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Classification trees based on belief functions

Nicolas Sutton-Charani and Thierry Denoeux and Sébastien Destercke

Abstract Decision trees classifiers are popular classification methods. In this paper,
we extend to multi-class problems a decision tree method based on belief functions
previously described for 2-class problems only. We propose two ways to achieve
this extension: combining multiple 2-class trees together and directly extending the
estimation of belief functions within the tree to the multi-class setting. We provide
experiment results and compare them to classical decision trees.

1 Introduction

Decision trees [2] (classification trees for categorical labels and regression trees for
numerical ones) are popular classifiers, due to their simplicity, efficiency and read-
ability. The construction of usual decision trees relies on classical probability theory.
However, classical methods are not always fully adequate to deal with some prob-
lems. Among these problems are (1) the fact that all kinds of uncertainties (either in
input or output) cannot be modeled faithfully by classical probabilities and (2) the
fact that frequencies of occurrence are only sensible to proportions in sample and
not to its size.
Outside the fact that the relation between input and outputs may be non-deterministic,

a classifier may have to deal with three different possible levels of uncertainty: in
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inputs, in outputs, and uncertainty due to the fact that the learned classifier is an
estimation of the ideal one, due to a limited amount of knowledge or data. In this
work, we mainly address the third kind, where the estimation quality translates into
imprecision of belief functions.

Belief function theory [13] offers a convenient framework to deal with all these
problems. For instance, Elouedi ef al. [8] propose different ways to adapt decision
trees in the TBM framework to deal with uncertain outputs during the tree construc-
tion. In this work, we extend another approach also using belief functions proposed
by Denoeux and Skarstein Bjanger [7] that can cope with uncertain outputs and
imprecision arising from limited sample size. In this sense, this approach is closer
to some imprecise probabilistic approaches [1] that naturally integrate sample size
information in their construction.

As the Denoeux and Skarstein Bjanger method only concerns 2-class problems,
we extend this methodology to any number of classes. For multi-class problems, we
propose three ways of doing such an extension:

e combining belief functions provided by sets of 2-class trees [12]

e direcltly building multinomial belief functions using the Imprecise Dirichlet
Model (IDM) [14]

o direcltly building multinomial belief functions using Denoeux’s proposal [5]

Section 2 presents the needed background about decision trees and Denoeux and
Skarstein Bjanger method. Section 3 then extends this methodology to the multi-
class case. Finally, in Section 4 we compare new classifiers with classical CART
and discuss the effects of method parameter on experiment results basis’.

2 Background

In this section, we present the necessary background.

2.1 Decision trees

Let (X,Y) be a random vector where X = (X1,....X;) € 2" = 21 X ... x ZJ rep-
resents the features (continuous or discrete) and Y € & = {Y},...,Yx} the class to
predict. From a sample E = {(X',Y"),...,(X",Y"™)}, decision tree methods build
iteratively a model of (X,Y) by building a partition of 2. Here, we consider binary
trees (i.e. CART-like models), where each split provide two children.

The method works as follow: from a root node containing the whole learning
sample, the optimal split (among all the variables and their values) in term of in-
formation gain is searched. The information gain /G corresponding to splitting on
variable X; with value « is computed as follows:
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IG(k,a) = i(to) — pri(t1) — pri(12) )]

where i(f) is an impurity measure of a node z, # the root node, #; and 7, its child
nodes, py is the proportion of the samples in #y verifying the condition X; < « (i.e.,
pr = n/n where n is the sample size in 7y and n; the samples such that X; < o).
pr = 1 — pp, is the sample proportion not verifying it. The selected splitting value
(k, at) is then the one maximizing /G (computed as a gain in purity).

The method is then applied recursively on each child nodes until no possible
information gain superior to a preestablished threshold can be made. In this case,
the node becomes a leaf predicting the most frequent class of the leaf sample.

The information gain (or impurity measure) is calculated using Gini-index for
CART algorithm or Shanon entropy for C4.5’s one (Quinlan [11]). Both of these
functions measure the homogeneity in term of classes. They both use the frequen-
cies of the different classes in the node samples, however these frequencies do not
depend on the sample size (provided class proportions remain the same). In con-
trast, the method of Denoeux and Skarstein Bjanger and its impurity measure, that
we recall now, do change with the sample size.

2.2 Denoeux and Skarstein Bjanger method for 2-class datasets

This method use the same principle as CART, but differs in the computation of in-
formation gain: first, they use mass functions instead of simple frequencies and sec-
ond, they use an impurity measure mixing non-specifity (imprecision) and conflict
(variability).

To build the mass functions, they use Dempster’s approach to Bernouilli (DaBt)
trials that induces the following mass function:

mDaBt({Yl}) = ,1111
mpap({V2}) = 74 2
mDaBt(g) = #a

where n is the number of samples and ny, ny are the number of samples whose
class is ¥7,Y>, respectively. They then propose to use the following impurity mea-
sure [10], applied to mpgp;:

Up(m) = (1=A)N(m)+AD(m) A3)

where N(m) = Y, m(A)log, |A|is the non-specificity and D(m) = — Y, m(A)log, BetP(A)
ACY ACY

the variability. The two parts are weighted by A € [0, 1]. Note that as the size n of

the sample increases, m(%) (the imprecision) decreases. When using U as impurity

measure (), the information gain (1) can be negative. This gives a natural stopping

criterion when building the tree, that is no split is done if all possible information
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gains are negative. Usually, A value can be fixed by an optimization procedure (see
Section 4).

Table 1 shows results obtained with CART-classification trees and with classifi-
cation trees based on Denoeux and Skarstein Bjanger method. The stopping criteria
is the following: keep splitting while /G > B for classical CART-trees (IG > 0 for
the one based on U ) and while the children nodes of the split contains a minimum
of 10 samples. Classical CART are optimized on the threeshold  and U, -based
on the parameter A, using a 10-fold cross-validation procedure on training samples.
Results show that the methods achieve comparable accuracies.

Data set | Number of features  standard CART error rate  trees based on U), error rate
Blood transfusion 4 23.5% 24.2%
Statlog heart 13 28% 25.7%
Tic-tac 9 21.5% 11.5%
Breast-cancer 10 5.9% 4.7%
Pima 8 27.3% 25.1%
Haberman 3 26.6% 26%

Table 1 Accuracies of trees depending of the used impurity measure

Dempster’s approach to Bernouilli’s trial is not adapted to cases where the out-
put has more than 2 classes. Therefore, we propose 3 ways to handle such cases:
break up the classification problem containing K classes (K > 3) into C]% 2-classes
problems using Quost combination of binary classifiers [12], use the IDM approach
or the Denoeux multinomial model.

3 Multi-classes cases

3.1 Combinations of binary classifiers

In [12], Quost presents a way to handle multi-class classification problems by com-
bining classifiers built on sub-samples containing only 2 classes. That is, he pro-
poses to learn (from the corresponding sub-sample) a conditional belief function for
each pair {Y;, Yj}, 1 <i< j <K ofclasses and to combine them into a global belief
function over % using an optimisation procedure.

Here, we propose to combine this method with decision trees issued from De-
noeux and Skarstein Bjanger method, using the latter as base classifier to learn con-
ditional belief functions (those belief functions are assigned by the DaBt applied to
leaves class proportions). Decision trees are well adapted to this kind of combina-
tion, since they are simple classifiers. However, note that A optimization becomes
an issue, as K(K-1)/2 (i.e., a quadratic number) of classifiers have to be learned at
each optimization step.
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3.2 IDM

The IDM was introduced in the “imprecise probability” framework by Walley [15].
Note that although belief functions can be interpreted as imprecise probabilities,
this is far from being their only possible interpretation (and it is the one adopted
here). However the IDM turn out to yield a belief function as output, hence it can be
used in our framework. The IDM imprecision is controlled by an hyper-parameter
s € RT. From a random sample Y'!,...,Y", Walley showed that the lower predictive
probability distribution on % is P(Y;|N,s) = n/n+s where ny, is the number of times
Y} has been observed. The corresponding mass function is such that:

mIDM(Yj):nJ-/(nJrs) jil,...,K
mipm (%) =s/(n+s)
Note that we find back Equation (2) for K=2 and s=1. Using mpy, U, can be

applied to measure the impurity in a node and multi-class trees can thus be created.
Analytical form of U, applied to mjpys can be derived as:

“

-1 A K
( )Slogz(K)——anlogz[KLJrS} (5)

U = —-———
A (miow) n+s n+s = K(n+s)

However even if this model is simple, it’s not easy to interpret it within the be-
lief function frameworks. Also, it should be noted that the IDM imprecision only
depends on the number of samples n, and not on their distribution over %. This is
not the case for the multinomial construction of Denoeux that offers a tractable and
interesting alternative.

3.3 Denoeux multinomial model

Denoeux [5] proposes to use Goodmans confidence intervals [9] to build a multino-
mial belief function. The first step is to build probability intervals [4] (probability
lower and upper bounds over singletons) and then to transform them into belief
functions.

Let (X',¥1),...,(X",Y") be an iid sample where Y* € & = {Y},...,Yx}, those
probability intervals [P~ ,Pk+ | are given, for ¥; (k=1,...,n), as:

P7:Q+2”k_\/Ak +_ 4+ 2m VA
¢ 2(n+q) ¢ 2(n+q)
where q is the quantile of order 1 — « of the chi-square distribution with one

degree of freedom, and where Ay = g(g + 4 (n—n)/n). As shown in [5], the lower

confidence measure (i.e., P~(A) = max( Y, P_,1— Y P_)) built using these re-
(1S Y ¢A

gions in the case where K =2 or 3 are belief functions, hence induce corresponding

mass functions.

(6)
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Note that the built belief functions follow the Hacking principle (see [5] for de-
tails), but that the solution for K = 2 is this time not equivalent to Eq. (2).

In the case K > 3, the Mobius inverse of P~ takes some negative values so P~ is
not a belief function. Different methods involving linear programing are proposed
in [5] to approximate it into a belief function. Also, in the special case where the
classes are ordinal, Denoeux proposes an algorithm restricted to a certain set of focal
elements. A valid predictive bba is obtained. These belief functions can then be used
with Uj, to build multi-class trees.

4 Experiments

We start by comparing the classifiers performances, and then discuss the effect of
the A parameter in U),.

4.1 Comparison between classifiers

We compare the three proposed extensions with the classical probabilistic CART
algorithm. Table 2 shows 3 multi-class UCI datasets characteristics. Table 3 presents
experimental results on the previous datasets comparing the accuracy of 4 types of
classifier:

standard CART trees based on Gini index (CART)

trees based on U, with mypy (IDM)

combination of 2-classes trees based on U) (combination)
trees based on U, with magirinomiar (multi)

The tree growing strategy is the following: keep splitting while

e /G > f3 for CART and IG > O for the tree based on Uy,
e the children nodes sample size is greater than 10

CART trees and the ones using U), are optimized by a 10-fold cross-validation pro-
cedure: for CART we optimize the threshold f and for trees based on U, we opti-
mize A. None of the trees are post-pruned, as we are only interested in accuracies of
each models, and not in their simplicity (defining a proper pruning strategy for U,
based decision trees remains the matter of further research).

Data set | Number of features ~ Number of classes  learning sets size  test sets size
Iris 4 3 113 37
Balance scale 4 3 469 156
Wine 13 3 134 44

Table 2 UCI data sets used in experiments
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Data set | CART IDM combination multi
Iris 4.1% 4.1% 4.1% 21.3%
Balance scale 23.9% 25.5% 25.5% 21.3%
Wine 13.6% 10.2% 11.9% 15.3%

Table 3 Accuracies of trees depending of the masses assignement model

As we can see the different classifiers’ accuracies are competitive although the
time computations are longer with the ones using belief functions probably because
of the number of focal elements wich can be higher than with probabilities (where
they are restricted only to singletons)

4.2 Discussion about A

Figures 1 study the impact of A in terms of tree complexity (using the classical num-
ber of leafs criterion) and in terms of accuracy on the UCI dataset ’Breast Tissue”.
They show that this complexity increases with A, confirming that 1 — A can be inter-
preted as the importance given to the lack of samples in a node (i.e., to non-specifity
N(m)) and to the propensity of IG to be negative. This suggests that optimization
(here, a 10-fold cross-validation procedure) should also integrate tree complexity as
a criterion. The best accuracy level is here obtained for small lambdas which give
small trees. Accuracy seems to be little influenced by lambda value, suggesting that
lambda value should be kept low.

Fig. 1 number of nodes/A (top) and error rate/number of nodes (bottom)
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5 Conclusion

In this paper, we have extended Denoeux and Skarstein Bjanger method to the multi-
class case, proposing three ways to do so. The IDM is not really based on belief
function and may result in too simple belief functions; Denoeux multinomial model
is more elaborated, fits better with a belief function approach, but requires heavy
computational efforts (asking to solve a linear program for each split test); 2-class
decomposition is efficient, but makes the interpretability of results possibly harder
(and, in any case, longer), as it builds a quadratic number of decision trees.

We have shown that the presented methods have prediction power comparable
to classical methods. However the present work is only a starting point with many
perspectives: one of the major interest of using belief functions is the ability to han-
dle uncertain data in inputs or outputs, a feature we shall integrate to the present
methods in future works (using, for example, extensions of EM-algorithm to learn
trees[3, 6]). Another interesting extension would be to adapt this model to con-
tinuous outputs and to regression problems. Additional experiments exploring the
method behavior should also be done.
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