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MISCELLANEOUS RESULTS ON SUM-SETS

IN ORDERED SEMIGROUPS AND MAGMAS

SALVATORE TRINGALI

Abstract. We generalize recent results by G.A. Freiman, M. Herzog and coauthors on the

structure theory of set addition from the context of linearly (i.e., strictly and totally) ordered

groups (LOGs) to the one of linearly ordered semigroups (LOSs). In particular, we find that,
in a LOS, the commutator and the normalizer of a finite set are equal to each other. On the

road to this goal, we also extend an old lemma of B.H. Neumann on commutators of LOGs

to the setting of LOSs and classical lower bounds on the size of sum-sets of finite subsets of
LOGs to linearly ordered magmas. The whole is accompanied by a number of examples, one

of these including a proof that the multiplicative semigroup of all upper (respectively, lower)
triangular matrices with positive real entries is linearly orderable.

1. Introduction

Semigroups and magmas are ubiquitous in mathematics. Apart from being a subject of
continuous interest to algebraists, they are the natural framework for the introduction of several
broadly-scoped concepts and for the development of some large parts of theories traditionally
presented in somewhat richer settings. Semigroups serve, for instance, as fundamental models
for linear time-invariant systems and, as a result of the pioneer work of Hille and Phillips on
their use in functional analysis [7], have been successfully applied for decades to the study of
partial [5] and stochastic [15] differential equations (e.g., in relation to the method of strongly
continuous one-parameter semigroups). Also, finite semigroups have been of primary importance
in theoretical computer science since the 1950s due to the their natural link with finite automata.

Our personal interest in semigroups is related here to some recent results by G.A. Freiman,
M. Herzog and collaborators on the structure theory of sum-sets in the (non-abelian) setting of
linearly (i.e., strictly and totally) ordered groups, which the authors refer to simply as ordered
groups [6]. This is an active area of research, with notable applications, e.g., to additive combi-
natorics [14], Freiman’s structure theory [13], invariant measures [2], and spectral gaps [3]. The
present work fits into this background and aims to be a contribute to the efforts of extending
some parts of the theory from the scenery of groups to the one of semigroups (and indeed of
magmas). Specifically, our first result is as follows:

Corollary 1. Let A = (A, ·,�) be a linearly ordered semigroup (written multiplicatively) and
a, b ∈ A. If anb = ban for some n ∈ N+, then ab = ba.

Corollary 1 is actually a generalization of an old lemma by N.H. Neumann [12] on commuta-
tors of linearly ordered groups, appearing as Lemma 2.2 in [6]; we prove it in Section 2.3.
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The next proposition is an extension of classical lower bounds on the size of sum-sets of finite
subsets of linearly ordered groups to the setting of linearly ordered magmas.

Proposition 1. Suppose that A = (A, ·,�) is a linearly ordered magma (written multiplica-
tively). Pick n ∈ N+ and let S1, S2, . . . , Sn be nonempty finite subsets of A. Then

(1) |(S1S2 · · ·Sn)P| ≥ 1− n+
∑n

i=1 |Si|
for any given parenthetization P of A of length n.

The reader might want to consult [4] and the references therein for similar results in the
context of arbitrary groups (notably including the Cauchy-Davenport theorem). Proposition 1
is proved in Section 2.3. Here, as is expected, we use ≥ (and its dual ≤) for the standard order
of the real numbers (unless an explicit statement to the contrary) and, if S is a set, we denote
by |S| the cardinality of S. More notation and terminology used in this introduction without
explanation will be clarified below, in Section 2.1.

We give a couple of applications of Proposition 1, none of them covered by less general
formulations of the same result such as the classical one presented in [6] for linearly ordered
groups. One of these applications concerns the set of all upper (respectively, lower) triangular
matrices with positive real entries, which we prove to be a linearly orderable semigroup (with
respect to the usual matrix multiplication) in Example 5 of Section 2.2. In this respect, we raise
the question (open to us) whether the same holds true for the set of all matrices which are a
(finite) product of upper or lower triangular matrices with positive real entries.

Lastly, we establish the following:

Proposition 2. Let A = (A, ·,�) be a linearly ordered semigroup (written multiplicatively) and
S a nonempty finite subset of A of size m. If y ∈ A \ CA(S), then

(2) |yS ∪ Sy| ≥ m+ 1.

In particular, there exist a, b ∈ S such that ya /∈ Sy and by /∈ yS.

Proposition 2 is a generalization of [6, Proposition 2.4]. We prove it in Section 3. Finally we
mention the following interesting result concerning linearly ordered semigroups, which in turn
generalizes [6, Corollary 1.5] and is a straightforward consequence of Proposition 2.

Corollary 3. If S is a finite subset of a linearly ordered semigroup A, then NA(S) = CA(S).

2. Definitions, examples and basic properties

The present section is divided into three parts. First, we fix notation and terminology and
recall the definitions of ordered (and orderable) magmas, semigroups and groups. Then, we
mention some relevant examples for each of these structures. Finally, we derive a few basic
properties that will be used to prove, later in Section 3, our main results.

2.1. Notation and terminology. For all purposes and intents, and especially to avoid misun-
derstandings due to different conventions, let us first clarify some basic points and recall a few
definitions. Our main references for this section are [1] and [8]. In particular, for order-theoretic
concepts used here but not defined, the reader should consult [8, § 1.3].

Given a set A, an order on A is a binary relation � on A which is reflexive, antisymmetric
and transitive. One then refers to the pair (A,�) as a poset and writes a ≺ b for a, b ∈ A to
mean that a � b and a 6= b. If (A,�) is a poset, we denote by �op the dual order of �, defined
by taking a �op b for a, b ∈ A if and only if b � a.
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Definition 1. A magma is a pair A = (A, ?), consisting of a (possibly empty) set A, the magma
carrier, and a binary operation ? : A×A→ A, the magma product.

Note that [8, § 1.1] refers to magmas as groupoids. A magma A = (A, ?) is associative if ? is
associative, i.e. a ? (b ? c) = (a ? b) ? c for all a, b, c ∈ A; abelian if a ? b = b ? a for all a, b ∈ A;
and unital if there exists a distinguished element e ∈ A (which is, in fact, unique and called
the magma identity) such that a ? e = e ? a = a for every a ∈ A. An associative magma is a
semigroup and a unital semigroup is identified with a monoid, which is formally a triple of type
(A, ?, e), where (A, ?) is a semigroup and e ∈ A the identity thereof. Something analogous holds
for groups, formally defined as 4-tuples of type (A, ?,∼, e) for which (A, ?, e) is a monoid and
∼ is a unary operation A→ A such that a ? (∼ a) = (∼ a) ? a = e for every a ∈ A.

Definition 2. An ordered magma is a pair of the form (A,�), or equivalently a triple of type
(A, ?,�), where i) � is an order on A and ii) a ? c � b ? c and c ? a � c ? b for all a, b, c ∈ A with
a � b. If (A,�) is such a pair, one says that A is ordered by �. In particular, (A,�) is a totally
ordered magma if � is total; a strictly ordered magma if a ? c ≺ a ? c and c ? a ≺ c ? b for all
a, b, c ∈ A with a ≺ b; and a linearly ordered magma if it is both strictly and totally ordered.
Accordingly, A is said to be totally orderable in the first case, strictly orderable in the second,
and linearly orderable in the latter. Also, one says that A is totally, strictly, or linearly ordered
by � as appropriate.

Since semigroups and monoids can be viewed as a special kind of magmas (forgetting some
of their structure as appropriate), one will safely speak of ordered semigroups, totally orderable
monoids, etc. Similar considerations apply to groups, provided that an ordered group is defined
as a 5-tuple of type (A, ?,∼, e,�) such that (A, ?,∼, e) is a group, (A, ?, e,�) is an ordered
monoid, and (∼ b) � (∼ a) for all a, b ∈ A with a � b.

As is usual, if the magma product is written multiplicatively as · and there is no likelihood of
confusion, we use the notation ab instead of a · b. Moreover, if A is a magma and A its carrier,
we abuse notation and write a ∈ A to mean that a ∈ A, especially in contexts or statements
implicitly involving, along with a, the structure of A. This principle applies also to sets (and
not only to elements) and to other structures such as posets, semigroups, ordered groups, etc.

Remark 1. If (A, ?,�) is an ordered, totally ordered, or strictly ordered magma, then the same
is also true for (A, ?,�op), (A, ?op,�) and (A, ?op,�op), where �op is the dual order of � and
?op the dual product of ?, i.e. the binary operation A×A→ A : (a, b) 7→ b ? a.

With this in mind, let A = (A, ?) be a magma. Given n ∈ N+, we define recursively
P1 := {idA}, where idA is the map A→ A : a→ a, and Pn+1 := PL

n+1 ∪ PR
n+1, where

1. PL
n+1 is the set of all functions An+1 → A sending, for some f ∈ Pn, a (n + 1)-tuple

(a1, a2, . . . , an+1) to the product a1 ? f(a2, a3, . . . , an+1).
2. PR

n+1 is the set of all functions An+1 → A mapping, for some f ∈ Pn, a (n + 1)-tuple
(a1, a2, . . . , an+1) to the product f(a1, a2, . . . , an) ? an+1.

For n ∈ N+, we then refer to an element P of Pn as a parenthetization of A of length n, or also
a n-parenthetization of A. Moreover, for a1, a2, . . . , an ∈ A, we write (a1 ?a2 ? · · ·?an)P in place
of P(a1, a2, . . . , an) and, whenever S1, S2, . . . , Sn are nonempty subsets of A, we let

(3) (S1 ? S2 ? · · · ? Sn)P := {(a1 ? a2 ? · · · ? an)P : a1 ∈ S1, a2 ∈ S2, . . . , an ∈ Sn}.
If A is a semigroup or n ≤ 2, then (a1 ? a2 ? · · · ? an)P does not really depend on P, and we can
simply write it as a1 ?a2 ? · · ·?an; at the end of the day, parenthetization is, in fact, just a formal
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way to deal with long products in a magma whose operation is not associative. In particular, if
a ∈ A and S ⊆ A, we use a ? S in place of {a} ? S (and similarly with S ? a). These notations
are then simplified in the obvious way in the case where A is written multiplicatively (and there
is no danger of ambiguity).

Finally, if A = (A, ?) is a magma, or A = (A, ?,�) is an ordered magma, and S is a subset
of A, we use CA(S) for the centralizer of S in A, i.e. the set of all a ∈ A such that a ? y = y ? a
for every y ∈ S, and NA(S) for the normalizer of S in A, i.e. the set {a ∈ A : a ? S = S ? a}.

2.2. Some examples. To start with, we exhibit a totally orderable semigroup which is not
linearly orderable. Then, we mention some special classes of linearly orderable groups, some lin-
early orderable monoids (respectively, semigroups) which are not groups (respectively, monoids),
and a linearly orderable magma which is not a semigroup.

Example 1. Every set A can be turned into a semigroup by the operation ? : A × A → A :
(a, b)→ a; some authors refer to (A, ?) as the left zero semigroup (e.g., see [8, p. 3]). It is trivial
that, if � is a total order on A, then (A, ?,�) is a totally ordered semigroup. However, since
a ? b = a ? c for all a, b, c ∈ A, it is clear that (A, ?) is not linearly orderable if |A| ≥ 2.

Example 2. A notable example of strictly totally ordered groups is provided by torsion-free
groups, as first proved by F.W. Levi in [10]. In the same lines of thought, K. Iwasawa [9], A.I.
Mal’cev [11] and B.H. Neumann [12] showed, independently from each other, that the class of
torsion-free nilpotent groups is contained in the class of strictly totally orderable groups. These
are already mentioned in [6], along with further references to existing literature on the subject.

Example 3. As for strictly totally ordered monoids which are not strictly totally ordered
groups, one can consider, for instance, the set R+ of all positive real numbers with the ordinary
multiplication as the monoid operation, or a submonoid of this such as the positive integers not
divisible by any member of a given set S of (natural) primes or, in alternative, divisible only by
primes in S. On the other hand, the same R+ with the usual addition as an operation provides
a simple example of a strictly totally orderable semigroup which is not even a monoid.

Example 4. Let A be the open interval ]1,+∞[ of the real line and ? the operation A× A→
A : (a, b) 7→ ab. Then, (A, ?) is a linearly orderable magma (just consider the usual order on the
real numbers and restrict it to A), but not a semigroup.

The next example might be interesting in its own right: Not only it gives a class of strictly
totally ordered semigroups which are neither abelian (the semigroups in Example 3 are all
abelian in character) nor groups in disguise (at least in general), it also shows that, for each
n ∈ N+, the set of all n-by-n upper (respectively, lower) triangular matrices with positive real
entries is a strictly totally orderable semigroup when endowed with the usual row-by-column
multiplication (which applies especially to matrices of positive integers).

Example 5. Let A be a semiring, i.e. a 4-tuple of type (A,+, ·, 0) consisting of a (nonempty)
set A, associative operations + and · from A×A to A (referred to, respectively, as the semiring
addition and the semiring multiplication), and a distinguished element 0 ∈ A such that

i. (A,+, 0) is an abelian monoid and (A, ·) a semigroup.
ii. multiplication by 0 annihilates A, i.e. 0 · a = a · 0 = 0 for every a ∈ A.
iii. multiplication distributes over addition (from the left and the right), i.e. a · (b + c) =

a · b+ a · c and (a+ b) · c = a · c+ b · c for all a, b, c ∈ A.
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One refers to (A,+, 0) and (A, ·) as the additive monoid and the multiplicative semigroup of A,
respectively, and A is said to be unital if (A, ·) is a unital semigroup. A semiring is similar to
a ring, except for the fact that elements in semirings do not necessarily have an inverse for the
addition. We denote by A0 the set of non-zero-divisors of A, i.e. the elements a ∈ A such that
a · b, b · a 6= 0 for every b ∈ A \ {0}. The elements of A \ A0 are called the zero divisors of A
(note that, for our convenience, we are including 0 among the zero divisors) and A has no zero
divisors if A0 = A \ {0}.

We say that A is an orderable (respectively, totally orderable) semiring if there exists an order
(respectively, a total order) � on A such that (A,+,�) and (A, ·,�) are ordered semigroups.
When this occurs, the pair (A,�), or equivalently the 5-tuple (A,+, ·, 0,�), is said an ordered
(respectively, totally ordered) semiring. If, on the other hand, the following conditions hold:

i. (A,+,�) is a strictly ordered semigroup;
ii. if a, b ∈ A and a ≺ b, then a · c ≺ b · c and c · a ≺ c · b for every c ∈ A0,

then A is said to be strictly orderable and (A,�) is called a strictly ordered semiring. Lastly, we
say that A is linearly orderable if it is both strictly and totally orderable, and accordingly we
refer to (A,�) as a linearly ordered semiring. The class of linearly ordered semirings includes,
as notable examples, the nonnegative real numbers (equipped with the standard order and
the usual algebraic structure) and interesting subsemirings of this one such as the nonnegative
rationals or the nonnegative integers.

Upon these premises, assume that (A,�) is an ordered semiring with A = (A,+, ·, 0). We
denote by A+ the set {a ∈ A : 0 ≺ a}. Note that, if A has no zero divisors and � is total, one
can assume without loss of generality that A+ = A \ {0}. If n is a fixed positive integer, we
then use Mn(A) for the set of all n-by-n matrices with entries in A. Together with the usual
operations of entry-wise addition and row-by-column multiplication implied by the algebraic
structure of A, Mn(A) becomes a semiring in its own right, referred to as the semiring of the
n-by-n matrices over A and indicated here by Mn(A).

Now, suppose for the sequel that A has no zero divisors and denote by Un(A+) the sub-
semigroup of the multiplicative semigroup ofMn(A) consisting of all upper triangular matrices
whose entries are elements of A+. Note that Un(A+) is not, in general, a group (e.g., the inverse
of a regular 2-by-2 matrix with positive real entries has not positive real entries), and not even
a monoid unless A is unital. More interestingly, Un(A+) is linearly orderable, as we are going
to prove by the following theorem.

Theorem 1. Un(A+) is a linearly orderable semigroup.

Proof. Set In := {1, 2, . . . , n}, Ξn := {(i, j) ∈ In × In : i ≤ j} and define a binary relation ≤n

on Ξn by taking (i1, j1) ≤n (i2, j2) for (i1, j1), (i2, j2) ∈ Ξn if and only if i) j1 − i1 < j2 − i2
or ii) j1 − i1 = j2 − i2 and j1 < j2. It is easily seen that ≤n is a total order. When combined
with �, this in turn defines a binary relation �U

n on Un(A+) as follows: If α = (ai,j)
n
i,j=1

and β = (bi,j)
n
i,j=1 belong to Un(A+), then α �U

n β if and only if i) α = β or ii) there exists
(i0, j0) ∈ Ξn such that ai0,j0 ≺ bi0,j0 and ai,j = bi,j for all (i, j) ∈ Ξn such that (i, j) <n (i0, j0).

It is routine to check that �U
n is a total order. Reflexivity and antisymmetry are quite clear.

To prove that �U
n is transitive, let α = (ai,j)

n
i,j=1, β = (bi,j)

n
i,j=1 and γ = (ci,j)

n
i,j=1 be matrices

of Un(A+) such that α �U
n β and β �U

n γ. The claim is obvious if α = β or β = γ. Otherwise,
there exist (i1, j1), (i2, j2) ∈ Ξn such that ai1,j1 ≺ bi1,j1 , bi2,j2 ≺ ci2,j2 and ai,j = bi,j = ci,j for
all (i, j) ∈ Ξn with (i, j) <n (i0, j0), where (i0, j0) denotes the minimum of (i1, j1) and (i2, j2)
in (Ξn,≤n). Since ai0,j0 ≺ ci0,j0 , we have done.
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Thus, we are left to prove that (Un(A+),�U
n ) is a linearly ordered semigroup. To see why, let

α, β and γ be as above and suppose α ≺n β. This means that there exists (i0, j0) ∈ Ξn such that
ai0,j0 ≺ bi0,j0 and ai,j = bi,j for all (i, j) ∈ Ξn with (i, j) <n (i0, j0). As a result, one has that
ai,kck,j � bi,kck,j and ci,kak,j � ci,kbk,j for all (i, j) ∈ Ξn and k ∈ In such that (i, k) ≤n (i0, j0)
and (k, j) ≤n (k, j0), and indeed ai0,j0cj0,j0 ≺ bi0,j0cj0,j0 and ci0,i0ai0,j0 ≺ ci0,i0bi0,j0 for the fact
that (A,�) is a linearly ordered semiring (to the effect that A+ = A\{0} or A+ = ∅). It follows
that, for all (i, j) ∈ Ξn with (i, j) ≤n (i0, j0),

(4)
∑n

k=1 ai,kck,j =
∑j

k=i ai,kck,j �U
n

∑j
k=i bi,kck,j =

∑n
k=1 bi,kck,j

and, similarly,
∑n

k=1 ci,kak,j �U
n

∑n
k=1 ci,kbk,j . In particular, these majorizations are equalities

for (i, j) <n (i0, j0) and strict inequalities if (i, j) = (i0, j0). This completes our proof by showing
that α · γ ≺n β · γ and γ · α ≺n γ · β. �

We refer to the order �U
n defined in the proof of Theorem 1 as the zig-zag order on Un(A+).

If Ln(A+) stands for the subsemigroup of the multiplicative semigroup of Mn(A) consisting of
all lower triangular matrices with entries in A+, it is then straightforward to prove that Ln(A+)
is itself linearly orderable, as it is in fact linearly ordered by the binary relation �L

n defined by
taking α �L

n β for α, β ∈ Ln(A+) if and only if α> �U
n β>, where the superscript ‘>’ means

‘transpose’. Provided that Tn(A+) is the smallest subsemigroup of the multiplicative semigroup
of Mn(A) generated by Un(A+) and Ln(A+), it is then natural to ask:

Question 1. Is Tn(A+) a linearly orderable semigroup?

At present, we do not have an answer, but Carlo Pagano (Università di Roma Tor Vergata)
observed, in a private communication, thatMn(A+), i.e. the subsemigroup of the multiplicative
semigroup of Mn(A) consisting of all matrices with entries in A+, is not in general linearly
orderable. For a counterexample, let A be the semiring of all nonnegative real numbers (with
their standard algebraic structure) and take α as the n-by-n matrix whose entries are all equal
to 1 and β as any n-by-n matrix with positive entries each of whose columns sums up to n.
Then, α2 = αβ regardless as to whether α 6= β.

New exemplars of linearly orderable magmas can now be obtained from the previous ones
using, for instance, the construction outlined by the following:

Example 6. Suppose that I = (I,≤) is a well-ordered set and let {(Ai, ?i,�i)}i∈I be a family
of totally ordered magmas indexed by I. Set Ai = (Ai, ?i,�i) for each i ∈ I and take A to be
the Cartesian product of the Ai’s, that is the set of all functions f : I →

⋃
i∈I Ai such that

f(i) ∈ Ai for each i ∈ I. Also, define ? as the binary operation

(5) A×A→ A : (f, g) 7→
(
I →

⋃
i∈I Ai : i 7→ f(i) ?i g(i)

)
,

so that (A, ?) is the magma direct product of the family {(Ai, ?i)}i∈I . The product order on
A induced by the �i’s is not, in general, total. However, this is happily the case with the
lexicographic order, herein denoted by �, which is defined by taking f � g for f, g ∈ A if (and
only if) i) f = g or ii) f(i) ≺i g(i) for some i ∈ I and f(j) = g(j) for every j ∈ I with j < i.
Furthermore, � is compatible with the operation ?, in the sense that A = (A, ?,�) becomes a
totally ordered magma, and indeed a linearly ordered magma whenever Ai is linearly ordered
for each i ∈ I.
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2.3. A few useful properties. We aim to derive a few elementary properties of ordered semi-
groups and magmas. All magmas in this section are written multiplicatively. In particular,
if A is a magma (or an ordered magma), a an element of A, n a positive integer and P a
parenthetization of A of length n, we use (an)P for the n-fold product P(a, a, . . . , a).

Our theorems here are essentially a generalization of some elementary properties reported in
[6, § 2] in reference to linearly ordered groups.

Theorem 2. Let A = (A, ·,�) be an ordered magma. The following holds:

(i) If n ∈ N+ and P is a n-parenthetization of (A, ·), then (a1a2 · · · an)P � (b1b2 · · · bn)P for
all a1, a2, . . . , an, b1, b2, . . . , bn ∈ A such that a1 � b1, a2 � b2, . . . , an � bn, and indeed
(a1a2 · · · an)P ≺ (b1b2 · · · bn)P if A is strictly ordered and ai ≺ bi for each i.

(ii) If a, b ∈ A and a � b, then (an)P � (bn)P for all n ∈ N+ and every n-parenthetization
P of (A, ·), and indeed (an)P � (bn)P if A is strictly ordered and a ≺ b.

(iii) If · is associative and a ∈ A is such that a2 � a, then an � am for all m,n ∈ N+ with
m ≤ n, and indeed an ≺ am if A is strictly ordered, a2 ≺ a and m < n.

Proof. (i) If n = 1, the claim is obvious. If n = 2, then a1 � b1 and a2 � b2 implies, as A is an
ordered magma, that a1a2 � b1a2 � b1b2, and indeed a1a2 ≺ b1a2 ≺ b1b2 if A is strictly ordered
and a1 ≺ b1, a2 ≺ b2. Lastly, if n ≥ 3, then there exists a parenthetization Q of (A, ·) of length
(n − 1) such that (c1c2 · · · cn)P = (c1 · · · cn−1)Q · cn or (c1c2 · · · cn)P = c1 · (c2 · · · cn)Q for all
c1, c2, . . . , cn ∈ A, from which the conclusion follows by a routine induction.

(ii) It is a straightforward consequence of the previous point.
(iii) Pick a ∈ A and let a2 � a. Again by a routine induction, an � . . . � a2 � a for all

n ∈ N+, and indeed an ≺ . . . ≺ a2 ≺ a if A is strictly ordered, a2 ≺ a and n ≥ 2. �

Let A = (A, ·) be a magma and pick a ∈ A. One says that a is left (respectively, right)
cancellable (with respect to ·) if the mapping A→ A : x 7→ ax (respectively, A→ A : x 7→ xa)
is one-to-one, and cancellable if it is both left and right cancellable. Then, A is called cancellative
if each one of its elements is cancellative. On another hand, we say that a is idempotent if a = a2

and periodic, when A is a semigroup, if there exist n, p ∈ N+ such that an = an+p: One then
refers to the smallest n with this property as the index of a and to the smallest p relative to
such an n as the period of a. Clearly, the concept of period generalizes the notion of order from
the setting of groups to that of semigroups. Then, we say that a semigroup is torsion-free if the
only periodic elements of it are idempotent. The same definitions now apply to ordered magmas
and semigroups, as appropriate, by implicit reference to the underlying algebraic structures.

Remark 2. A cancellative magma is linearly orderable if and only if it is totally orderable.
Conversely, every linearly orderable magma is cancellative.

Remark 3. The unique idempotent element of a group is the identity, so that torsion-free
groups are definitely a special kind of torsion-free semigroups.

The next theorem shows that, for (A, ·,�) an ordered semigroup and a an element of A, the
condition a2 ≺ a plays the same role that a ≺ 1 would play in an ordered group (A, ·,−1 , 1,�),
while being more general than the latter. Along with Remark 3, this highlights the importance
of idempotents (at least in the setting of this paper) in the absence of an identity element.

Theorem 3. Let A = (A, ·,�) be a linearly ordered semigroup.

(i) If a ∈ A and a2 ≺ a, then ab ≺ b and aba ≺ b for all b ∈ A.
(ii) If a, b ∈ A and aba = b, then a2 = a.
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(iii) A is torsion-free.

Proof. (i) Let a, b ∈ A and assume a2 ≺ a. Then a2b ≺ ab, and hence ab ≺ b thanks to Remark
2. It follows from Theorem 2 that aba2 ≺ ba, whence aba ≺ b again in the light of Remark 2.

(ii) Let a, b ∈ A be such that aba = b. Due to Remark 1, we can suppose without loss of
generality that a2 � a. The claim is then straightforward from the previous point (i).

(iii) It is immediate from Remark 1 and point (iii) of Theorem 2. �

We are now ready to prove the following:

Theorem 4. Let A = (A, ·,�) be a linearly ordered semigroup and pick a, b ∈ A. If ab ≺ ba,
then anb ≺ an−1ba ≺ . . . ≺ aban−1 ≺ ban for all n ∈ N+.

Proof. Assume that anb ≺ an−1ba ≺ . . . ≺ aban−1 ≺ ban for some n ∈ N+. Then, multiplying
by a on the left gives an+1b ≺ anba ≺ . . . ≺ a2ban−1 ≺ aban, while multiplying by a on the
right yields aban ≺ ban. Since ab ≺ ba, the transitivity of � implies the claim by induction. �

Corollary 1. Let A = (A, ·,�) be a linearly ordered semigroup and a, b ∈ A. If anb = ban for
some n ∈ N+, then ab = ba.

Proof. It is an immediate consequence of Theorem 4 and the fact that, in virtue of Remark 1,
one can assume without loss of generality that ab � ba. �

3. The main results

First, we extend [6, Theorem 1.1] to the setting of linearly ordered magmas. As with the
previous section, all magmas here are written multiplicatively.

Theorem 5. Suppose that A = (A, ·,�) is a linearly ordered magma and let S and T be
nonempty finite subsets of A. Then, |ST | ≥ |S|+ |T | − 1.

Proof. Denote m the size of S and n the size of T , and let a1, a2, . . . , am be a one-to-one
enumeration of S and b1, b2, . . . , bn a one-to-one enumeration of T . Without loss of generality,
we can assume that a1 ≺ a2 ≺ . . . ≺ am and b1 ≺ b2 ≺ . . . ≺ bn. Since A is linearly ordered by
�, then a1b1 ≺ a2b1 ≺ . . . ≺ amb1 ≺ amb2 ≺ . . . ≺ ambn, whence |ST | ≥ m+ n− 1. �

Proposition 1. Suppose that A = (A, ·) is a linearly ordered magma. Pick n ∈ N+ and let
S1, S2, . . . , Sn be nonempty finite subsets of A. Then

(6) |(S1S2 · · ·Sn)P| ≥ 1− n+
∑n

i=1 |Si|
for any given parenthetization P of A of length n.

Proof. The claim is obvious if n = 1 and it reduces to Theorem 5 when n = 2, while for n ≥ 3
it follows by induction from the fact that there exists a (n − 1)-parenthetization Q of A such
that (S1S2 · · ·Sn)P = S1 · (S2 · · ·Sn)Q or (S1S2 · · ·Sn)P = (S1 · · ·Sn−1)Q · Sn. �

Corollary 2. Pick m ∈ N+ and let A = (A, ·) be a linearly ordered magma and S a finite subset
of A of size m. Then, for every n ∈ N+ and every n-parenthetization P of A, one has

(7) |(Sn)P| ≥ (m− 1)n+ 1,

where (Sn)P := {(a1a2 . . . an)P : a1, a2, . . . , an ∈ S}. In addition to this, if A is associative and
there exists at least one element a ∈ A which is not idempotent, then (7) is a sharp inequality,
the lower bound being attained, for all n ∈ N+, by taking S = {ai : i = 1, 2, . . . ,m}.
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Proof. The first part of the claim is obvious if m = 0, while it follows from Proposition 1 if
m 6= 0. As for the second part, assume that A is associative and a ∈ A is not idempotent. Then,
point (iii) of Theorem 2 implies that ai 6= aj for all i, j ∈ N+ with i 6= j, to the effect that
T = {ai : i = 1, 2, . . . ,m} is a set of size m and |Tn| = (m− 1)n+ 1 for every n ∈ N+. �

We give two applications of these results. The first one being based on Example 4; while
on the one hand this is not much more than a curiosity, on the other it serves as an instance
of a simply-stated problem which cannot be solved by relying on less general formulations of
Corollary 2 such as the classical one presented in [6] and already mentioned in the introduction.

Example 7. Let A be the interval [1,+∞[ of the real line and ? the binary operation A×A→
A : (a, b) 7→ ab. As a magma, (A, ?) is totally ordered by the standard ordering ≤ of the real
field, but it is not linearly orderable, since 1 ? a = 1 ? b for a, b ∈ A regardless as to whether
a 6= b. With this in mind, let n be a positive integer, S a finite subset of A of size m and P a
parenthetization of A of length n. We want to prove that |(Sn)|P ≥ (m− 1)n+ 1. If m = 1 or

1 /∈ S, the claim follows from Corollary 2 in the light of Example 4. Otherwise, let S̃ := S \ {1}
and denote by a the minimum of S̃ in (A,≤). Then, by the same reasoning as before,

(8) |(Sn)P| ≥ |(S̃n)P|+ |T | ≥ (m− 2)n+ 1 + |T |,
where T is the set of the elements of (Sn)P which are smaller than (an)P. This is enough to
complete our proof when considering that |T | ≥ n as 1 = P(1, 1, . . . , 1) < a = P(a, 1, . . . , 1) <
. . . < P(a, a, . . . , a) = (an)P.

Example 8. Let n be a positive integer and A a subsemigroup of the (unital) semigroup of
all n-by-n upper (respectively, lower) triangular matrices with positive real entries equipped
with the usual row-by-column multiplication. If k ∈ N+ and S1, S2, . . . , Sk are nonempty finite

subsets of A, then Theorem 1 and Proposition 1 yield that |S1S2 . . . Sk| ≥ 1− k +
∑k

i=1 |Si|.

Finally, we are ready to prove our main result.

Proposition 2. Let A = (A, ·,�) be a linearly ordered semigroup and S a nonempty finite
subset of A of size m. If y ∈ A \ CA(S), then

(9) |yS ∪ Sy| ≥ m+ 1.

In particular, there exist a, b ∈ S such that ya /∈ Sy and by /∈ yS.

Proof. Pick y ∈ A \CA(S) and suppose by contradiction that yS = Sy. Since y /∈ CA(S), there
exists a1 ∈ S such that a1y 6= ya1, which in turn implies, as y ∈ NA(S), that there exists an
element a2 ∈ S such that ya1 = a2y. Hence, by the finiteness of S, it is possible to find a
maximum integer k ≥ 2 such that i) yai = ai+1y for every i = 1, 2, . . . , k − 1 and ii) ai = aj
for i, j = 1, 2, . . . , k only if i = j. From the maximality of k and, again, the fact that yS = Sy,
it follows that yak = ahy for some h = 1, 2, . . . , k. Then, by induction, yi+1ak = ah+iy

i+1

for every i = 0, 1, . . . , k − h. In particular, yk−h+1ak = aky
k−h+1, whence yak = aky (due to

Corollary 1), and indeed yak = yak−1 (as yak = yak−1, by design). Therefore, Remark 2 yields
that ak = ak−1, which is absurd since ai 6= aj for all i, j = 1, 2, . . . , k with i 6= j. �

Corollary 3. If S is a finite subset of a linearly ordered semigroup A, then NA(S) = CA(S).

Proof. If S = ∅, the claim is obvious, so assume that S is nonempty. If y ∈ NA(S), then
yS = Sy, and Proposition 2 implies that y ∈ CA(S), whence follows that NA(S) ⊆ CA(S). On
the other hand, it is trivial that CA(S) ⊆ NA(S). �



10 Salvatore Tringali

4. Acknowledgements
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[1] N. Bourbaki, Algébre: Chapitres 1 á 3, Springer-Verlag, 2007 (reprint of the 1970 original).
[2] J. Bourgain, A. Furman, E. Lindenstrauss, and S. Mozes, Invariant measures and stiffness for non-abelian

groups of toral automorphisms, C. R. Math. Acad. Sci. Paris, Vol. 344 (2007), No. 12, pp. 737–742.

[3] J. Bourgain and A. Gamburd, On the spectral gap for finitely-generated subgroups of SU(2), Invent. Math.,
Vol. 171 (2008), No. 1, pp. 83–121.

[4] S. Eliahou and M. Kervaire, Some extensions of the Cauchy-Davenport theorem, Electronic Notes in Discrete
Mathematics, Vol. 28 (2007), pp. 557–564.

[5] K.-J. Engel and R. Nagel, A Short Course on Operator Semigroups, Springer, 2006.

[6] G. Freiman, M. Herzog, P. Longobardi, and M. Maj, Small doubling in ordered groups, J. Austral. Math.
Soc., to appear.

[7] E. Hille and R.S. Phillips, Functional analysis and semi-groups, AMS, 1996 (revised edition).

[8] J.M. Howie, Fundamentals of semigroup theory, Clarendon Press, 1995.
[9] K. Iwasawa, On linearly ordered groups, J. Math. Soc. Japan, Vol. 1 (1948), pp. 1–9.

[10] F.W. Levi, Arithmetische Gesetze im Gebiete diskreter Gruppen, Rend. Circ. Mat. Palermo, Vol. 35 (1913),

pp. 225-236.
[11] A.I. Mal’cev, On ordered groups, Izv. Akad. Nauk. SSSR Ser. Mat., Vol. 13 (1948), pp. 473–482.

[12] B.H. Neumann, On ordered groups, Amer. J. Math., Vol. 71 (1949), pp. 1–18.

[13] I.Z. Ruzsa. “Sumsets and structure.” In Combinatorial Number Theory and Additive Group Theory,
Springer, 2009.

[14] T.C. Tao, Product set estimates for non-commutative groups, Combinatorica, Vol. 28 (2008), No. 5, pp.
547–594.

[15] J.A. van Casteren, Markov Processes, Feller Semigroups and Evolution Equations, Series on Concrete and

Applicable Mathematics, 2010.
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