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Introduction

The analysis of vibrational overtone spectra provides the spectroscopic ground work towards a detailed understanding of intramolecular vibrational energy redistribution (IVR) [1,2], vibrationally mediated photodissociation (VMP) [3] and infrared resonance multiple photon (IRMP) excitation in the fields of the infrared laser chemistry [4,5]. The anharmonic couplings among vibrational states, being considered efficient pathways for allowing the vibrational quantum energy in one vibrational mode to be transferred to other modes, strongly influence the overall intramolecular flow of energy among the vibrational degrees of freedom. In a VMP investigation, different experimental techniques are employed to first obtain a vibrationally excited molecule and then to promote it to excited electronic states. The vibrational excitation may strongly influence the course of the following photolysis and so the analysis of the vibrational overtone spectra is useful as a first step for better determining the role of the anharmonic resonances among different molecular vibrations involved in the VMP mechanism. In an IRMP experiment, the timescale of the IVR is one of the key factor ruling the overall process of the excitation by the intense laser field employed. Within this context, one of the most advanced application involves the selective isotope separation. Revealing and determining the anharmonic couplings influencing the energy exchange among vibrational states is therefore of central importance for exploring the intramolecular dynamics and gaining insights in all the processes above mentioned. the production and use of fully halogenated halons, characterized by long atmospheric lifetimes, is now definitely stopped. Bromodifluoromethane, having one CH bond, can react in the troposphere with hydroxyl radicals thus leading to a shorter atmospheric lifetime [6 -8]. On this basis bromodifluoromethane has been suggested as an interim replacement of fully halogenated halons. In the field of infrared laser chemistry, CHBrF 2 has been proposed [9,10] as working molecule for practical 13 C enrichment by IRMP decomposition. In view of these features, we have recently started a detailed investigation on the infrared spectra of bromodifluoromethane. In a first work [11] we have reported on the vibrational analysis of its infrared gas phase spectra in the 200 -9500 cm -1 region coupled to ab initio calculations and to the accurate determination of absorption cross sections. Subsequently, a combined microwave and high-resolution infrared study [12] supported by high-level quantum chemical computations has been carried out leading to accurate values of spectroscopic parameters for both the ground and the v 4 = 1 vibrational states.

In the present work, we focus on the absorptions due to the CH chromophore [13] in the overtone spectral region up to 10100 cm -1 . The results of the vibrational analysis involving the CH-stretching and bending modes, which appear to dominate the near infrared (NIR) spectrum, have led to the determination of Fermi and Darling-Dennison anharmonic coupling terms (together with spectroscopic parameters such as vibrational frequencies and anharmonicity constants), by means of an effective vibrational Hamiltonian approach. Besides, the CH vibrational states have been also analyzed by using ab initio electronic structure calculations. In this work, the harmonic part of the ab initio force field previously calculated [11] at the CCSD(T) (the acronym stands for coupled cluster with all single and double substitutions augmented with a quasi-perturbative account for connected triple excitations) level has been scaled in order to achieve a better agreement with the observed fundamental wavenumbers. From this adjusted force field anharmonicity constants, Fermi and Darling-Dennison coupling terms, which are needed to study the absorption of the CH chromophore in the overtone region, have been calculated by means of second order vibrational perturbation theory (VPT2) [START_REF] Mills | Molecular Spectroscopy: Modern Research[END_REF].

Experimental details

The synthesis of CHBrF 2 has been carried out as previously described [11]. The gas phase infrared spectra have been measured on a Bruker Vertex 70 FTIR spectrometer employing resolutions of 0.2 and 0.5 cm -1 . In the spectral region up to 4000 cm -1 a 13.4 cm fixed path-length cell fitted with KBr windows has been used, while at higher wavenumbers a White-type multipass cell, with the effective optical path ranging from 10.5 to 77.5 meters, has been employed. All the spectra have been measured at room temperature, and the pressure measurements have been carried out employing capacitance vacuum gauges. For this molecule we have found [11] no significant differences between the determined band intensities from spectra recorded at a resolution of 0.5 cm -1 and those obtained from the spectra taken at a resolution of 0.2 cm -1 (thus confirming the observation of Orkin et al. [START_REF] Orkin | [END_REF]). Therefore in this work the band intensities have been derived by employing the spectra recorded at a resolution of 0.5 cm -1 , which have a better signal-to-noise ratio. Relative band strengths within a given polyad have been obtained with an experimental uncertainty, estimated as elsewhere described [16,17], better than 15%. 

Computational details

The information needed by VPT2 comprises the quadratic, cubic and semidiagonal quartic force constants. For CHBrF 2 this information was calculated in the work of Ref. 11, in which high quality electronic structure calculations at the coupled cluster level of theory were carried out to compute equilibrium geometry and accurate force constants in the space of dimensionless normal coordinates. Here, the details of the computation will be only summarized.

All the calculations were performed at the CCSD(T) [18,19] level of electronic correlation. Two basis sets of the correlation consistent family of Dunning and coworkers [20], were considered: these are cc-pVTZ and aug-cc-pVTZ. The latter was employed for the fluorine atoms, in both the geometry optimization and the secondorder force constant calculations, in order to improve the overestimated C-F stretching frequency [21]; the former basis set (cc-pVTZ) was employed for the other atoms (H, C, Br). The cubic and semi-diagonal quartic force constants were calculated in the normal coordinate space using a finite difference procedure [22] involving displacements along the normal coordinates.

In the present work the VPT2 analysis of the vibrational states has been carried out starting from the resulting hybrid force field (i.e. HYB-2 of Ref. 11). In a first step, to reduce at most the differences between the calculated and observed fundamental wavenumbers, an empirical correction has been performed [23]. Specifically, the harmonic wavenumbers, i ω , have been corrected according to: 

i i i ν ω ω ∆ + = 0 (1) 
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where s i denotes the scaling factors, and ij F represents the improved force constants.

Following this procedure, the only significant discrepancies (i.e. greater than 1 cm -1 ) are found for ν 2 and ν 7 . These bands are indeed described as 100% of R 6 + R 7 and 100% of R 6 -R 7 (where R 6 and R 7 are the internal coordinates associated with the H-C-F angles), respectively. Since the error in the computed wavenumber of ν 2 has opposite sign with respect to the ν 7 one, any attempt to adjust the first value will introduce a larger error on the second one.

The effective Hamiltonian for the analysis of the CH polyads

The observed vibrational spectra have been analysed in the framework of a 3D 
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where v 1 , v 2 and v 7 are the vibrational quantum numbers for ν 1 , ν 2 and ν 7 , respectively.

The number N acts as a sort of label for grouping vibrational states which, to a first approximation, have almost the same energy. Within each polyad the vibrational Hamiltonian has diagonal matrix elements (zero-order states of the polyad) expressed by the following equation
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where v 1 , v 2 , v 7 are the above mentioned vibrational quantum numbers, and ' ~i ν and ' given by:
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Darling-Dennison resonances are taken explicitly into account by the inclusion of the following off-diagonal matrix element: Within each block, the resulting H N matrix is diagonalized:
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thus giving the corresponding eigenvalues

N j E , which can be compared to the wavenumbers of observed band centres, and the corresponding eigenvector matrix Z N .

The eigenstates are labelled by N j , where by convention the index j equals to 1 for the highest eigenvalue and it increases with decreasing energy.

Within each polyad the experimental band strength for a given subband is computed according to the following equation:
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with c being the concentration (obtained from the pressure of the sample assuming the validity of the ideal gas law), l is the optical path length, 0 ν is the subband centre and the integration limits 1 ν and 2 ν refer to the wavenumbers where the absorption can be considered negligible. Following Amrein et al. [25], within each polyad block N(Γ) 
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These observed values can be compared with the corresponding relative intensities computed from the eigenvector matrix Z N . For each polyad labelled by an integer value of N, the chromophore state corresponds to the zero-order basis state having the largest value of v 1 , the vibrational quantum number of the CH stretching mode; for the polyads with half integer value of N there are two of these chromophore states, one having v 1 =

N -1/2, v 2 = 1, v 7 = 0 the other with v 1 = N -1/2, v 2 = 0, v 7 = 1.
For the polyads having N = integer, one makes the assumption that only one state (i.e. the chromophore) carries zero-order intensity. The other bands of the polyad borrow their observed intensity entirely from anharmonic resonances with the chromophore. Under these hypotheses the relative intensity N j g of the transition from the ground state to the N j vibrational level can be computed by considering the corresponding element of the eigenvector matrix Z N :
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For the polyads having N = half integer, the two chromophore states are assumed to carry oscillator strength. In this case, the relative intensities are computed employing the following weighted average [26]:
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where b and a are the indexes of the chromophore states having v 1 = N -1/2, v 2 = 1, v 7 = 0 and v 1 = N -1/2, v 2 = 0, v 7 = 1, respectively. The weighting factor f is given by the experimental intensity ratio of the first two components of the N = 3/2 polyad:
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Results and discussion

An overall survey of spectra concerning the CH chromophore transitions observed in the present work is presented in Figure 2. As it can be seen, all the most relevant absorptions above 4000 cm ν obtained from the fit of ν 1 , 2ν 1 and 3ν 1 are -57.3 and 3075.7 cm -1 , respectively. The small differences between these results and those obtained by introducing the off diagonal coupling terms can be rationalized by considering that in each polyad (with N

= n) the energy separation between the zero-order states nν 1 and (n-1)ν 1 +2ν 2 or (n-1)ν 1 +2ν 7 is generally greater than the values of the corresponding off diagonal matrix elements. However, as before without considering explicitly the coupling terms, the comparison of the value of ' 11 x determined from 2ν 1 and ν 1 ( ' 11 x = -61.05 cm -1 ) with that obtained from 3ν 1 and ν 1 ( ' 11 x = -58.4 cm -1 ) suggests a trend understandable on the basis of an increasing ratio of the off diagonal matrix elements to the corresponding zero-order state energy differences.

The other diagonal anharmonicity constant values, ' 22 x = -6.8 cm -1 and ' 77 x = -7.6 cm -1 , are close to that expected for an isolated CH-chromophore, while the mixed anharmonicity constants ' 12 x and ' 17 x (-25.8 and -25.7 cm -1 , respectively ) are in the range of the values obtained for other halogenated methane derivatives [24 -28]. A further evidence for the need of a global model is given by the comparison of the ' ij x constant values with those obtained by the differences (nν i +ν j )nν j -ν j without taking into account any interaction. For example, the anharmonicity constant '

x obtained for n = 1 is -16.5 cm -1 , while for n = 3 it becomes -9.80 cm -1 .

In general, all the parameters obtained are well determined, the only one whose uncertainty is within its magnitude is the anharmonicity constant ' 27 x , whose value is anyway close to zero. Therefore, we tried to fix this constant in the fitting procedure thus obtaining the parameters reported in the column Fit 2 of Table 1. There is not a significant difference between the values of Fit 1 and Fit 2, only a slight increase in the root-mean-square deviation, here calculated on the base of the sum of the squares of the deviations between the observed and the computed values, divided by the number of data, occurs (from 1.26 cm -1 for Fit 1 to 1.33 cm -1 for Fit 2). Table 2 reports the experimental and the predicted vibrational wavenumbers and relative intensities for all the observed bands. The agreement between the experimental data and those computed by the effective Hamiltonian is very good. For the band centres, the fit with 12 degrees of freedom (mean absolute error = 0.896 cm -1 , mean signed error = -0.0752 cm -1 )

and that with 11 degrees of freedom (mean absolute error = 0.895 cm -1 , mean signed error = -0.0425 cm -1 ) perform equally well in predicting the experimental transitions.

The predicted relative intensities were computed, as previously outlined, under the hypothesis that only the chromophore state carries oscillator strength; anyway, the model appears able to reproduce, at least semi-quantitatively, the observed values. The discrepancies can be ascribed not only to additional local resonances not explicitly considered by the Hamiltonian employed in the present study, but also to the presence, in some integration ranges, of other bands. The magnitude of the deviations is comparable to that reported by other authors [24,26]. No significant differences between the values computed employing the fit with 12 degrees of freedom and those obtained from the fit with 11 degrees of freedom have been found, therefore in Table 2 we reports the value derived from the former.

The model of the Hamiltonian here employed considers only intrapolyad resonances, thus not taking into account the possibility of interpolyad coupling among different blocks belonging to the same symmetry species. Nevertheless, the energy separation among consecutive polyads is so great compared to the coupling matrix elements to make it possible to neglect the corresponding perturbation effects.

The results obtained employing the above described least square analysis can be compared with those obtained from an ab initio study of the CH absorptions. Recalling that the CH chromophore comprises the ν 1 , ν 2 and ν 7 vibrational modes and that these normal modes are expected to be in resonance, the diagonal matrix elements of the polyads are the wavenumbers obtained from:
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where the anharmonicity constants x rs calculated from the ab initio force field must be replaced with * rs x constants, which exclude those second-order perturbation theory contributions that are included explicitly in the Fermi resonance model. The out diagonal terms are the Fermi resonances, through the rss ϕ cubic force constants (r = 1, s 
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where K rrss (r = 2, s = 7) is the Darling-Dennison coupling constant which is computed from cubic and quartic force constants, rotational constants, Coriolis terms and harmonic wavenumbers.

Removing the offending terms, 1 polyad thus become 2974 cm -1 (ν 1 ), 2542 cm -1 (2ν 2 ) and 2656 cm -1 (2ν 7 ). The Hamiltonian matrix after diagonalization gives 3026 cm -1 (ν 1 ), 2501 cm -1 (2ν 2 ) and 2645 cm -1 (2ν 7 ). Whereas the ν 1 fundamental value is close to that obtained without considering the resonance and to the experimental one, the 2ν 2 and 2ν 7 computed wavenumbers are in disagreement with the experimental data. In addition, considering the higher overtones and combination bands, the Hamiltonian matrix after diagonalization gives wavenumbers having errors as large as 300 cm -1 when compared to the observed ones. One of the reason is certainly due to the large values of the ab initio cubic force constants 122 ϕ = -447.3 cm -1 and 177 ϕ = -409.0 cm -1 that appear too large. The issue of unusually large values of cubic force constants has been already pointed out in other investigations. Examples are given by the studies carried out by Law and co-workers [29,30], the calculation of spectroscopic parameters of methanol performed by Hänninen and Halonen [31] as well as the VPT approach of Matthews et al. to the stretching overtone levels of water vapour [32].
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Although Law and Duncan demonstrated that a better agreement between ab initio cubic force constants and empirical Fermi parameters may be obtained by including corrections from second order perturbation theory, they also emphasized that these terms do not provide a complete description of the Fermi resonance. Therefore we have investigated the possibility of higher-order effects in this model including the dependence of the interacting levels from the vibrational quantum numbers into the Fermi coupling constants. Although for the polyad with N = 1 a slight improvement could be observed, on average no significant improvements have been obtained from this approach. If the presence of strong Fermi resonances could be easily recognized from the unusual values of the anharmonicity constants, it is very difficult, if not impossible, to find a simple criterion for the recognition of weak Fermi interactions. A working expression for the estimate of higher order effects has been proposed by Martin et al. [33] who, for type-1 Fermi resonance (i.e. ν 1 , 2ν 1 ), derived the quantity . In our case the effects are 1.048 and 1.605 for ν 1 /2ν 2 and ν 1 /2ν 7 , respectively, thus suggesting that the higher order effects affecting ν 1 are weak. In x in a so-called Birge-Sponer plot [34] suggest very weak resonances for this vibrational mode. This is in agreement with the experimental observation that neglecting Fermi resonances from the least squares analysis of the assigned absorptions has little effect on the value of ' 11 x anharmonicity constant.

On the basis of these observations, we have simplified the model by excluding The same approach has also been adopted by Hänninen and Halonen in their study on methanol [31] who have not been able "to obtain any improvement" by including higher order effects and hence, in the final calculation they excluded Fermi interaction between the OH stretch and CH bend. The calculated wavenumbers corresponding to the observed ones are reported under the ab initio column of Table 2. There is a general agreement between the observed and calculated values, even if, on average, the computed values fall at higher wavenumbers than the experimental ones (mean signed error = -7.7 cm -1 ). Concerning the CH chromophore states up to N = 5/2 the differences between the observed wavenumbers and those computed ab initio are generally within 10 cm -1 ; going to higher polyads these differences tend to increase but they still remain lower than 20 cm -1 .

Conclusions

The vibrational analysis of the gas phase infrared spectra of bromodifluoromethane, CHBrF 2 , performed by means of an effective Hamiltonian confirms the validity of the CH chromophore framework also for this molecule. The 

Bromodifluoromethane (CHBrF 2 ,

 2 halon 1201) belongs to the class of anthropogenic halons, halogenated compounds which are classified among the major sources of reactive bromine in the atmosphere. In accordance to the Montreal protocol,
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  are the ab initio calculated values and i ν represents the differences between the observed anharmonic wavenumbers and those obtained from VPT2. Therefore, the ab initio cartesian harmonic force field has been transformed into a force field in terms of internal coordinates ( 0 ij F ) and scaled to the i ω :

  wavenumbers and anharmonicities, respectively, treated as adjustable values in cm -1 ) which are refined by the fitting of experimental data. This vibrational Hamiltonian, whose off-diagonal terms couple vibrational states belonging to the same polyad, is block diagonal in N and it has (N +1)2 zero-order states for N integer and (N + 1/2)(N + 3/2) for half integer N. For a molecule belonging to the C s symmetry point group, each of these blocks, labelled by its own N number, can be further decomposed in two blocks, corresponding to vibrational states having A' or A'' symmetry. Within each block the off-diagonal matrix elements describe the anharmonic resonances. The matrix elements corresponding to the Fermi resonance in which one quantum of CH-stretching is exchanged for two quanta of CH-bending are

  effective spectroscopic resonance parameters.

  where Γ = A' or A'', the symmetry species of the vibrational states) the observed
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 11 -1 are associated to various CH polyads, thus confirming the relevance of the CH chromophore in the NIR region of the spectra of bromodifluoromethane, being the contributions of hot bands negligible. The two fundamentals ν 2 (A' symmetry) and ν 7 (A'' symmetry) are shown in Figure2(a). They are labelled as 1/2 2 and 1/2 1 , respectively and form the lowest polyad. Moving to higher wavenumbers, in the spectral range 2500 -3100 cm -1 one can assign the N = 1 polyad, illustrated in Figure2(b). The strongest feature is assigned to the ν 1 fundamental (A' symmetry) and it corresponds to the CH-stretching mode. It is located at 3020.9 cm -1 and labelled as 1 1 . The other bands involved in this polyad, shown in the inset of Figure), are 2ν 7 (1 2 ) at 2676.1 cm -1 , ν 2 + ν 7 (1 3 ) and 2ν 2 (1 4 ) at 2628.8 and 2544.2 cm -1 , respectively, with an intensity which is almost three orders of magnitude lower than ν 1 .The next two polyads, N = 3/2 and N = 2, reported in Figure2(c), account for almost all the relevant absorptions falling in the range 4000 -6000 cm -1 . Even if the conventional nomenclature in terms of combinations of different normal modes is not well suited when moving to higher wavenumbers, due to the relevant mixing among the vibrational states, we have tried a possible labelling of each absorption in the polyads in such manner. The ν 1 + ν 7 (4349.9 cm -1 ) and ν 1 + ν 2 (4286.5 cm -1 ) combination bands, indicated respectively as 3/2 1 and 3/2 2 , are the first two components of the N = 3/2 polyad, while the most intense components of the N = 2 polyads, located at higher wavenumbers, are clearly visible. The CH polyads N = 5/2, N = 3 and N = 7/2 are shown in Figure 2(d). In the N = 3 polyad the most intense feature belongs to 3ν 1 (3 1 ) at 8712.2 cm -1 , while the weakest absorption assigned is ν 1 + 4ν 2 (3 9 ), reported in the inset of the same Figure. It has an observed relative band strength approximately three orders of magnitude lower than 3ν 1 . A total of 26 transitions belonging to different CH polyads (up to N =7/2) were assigned in the present work. After having set up all the matrix elements of the effective vibrational Hamiltonian for each of the considered polyads, the spectroscopic parameters collected in Table 1 have been derived by least-square fitting the resulting eigenvalues with all the corresponding wavenumbers of the experimentally observed band centres. The column labelled Fit 1 lists the results computed letting all the twelve parameters of the effective Hamiltonian free to vary. The reported values clearly show the Fermi coupling between the CH-stretching and the CH-bending modes, being the corresponding resonance parameters ' 122 k and ' 177 k equal to 95 and 87.6 cm -1 , addition, also the value for the Darling-Dennison resonance term ' 2277 k = 10.4 cm -1 suggests some effects of this coupling on the various overtones and combination bands within the polyads. The ' anharmonicity constant has a value (-61.8 cm -1 ) very similar to those found for analogous halogenated methanes such as CHClF 2 [25] and CHCl 2 F [27] ( ' 11 x = -63.8 cm -1 and -63.1 cm -1 , respectively). Without taking into account the Fermi resonances related to '

  Dennison resonance interactions between the overtone levels of CH in-plane and out-of-plane deformations

  cm -1 ). The unperturbed values for the bands of A' symmetry involved in the N =

Fermi resonances and taking

  into account all Darling-Dennison resonances between overtones and combinations of the CH bending modes within each polyad up to N = 7/2.

  the experimental and the predicted wavenumbers demonstrates the usefulness of this model to quantitatively describe the most relevant resonances affecting the absorptions in the overtone region up to 10100 cm -1 . The approach here followed is of central importance to understand the role of Fermi and Darling-Dennison coupling terms between the CH-stretching and bending modes as well as in modelling the features of the spectra of CHBrF 2 in the near infrared region. Employing the VPT2 spectroscopic parameters, the ab initio resonant model used to describe the CH chromophore polyads, which excludes Fermi resonances due to the high values of the computed cubic force constants 122 ϕ and 177 ϕ , and considers only Darling-Dennison resonances between the overtones of ν 2 and ν 7 , leads to an overall satisfactory agreement with the experimental data and also it could be useful to follow the correct assignment of the bands here considered. In conclusion, this work provides the first description of the different CH chromophore polyads which accounts for almost all the most relevant absorptions of CHBrF 2 up to the near infrared region of the spectra.
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 2 Figure 2. Vibrational spectra of CHBrF 2 in the regions of the ν 1 , ν 2 and ν 7
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 1 (a) N = 1/2 polyad in the 1000 -1400 cm -1 spectral region (experimental conditions: pressure = 10.0 mbar; optical path = 13.4 cm; resolution = 0.5 cm -1 ; temperature = 298 K). (b) N = 1 polyad in the 2000 -3200 cm -1 spectral region (experimental conditions: pressure = 30.9 mbar; optical path = 13.4 cm; resolution = 0.5 cm -1 ; temperature = 298 K); the inset shows a magnified view of overtones and combination bands belonging to this polyad. (c) N = 3/2 and N = 2 polyads within the 4000 -6500 cm -1 spectral region (experimental conditions: pressure = 33 mbar; optical path = 10.5 m; resolution = 0.5 cm -1 ; temperature = 298 K). (d) N = 5/2, N = 3 and N = 7/2 polyads in the 6500 -10000 cm -1 spectral region (experimental conditions: pressure = 33 mbar; optical path = 77.5 m; resolution = 0.5 cm -1 ; temperature = 298 K). The inset shows a magnified view of the 7900 -8200 cm -1 interval where N = 3 9 (ν 1 + ν 4 ) and N = 3 7 (ν
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 1 The information here reported is useful for successive studies which could better determine the resonances here analyzed. Spectroscopic parameters (cm -1 ) of CHBrF 2 obtained from least square fitting to the model Hamiltonian a

	F o r
	P
	e
	e r
	R
	e
	v i e
	w
	O n l
	y

a Figures in parentheses correspond to one standard deviation. b Least square fitting with 12 degrees of freedom. c Least square fitting with 11 degrees of freedom. d Constrained. Page 24 of 35 URL: http://mc.manuscriptcentral.com/tandf/tmph

Table 2 (

 2 1 of 2). Experimental and predicted vibrational wavenumbers and relative intensities of CHBrF 2 within a given polyad
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URL: http://mc.manuscriptcentral.com/tandf/tmph a Figures in parentheses represent experimental errors. b Predicted from parameters obtained by least square fitting with 12 degrees of freedom. c Predicted from parameters obtained by least square fitting with 11 degrees of freedom. d Predicted from ab initio hybrid force field: geometry and quadratic force constants at CCSD(T)/cc-pVTZ (for H, C, Br atoms) and CCSD(T)/aug-cc-pVTZ (F atoms); cubic and quartic force constants at CCSD(T)/cc-pVTZ. e Observed relative intensities within a given polyad block. f Relative intensities within a given polyad block predicted by least square fitting with 12 degrees of freedom.
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