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ABSTRACT 

In refrigerated spaces, the inside air is cooled by a heat sink operating either by 

forced or natural convection. The last situation is more frequently used in small 

apparatus, such as domestic household refrigerators. The inside air 

temperature is not usually monitored in these refrigerated spaces. Therefore, 

knowledge of the air temperature field inside of these units is limited and large 

air temperature gradients often exist that can put the stored products at risk. 

This work studies temperatures in a commercial household refrigerator that 

were monitored with thermocouples located at several points. The measured 

temperatures were then compared with those obtained from two different 

simulation tools: the Fluent code and another method based on an Artificial 

Neural Network with supervised learning performed using a Genetic Algorithm. 

Results lead to the conclusion that, at least in this case, the second tool 

produced a lower absolute error (0.8K) when compared with the first (1K) and 

yielded modelled inside air temperature fields that are more consistent with 

reality. 

Key Words: Simulation, temperatures fields, refrigerator stores, Fluent, Artificial 

Neural Network 
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1. INTRODUCTION 

 

In refrigerated spaces, various perishable products are placed inside in an 

almost arbitrary order, based on the false principle that the inside air 

temperature is constant through the space. This is an erroneous premise 

because there are significant inside air temperature differences, either due to air 

circulation from the evaporator (natural or forced convection) or due to different 

thermal properties and/or respiration activity of the refrigerated products that 

interact with the neighbouring air. Because each perishable product has a 

typical conservation temperature for optimal longevity in good condition, it is 

necessary to understand the air temperature fields inside of the refrigeration 

stores.  

Generally, the refrigeration spaces contain one thermostat with a bulb that 

senses the temperature inside, with the assumption that it is constant 

throughout the space, and this value then controls the compressor run time. 

Nothing is known about the air temperature in different locations within the 

space. Therefore, to obtain this knowledge, it is necessary to measure the 

inside air temperature in many places. This practice, however, is an expensive 

one and is not feasible in all stores. 

To assist in solving this problem, the purpose of this work was to measure the 

inside air temperatures at selected discrete points in a commercial household 

refrigerator. The measured temperatures were then compared with values 

obtained from two different simulation tools, the Fluent code and another 

method based on an Artificial Neural Network (ANN) with supervised learning 

performed using a Genetic Algorithm (GA) supported by an elitist strategy. The 

aim was to obtain knowledge of the air temperature fields inside the refrigerated 

unit (in addition to the value measured by the thermostat).  

The ANN method has been around since the 1940s [1], but its use has been 

recognised only recently (within the last twenty years), with applications in a 

large range of engineering fields. 
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Several studies have been conducted in the field of thermal sciences, and they 

have mainly been concerned with optimisation of energy consumption in 

residential buildings due to solar heat gains, hot water heating and space 

cooling [2,3,4,5]. In terms of refrigeration systems, the ANN has also been used 

by several investigators for evaluation of the performance of vapour 

compression heat pumps [6,7], for automotive air conditioning [8], for modelling 

ejector-absorption refrigeration systems [9] and cascade refrigeration systems 

[10]. In the same domain, the commercial Fluent program has also been used 

for simulation and visualisation of temperature and velocity fields. 

The results in this study showed that the ANN method is more precise, with a 

small absolute error between the measured and simulated values. 

 

 

2. TEST FACILITIES 

A commercially available household refrigerator was used for the tests [11], as 

seen in Figure 1. Previously calibrated copper-constantan thermocouples were 

located inside the cabin, three at three different levels in height, two on each 

vertical surface, one on each horizontal surface and also one at the outside 

laboratory. A total of twenty thermocouples were connected to a data 

acquisition system that read the temperatures at intervals of twenty seconds 

[12]. The refrigerator was empty during this time, and was disconnected from 

the grid at the beginning of the tests with the door open so that the inside and 

outside air temperatures were equal at the start. The door’s shelves were open 

during the test in order to avoid close spaces inside the refrigerator. The tests 

began when the door was closed and the compressor was connected to the 

grid, starting its operation. Two distinct parts of the tests could be detected. The 

first one was a transient phase, where the compressor ran constantly until the 

thermostat detected a minimum temperature inside and the compressor was 

shut off. The second phase consisted of a steady state, where the compressor 

was switched on and off to maintain an average inside air temperature between 
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a maximum and minimum air temperature established by the thermostat. The 

energy consumption of the compressor was also measured simultaneously. 

 

3. SIMULATION TOOLS 

As mentioned previously, two different simulation tools were used to simulate 

the inside air temperature fields in a commercial domestic refrigerator to gain as 

much knowledge as possible, and to compare the simulation tools in regards to 

the precision of the output. The following subsections describe the simulation 

tools used in this investigation. 

 

3.1  Fluent 

This commercially available simulation tool [13] uses the classic turbulent model 

k-ε for the 3D simulations. It is based on the finite volumes method in which the 

equations of mass conservation and momentum are solved simultaneously, 

respectively: 

∫=
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These equations were integrated over each control volume centred on discrete 

points placed in the flow domain. Inside the refrigerator, a net of 432,000 control 

volumes were established with constant volume, except for those located close 

to the internal surfaces of the refrigerator where they were more refined. 

Therefore, the minimum and maximum values of the control volumes were 

1.101x10-8 and 7.155x10-6 m3, respectively. The established convergence 

criteria were 10-2 for the mass conservation and 10-5 for the remaining 

equations. 

For the simulation, the refrigerator was considered as a rectangular prism with 

the following internal dimensions: 1050x480x450 mm. The working fluid was air. 
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The measured internal surface temperatures were used as boundary conditions 

input to the commercial Fluent code. A literature review [14] revealed 

procedures much like these, but instead of the measured boundary conditions 

used in this study, these values were considered as constant. From the results 

obtained, we concluded that the average error between the measured inside air 

temperatures and the simulated values was slightly larger than 1K for all of the 

transient and steady phases of the test. 

Figures 2 and 3 show the results obtained for the air temperature fields inside 

the refrigerator at the end of the transient phase and in a steady phase, 

respectively. The compressor was stopped in both situations. In the first case, 

the compressor had completely stopped and in the second case, it was about to 

start up.  

As can be seen in Figure 2, the air temperatures decrease from the top to the 

bottom of the refrigerator, as expected. A higher temperature is noticeable close 

to the top right wall, but this is due to some inefficiency of the thermal insulation, 

as confirmed by the refrigerator producer. However, this inefficiency affects the 

air temperatures inside the unit. As can also be seen in the figure, there is a 

large stratification of the air temperatures and a noodle of lower temperature at 

the bottom location that cannot be explained by the measurements that were 

carried out. The temperature difference between the top and the bottom 

locations is approximately 5K. 

In the steady phase of Figure 3, the compressor was about to start up. 

Therefore, the inside air temperatures are higher when compared with those of 

the previous situation, and the air temperatures are also observed to decrease 

from the top to the bottom locations. In this case, two spots can be seen at 

about midlevel heights that show higher temperatures in the surrounding air, 

without any apparent justification when compared with the measured 

temperatures. Because these spots are located at different positions as 

compared with Figure 1, they cannot be input to the thermocouple readings.  

On the top of the plane there is a layer of lower temperatures caused by the 

heat transfer from the refrigerator to the freezer (at lower temperatures). 
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3.2 Artificial Neural Network (ANN) 

The Artificial Neural Network (ANN) method is based on a computational 

structure inspired by the biology of the human neural system, including 

attributes such as learning, thinking, memorising, remembering, rationalising 

and problem solving. The ANN is made up of simple and highly interconnected 

nodes called neurons. One artificial neuron can modify its behaviour in 

response to the environment where it is located. 

ANNs are widely accepted as a technology that offers an alternative way to 

treat complex and ill-defined problems. ANNs can learn from experiments, are 

tolerant of noisy and incomplete data, and are able to deal with non-linear 

problems. Once trained, they can perform prediction and generalisation at high 

speed. ANN applications have been reported in energy fields, including heating, 

ventilating and air-conditioning, solar radiation, modelling and control of power 

generation systems, load forecasting and prediction, and refrigeration [14-17]. 

However, the study of temperature fields inside refrigerated spaces is a new 

focus. 

An ANN was specially developed for the case under study. The input data to the 

ANN are the Cartesian coordinates in the refrigerator, one time instant for the 

transient phase and one time instant for the stationary phase of the refrigeration 

process. The output data are the simulated air temperature fields corresponding 

to the transient and steady phases of the process for the instants considered for 

the input data. The ANN model is based on a topology with three layers, one of 

which is hidden. 

When a set of data (local coordinates and time instants) is introduced into the 

network, it adapts itself to obtain consistent output data (temperatures) through 

a process called learning. The model developed here is based on supervised 

learning. In this case, for a set of input data, there is a set of previously defined 

output temperatures. Therefore, the input data generates a set of output data 

that is compared with the measured values. The learning phase occurs if there 

are differences between the simulated output and the desired ones, as obtained 

experimentally and known a priori. In this case, the weights of the synapses and 
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the biases of the ANN are adjusted to decrease that difference. For that, the 

input data must be linearly independent, which results in a system that can be 

solved if hidden nodes are introduced on the topology of the network. However, 

the hidden nodes also raise problems, such as an inability to recognise which of 

the weighted connections is responsible for the difference (error). To solve this 

problem, a methodology was developed that iteratively considers the output 

signal as an input signal and then fits the weights along all of the process. This 

process is known as back propagation. The input signals are modified through 

weights that represent the existing connections between nodes. 

In our approach, the training of the learning process of the ANN is realised 

through a designed elitist Genetic Algorithm. Using a binary code format for the 

weights of the synapses and the biases of the ANN, it is possible to evaluate 

the fitness of each input/output pair based on the absolute error. Therefore, the 

main objective is to minimise this error. With this optimisation process, the ANN 

obtains a correct simulation of the temperatures using the experimental 

measurements. 

3.2.1 ANN Topology Definition 

The aim of this simulation tool is to investigate the performance of the Artificial 

Neural Network (ANN) in regards to the precision of the evolution of the inside 

air temperatures in a refrigerator. Each set of measured data is associated to an 

input vector and an output vector. The weighted links between the input nodes 

and the intermediate nodes, and between these and the output nodes, are 

designed by synapses. These connections establish the relationship between 

input data inp
iO  and output data out

jO .  

In the developed ANN, the input data, inp
iO , are the Cartesian coordinates in 

the refrigerator, one time instant for the transient phase and one time instant for 

the stationary phase of the refrigeration process. The output data, out
jO , are the 

simulated air temperatures fields corresponding to the transient and steady 

phases of the process for the instants considered for the input data. The ANN 
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model is based on a topology with three layers, one of which is hidden. Figure 4 

shows the topology of the ANN together with the input and output parameters. 

As put forth, the set of data is converted in an input vector and on an output 

vector. These must be normalised to avoid numerical perturbations in the 

information process. Each pattern consisting of an input vector and an output 

vector needs to be normalised with the aim of avoiding error propagation during 

the ANN learning process. This is achieved using the following data 

normalisation: 

minN
minmax

minNmaxN
minkk O

OO

OO
)OO(O +

−
−

−=                                 (3) 

where: 

kO  is the real value of the variable before normalisation. 

minO  and maxO  are the minimum and the maximum values of kO  in the 

data set to be normalised.  

The input and output data are then normalised to values minNO  and maxNO  

such that maxmin NkN OOO ≤≤ . Depending on the input or the output data, 

different predefined values of minNO  and maxNO  can be used. 

Figure 5 represents the calculation process for a single k-th node (neuron), 

designed as a Process Element (PE). The sum of the modified signals (total 

activation) is modified through a function, designed as an Activation Function 

F(x). The activation of node k of the intermediate layer (m=1) and output layer 

(m=2) is obtained through sigmoidal functions of the following kind: 

)()(  -

)(

e1

1
m

k
m I

m
kF

α+
=                                                               (4) 

In this equation, m represents the activation zone (either hidden or output 

layers) and )(m
kI  are the components of the vector )(mI given by: 
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)()( )()( mm mm bOWI +=                                    (5) 

where: 

)(mW  is the matrix of the weights of synapses associated with the 

linkage between the input and hidden layers (m=1) or between the 

hidden and output layers (m=2). 

)(mb  is the bias vector on hidden (m=1) or output (m=2) layers. 

)(mO  is the input data vector for the hidden layer (m=1) or the output 

layer (m=2). 

The weights of the synapses )(m
ijw  and the biases in the neurons in the hidden 

and output layers )(m
kb  are controlled during the learning process. The absolute 

error between experimental and numerical results is used to monitor the 

learning process with the aim of obtaining completeness of the model of the 

refrigeration process.  

When a set of input data is introduced into the network, the network adapts to 

produce consistent results through a process designed by learning. Therefore, 

for a set of input data, there exist a predefined set of output data. Then, using 

the input data in the network, the model generates numerical output results that 

can be compared with the measured values and as such, the mean absolute 

error can be evaluated through the following equation: 

ni

out
ii

N

n

OO
N

Error













−= ∑∑

==

2

1

exp

1
exp

exp

2

1
),( bW                            (6) 

where:  

expN  is the available number of experimental measured values of the 

inside air temperatures 
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out
iO  and 

exp
iO  are the simulated and measured air temperatures, 

respectively.  

The error obtained from equation (6) is back propagated into the artificial 

network. This means that, from output to input, the weights of the synapses and 

the biases can be modified until the error falls within a prescribed value. 

The learning process will proceed if there is a difference between the simulated 

results and the desired values (known a priori through the measured 

experimental data). Then, the weight of the synapses W and the biases of the 

neurons of the hidden layer and of the output b are adjusted to reduce the 

differences (supervised learning). This adjustment happens in an optimisation 

process. 

3.2.2 ANN Learning Process based on Genetic Algorithm 

Genetic Algorithms (GAs) have been used with increasing frequency in a large 

variety of applications. These methods apply biological principles of survival-of-

the-fittest in computational algorithms. The GA uses a structured exchange of 

data to explore all regions of the domain and leads some operators to exploit 

potential areas. These methods are also able to deal with discrete optimum 

design problems and do not require derivatives of functions. 

The use of GAs in ANN learning is a methodology that has been applied by 

some authors in industrial processes. In our approach, the objective is to 

explore some of the advantages of GAs in handling discrete input parameters 

associated in the refrigeration process as Cartesian coordinates, as well as the 

time instants in transient and steady phases. It is understood that the learning 

process is an optimisation procedure.  

The adopted supervised learning process of the ANN based on a GA uses the 

weights of synapses )(mW  and the biases of neural nodes at the hidden and 

output layers )(mb  as design variables. A binary code format is used for these 

variables and the number of digits of each variable can be different. The bounds 
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of the interval domain of the learning variables and the scaling parameter (m)α  

influence the sensitivity of sigmoidal activation functions and must be controlled.  

The optimisation problem formulation associated with the ANN learning process 

is based on the minimisation of the absolute error defined in equation (6). A 

regularisation term associated to biases in the hidden and output neurons are 

included in the fitness function for learning based on GA, with the aim of 

accelerating the convergence of the ANN learning process.  

Since the evolutionary search is intended to maximise a global fitness function 

FIT that measures the ANN performance, the optimisation problem is defined as 

follows 

Maximise ( ) ( )[ ])2()1()2()1()2()1( ,,,, bbbbww BErrorKFIT +−=              (7) 

where: 

 K is an arbitrary constant 

( ))2()1( ,bbB  is a regularisation function associated to the mean quadratic 

biases of the hidden and output layers and defined as 

( ) ( ) 2/1)1()2()1( )2(, BBB +=bb                                 (8) 

with 
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and: 
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(1)
kb  and (2)

kb , the associated biases in the nodes of the hidden and 

output layers respectively.  

 

3.2.3 Genetic Algorithm 

The Genetic Algorithm performs the learning process based on four operators 

(selection, crossover, replacement and elimination) as well as implicit mutation 

of similar individuals. The GA is the same method that has been used in 

previous industrial applications [8,9]. The algorithm is applied as follows: 

Step1: Initialisation. The initial population Pop(0) is randomly generated. 

Step 2: Selection. This operator selects the parents: one from the best-fitted 

group (elite) and another from the least-fitted one. This selection is done 

randomly with an equal probability distribution for each individual. The 

Crossover operator determines transfer of the entire population to an 

intermediate step where it is joined with the offspring.  

Step 3: Crossover. The offspring genetic material is obtained using a 

modification of the "Parameterised Uniform Crossover" technique proposed by 

Spears and De Jong [18]. This is a multi-point combination technique applied to 

the binary string of the selected chromosomes. The offspring gene is selected in 

a biased way, given a defined probability for choosing the gene from the elite 

chromosome. The new offspring group is then joined to the original population. 

Step 4: Replacement by similarity. A new ranking of the enlarged population is 

implemented according to individual fitness. This is followed by Elimination of 

solutions with similar genetic properties and subsequent Substitution by new 

randomly generated individuals.  

Step 5: Elimination. The population is ranked again, followed by Elimination 

corresponding to the deletion of the worst solutions. The exclusion of individuals 

with low fitness and the natural death of old individuals are simulated by this 

operator. This elitist strategy enables the survival of parents and offspring 

together in an evolutionary process. At this point, the dimension of the 
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population is smaller than that of the original one. The original-sized population 

will be recovered after inclusion of a group of new solutions obtained from the 

Mutation operator. 

Step 6: Implicit Mutation. To avoid the appearance of local minima, a 

chromosome set group in which genes are generated in a random way is 

introduced into the population. This operation is called implicit mutation. The 

mutation operator guarantees the diversity of the population in each generation.  

Step 7: Stop criterion. The stop criterion used in the evolutionary process is 

based on the relative variation of the mean fitness of a reference group during a 

fixed number of generations and the feasibility of the corresponding solutions. 

The size for the reference group is predefined [19].  

3.2.4 Simulation using ANN 

One important aspect of the ANN is the normalisation of the input and output 

data of the net. For the model built for the refrigerator, the data was normalised 

for the following domain: [0.9, 0.1]. The learning process considered 17 pairs of 

input/outputs and measured temperatures associated with the numbers of the 

thermocouples distributed at several points inside the refrigerator (x, y, z). An 

ANN with six nodes at the hidden layer was used. A population of 24 individuals 

is used in ANN learning based on GA with a mutation group of eight individuals. 

A binary code format with five digits is used for the weights of synapses and 

bias design variables of the ANN learning process. Figure 7 shows the evolution 

of mean absolute error along the ANN learning process based on GA. At the 

end of the learning process, one optimal ANN was obtained with an absolute 

error of 0.8K between the simulated and measured temperatures for all of the 

experiment. 

After the learning process, a simulation procedure was implemented based on 

the optimised ANN and designed to obtain the inside temperature field in a 

reference plane. The frontal plane located at the middle of the refrigeration 

cabin was selected. 
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The results of the temperature fields as simulated with the ANN for the same 

plane and time instants considered for the Fluent code are shown in Figures 8 

and 9, respectively. In both figures the results are obtained using ANN after its 

learning procedure (optimal topology) and introducing the input data (Cartesian 

coordinates and time points at transient and steady state phases). 

As seen in Figure 8, there is a similar trend in the simulated air temperatures 

shown in Figure 2 (for the same time instant of 2000 s). The inside air 

temperatures decrease from the top to the bottom locations, with the same 

problem of higher temperatures at the top right of the plane (due to insulation 

problems, as already mentioned). In Figure 2, it is possible to see that the 

domains with constant inside air temperatures show a slight tendency to lower 

towards the right side of the plane under consideration. In Figure 8, this 

tendency is much more evident for all levels of temperatures. Two conclusions 

can be obtained from the specifically tested refrigerator: 1) perishable products 

that require lower temperatures should be kept close to the right wall, up to the 

middle eighth of the refrigerator; 2) on the plane considered in the simulations, it 

is possible to see that the peaks of each constant temperature field are located 

almost on a vertical through the middle of the plane. 

As can also be noted, the ANN simulates lower air temperatures at the bottom 

of the plane (282.7K, as compared with 286K obtained with the Fluent).  

As seen in Figure 8, it is also possible to see much more detached constant 

temperature layers. The air temperature difference between the top and the 

bottom locations is larger with ANN, about 7K (as opposed to about 5K from 

Fluent), which means a higher simulation resolution. Also, in this figure, the 

spots simulated in Figure 2 have disappeared. 

For the time instant of 15000 s in the steady state, the results of the ANN and 

the Fluent are not so similar. The results obtained with the ANN show much 

more detail about the domains of constant temperature in spite of all of them 

falling in the range of [279K, 280K] (in Figure 3 there are almost three different 

layers of constant temperatures, decreasing on average from the left to right 

and with a temperature difference between the top and the bottom of the same 
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magnitude, about 1K). In Figure 9, a similar tendency can be seen but with 

many more different layers of constant temperatures. Additionally, the ANN 

detects the hot zone at the top right of the plane that the Fluent was not able to 

simulate. However, the colder zone on the top plane is not as easily identified 

with the ANN method, in spite of the temperatures being identical to the ones 

obtained with the Fluent and that measurement is approximately 279K.  

The same kind of conclusions obtained in the transient phase can also be 

observed during the steady state. 

Comparing with Figure 3, it is also possible to see that with the ANN, the spots 

of higher temperatures simulated (and not justified) by the Fluent code have 

disappeared with the second numerical tool. 

 

Similar analysis can be made based on graphs obtained using different planes 

of the refrigerator cabin. 

 

4 CONCLUSIONS 

In all refrigerated spaces, it is important to understand the inside air 

temperature distribution to know the best places to locate products due 

according to their specific characteristics. One way to achieve this is to 

continuously monitor the inside air temperatures in several places. However, 

this procedure can be difficult and expensive. A more expeditious approach is to 

simulate the inside air temperatures using selected experimental results and 

adequate numerical tool packages. In this work, two different numerical tools 

were used to simulate the inside air temperatures in a commercial household 

refrigerator. One method, the commercially available Fluent code, makes use of 

the classic turbulent model k-ε for the 3D simulations and is based on the finite 

volumes method, where the equations of mass conservation and momentum 

are solved simultaneously. The other method, the Artificial Neural Network 

(ANN), is based on a computational structure inspired by the biology of the 

neural human system including attributes such as learning, thinking, 

memorising, remembering, rationalising and problem solving. An ANN method 
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was specially developed for the case under study. Furthermore, one of the 

advantages of the ANN-based approach is to use a small set of experimental 

measurements of air temperatures to build a tool that enables to predict the air 

temperature fields inside refrigeration cabins and simultaneously detecting 

critical variations. This avoids the necessity of exhaustive experimental tests. 

Comparison of the results of the two numerical tools yields the following 

conclusions: 

• Both are powerful numerical tools for simulation of the inside air 

temperatures inside refrigerated cabins.  

• The absolute error (difference between the simulated and measured 

temperatures) obtained from the ANN (0.8K) is lower than that obtained 

from Fluent, about 1K. This is not a large difference, however, with 

regard to the amplitude of the levels of temperatures under consideration 

in the refrigerator, the ANN is more precise. 

• The temperature fields obtained with the ANN are more refined when 

compared with that of the Fluent code. During the transient phase (2000 

s), the ANN was able to detect a larger difference in the simulated air 

temperatures when compared with the Fluent, and those differences 

were 7K and 5K, respectively. In the steady phase (15000 s), there were 

almost no temperature differences obtained from either simulation tool. 

• The temperature field patterns obtained inside the refrigerator are similar 

in both simulation tools. 

• For the specifically tested refrigerator, it is possible to conclude that 

perishable products that require lower temperatures should be kept close 

to the right wall, up to the middle eighth of the refrigerator. On the 

considered plane used for the simulations, it is also possible to see that 

the peaks of each constant temperature field are located almost on the 

vertical through the middle of the plane. 
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As can be observed, the air temperature differences inside the refrigerator used 

in the tests are not large, yet the numerical tools used in this work were able to 

detect them. However, in huge refrigeration storehouses, it is expected that 

larger variations of the air temperature will occur, which can jeopardise product 

conservation. Therefore, the previously mentioned numerical methods are 

important tools that can give a picture of the air temperature fields inside 

refrigeration storehouses of any dimension. 

In a near future a study on the influence of products inside the refrigerator will 

be carried out based on further experimental measurements. 

AKNOWLEDGMENTS 

The authors acknowledge all of the support given by IDMEC – Polo FEUP – 

(Institute of Mechanical Engineering – Porto Pole) to realise this work. Special 

acknowledgement is due to Eng. J. Matos for the experimental apparatus 

conducted. 

REFERENCES 

[1] McCulloch, W. S. and Pitts, W., “A logical Calculus of the Ideas Immanent in 

Nervous Activity”, Bulletin of Mathematical Biophysics, Vol.5, pp.115-133, 1943. 

[2] Krarti, M., et al. “Estimation of Energy Saving for Building Retrofits Using 

Neural Networks”, Journal of Solar Energy Engineering, Vol.120, pp.211-216, 

1998. 

[3] Aydinalp, M., et al. “Modeling of the Appliance, Lighting, and Space-cooling 

Energy Consumptions in the Residential Sector Using Neural Networks”, 

Applied Energy, Vol.71, No.2, pp.87-110, 2002. 

[4] Aydinalp, M., et al. “Modeling of the Space and Domestic Hot-water Heating 

Energy Consumption in the Residential Sector Using Neural Networks”, Applied 

Energy, Vol.79, No.2, pp 159-178, 2004. 

[5] Certiner, C. et al “Generating Hot Water by Solar Energy and Application of 

Neural Network”, Applied Thermal Engineering, Vol.25, No.8-9, pp.1337-1348, 

2005. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
18 

[6] Ertunc, H, Hosoz, M. “Artificial Neural Network Analysis of a Refrigeration 

System with an Evaporative Condenser”, Applied Thermal Engineering, Vol.26, 

pp.627-635, 2006. 

[7] Arcaklioglu, E., Erisen, A., Yilmaz, R. “Artificial Neural Network Analysis of 

Heat Pumps Using Refrigerant Mixtures”, Energy Conversion and Management, 

Vol.45, pp.1917-1929, 2004. 

[8] Hosoz, M. and Ertunc, H. “Artificial Neural Network Analysis of an 

Automotive Air Conditioning System”, Energy Conversion and Management, 

Vol.47, pp.1574-1587, 2006. 

[9] Sozen, A. Rcaklioglu, E., Ozalp, M. “Artificial Neural Network Analysis of an 

Automotive Air Conditioning System”, Applied Thermal Engineering, Vol.23, 

pp.937-952, 2003. 

[10] Hosoz, M. and Ertunc, H. “Modelling of a Cascade Refrigeration System 

Using Artificial Neural Network Analysis”, International Journal of Energy 

Research, Vol.30, pp.1200-1215, 2006. 

[11] Afonso, C.F.A.; Matos, J., “Thermal Simulations and Measurements of 

Domestic Refrigerators-Freezers: Experimental Results”, International Journal 

of Refrigeration, Vol.29, pp.1144-1151, 2006. 

[12] Clito, A., et all, “Frigoríficos Domésticos: Valuation Térmica Frente Varios 

Regímenes de Funcionamento”, Proceedings of the conference “Advances en 

Ciências y Técnicas del Frio”, Vigo, Spain, 2003. 

[13] Fluent User’s Guide, Version 4.0, Fluent Inc., Lebanon – NH, USA, 1998. 

[14] Kalogirou, S.A., “Applications of artificial neural networks in energy 

systems, A review”, Energy Conversion & Management, Vol.40, pp.1073-1087, 

1999. 

[15] Sencan, A., “Artificial intelligent methods for thermodynamic evaluation of 

ammonia-water refrigeration systems”, Energy Conversion & Management, 

Vol.47, pp.3319-3332, 2006. 

[16] Sencan, A., “Performance of ammonia-water refrigeration systems using 

artificial neural networks”, Renewable Energy, Vol.32, pp.314-328, 2007. 

[17] Pacheco-Vega, A., Sen, M., Yang, K.T., McClain, R.L., “Neural network 

analysis of fin-tube refrigerating heat exchanger with limited experimental data”, 

International Journal of Heat and Mass Transfer, Vol.44, pp.763-770, 2001. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
19 

[18] Conceição António, “A Multilevel Genetic Algorithm for Optimization of 

Geometrically Non-Linear Stiffened Composite Structures”, Structural and 

Multidisciplinary Optimization, Vol.24, No.5, pp.372-386, 2002. 

[19] Castro, C.F., António, C.A.C. and Sousa, L.C., “Optimisation of shape and 

process parameters in metal forging using genetic algorithms”, Journal of 

Materials Processing Technology, Vol.146, pp.356-364, 2004. 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
20 

 

List of Figures 

Fig. 1 Household refrigerator used for temperature measurements. 

Fig. 2 Air temperature fields (K) in a plane parallel to the door and at a middle 
distance in width for the time of 2000 s (end of transient phase); 
compressor stopped. Simulation based on commercial code Fluent. 

Fig.3 Air temperature fields (K) in a plane parallel to the door and at a middle 
distance in width for the time of 15000 s (steady state phase); 
compressor about to start. Simulation based on commercial code Fluent. 

Fig. 4 Topology of Artificial Neural Network (ANN). 

Fig. 5 Process Element (PE) for a neuron. 

Fig. 6 ANN learning process based on GA. 

Fig. 7 ANN learning process, evolution of error by GA. 

Fig. 8 Air temperature fields (K) in a plane parallel to the door and at a middle 
distance in width for the time of 2000 s (end of transient phase); 
compressor stopped. Simulation based on developed ANN. 

Fig. 9 Air temperature fields (K) in a plane parallel to the door and at a middle 
distance in width for the time of 15000 s (steady state phase); 
compressor about to start. Simulation based on developed ANN. 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
21 

 

Fig. 1 Household refrigerator used for temperature measurements. 

 

 

 
Fig. 2 Air temperature fields (K) in a plane parallel to the door and at a middle 
distance in width for the time of 2000 s (end of transient phase); compressor 

stopped. Simulation based on commercial code Fluent. 
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Fig.3 Air temperature fields (K) in a plane parallel to the door and at a middle 
distance in width for the time of 15000 s (steady state phase); 

compressor about to start. Simulation based on commercial code Fluent. 
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Fig. 4 Topology of Artificial Neural Network (ANN). 
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Fig. 5 Process Element (PE) for a neuron. 
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Fig. 6 ANN learning process based on GA. 
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Fig. 7 ANN learning process, evolution of error by GA. 
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Fig. 8 Air temperature fields (K) in a plane parallel to the door and at a middle 
distance in width for the time of 2000 s (end of transient phase); 

compressor stopped. Simulation based on developed ANN. 
 

 

 

Fig. 9 Air temperature fields (K) in a plane parallel to the door and at a middle 
distance in width for the time of 15000 s (steady state phase); 

compressor about to start. Simulation based on developed ANN. 
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