > β for classical CART-trees (IG > 0 for the one based on U λ ) and while the children nodes of the split contains a minimum of 10 samples. Classical CART are optimized on the threeshold β and U λ -based on the parameter λ , using a 10-fold cross-validation procedure on training samples. Results show that the methods achieve comparable accuracies. Dempster's approach to Bernouilli's trial is not adapted to cases where the output has more than 2 classes. Therefore, we propose 3 ways to handle such cases: break up the classification problem containing K classes (K ≥ 3) into C 2 k 2-classes problems using Quost combination of binary classifiers [START_REF] Quost | Pairwise Classifier Combination using Belief Functions[END_REF], use the IDM approach or the Denoeux multinomial model.

Multi-classes cases

Combinations of binary classifiers

In [START_REF] Quost | Pairwise Classifier Combination using Belief Functions[END_REF], Quost presents a way to handle multi-class classification problems by combining classifiers built on sub-samples containing only 2 classes. That is, he proposes to learn (from the corresponding sub-sample) a conditional belief function for each pair {Y i ,Y j }, 1 ≤ i < j ≤ K of classes and to combine them into a global belief function over Y using an optimisation procedure.

Here, we propose to combine this method with decision trees issued from Denoeux and Skarstein Bjanger method, using the latter as base classifier to learn conditional belief functions (those belief functions are assigned by the DaBt applied to leaves class proportions). Decision trees are well adapted to this kind of combination, since they are simple classifiers. However, note that λ optimization becomes an issue, as K(K-1) /2 (i.e., a quadratic number) of classifiers have to be learned at each optimization step.

IDM

The IDM was introduced in the "imprecise probability" framework by Walley [START_REF] Walley | Inferences from multinomial data: Learning about a bag of marbles[END_REF]. Note that although belief functions can be interpreted as imprecise probabilities, this is far from being their only possible interpretation (and it is the one adopted here). However the IDM turn out to yield a belief function as output, hence it can be used in our framework. The IDM imprecision is controlled by an hyper-parameter s ∈ R + . From a random sample Y 1 , ...,Y n , Walley showed that the lower predictive probability distribution on Y is P(Y k |N, s) = n k/n+s where n k is the number of times Y k has been observed. The corresponding mass function is such that:

m IDM (Y j ) = n j /(n + s) j = 1, ..., K m IDM (Y ) = s/(n + s) (4) 
Note that we find back Equation ( 2) for K=2 and s=1. Using m IDM , U λ can be applied to measure the impurity in a node and multi-class trees can thus be created. Analytical form of U λ applied to m IDM can be derived as:

U λ (m IDM ) = (1 -λ )s n + s log 2 (K) - λ n + s K ∑ k=1 n k log 2 [ Kn k + S K(n + s) ] (5) 
However even if this model is simple, it's not easy to interpret it within the belief function frameworks. Also, it should be noted that the IDM imprecision only depends on the number of samples n, and not on their distribution over Y . This is not the case for the multinomial construction of Denoeux that offers a tractable and interesting alternative.

Denoeux multinomial model

Denoeux [START_REF] Denoeux | Constructing belief functions from sample data using multinomial confidence regions[END_REF] proposes to use Goodmans confidence intervals [START_REF] Goodman | On simultaneous confidence intervals for multinomial proportions[END_REF] to build a multinomial belief function. The first step is to build probability intervals [START_REF] De Campos | Probability intervals: a tool for uncertain reasoning[END_REF] (probability lower and upper bounds over singletons) and then to transform them into belief functions.

Let (X 1 ,Y 1 ), ..., (X n ,Y n ) be an iid sample where Y k ∈ Y = {Y 1 , ...,Y K }, those probability intervals [P - k , P + k ] are given, for Y k (k=1,...,n), as:

P - k = q + 2n k - √ ∆ k 2(n + q) P + k = q + 2n k + √ ∆ k 2(n + q) ( 6 
)
where q is the quantile of order 1α of the chi-square distribution with one degree of freedom, and where ∆ k = q(q + 4n k (n-n k ) /n). As shown in [START_REF] Denoeux | Constructing belief functions from sample data using multinomial confidence regions[END_REF], the lower confidence measure (i.e., P -

(A) = max( ∑ Y k ∈A P - k , 1 -∑ Y k / ∈A P - k )
) built using these regions in the case where K = 2 or 3 are belief functions, hence induce corresponding mass functions.

Note that the built belief functions follow the Hacking principle (see [START_REF] Denoeux | Constructing belief functions from sample data using multinomial confidence regions[END_REF] for details), but that the solution for K = 2 is this time not equivalent to Eq. ( 2).

In the case K > 3, the Möbius inverse of P -takes some negative values so P -is not a belief function. Different methods involving linear programing are proposed in [START_REF] Denoeux | Constructing belief functions from sample data using multinomial confidence regions[END_REF] to approximate it into a belief function. Also, in the special case where the classes are ordinal, Denoeux proposes an algorithm restricted to a certain set of focal elements. A valid predictive bba is obtained. These belief functions can then be used with U λ to build multi-class trees.

Experiments

We start by comparing the classifiers performances, and then discuss the effect of the λ parameter in U λ .

Comparison between classifiers

We compare the three proposed extensions with the classical probabilistic CART algorithm. Table 2 shows 3 multi-class UCI datasets characteristics. Table 3 presents experimental results on the previous datasets comparing the accuracy of 4 types of classifier: The tree growing strategy is the following: keep splitting while

•
• IG > β for CART and IG > 0 for the tree based on U λ • the children nodes sample size is greater than 10 CART trees and the ones using U λ are optimized by a 10-fold cross-validation procedure: for CART we optimize the threshold β and for trees based on U λ we optimize λ . None of the trees are post-pruned, as we are only interested in accuracies of each models, and not in their simplicity (defining a proper pruning strategy for U λ based decision trees remains the matter of further research). As we can see the different classifiers' accuracies are competitive although the time computations are longer with the ones using belief functions probably because of the number of focal elements wich can be higher than with probabilities (where they are restricted only to singletons)

Discussion about λ

Figures 1 study the impact of λ in terms of tree complexity (using the classical number of leafs criterion) and in terms of accuracy on the UCI dataset "Breast Tissue". They show that this complexity increases with λ , confirming that 1λ can be interpreted as the importance given to the lack of samples in a node (i.e., to non-specifity N(m)) and to the propensity of IG to be negative. This suggests that optimization (here, a 10-fold cross-validation procedure) should also integrate tree complexity as a criterion. The best accuracy level is here obtained for small lambdas which give small trees. Accuracy seems to be little influenced by lambda value, suggesting that lambda value should be kept low. 

Conclusion

In this paper, we have extended Denoeux and Skarstein Bjanger method to the multiclass case, proposing three ways to do so. The IDM is not really based on belief function and may result in too simple belief functions; Denoeux multinomial model is more elaborated, fits better with a belief function approach, but requires heavy computational efforts (asking to solve a linear program for each split test); 2-class decomposition is efficient, but makes the interpretability of results possibly harder (and, in any case, longer), as it builds a quadratic number of decision trees.

We have shown that the presented methods have prediction power comparable to classical methods. However the present work is only a starting point with many perspectives: one of the major interest of using belief functions is the ability to handle uncertain data in inputs or outputs, a feature we shall integrate to the present methods in future works (using, for example, extensions of EM-algorithm to learn trees [START_REF] Ciampi | Growing a tree classifier with imprecise data[END_REF][START_REF] Denoeux | Maximum likelihood estimation from uncertain data in the belief function framework[END_REF]). Another interesting extension would be to adapt this model to continuous outputs and to regression problems. Additional experiments exploring the method behavior should also be done.
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Table 1

 1 Accuracies of trees depending of the used impurity measure

	Data set	Number of features	standard CART error rate	trees based on U λ error rate
	Blood transfusion	4	23.5%	24.2%
	Statlog heart	13	28%	25.7%
	Tic-tac	9	21.5%	11.5%
	Breast-cancer	10	5.9%	4.7%
	Pima	8	27.3%	25.1%
	Haberman	3	26.6%	26%

Table 3

 3 Accuracies of trees depending of the masses assignement model

	Data set	Number of features	Number of classes	learning sets size	test sets size
	Iris	4	3	113	37
	Balance scale	4	3	469	156
	Wine	13	3	134	44
	Table 2 UCI data sets used in experiments