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Introduction

Let g be a semisimple Lie algebra. The simple (finite dimensional) g-modules are characterized by their highest weight λ, each of them contains an unique (up to constant) vector v λ with weight λ, the g-action on v λ generates the corresponding simple module. The direct sum of all these modules is a natural algebra, the shape algebra of g.

Consider now the nilpotent factor n in the Isawasa decomposition the Lie algebra g. It is natural to study nilpotent finite dimensional n-modules. They are generally indecomposable, if the module is generated by the action on an unique vector v, we say this module is monogenic. Each of the monogenic nilpotent module is a quotient of a well determined simple g-module (viewed as a n-module). The natural object corresponding to the shape algebra is now the diamond module, union of all these maximal monogenic modules.

We report on a program to construct explicit combinatorial model for a basis in the diamond module, called the diamond cone. Such a description is given in the case of sl(n) by D. Arnal, N. Bel Barka, and N. J. Wildberger in [ABW], in the case of sp(2n), by D. Arnal and O. Khlifi [AK] and, in the case of rank two semisimple Lie algebras, by B. Agrebaoui, D. Arnal and O. Khlifi [AAK].

Let us first recall the sl(n) case, which is the simplest one. In this case, the shape algebra (the direct sum of all finite dimensional irreducible representations) admits a well known basis given by semistandard Young tableaux T , if we restrict ourselves to the semistandard tableaux with shape λ, we get a basis for the irreducible module S λ , with highest weight characterized by the shape, and still denoted λ. There is a notion of quasistandard tableau. Denote QS λ the subset of quasistandard tableaux in the set SS λ of semistandard tableaux with shape λ.

For any tableau T in SS λ , which is not in QS λ , there is procedure, based on the usual jeu de taquin (jdt) which transforms T in a new tableau p(T ), which is quasistandard, with a shape µ < λ. Putting p(T ) = T if T is quasistandard, it is possible to prove that the map:

p : SS λ -→ µ≤λ QS µ ,
is a bijective map. In other words, we have an indexation of a basis for the module S λ , which is well adapted to the description of the n indecomposable module S λ | n . Indeed, any maximal monogenic n submodule in S λ is the subspace generated by µ≤ν QS µ for some ν ≤ λ (see [ABW] for details).

The situation is very similar for the sp(2n) case. A basis for the simple modules S λ is given by the set SS λ of symplectic semistandard Young tableaux with shape λ, in [AK], the notion of symplectic quasistandard Young tableaux is given, let QS λ be the set of such tableaux with shape λ, using the symplectic jeu de taquin (sjdt) defined by J. T. Sheats ([S]), define a bijective map:

p : SS λ -→ µ≤λ QS µ .
With this map, we get a basis for the module S λ | n , well adapted with its stratification.

The goal of this paper is to realize the same program for the so(2n + 1) case. First we recall the definition of semistandard Young tableaux for so(2n + 1), given by Kashiwara and Nakashima (see [KN], see also the presentation given by Lecouvey in [L]). In this construction, Lecouvey defines the split of an orthogonal Young tableau. An orthogonal semistandard Young tableau with shape λ is a tableau T such that its split spl(T ) is symplectic semistandard: spl(T ) ∈ SS 2λ . Unfortunately, this choice is not convenient for our purpose of quasistandardness, therefore we modify the presentation of orthogonal semistandard tableaux, and the splitting procedure, in order to get a new map dble and say that a tableau T is orthogonal semistandard (T ∈ SS [λ] ) if and only if dble(T ) ∈ SS 2λ . We prove the equivalence between our construction and the Lecouvey's one, by proving that the spl and the dble of respective semistandard Young tableaux form the same subset in SS 2λ .

We are now able to define orthogonal quasistandard tableau by the same method as for the symplectic case. Denote QS [λ] the set of such tableaux, with shape λ, we want to prove that the orthogonal jeu de taquin (ojdt), defined by Lecouvey allows to build a bijective map: p : SS [λ] -→ µ≤λ QS [µ] .

The orthogonal jeu de taquin on an orthogonal tableau T is defined by using the symplectic jeu de taquin on the split form spl(T ) of T , thus it is well defined on our notion of semistandard orthogonal Young tableau. Unfortunately, Lecouvey does not give a rule for this jeu de taquin, directly on the tableau T , therefore we first give such an explicit and direct expression of the action of the jeu de taquin on T itself, at least in the case we consider, i.e. when the jeu de taquin motion is horizontal.

Thanks to this expression, we can define the map p, as a 'maximal' (in a sense explained below) action of the orthogonal jeu de taquin ojdt, we compute the inverse mapping of ojdt and prove that p is a bijective map.

With this map, we get a basis for the module S [λ] | n , well adapted with its stratification.

2. Semistandard and quasistandard Young tableaux for sl(n) 2.1. Semistandard Young tableaux.

The theory of finite dimensional representations of semisimple Lie algebras is well known an very explicit. In the classical cases, we have a natural representation on a complex space V . For sl(n), V = C n . We first consider simple modules in the tensor product ⊗ ℓ V . We recover with these modules all the simple sl(n) modules. The key to understanding the decomposition of ⊗ ℓ V is the Schur-Weyl duality.

Let C [S ℓ ] be the group algebra of the symmetric group S ℓ . It is a semisimple algebra, its simple components are indexed by the set of partitions P(ℓ) of ℓ (weakly decreasing sequence of positive integers λ

= (λ 1 ≥ λ 2 ≥ • • • ≥ λ n ) whose sum is ℓ.) C[S ℓ ] = ⊕ λ∈P B λ .
Let S ℓ acts on the right side on ⊗ ℓ V by permutation:

ρ ℓ (σ)(v 1 ⊗ • • • ⊗ v ℓ ) = (v 1 ⊗ • • • ⊗ v ℓ ) σ = v σ(1) ⊗ • • • ⊗ v σ(ℓ) .
The Shur-Weyl duality theorem is the fact that the commutant of the natural representation of gl(V ) in ⊗ ℓ V is exactly ρ ℓ (C[S ℓ ]) (see [GW]).

Therefore, we have the following decomposition of ⊗ ℓ V as (gl(V ) -S ℓ ) simple modules:

⊗ ℓ V = λ∈P(n,ℓ) S λ ⊗ B λ ,
where P(n, ℓ) is the set of partitions of ℓ, with lenght n:

{λ = (λ 1 ≥ λ 2 ≥ • • • ≥ λ n ), λ j = ℓ}. A Young diagram of shape λ ∈ P(n, ℓ
) is a tableau of empty boxes, with λ jλ j+1 columns with height j (1 ≤ j ≤ n -1) and λ n columns with height n.

A standard Young tableau of shape λ is the filling of the corresponding Young diagram, with positive integers in {1, . . . , ℓ}, such that the entries are strictly increasing along rows and columns. The set of standard Young tableaux gives a basis for B λ . Similarly, a semistandard Young tableau for gl(n) with shape λ is the filling of the corresponding Young diagram, with positive integers in {1, . . . , n}, such that the entries are strictly increasing along columns and weakly increasing along rows. The set of semistandard Young tableaux for gl(n) gives a basis for S λ . Explicitely, for any pair (T, S) of a semistandard tableau T for gl(n) and a standard tableau S, we associate the tensor product:

ρ λ (Y λ )(e t 1 ⊗ • • • ⊗ e t ℓ ),
where (e 1 , . . . , e n ) is the canonical basis of V , the entries t k of T are indexed by the entry of the corresponding boxes in S, and Y λ is the Young symmetrizer: the element in C [S λ ] giving the projection on B λ .

To get a realization of the shape algebra as gl(n)-module, we choose for each λ a particular standard tableau, namely the filling of the corresponding Young diagram row by row from the top to the bottom and from the left to the right. With this choice the highest weight vector v λ in S λ is associated to the 'trivial' semistandard tableau, for which the boxes in the i th row ares filled by the integer i and v λ is:

v λ = (e 1 ) λ 1 -λ 2 • (e 1 ∧ e 2 ) λ 2 -λ 3 • . . . • (e 1 ∧ • • • ∧ e n ) λn .
Finally, the restriction S λ of S λ to sl(n) is simple, and two such restrictions S λ and S λ ′ coincide if and only if λ j = λ ′ j for any j < n. We thus only consider partitions λ with λ n = 0. Recall that the usual ordering on weights is then: µ ≤ λ if and only if µ jµ j+1 ≤ λ jλ j+1 for any j, 1 ≤ j ≤ n -1.

Since the group G = SL(n, C) is a classic, connected and simply connected Lie group, we can realize the shape algebra as the space of affine functions on the quotient N \ G, where N is the Lie subgroup corresponding to the nilpotent factor n opposite to n (see [GW]).

2.2. Quasistandard Young tableaux and jeu de taquin.

Denote S • red the diamond module for sl(n). We can realize explicitly this module as the quotient of the shape algebra by the ideal generated by the elements v λ -1 (for any λ), or as the space of polynomial functions on N.

As a n-module, S •

red is indecomposable, this is the union of the modules S λ | n , with a natural layering:

µ ≤ λ ⇐⇒ S µ | n ⊂ S λ | n .
Indeed, in the shape algebra, v ν •v µ = v ν+µ , thus in the quotient, the diamond module,

S µ = v ν • S µ ⊂ S ν+µ .
To get a combinatorial basis in the diamond module, it is necessary to suppress any trivial semistandard tableau, and even any semistandard tableau containing a trivial tableau with a shape µ ≤ λ. Therefore, we put (see [ABW]) Definition 2.1.

Let T = (t ij ) be a semistandard tableau, with shape λ. If the top of the first column (the s first boxes) is a trivial tableau, if T contains a column with height s, and if, for all j for which these entries exist, the relation t s(j+1) < t (s+1)j holds, we say that T is not quasistandard at the level s: T ∈ NQS λ s . If there is no s for which T is in NQS λ s , we say that T is quasistandard. The set of quasistandard tableaux with shape λ is denoted QS λ .

The principal result in [ABW] is: the quasi-standard tableaux form a basis of the diamond module. This can be proved by using the jeu de taquin (jdt). Let us present now this operation due to Schutzenberger.

Let µ ≤ λ be two shapes, we let Y (µ), the Young diagram with shape µ, as a subdiagram placed in the left-top corner of Y (λ), the associated Young diagram to λ. An interior corner of Y (µ) is a box (x, y) of Y (µ) such that, immediately in the right and immediately below to this box, there is no box of Y (µ). An exterior corner of Y (λ) is an empty box (x ′ , y ′ ) which we can add to

Y (λ) so that Y (λ) ∪ {(x ′ , y ′ )} still is a Young diagram.
Let us leave Y (µ) empty inside Y (λ) and fill in the skew tableau Y (λ\µ) by integers t ij ≤ n in a semistandard way: For all i and all j, t ij < t (i+1)j and t ij ≤ t i(j+1) , if the boxes are in Y (λ \ µ).

We choose an interior corner of Y (µ) and we identify it by a star: ⋆ . We obtain a pointed skew-tableau T := T (λ \ µ). For example 2 4 ⋆ 3 5 4 6 5 7

The jeu de taquin is a way to move the ⋆ in T (λ \ µ). After a number of moving, the tableau T becomes a tableau T ′ in which the ⋆ is in the (i, j) box. The rules of the jeu de taquin is as follows:

1-If the box (i, j + 1) exists and either the box (i + 1, j) does not exist or t (i+1)j > t i(j+1) , then we push ⋆ to the right, i.e., we replace T ′ by the tableau T " where we put t i(j+1) in (i, j), and ⋆ in (i, j + 1), the other entries in T ′ being unchanged in T ".

2-If the box (i + 1, j) exists and either the box (i, j + 1) does not exist or t (i+1)j ≤ t i(j+1) , then we push ⋆ downward, i.e., we replace T ′ by the tableau T " where we put t (i+1)j in (i, j), andt ⋆ in (i + 1, j), the other entries ib T ′ being unchanged in T ".

3-If the boxes (i + 1, j) and (i, j + 1) do not exist, we remove the ⋆ . The box (i, j) is no longer a box of T ", but the tableau consisting of boxes of T " and of the box (i, j) is a Young tableau: the (i, j) box is an exterior corner of T ".

Example 2.2.

T = 2 4 ⋆ 3 5 4 6 5 7 -→ 2 4 3 ⋆ 5 4 6 5 7 -→ 2 4 3 5 ⋆ 4 6 5 7 -→ 2 4 3 5 4 6 5 7 = T " T = 2 4 ⋆ 3 6 4 5 5 7 -→ 2 4 3 ⋆ 6 4 5 5 7 -→ 2 4 3 5 6 4 ⋆ 5 7 -→ -→ 2 4 3 5 6 4 7 5 ⋆ -→ 2 4 3 5 6 4 7 5 = T ".
Let us call S" the empty Young diagram obtained after removing the pointed box and let µ" be the shape of S". The tableau T " \ S" is still semistandard. If (i, j) is the interior pointed corner of S and (i", j") the exterior pointed corner of T ", we set (T " \ S", (i", j")) = jdt(T \ S, (i, j)).

Let us explain now the inverse map: (jdt) -1 . Let T \ S be a skew semistandard tableau of shape λ \ µ, consider the smallest rectangle containing T \ S, then return this rectangle by performing a central symmetry, and replace each of the entries t ij of the obtained skew tableau by the entries n + 1t ij and ⋆ by ⋆. The obtained tableau T ′ \ S ′ = σ(T \ S) is still a skew semistandard tableau. If we pointed an exterior corner of T , the box ⋆ now is in an interior corner of S ′ , and reciprocally. Then jdt -1 (T " \ S", (i", j")) = σ • jdt • σ(T " \ S", (i", j")).

For instance, the above applied jeu de taquin is reversed, if n = 7, as follows:

(T, (4, 2)) = 2 4 3 5 6 4 7 5 ⋆ σ(T, (4, 2)) = ⋆ 3 1 4 2 3 5 4 6 jdt • σ(T, (4, 2)) = 1 3 3 4 2 5 ⋆ 4 6 σ • jdt • σ(T, (4, 2)) = 2 4 ⋆ 3 6 4 5 5 7
The jeu de taquin is thus a bijective map:

jdt : λ\µ SS(λ \ µ) × {interior corners in µ} -→ -→ λ"\µ"
SS(λ" \ µ") × {exterior corners for λ"}.

Let us now consider a non quasistandard tableau T = (t ij ) with shape λ and let s be the largest integer such that T is not quasistandard in s. The s top entries of its first column are 1, 2, . . . , s. We call S the empty tableau with only one column with height s: the shape of S is µ = (1, . . . , 1, 0, . . . , 0). We consider the pointed skew tableau U whose entries in λ \ µ are the entries of T and the pointed box is in the only interior corner in S.

We apply the jeu de taquin. The pointed box moves always to the right and leaves the diagram at the end of the last column of height s.

The row s has just been shifted by one box to the left. We obtain a skew tableau with s -1 empty boxes in its first column. We fill in these boxes with 1, . . . , s -1. If s > 1, the obtained tableau T " is semistandard, not quasistandfard in s -1, and may be in s, but it is quasistandard in all t > s.

This procedure can therefore be repeated and finally we get a quasistandard tableau T ′ = p(T ).

It is easy to check that this procedure realize a bijection between the set of semistandard tableaux SS λ with shape λ and the union ⊔ µ≤λ QS µ of sets of quasistandard tableaux with shape µ ≤ λ.

SS λ ←→ ⊔ µ≤λ QS µ .
Considering the quotient map from the shape algebra S • to the diamond module S • red , we see the restriction of this quotient map to each S λ is one-to-one. Thus we can choose only the vectors associated to quasistandard tableaux, to get a basis for the quotient.

Theorem 2.3. ( [ABW]) The set QS • of quasistandard tableaux is the diamond cone, i.e. a basis of the diamond module S • red , which describes the stratification of this indecomposable n-module.

The symplectic case

3.1. Symplectic Lie algebra and its representations.

We let V = C 2n be the 2n dimensional vector space with basis (e 1 , . . . , e n , e n , . . . , e 1 ) and equipped with a symplectic form

Ω = n i=1 e ⋆ i ∧ e ⋆ i .
If M is a n × n matrix, we denote s M the image of M under the symmetry with respect to its second diagonal. Then the symplectic (simple) Lie algebra associated to Ω can be realized as the set of matrices:

sp(2n) = M V U -s M ; M, U, V ∈ Mat(n), U = s U, V = s V
A Cartan subalgebra h of sp(2n) consists of diagonal matrices H = diag(κ 1 , . . . , κ n , -κ n , . . . , -κ 1 ).

We let θ j (H) = κ j and choose the following simple roots system:

∆ = {α i = θ i -θ i+1 , i = 1, 2, . . . , n -1, α n = 2θ n }.
For this choice n = α>0 g α is the subalgebra of strictly upper triangular matrices in sp(2n). Define the fundamental weights as

ω k = θ 1 + • • • + θ k , 1 ≤ k ≤ n.
The fundamental module S ω k is realized as the kernel of the contraction ϕ k : ∧ k V -→ ∧ k-2 V (with the convention ∧ -1 V = 0) defined by:

ϕ k (v 1 ∧ • • • ∧ v k ) = i<j Ω(v i , v j )(-1) i+j-1 v 1 ∧ • • • ∧ v i ∧ • • • ∧ v j ∧ • • • ∧ v k .
Then the set Λ of positive dominant weights is Λ = {λ = n k=1 a k ω k , a k ∈ N}. For λ ∈ Λ, the irreducible module S λ is realized as a submodule of ⊗V , more precisely as the simple submodule in

Sym a 1 (S ω 1 ) ⊗ Sym a 2 (S ω 2 ) ⊗ • • • ⊗ Sym an (S ωn ),
with highest weight λ.

Since all these modules are in ⊗V , as before, we can describe a combinatorial basis for S λ , by using semistandard Young tableaux with shape λ. However, we have to select, among the usual semistandard tableaux, some of them, called symplectic semistandard tableaux. The set of such tableaux will be dentoted SS λ (for details see [FH, dC, KN]). We present such a choice in the two next sections.

3.2. Subset in the left or the right side.

Let X = {e 1 < e 2 < • • • < e p } be a subset of {1, . . . , n}, denote Y = {1, . . . , n} \ X. Definition 3.1. Let J be a subset of X. A subset I of X is said to be in the left (resp. right) side of X if: i. #I = #J, ii. I ∩ J = ∅, iii. if J = ∅, and J = {y 1 < y 2 < • • • < y s }, then I = {x 1 < x 2 < • • • < x s } and x i < y i (resp. y i < x i ) for all i, 1 ≤ i ≤ s.
Denote L(J) the set of all subsets of X in the left side of J. For instance, if

X = [1, 10], L(∅) = {∅}, L({1, 3}) = ∅, L({2, 6}) = {1, 3}, {1, 4}, {1, 5} . Denote Γ Y (or Γ n Y ) the set of subsets J in X, such that L(J) = ∅. Lemma 3.2. Let J be in Γ Y . Then there exists a unique largest subset, denoted γ Y (J), in the left side of J, such that if γ Y (J) = {x 1 < • • • < x s }, then for all I ′ = {x ′ 1 < • • • < x ′ s }, in L(J), the relation x ′ i ≤ x i holds for every i (1 ≤ i ≤ s). Let J = {y 1 < • • • < y s } be a non empty set in Γ Y and I = γ Y (J) = {x 1 , . . . , x s }. Set Z = X \ (I ∪ J). Let t ∈ Z. If there exists i such that t < y i then t < x i . Proof. If J = ∅, then L(J) = {∅}, and γ Y (∅) = ∅.
Let us now suppose J = {y 1 < • • • < y s } is not empty. We define by induction the elements x i in X, as follows:

x

s = sup{t ∈ X \ J, t < y s }, x i = sup{t ∈ X \ J, t < x i+1 , t < y s } (1 ≤ i ≤ s -1).
It is easy to prove that the x i do exist, and if

I ′ = {x ′ 1 < • • • < x ′ s } is in L(J), then, by induction, x ′ i ≤ x i for all i.
This implies the unicity of the subset γ

Y (J) = {x s > • • • > x 1 }.
Suppose the second assertion wrong, and

x i ≤ t. Since t is not in I, this means x i < t. Let k be the largest index such that x k < t (i ≤ k). If k = s, this gives t < y i ≤ y s , and t ∈ X \ J, then x s < t ≤ x s = sup{u ∈ X \ J, u < y s }, which is impossible. If k < s, this gives t < y i ≤ y k and t < x k+1 , then x k < t ≤ sup{u ∈ X \ J, u < y k , u < x k+1 }, which is also impossible.
This proves the lemma.

Of course the same properties are holding on the right side of a subset I in X. Denote R(I) the family of all subsets in the right side of I,

say that I is in ∆ Y if R(I) is not empty. Remark that for I in ∆ Y , there exists in R(I) a smallest subset denoted δ Y (I) = δ(I). If moreover I = {x 1 < • • • < x s } is non empty, denote δ Y (I) = {y 1 < • • • < y s }.
For any

J ′ = {y ′ 1 < • • • < y ′ s } in R(J), have y ′ i ≥ y i for all i (1 ≤ i ≤ s). Set Z = X \ (I ∪ J), let t ∈ Z.
If there exists i such that t > x i then t > y i .

Semistandard and quasistandard symplectic tableaux.

Consider the ordering 1

< 2 < • • • < n < n < • • • < 1 and let A, D subsets in {1, . . . , n} such that k = ♯A + ♯D ≤ n. Set I = A ∩ D = {i 1 , . . . , i r }. Let us say that the column A D = p 1 . . . p s q t . . . q 1 is a symplectic semistandard column if I is in ∆ A∪D .
To any symplectic semistandard column, we associate a two columns tableau, the double of this column. Put first:

J = δ A∪D (I), B = (A\I) ∪ J, C = (D\I) ∪ J.
Remark that, knowing B and C, we have J = B ∩ C is in L(B ∪ C) and I = γ B∪C (J). Denote the symplectic column:

A D = f (A, D) = g(B, C).
The double of A D is by definition the tableau

dble A D = A B C D .
It is a semistandard Young tableau for the chosen ordering 1

< 2 < • • • < n < n < • • • < 1. Definition 3.3.
Let T be a tableau of shape λ consisting of semistandard columns. The tableau dble(T ) is obtained by juxtaposing the doubles of all the columns of T .

We say that T is symplectic semistandard (or semistandard for sp(2n)) if dble(T ) is semistandard (for sl(2n)).

The set of symplectic semistandard Young tableaux of shape λ is a basis for the simple sp(2n) module S λ . Let us denote by v λ its highest weight.

In a recent paper by D. Arnal and O. Khlifi (see [AK]) the following two algebras are studied: the shape algebra

S • = λ∈Λ S λ .
and the reduced shape algebra (the diamond module):

S • red = S • < v λ -1, λ ∈ Λ > .
The first algebra has for basis the set of symplectic semistandard tableaux SS • while the second algebra has for basis the set of symplectic quasistandard tableaux QS • defined as follows:

Definition 3.4.
Let T be a symplectic semistandard tableau. We say that T is a symplectic quasistandard tableau if dble(T ) is quasistandard (for sl(2n)).

We note that a symplectic semistandard Young tableau can be quasistandard for sl(2n), but not its double. For example 1 1 2 3 2 3 3 2 3 2 T is quasistandard but dble(T ) is not quasistandard. The set of all symplectic quasistandard tableaux with shape λ is denoted QS λ .

T = 1 2 2 2 2 =⇒ dble(T ) =
Let us say that a symplectic semistandard tableau T is not quasistandard at the level s and denote T ∈ NQS s if dble(T ) is not quasistandard at the level s.

In the paper [S] the symplectic jeu de taquin (sjdt) is defined on a skew symplectic semistandard tableau, by using its double. Especially, in the case where the ⋆ moves to the right, along the row s in T , the motion is the following: Suppose the row s contains the entries ⋆ a ′ , then the left column

f (A, D) = g(B, C) becomes g(B ∪ {a ′ }, C), the right column f (A ′ , D ′ ) becomes f (A ′ \ {a ′ }, D ′ ), Suppose the row s contains the entries ⋆ d ′ , and the row s in dble(T ) contains ⋆ c ′ , then, in T , the left column f (A, D) becomes f (A, D ∪ {c ′ }), the right column f (A ′ , D ′ ) = g(B ′ , C ′ ) becomes g(B ′ , C ′ \ {c ′ }).
Using this symplectic jeu de taquin, it is possible to prove, like in the sl(n) case, that the set of symplectic quasistandard tableaux is a basis for the reduced shape algebra that respect its structure of indecomposable n module (see [AK]).

We shall now follow the same strategy in the so(2n + 1) case.

Orthogonal semistandard Young tableaux

4.1. so(2n + 1) and its positive dominant weights.

Let B n = {i, i, 1 ≤ i ≤ n} ∪ {0} be an ordered set with the ordering given by:

1 < 2 < . . . < n < 0 < n < . . . < 2 < 1. For any a, b in a totally ordered set E, denote [a, b] = {x ∈ E, a ≤ x ≤ b} for instance, in B n , [1, n] = {1, 2, . . . , n}.
Put i = i and 0 = 0. Let V = C 2n+1 with basis (e 1 , . . . , e n , e 0 , e n , . . . , e 1 ) indexed by B n .

The odd dimensional orthogonal algebra g = so(2n + 1) is the Lie algebra given by the matrices antisymmetric with respect to the non degenerated symmetric bilinear form Q = , defined by

e i , e j = δ ij , ∀ i, j ∈ B n .
The matrix of Q is:

S =       0 0 . . . 0 1 0 0 . . . 1 0 . . . . . . • • • . . . . . . 0 1 . . . 0 0 1 0 . . . 0 0       .
Denote A → s A the symmetry with respect to the second diagonal, thus g is the set of all (2n + 1) × (2n + 1) matrices X so that s X = -X, or:

X =   A u B -s x 0 -s u C x -s A  
where A is a (n×n)-matrix, B and C are (n×n)-matrices, such that s B = -B, s C = -C, x and u are (n × 1)-matrices and, if u is a column matrix, s u = (u n1 , . . . , u 11 ).

The Lie algebra g is a simple Lie algebra of type (B n ).

Denote E ij the usual n × n matrix with unique non vanishing entry 1 at the row i and the column j, and E i the column with unique non vanishing entry 1 at the row i, we get the following basis for g:

H i =   E ii 0 0 0 0 0 0 0 -s E ii   (1 ≤ i ≤ n), X ij =   E ij 0 0 0 0 0 0 0 -s E ij   (1 ≤ i = j ≤ n), Y ij =   0 0 (E ij -s E ij ) 0 0 0 0 0 0   (i + j ≤ n), Z ij =   0 0 0 0 0 0 (E ij -s E ij ) 0 0   (i + j ≤ n), U i =   0 E i 0 0 0 -s E i 0 0 0   (1 ≤ i ≤ n), X i =   0 0 0 -s E i 0 0 0 E i 0   (1 ≤ i ≤ n).
The set of diagonal matrices

H = n i=1 κ i H i ,
is a Cartan subalgebra h of g. The dual space h * has for basis the n forms ǫ j where ǫ j (H) = κ j .

The roots and the root spaces of g are given by the commutation relations:

[H, X ij ] = (ǫ i -ǫ j )(H)X ij , [H, Y ij ] = (ǫ i + ǫ n+1-j )(H)Y ij , [H, Z ij ] = -(ǫ n+1+i + ǫ j )(H)Z ij , [H, U i ] = ǫ i (H)U i , [H, X i ] = -ǫ n+1-i (H)X i .
The root system is thus

±ǫ i ± ǫ j (1 ≤ i < j ≤ n) and ±ǫ i (1 ≤ i ≤ n).
We choose the simple roots system

Φ = {ǫ 1 -ǫ 2 , . . . , ǫ n-1 -ǫ n , ǫ n }.
Then the positive roots are ǫ iǫ j , ǫ i + ǫ j (1 ≤ i < j ≤ n), and ǫ i , (1 ≤ i ≤ n). The nilpotent factor n in the Iwasawa decompsition of g is the sum of the corresponding root spaces. It is the set of upper triangular matrices in g or the space generated by the matrices X ij , Y ij , for 1 ≤ i < j ≤ n, and the U i , with 1 ≤ i ≤ n.

The weight lattice of so(2n + 1) is generated by ǫ 1 , ǫ 2 , . . . , ǫ n-1 , ǫ n together with the further weight 1

2 (ε 1 + . . . + ε n ). The Weyl chamber is W = { a i ǫ i , a 1 ≥ a 2 ≥ . . . ≥ a n ≥ 0}.
The edges of the Weyl chamber are thus the rays generated by the vectors ǫ 1 , ǫ 1 + ǫ 2 , . . . , ǫ 1 + . . .+ ǫ n-1 and ǫ 1 + . . . + ǫ n . For g, the intersection of the weight lattice with the closed Weyl cone is the free semigroup generated by the following fundamental weights:

ω 1 = ǫ 1 , ω 2 = ǫ 1 + ǫ 2 , . . . , ω n-1 = ǫ 1 + . . . + ǫ n-1 , ω n = 1 2 (ǫ 1 + . . . + ǫ n ).
Any weight λ in the Weyl chamber can be written: λ = n i=1 a i ω i with a i a natural number (a i ∈ N). Denote S [λ] the corresponding simple module.

Irreducible representations of so(2n + 1).

The construction of the fundamental modules S [ωr] is explicitly presented in the excellent book [FH], by W. Fulton and J. Harris.

First, for r = 1, . . . , n, the natural antisymmetric tensor representation ∧ r V is an irreducible highest weight representations of so(2n + 1), with highest weight ω r for r < n and 2ω n for r = n. The vectors e i 1 ∧ • • • ∧ e ir (1 ≤ i 1 < . . . < i r ≤ 1), form a basis of ∧ r V . Describe now the so(2n + 1)-action on these vectors.

Recall that the standard action of so(2n + 1) on V is given by the matrix form of the element X ∈ g. Especially, the Chevalley generators act as follows:

X i,i+1 • e i+1 = e i , X i,i+1 • e i = -e i+1 for 1 ≤ i < n and U n • e 0 = e n , U n • e n = -e 0 ,
(the other relations vansih) and:

X i+1,i • e i = e i+1 , X i+1,i • e i+1 = -e i for 1 ≤ i < n and -X 1 • e n = e 0 , -X 1 • e 0 = -e n .
The action of so(2n + 1) on ∧ r V is the canonical one:

X • (e i 1 ∧ • • • ∧ e ir ) = (X • e i 1 ) ∧ • • • ∧ e ir + . . . + e i 1 ∧ • • • ∧ (X • e ir ).
In particular, every H ∈ h acts diagonnaly:

H•(e i 1 ∧ . . . ∧ e i k (∧e 0 ) ∧ e j 1 ∧ . . . ∧ e js ) = = (ǫ i 1 + . . . + ǫ i k -ǫ j 1 -. . . -ǫ j r-k )(H)e i 1 ∧ • • • ∧ e i k (∧e 0 ) ∧ e j 1 ∧ . . . ∧ e j r-k .
Hence the set of weights of the representation is

{(ǫ i 1 + . . . + ǫ i k ) -(ǫ j 1 + . . . + ǫ j r-k ), 1 ≤ i 1 < . . . < i k ≤ n, 1 ≤ j r-k < . . . < j 1 ≤ n}. The highest weight is ω r = ǫ 1 + . . . + ǫ r .
There is still one fundamental representation to describe: S [ωn] .

Definition 4.1.

The finite dimensional irreducible representation with the highest weight ω n is called the spin representation and denoted by V sp .

This last fundamental representation however is more mysterious. The fundamental weight ω n cannot be a weight of any tensor power of the standard representation,it cannot be a submodule in ⊗V . We first describe directly this representation:

We index a basis for V sp as what we call spin column: They are the columns C of height n with strictly increasing entries in

[1, n] ∪ [n, 1],
such that for all i ∈ B n , i and i do not appear simultaneously in C. Denote C = A D sp such a column, with A, D ⊂ [1, n], #A + #D = n, and A ∩ D = ∅ (to simplify notations, we omit to draw the boxes). The number of such columns (the dimension of V sp ) is 2 n . The action of so(2n + 1) on V sp is given in terms of Chevalley generators as follows:

X i,i+1 • . . . i + 1 . . . i . . . sp = 1 √ 2 . . . i . . . i + 1 . . . sp if 1 ≤ i < n, U n • . . . n . . . sp = 1 √ 2 . . . n . . . sp
(the other actions vanish). And

X i+1,i • . . . i . . . i + 1 . . . sp = 1 √ 2 . . . i + 1 . . . i . . . sp if 1 ≤ i < n, -X 1 • . . . n . . . sp = 1 √ 2 . . . n . . . sp
(the other actions vanish).

The weight of each column

C = A D sp is 1 2 ( i∈A ǫ i -i∈D ǫ i ). Therefore, 1 2 . . . n sp is the highest weight vector with weight ω n = 1 2 (ε 1 + . . . + ε n ).
In fact, it turns out that this last fundamental representation does not come from a representation of the group SO(2n + 1, C). The point here is that this group is not simply connected, so there are Lie algebra homomorphism on so(2n+1) which do not integrate to group homomorphisms on SO(2n + 1, C). Correspondingly, the simply connected group with Lie algebra so(2n + 1) is called the spin group Spin(2n + 1, C). It turns out that this spin group is an extension of SO(2n+1, C) with kernel Z 2 = ±1, i.e. there is a surjective homomorphism Spin(2n + 1, C) → SO(2n + 1, C) whose kernel consists of two elements.

One can construct both the spin representation V sp and the spin group Spin(2n + 1, C) by using the Clifford algebra Cl(2n + 1, C) of V , details can be founded in [FH], Chapter 20. Remark that we have:

V sp ⊗ V sp = ⊕ n k=0 ∧ k V.
The term 'spin' is coming from the application of this representation and this group to theoretical physics.

Any dominant integral weight λ can be written

λ = n i=1 a i ω i = n i=1 λ i ε i , where a i ∈ N and λ i = a i + . . . + a n-1 + an 2 if i < n and λ n = an 2 .
If a n is even, the representation

Sym a 1 (V ) ⊗ Sym a 2 (∧ 2 V ) ⊗ • • • ⊗ Sym a n-1 (∧ n-1 V ) ⊗ Sym an 2 (∧ n V )
will contain an irreducible representation S [λ] . If a n is odd, the tensor

Sym a 1 (V ) ⊗ Sym a 2 (∧ 2 V ) ⊗ • • • ⊗ Sym a n-1 (∧ n-1 V ) ⊗ Sym an-1 2 (∧ n V ) ⊗ V sp
will contain a copy of S [λ] .

Let us now give another way to build the simple submodule in ⊗V , using the Schur-Weyl duality.

For any choice of indices i and j, satisfying 1 ≤ i < j ≤ k, define the contraction

Φ ij : ⊗ k V -→ ⊗ k-2 V v 1 ⊗ . . . ⊗ v k -→ Q(v i , v j )v 1 ⊗ . . . vi . . . vj • • • ⊗ v k . Let V [0] = C, V [1] = V and define V [k] = ij ker Φ ij : ⊗ k V -→ ⊗ k-2 V for k ≥ 2.
For any partition λ

= (λ 1 ≥ λ 2 • • • ≥ λ 2n+1 ≥ 0) of k, define the so(2n + 1)-module S [λ] of ⊗ k V , by S [λ] = V [k] ∩ S λ
, where S λ is the sl(2n + 1)-irreducible module with highest weight λ.

Theorem 4.2. [FH] For any d ∈ N there is an isomorphism of (so(2n + 1), S k )-modules

V [d] = |λ|=d S [λ] ⊗ B λ .
For every partition λ = (λ 1 ≥ λ 2 • • • ≥ λ n ≥ 0) the so(2n + 1)-module S [λ] is the irreducible module with highest weight λ = λ 1 ε 1 + . . . + λ n ε n .

Orthogonal semistandard columns.

The definition of semistandard columns for so(2n + 1) given in this section is equivalent but not identic to the definition given in [L] by Cedric Lecouvey.

With the ordering 1

< 2 < • • • < n < 0 < n < • • • < 1,
a column is said to be semistandard if it satisfies the following properties:

1-The entries are increasing from top to bottom and if t is not 0 it appears at most one time, 2-Let C be such a column. We denote it C = A O D

. In O all entrees are 0 and there is A, D are subsets of [1, n],

3-Let I = A ∩ D, then I is in ∆ A∪D . We put J = δ A∪D (I), 4-#(A ∪ D ∪ J) + #O ≤ n.
As for sp(2n), we put

B = (A \ I) ∪ J, C = (D \ I) ∪ J. Let k = #O, there exists subsets in [1, n] \ (A ∪ D ∪ J) having k elements.
We denote K the greatest of these subsets.

We denote such a semistandard column by:

C = A O D = f (A, O, D) = g(B, O, C).
In addition to the admissible columns we have the spin columns, we denote them:

C = A D sp = f(A, D),
where #A + #D = n, A ∩ D = ∅ and the entries increase strictly.

We will say that a column is admissible if it is semistandard and not spin and it is spin if it is semistandard and spin.

As in the sp(2n) case, we define the double of a semistandard column. By definition, it is the two columns tableau:

dble(C) = dble   A O D   = A B K K C D , dble(C) = dble A D sp = 1 . . . n A D sp ,
where it is understood that A∪K, and D ∪K are reordered to be written in a strictly increasing way.

4.4. Relation with the Lecouvey's admisssible columns.

Let us mention that, for the non-spin case, this definition is not the Lecouvey's one. We recall that the admissible, non-spin columns in the sense of Lecouvey are those such that:

1-The entries are increasing from top to bottom and if t is not 0 it appears at most one time,

2-Let C L such a column. We denote it C L = B O C
. In O all entrees are 0 and there is no zero in B and C, 3-Let k = #O, and J 1 be the set B ∩C ∪{n+1, . . . , n+k}. We have J 1 ∈ Γ n+k B∪C .

Then we put

I 1 = γ n+k (J 1 ), A 1 = (B \ J 1 ) ∪ I 1 , D 1 = (C \ J 1
) ∪ I 1 and define the split of the column C L as:

split(C L ) = A 1 B C D 1 .
To prove the equivalence between the two notions, we define the subsets I and K in [1, n], by:

I = γ [1,n]\(I 1 ∪J) (J), K = I 1 \ I. Let us remark that if I = {x 1 < • • • < x s } and K = {z 1 < • • • < z k }, we do not have x i = x 1 i et z j = x 1 s+j .
For instance, in so( 7), the following column is admissible in the Lecouvey sense:

C L = 3 0 3 . Indeed, we have n = 3, k = 1, B = C = {3}, J = {3}, J 1 = {3 < 4}, I 1 = {1 < 2} = {x 1 1 < x 1 2 }, and I 1 ∪ J 1 = {1, 2, 3, 4}. Then I = {2} = {x 1 } and K = {1} = {z 1 }, z 1 = 1 = x 1 2 = 2, x 1 = 2 = x 1 1 = 1. Put now A = A 1 \ K, D = D 1 \ K, we have A = (B \ J) ∪ I, D = (C \ J) ∪ I, and: split(C L ) = A B K K C D . It is moreover clear that the column C = A O D
is semistandard in the sense of the preceding section. In fact its double is the split of C L :

dble(C) = split(C L ).
Indeed, we have:

Lemma 4.3.
With our notations, we have:

I = γ B∆C (J). Proof. Put I ′ = γ B∆C (J) = {x ′ 1 < • • • < x ′ s }. By definition: x ′ s = sup{t / ∈ (B∆C ∪ J) = B ∪ C, t < y s } and x s / ∈ B ∪ C satisfies x s < y s thus x s ≤ x ′
s . If the x s < x ′ s would hold, Lemma 3.2 applied to I 1 ∪ J and J would give

y s < x ′ s which is impossible, thus x ′ s = x s . Suppose now x ′ s = x s , . . . , x ′ i+1 = x i+1 , then x ′ i = sup{t / ∈ B ∪ C, t < y i , t < x ′ i+1 } and x i / ∈ B ∪ C satisfies x i < y i and x i < x i+1 = x ′ i+1 , then x i ≤ x ′ i .
With the same argument as above, the only possibility is

x ′ i = x i .
This proves I ′ = I.

The preceding construction defines a map Φ from the set of admissible, non-spin, column in the sense of Lecouvey to the set of admissible column in our sense.

Conversely, if

C = f (A, O, D) = g(B, O, C) is semistandard in our sense, we verify that the column C L = Ψ(C) = B O C
is admissible, in the sense of Lecouvey and nonspin.

By construction the mappings Φ and Ψ are inverse one each other.

Proposition 4.4.

A basis for the fundamental module S [ωr] is given by the non-spin semistandard columns with height r if r < n, and the spin columns for r = n.

The admissible, non-spin column, with height n form a basis for the simple module S [2ωn] .

We deduce as Lecouvey, that a column C (resp. C) is semistandard for so(2n + 1) if and only if spl(Ψ(C)) (resp. Ψ(C) = C) is semistandard for sp(2n), if and only if dble(C) is semistandard for sp(2n).

Orthogonal semistandard tableaux and shape algebra.

A tableau T for so(2n + 1) is a succession of columns with decreasing heights such that, there are at most one spin column and in that case, it is the first starting from the left.

The double of this tableau is the tableau of sp(2n) obtained by duplicate each column of T , arranged in their order.

T = C 1 C 2 . . . C r =⇒ dble(T ) = dble(C 1 )dble(C 2 ) . . . dble(C r ), resp. T = C 1 C 2 . . . C r =⇒ dble(T ) = dble(C 1 )dble(C 2 ) . . . dble(C r ).
We extend naturally Ψ to any tableau and get:

Ψ(T ) = Ψ(C 1 )Ψ(C 2 ) . . . Ψ(C r ) =⇒ split(Ψ(T )) = dble(T ), resp. Ψ(CT ) = Ψ(C)Ψ(C 1 ) . . . Ψ(C r ) =⇒ dble(C)split(Ψ(T )) = dble(CT ).
We deduce the definition of a semistandard tableau for so(2n + 1): Definition 4.5.

A tableau T is semistandard for so(2n + 1) if and only if its double dble(T ) is semistandard for sp(2n). A dominant weight λ corresponds now to a shape of tableaux, and the set SS [λ] of orthogonal semistandard tableaux with shape λ is a basis for the simple module S [λ] . Similarly, the set SS [•] of all orthogonal semistandard tableaux is a basis for the shape algebra ⊕ λ S [λ] for the Lie algebra so(2n + 1).

Remark 4.6. In fact Kostant associates a notion of shape algebra for any reductive group G. In the algebraic case (see [GW]) this algebra is explicitely realized as the space of affine regular functions on the quotient N \G, where N is the analytic subgroup whose Lie algebra is the opposite of n.

If G is connected and simply connected, then then this notion of shape algebra is the geometric form of the shape algebra for g = Lie(G). Thus here the shape algebra for so(2n + 1) is the geometric shape algebra for the group Spin(2n + 1, C).

If we restrict ourselves to the shape algebra for SO(2n + 1, C), which has the same Lie algebra, we should obtain an algebra whose basis is given by the collection of all orthogonal semistandard tableaux without any spin column.

Orthogonal quasistandard tableaux

Let us recall our definitions and notations. We say that a tableau T is orthogonal semistandard (T ∈ SS [•] ) if and only if dble(T ) is symplectic semistandard (dble(T ) ∈ SS • ). Now, it is clear, due to the structure of splt(dble(T )), that the condition dble(T ) ∈ SS • is in fact equivalent to dble(T ) ∈ SS.

Definition 5.1.

Let T be an orthogonal semistandard tableau, with shape λ and s ≤ n. Say that T is not quasistandard in s and write T ∈ NQS Say T is not quasistandard if and only if it exists s such that T is not quasistandard in s.

If it is not the case, we say that T is quasistandard, and denote T ∈ QS [λ] . We note QS [•] the union of all the sets QS [λ] .

The definition T ∈ NQS [•]

s is equivalent to the following condition, denoted Hs (hypothesis ins): if dble(T ) = (dt ij ), 1-dt s1 = s, and there exists a column with height s in T , 2-For all j for which these quantities exist, dt (s+1)j > dt s(j+1) , As in the sl(n) and the symplectic case, we shall build a bijective map p = push from SS [λ] to µ≤λ QS [µ] .

Since T is orthogonal semistandard if and only if dble(T ) is symplectic semistandard, we shall use the 'pouss' function defined in [AK] for the symplectic case. This function is defined as a 'maximal' use of the symplectic jeu de taquin sjdt.

But to 'push' one step to the left a row s in the tableau T , we have to push two steps to the left the row s in the tableau dble(T ). So we need to verify, that after the first use of the symplectic jeu de taquin on doubl(T ), the result is still symplectic non quasistandard in s.

On the other hand, the orthogonal jeu de taquin (ojdt) we shall study in the next sections is defined as a double use of the symplectic jeu de taquin. Therefore it is much more natural to directly use it to define the orthogonal 'push' function.

6. Direct expression for the orthogonal jeu de taquin ojdt 6.1. Definition of the ojdt.

Since the double of our orthogonal semistandard tableaux coincide with the split of the corresponding orthogonal semistandard tableaux defined by Lecouvey and since the orthogonal jeu de taquin is defined with the only use of the split form, we keep the Lecouvey definition for our setting. Definition 6.1.

Let T be an orthogonal semistandard tableau, with shape λ, we suppose there is inside T , in the left and top corner, an empty Young diagram S, with shape µ. To apply the ojdt to T \ S, put a ⋆ in an interior corner of S, write down the double of these tableaux, getting a skew symplectic semistandard tableau dble(T \ S) and two pointed boxes. Apply the symplectic jeu de taquin sjdt successively for the two ⋆, the result is a symplectic semistandard tableau, which is the double of an orthogonal semistandard tableau T ′ \ S ′ . Put:

ojdt(T \ S) = T ′ \ S ′ .
Indeed, Lecouvey proved in [L] that the double action of the symplectic jeu de taquin on the double of T \ S is the double of an orthogonal tableau.

Remark 6.2. The elementary move in the usual jeu de taquin is only a permutation of two succesive boxes inside T \S, either horizontally (from left to right) or vertically (from the top to the bottom).

The elementary move in the symplectic jeu de taquin is very similar, except that, in the case of an horizontal move, we have to modify the two concerned columns.

The elementary move in the orthogonal jeu de taquin can be a permutation along a diagonal, followed by a modification of the columns, as the following example shows:

1 ⋆ 0 3 3 → 1 1 ⋆ ⋆ 2 3 3 3 3 2 → 1 1 ⋆ 2 ⋆ 3 3 3 3 2 → 1 1 ⋆ 2 3 3 3 3 ⋆ 2 → 1 1 ⋆ 2 3 3 3 3 2 ⋆ → 1 1 2 ⋆ 3 3 3 3 2 ⋆ → 1 1 2 3 3 3 3 ⋆ 2 ⋆ → 1 1 2 3 3 3 3 2 ⋆ ⋆ → 1 3 3 0 ⋆
From now on, we consider only the 'horizontal situation' (HS hypothesis):

1-In the tableau dble(T \ S), the double star are in the row s, 2-dble(T \ S) = (dt ij ) has two columns with height s, 3-dt s(j+1) < dt (s+1)j for each j where these two entries exist. In this situation we can describe the elementary move. Theorem 6.3.

Suppose the skew tableau T \ S = (t ij ) and the star are in the HS situation, then 1-The situation t sj = 0 and t (s+1)j = 0 is impossible, for any j.

2-

The move is always horizontal, 3-For each elementary move on T \S, with our notation, the move is exactly like for the horizontal move in the sjdt, with the addition that if t s(j+1) = 0 and ⋆ is in the (s, j) box, then the move is simply a permutation of these two entries.

The assertions of the theorem mean there is only horizontal elementary moves, each of them being: Move 1-if (t sj , t s(j+1) ) = (⋆, a) with a unbarred, the move is:

g(B j ∪{⋆}, O j , C j )f (A j+1 ∪{a}, O j+1 , D j+1 ) → g(B j ∪{a}, O j , C j )f (A j+1 ∪{⋆}, O j+1 , D j+1 ), Move 2-if (t sj , t s(j+1) ) = (⋆, c) with c, the move is: f (A j , O j , D j ∪{⋆})g(B j+1 , O j+1 , C j+1 ∪{c}) → f (A j , O j , D j ∪{c})g(B j+1 , O j+1 , C j+1 ∪{⋆}),
Move 3-if (t sj , t s(j+1) ) = (⋆, 0), the move is:

f (A j , O j ∪{⋆}, D j )g(B j+1 , O j+1 ∪{0}, C j+1 ) → f (A j , O j ∪{0}, D j )g(B j+1 , O j+1 ∪{⋆}, C j+1 ),

Proof of the theorem.

Let C = f (A, O, D) = g(B, O, C) be a column in T \ S, we note its double:

dble(C) = A B K K C D = E B C F ,
and recall the definition of

I = A∪D = {x 1 < • • • < x r }, J = B∩C = {y 1 < • • • < y r }, K = {z 1 < • • • < z k }.
Suppose the s row in this double is: u s v s . In this section, like in the HS situation, we assume:

v s < u s+1 .
The proof of the theorem needs the following technical propositions. 

subset in [1, n] \ (A ∪ C), this implies [e s , n] ⊂ A ∪ C ∪ K = E ∪ C but b s / ∈ E since e s < b s < e s+1 , if b s was in C, then b s ∈ C \ D = C \ J = D \ I, thus b s ∈ D, which is impossible, therefore u s = e s is in A. Now b s ∈ B \ A = J,
there exists i such that b s = y i , let us consider x i . We put [AK] implies x i ∈ I ≤bs = I ≤es , then x i ≤ e s . Now, if x i < e s , then x i ∈ I ≤e s-1 , but b s is not in J ≤e s-1 , and this is a contradiction with Lemme 5.1 in [AK].

I ≤w = I ∩ [1, w]. Then Lemme 5.1 in
Case 2 By the assumption v s < u s+1 , e s = sup(A ∪ K) and f s > sup(C). Therefore

f s is not in C, thus f s / ∈ B, suppose f s ∈ D, then f s ∈ D \ C = D \ I, this means f s ∈ A, f s ≤ e s , now if f s is in K, f s ≤ e s too. Let w ∈ D, if w ∈ D \ I, then w ∈ C, w < f s , if w ∈ I, then w = x i < w ′ = y i in J ⊂ C, thus w < w ′ < f s .
The relation w < f s holds in any case. But there is as much entries strictly below f s and in C, thus

D = F ∩ [1, f s -1] and K = {z 1 < • • • < z k } = F ∩ [f s , n]. Especially, f s = z 1 .
On the other hand, if e s is in A, e s > z k , therefore e s ∈ A \ C = I, e s ∈ D, and e s < z k , which is impossible, then e s ∈ K, e s = z k .

Case 3 This case is the symmetric of case 1. The proof is the same mutatis mutandis.

Let us now define the element v ′ s as follows:

1-If v s = b s is in B, we put: v ′ s = v s if v s / ∈ C and v ′ s = γ E∪(C\{vs}) (v s ) if v s ∈ C. 2. If v s = f s with f s ∈ F , and u s = e s ∈ E, we put v ′ s = δ (E\{fs})∪C (f s ). 3. If v s = f s with f s ∈ F , and u s = c s , with c s ∈ C, we put v ′ s = f s if f s / ∈ E and v ′ s = δ (E\{fs})∪C (f s ) if f s ∈ E.
Corollary 6.5. We have

u s = v ′ s , or the s row in dble(C) is v ′ s |v s .
Proof. In the case 1, we saw that either e s = b s = v ′ s or e s is the greatest element in I ≤bs , that means

u s = e s = sup{t / ∈ (E ∪ C) ≤bs , t < b s } = v ′ s .
In the case 2, we saw that e s ≤ f s , and

e s = z k , f s = z 1 . Then [z 1 , n] ⊂ E ∪ C, and δ (E\{es})∪C (f s ) = e s .
The case 3 is similar to the case 1.

Let us now prove the theorem. We suppose that the orthogonal jeu de taquin was well defined and was always moving horizontally until some point, where the star is in the row s and some column. Lemma 6.6.

In the tableau T , it is impossible to have one of the following disposition, for any j:

T = . . . . . . . . . s 0 0 . . . (j) or T 
= . . . . . . . . . . . . s 0 a . . . . . . (j -1) (j)
. with a unbarred.

Proof. We assume that T has the above first form then the tableau dble(T ) has the following disposition in its columns 2j and 2j + 1,

dble(T ) = . . . . . . . . . . . . s a ′ s d ′ s a ′ s+1 d ′ s+1 . . . . . . (2j) (2j + 1) . Since d ′ s > a ′ s+1
, this is in contradiction with our assumption HS.

Similarly, suppose the tableau has the second form, then dble(T ) is

dble(T ) = . . . . . . . . . . . . . . . . . . s e s f s e ′ s+1 b s+1 . . . . . . . . . . . . (2j -2) (2j -1) (2j) (2j + 1)
.

The proposition said that in the columns (2j)(2j + 1),

K j = {z 1 < • • • < z r }, f s = z 1 , e s = z r . But, in these columns, f > sup(C j ), this implies [f, n] ⊂ K j ∪C j ∪A j , thus n ∈ K j ∪ C j ∪ A j , and n ≥ f > sup C j , therefore, n ∈ K j ∪ A j .
On the other hand, we have e s < b s+1 ≤ n, thus e s = sup(A j ∪ K j ) < n. This is impossible. 6.2.1. Study of the case ⋆|0 .

We now assume that there exists, on the s row, a star and a zero to the right of the star. Then doubling the two concerned columns is the following:

A 1 A 2 O 2 s ⋆ 0 O 1 D 2 D 1 → E 11 B 1 E 2 B 2 F 21 s ⋆ ⋆ e f E 12 C 1 F 1 C 2 F 22
We therefore have e = sup(E 2 ∪ {e}), and since the tableau is symplectic semistandard, sup(E 2 ) ≥ sup(B 1 ), e > sup(B 1 ). Lemma 6.7.

If e ∈ F 1 , we set x = γ B 1 ∪F 1 (e), then inf(E 12 ) > x > sup(B 1 ).
Proof. Either we are at the starting point, there is no B 1 , no A 1 and

E 12 = K 1 , F 1 = K 1 ∪ C 1 .
By the definition of K 1 , since x is not in F 1 , then x < inf(K 1 ), this proves the lemma in this case.

Or there was a preceding step, where we had:

Ẽ11 B 1 E 2 B 2 F 21 s ⋆ ẽ b e f Ẽ12 C1 F 1 C 2 F 22
Our induction hypothesis says that the move is horizontal, the element ẽ leaves its column. Since, in the first column, all the entries are distinct, in the sjdt, this column does not change. Then in the next symplectic step in sjdt, the star moves still horizontally, the element b leaves the second column, which as above does not change. b goes inside the first column, under the name y = γ B 1 ∪F 1 ( b), since b < ẽ 12 = inf( Ẽ12 ), the first column becomes:

g( Ẽ11 ∪ Ẽ12 ∪ { b}, C1 ) = f ( Ẽ11 ∪ Ẽ12 ∪ {y}, ( C1 \ { b}) ∪ {y}). Suppose b = ẽ, then y = b, Ẽ11 = E 11 , Ẽ12 = E 12 , C1 = C 1 . Suppose now b > ẽ, then ẽ 12 > b ≥ y ≥ ẽ > ẽ11 , then Ẽ11 = E 11 , Ẽ12 = E 12 , C1 = C 1 \ {y} ∪ { b}.
So in every case, we get:

E 11 B 1 E 2 B 2 F 21 s ⋆ y ⋆ e f E 12 C 1 F 1 C 2 F 22 Now b 1 = sup(B 1 ) < b ≤ e. Therefore: either e = b / ∈ B 1 ∪ F 1 thus e 12 > x = e = b > b 1 , or e > b / ∈ B 1 ∪ F 1 and by the definition of x, x ≥ b > b 1 = sup(B 1 ). That means x > sup(A 1 ), E 11 = A 1 , x < inf(K 1 ) = e 12 = inf(E 12 ).
In the next step of the symplectic jeu de taquin sjdt, e leaves the third column and becomes x. We put F ′ 1 = (F 1 \ {e}) ∪ {x}, and get, with the lemma, the following sequence of steps:

→ E 11 B 1 E 2 B 2 F 21 s ⋆ x ⋆ f E 12 C 1 F ′ 1 C 2 F 22 → E 11 B 1 E 2 B 2 F 21 s ⋆ x f ⋆ E 12 C 1 F ′ 1 C 2 F 22 . Now we saw sup(E 11 ) < x < inf(E 12 ). Since x / ∈ F 1 , then x / ∈ D 1 . Suppose that x ∈ C 1 \ D 1 = J 1 = B 1 ∩ C 1 , then
x is in B 1 and according to the Lemma this is wrong. So x is not in C 1 and the next step is:

→ E 11 B 1 E 2 B 2 F 21 s x ⋆ f ⋆ E 12 C 1 F ′ 1 C 2 F 22 Now, if k 2 = #O 2 , f is the k st 2 element of F 2 starting from the top. We know that #[1, n] \ (A 2 ∪ D 2 ∪ J 2 ) = #[1, n] \ (B 2 ∪ D 2 ) ≥ k 2 . Denote X the greatest subset having k 2 elements in F 2 and Y the greatest subset having k 2 elements in [1, n] \ B 2 . We have X = {x 1 < x 2 < • • • < x k 2 } and Y = {y 1 < • • • < y k 2 }. By construction, if K 2 = {z 1 < • • • < z k 2 }, then z i ≤ y i .
Consider an element y i . If

y i ∈ D 2 , then y i ∈ F 2 . If y i / ∈ D 2 , then y i is in [1, n] \ (D 2 ∪ B 2 )
, so y i is a z j , for some j ≤ i, y i ∈ K 2 , and

y i ∈ F 2 : this proves Y ⊂ F 2 .
Since X is the greatest of the subsets in F 2 ,

y i ≤ x i but since X ⊂ F 2 ⊂ [1, n] \ B 2 and Y is the greatest such subset, x i ≤ y i .
That means X = Y , and especially f = x 1 = y 1 .

On the other hand, if

e ∈ A 2 , Since e / ∈ C 2 , then e ∈ A 2 \ C 2 = I 2 = A 2 ∩ D 2 so e ∈ F 2 = K 2 ∪ D 2 . But if e / ∈ A 2 , then e ∈ K 2
, so e ∈ F 2 . In all cases e is the greatest element in F 2 . Indeed, if there exists t in F 2 such that t > e, then either

t ∈ K 2 , then t ∈ E 2 ∪ {e}, which is impossible, or t ∈ D 2 and t / ∈ C 2 , then t ∈ D 2 \ C 2 = I 2 ⊂ A 2 ⊂ E 2 ∪ {e}, which is still impossible. So e = x k 2 = y k 2 . Let t > f and t = e. Then either t ∈ B 2 or t ∈ Y ⊂ F 2 , in all cases t ∈ (F 2 ∪ B 2 ) \ {e} = ((E 2 ∪ {e}) ∪ C 2 ) \ {e} = E 2 ∪ C 2 . So e = δ E 2 ∪C 2 (f ).
Then, in the next step, we set E ′ 2 = (E 2 \ {f }) ∪ {e}, and get, as f leaves the column 3,

→ E 11 B 1 E 2 B 2 F 21 s x ⋆ f ⋆ E 12 C 1 F ′ 1 C 2 F 22 → E 11 B 1 E ′ 2 B 2 F 21 s x e ⋆ ⋆ E 12 C 1 F ′ 1 C 2 F 22
Indeed, our assumption HS gives: f < inf(C 2 ) ≤ inf(F 1 ), and e > f , thus f < inf(F ′ 1 ), on the other side, we saw that e > sup(B 1 ). Now, the two first columns give a so column with one 0 more. More precisely, the corresponding first so column becomes:

f (A 1 , O 1 ∪ {⋆}, D 1 ) = A 1 ⋆ O 1 D 1 → g(B 1 , O 1 ∪ {0}, C 1 ) = A 1 0 O 1 D 1 = f (A 1 , O 1 ∪ {0}, D 1 ).
The two last columns is also the double of a so column, in fact it gives:

f (A 2 , O 2 , D 2 ) = A 2 O ′ 2 0 D 2 → g(B 2 , O 2 \{0}∪{⋆}, C 2 ) = A 2 O ′ 2 ⋆ D 2 = f ((A 2 , O 2 \{0})∪{⋆}, D 2 )
This is exactly the Move 3 case described after the theorem.

Study of the case ⋆|a .

Let us now study the case:

A 11 A 21 s ⋆ a A 12 A 22 O 1 O 2 D 1 D 2 ∼ E 11 B 11 E 21 B 21 s ⋆ ⋆ e b E 12 B 12 E 22 B 22 C 1 F 1 C 2 F 2 .
Step 1 We move the first ⋆ for 2 steps, the second one for one step.

Then the entry e enters into the column 2 which becomes g(B 1 ∪ {e}, F 1 ) or, if x = γ B 11 ∪B 12 ∪F 1 (e), and

F ′ 1 = (F 1 \ {e}) ∪ {x}, → E 11 B 11 E 21 B 21 s ⋆ x ⋆ b E 12 B 12 E 22 B 22 C 1 F ′ 1 C 2 F 2 .
The argument of Lemma 6.7 tell us that x > sup(B 11 ) = b 11 and x ≤ e < b 12 = inf(B 12 ). Then x is not in C 1 , as above, it enters in the first column:

→ E 11 B 11 E 21 B 21 s x ⋆ ⋆ b E 12 B 12 E 22 B 22 C 1 F ′ 1 C 2 F 2 .
Similarly, b goes in the column 3, under the name y = γ E 21 ∪E 22 ∪C 2 (b):

→ E 11 B 11 E 21 B 21 s x ⋆ y ⋆ E 12 B 12 E 22 B 22 C 1 F ′ 1 C ′ 2 F 2 .
As before, y is in this row, F ′ 1 = (F 1 \ {e}) ∪ {x}.

Step 

e 22 = inf(E 22 ) ≤ a < b,
which is in contradiction with our hypothesis HS.

Step 3 Let us show that y = e.

If e = b, then b ∈ A 2 \ I 2 = B 2 \ J 2 , b / ∈ C 2 , so y = b = e. If e < b, since e / ∈ E 21 ∪ E 22 ∪ C 2 , then e ∈ {t / ∈ E 21 ∪ E 22 ∪ C 2 , t < b}, so e ≤ y = sup{t / ∈ E 21 ∪ E 22 ∪ C 2 , t < b}. Assume now e < y. Since b ∈ B 2 and b / ∈ E 2 , b ∈ B 2 \ A 2 = J 2 . Let J 2 = {y 1 < • • • < y i = b < • • • < y r } and I 2 = {x 1 < • • • < x r }.
Put A△D = (A ∪ D) \ (A ∩ D), then:

x i = sup{t / ∈ A 2 △D 2 , t < x i+1 , t < y i = b}, Let us prove that y ≥ x i+1 . In fact if y < x i+1 , then y ∈ {t / ∈ E 21 ∪E 22 ∪C 2 , t < b}, so y ≤ x i and e < y ≤ x i < b < e 22 = inf(E 22 ).
But this is impossible because there is no elements in E between e and b 22 . So y ≥ x i+1 . Since x i+1 ∈ E 2 et y / ∈ E 2 , we have y > x i+1 . Now x i+1 = sup{t / ∈ A 2 △D 2 , t < x i+2 , t < y i+1 }. Following the same argument we prove y ≥ x i+2 :

As before: if y < x i+2 , then e < y ≤ x i+1 , which is wrong, so y ≥ x i+2 , y > x i+2 , and so on... Finally:

y > x r = sup{t / ∈ A 2 △D 2 , t < y r },
But y / ∈ A 2 △D 2 , y < b ≤ y r , so y ≤ x r , which is contradiction. So the hypothesis e < y is wrong: e = y.

Step 4 End of the move.

Then we obtain e / ∈ F ′ 1 and :

E 11 B 11 E 21 B 21 s x e ⋆ ⋆ E 12 B 12 E 22 B 22 C 1 F ′ 1 C ′ 2 F 2 ∼ g(B 1 ∪ {e}, O 1 , C 1 )f ((A 2 \ {e}) ∪ {⋆}, O 2 , D 2 ).
This is exactly the Move 1 case described after the theorem.

Study of the case ⋆|d .

Let us now study the last case:

A 1 A 2 O 1 O 2 D 11 D 21 ⋆ d D 12 D 22
Doubling the tableau, we get:

∼ E 1 B 1 E 2 B 2 C 11 F 11 C 21 F 21 s ⋆ ⋆ c f C 12 F 12 C 22 F 22
Step 1 We move the first ⋆ for 2 steps, the second one for one step.

We get:

-→

E 1 B 1 E 2 B 2 E 1 F 11 E 2 F 21 C 11 F 11 C 21 F 21 s ⋆ c f ⋆ C 12 F 12 C 22 F 22 . Now c enters the first column under the name x = δ B 1 ∪F 11 ∪F 12 (c). We put B ′ 1 = (B 1 \ {c}) ∪ {x}. Remark that x / ∈ C 11 ∪ C 12 and x / ∈ B 1 ∪ F 1 = B 1 ∪ K 1 ∪ D 1 by construction. Therefore x is not in E 1 . In fact, if x ∈ E 1 = A 1 ∪ K 1 , then since x / ∈ K 1 , x ∈ A 1 , so x ∈ A 1 \ D 1 = A 1 \ I 1 = B 1 \ J 1 ⊂ B 1 ,
which is impossible, so x / ∈ E 1 and we have c 11 = inf(C 11 ) > x > c 12 = sup(C 12 ), then x still remains on the same row:

-→

E 1 B ′ 1 E 2 B 2 C 11 F 11 C 21 F 21 s x ⋆ f ⋆ C 12 F 12 C 22 F 22 .
Let us be more precise: since sup(C 22 ) < f < inf(C 21 ), we have f / ∈ C 2 \ {c}, in other words, f is on the row s. But now the double of the column 3 is the semistandard Young tableau with 2 columns:

E 2 E ′ 2 C ′ 21 C 21 s y ′ f C 22 C 22
where we set as usual, y

= δ (E 2 \{f })∪(C 2 \{c}) (f ), E ′ 2 = E 2 \ {f } ∪ {y}, and we put y ′ = inf(C 21 ∪ {y}), and C ′ 21 = C 21 \ {y ′ } ∪ {y} if y ′ = c 21 > y, C ′ 21 = C 21 otherwise.
In the next step, it is y ′ which will enter in column 1.

Step 2 Let us prove: y = y ′ = c.

• Assume first f = c:

If f = c, f / ∈ E 2 , so y = f = c and since y = c < c 11 , y ′ = y = c. • Assume now f < c and f ∈ K 2 : Since K 2 is the greatest subset with k 2 elements included in [1, n] \ (A 2 ∪ D 2 ∪ J 2 ) = [1, n] \ (A 2 ∪ C 2 ), for all t, t > f implies t ∈ K 2 ∪ A 2 ∪ C 2 = E 2 ∪ C 2 . On the other hand f ∈ K 2 implies f ∈ E 2 , and the the only t > f not in (E 2 \ {f }) ∪ (C 2 \ {c}) is c, that is y = δ (E 2 \{f })∪(C 2 \{c}) (f ) = c, and as above y ′ = c. • Assume finally f < c et f / ∈ K 2 Since f is in F 2 = K 2 ∪D 2 , f ∈ D 2 . Since c 22 = sup(C 22 ) < f < c < c 21 = inf(C 21 ), f / ∈ C 2 . Then f ∈ D 2 \ C 2 = I 2 . Especially, f ∈ E 2 . Write I 2 = {x 1 < • • • < x i = f < • • • < x r }. Set J 2 = {y 1 < • • • < y r }.
We have:

y i = inf{t / ∈ A 2 △D 2 , t > x i = f, t > y i-1 } et y = inf{t / ∈ E 2 ∪C 21 ∪C 22 , t > f }. Therefore c / ∈ E 2 ∪ C 21 ∪ C 22 et c > f , so c ≥ y.
Assume, by contradiction, c > y.

In this case,

c 22 < f = x i < y < c, so y / ∈ C 2 . Since y / ∈ E 2 , y is not in A 2 . If y belonged to D 2 , it would be in D 2 \ A 2 = C 2 \ B 2 , which is impossible, so y / ∈ A 2 ∪ D 2 , especially y / ∈ A 2 △D 2 . If y > y i-1 , then y belongs to {t / ∈ A 2 △D 2 , t > x i = f, t > y i-1 }, so y ≥ y i , but y i is in C 2 , so y > y i . And f = x i < y i < y < c.
But y i ∈ C 2 and there is no element in C 2 between f and c, so this is impossible and y ≤ y i-1 , we even have y < y i-1 because y / ∈ C 2 ,

x i-1 < x i = f < y < y i-1 .
Repeating the same argument, we prove that x 1 ≤ f < y < y 1 , but

y 1 = inf{t / ∈ A 2 △D 2 , t > x 1 }
and since y / ∈ A 2 △D 2 , therefore y ≥ y 1 , which is impossible, so y = c and y ′ = c as above.

Step 3 End of the move.

By pushing y ′ = c, We finally obtain:

-→

E 1 B ′ 1 E ′ 2 B 2 C 11 F 11 C 21 F 21 s x c ⋆ ⋆ C 12 F 12 C 22 F 22 .
Which is the double of the orthogonal semistandard tableau:

f (A 1 , O 1 , D 1 ∪ {c})g(B 2 , O 2 , (C 2 \ {c}) ∪ {⋆}).
This is exactly the Move 2 case described after the theorem.

In all the considered cases, the entries situated under the star in the right, are still unchanged after the moving. So the condition HS remains true in the tableau dble(T ), for all the columns coming after the column containing the star.

Starting with a spin column.

In this section, we suppose the first column of the tableau T is a spin column f(A, D), with a trivial top (the entry in (s, 1) is s). Then we remove the s top boxes in this column, put a ⋆ on the row s, and we look at the first move, under the hypothesis HS. If s = n, the first column is trivial and the jeu de taquin does not really consider the spin column. We suppose now s < n.

We consider the tableau dble(T ), we remove the s boxes in the top of the two first columns, we put two stars in (s, 1) and (s, 2). Remark that our hypothesis impose that the entry on the right of the star is unbarred. Indeed, if it was barred, in dble(T ), there is a c in the box (s, 3), hypothesis HS implies that all the entries in the second column in dble(T ), below s are barred, in other word, the spin column is f([1, s], [s + 1, n]), and c ≤ n, which is in contradiction with hypothesis HS.

Similarly, if it was 0, we saw there is no unbarred entry before ⋆ in column 2, that means the spin column is still f([1, s], [s + 1, n]), the entry in the box (s + 1, 3) is barred, it can only be n, this implies f is larger than this entry, which is impossible.

The only possible case is ⋆|a . We just give the succession of tableaux (we do not put the index sp):

E 21 B 21 s ⋆ ⋆ e b s + 1 A 12 E 22 B 22 . . . n D 1 C 2 F 2 → E 21 B 21 s ⋆ x ⋆ b s + 1 A 12 E 22 B 22 . . . n D ′ 1 C 2 F 2 ,
with the same meaning for x and D ′ 1 , as above. By definition of x = γ A 1 ∪D 1 (e), we have x = s (even if e = s). The next step is

→ E 21 B 21 s s ⋆ y ⋆ s + 1 A 12 E 22 B 22 . . . n D ′ 1 C ′ 2 F 2 → E 21 B 21 s s e ⋆ ⋆ s + 1 A 12 E 22 B 22 . . . n D ′ 1 C ′ 2 F 2 .
We see that the two first columns is the double of the spin column f({1, . . . , s -1, e}, (D 1 \ {e}) ∪ {s}) from whose we remote the s -1 first boxes.

6.4. Supression of the trivial top in the first column. Suppose now T is a semistandard tableau in NQS

[•]
s , suppress the top s boxes in the first column of T , getting a skew tableau T \ S. Apply the jeu de taquin to T \ S (remark there is only one interior corner). Denote T ′ \ S ′ the resulting tableau. Suppose s > 1, S ′ is a tableau with one column and s -1 boxes. Since the path of stars during two successive application of the jeu de taquin do not cross, if we apply the jeu de taquin to T ′ \ S ′ , the star will move every times horizontally. This is equivalent to say that the tableau T ′ obtained when we fill up the empty boxes in T ′ \ S ′ by 1, . . . , s -1, is in NQS

[•]
s-1 . Remark we can also prove this point by using the preceding computation, and looking case by case the HS condition along the new row s -1.

Then we can repeat the use of the jeu de taquin, getting a tableau T ′′ \ S ′′ , where the shape of T ′′ is the shape of T , where we suppress a column with height s and add a new column with height s -2.

After s repetition of the ojdt, we get a tableau T (s) , with a shape smaller than the shape of T : the shape of T (s) if the shape of T where we suppress a column with height s.

6.5. The map ojdt -1 in the horizontal situation.

We proved that the orthogonal jeu de taquin, in the HS situation is moving only horizontally. This operation is coming from a double action of the symplectic jeu de taquin on dble(T ). Let us now look for the inverse mapping. It is the composition of two inverse of the symplectic jeu de taquin on dble(T ). But we know how to define (sjdt) -1 (see [S]).

Let T \ S be a skew orthogonal semistandard tableau. Denote σ(T ) the tableau obtained from T by rotating T half a tour, and replace each barred entry by the corresponding unbarred quantity, each unbarred by the corresponding barred quantity. Keep the 0. Example 6.8. Consider so(9) (n = 4) then T = 1 2 3 0 0 1 1 σ -→ σ(T ) = 1 1 0 0 3 2 1 . Lemma 6.9.

Defining similarly the σ operation for a symplectic tableau, then we have, σ (dble(T )) = dble (σ(T )) .

Proof. If T has r columns and the column C j is C j = f (A j , O j , D j ), then σ(T ) has r columns and its r + 1j column is C ′ r+1-j = f (D j , O j , A j ) Let us consider the double. The columns number 2j, 2j + 1 in dble(T ) are:

f (A j ∪ K j , C j )f (B j , K j ∪ D j ).
For the column C ′ r+1-j , we define the set K ′ r+1-j , and immediately get K ′ r+1-j = K j . Therefore in dble(σ(T )), the columns 2(rj), 2(rj) + 1 are:

f (D j ∪ K j , B j )f (C j , A j ∪ K j )
This proves the lemma.

Since, for symplectic tableaux, we have (see [S]) (sjdt) -1 = σ • sjdt • σ, and:

dble • ojdt = sjdt • dble, then ojdt is invertible and

(ojdt) -1 = dble -1 • (sjdt) -1 • dble = dble -1 • σ • (sjdt) • σ • dble = σ • (ojdt) • σ.
Lemma 6.10.

If T satisfies the HS condition, along the row s, then T ′ = (ojdt)(T ) is such that σ(T ′ ) satisfies the HS condition for the row h + 1s if h is the height of T .

Proof. The preceding lemma proves that the motion of the star when we apply ojdt at the row h + 1s of σ(T ) would be always horizontal.

More precisely, if we look case by case the result of the elementary ojdt move as described above, we directly verify that the tableau σ • ojdt(T ) satisfies the condition HS on the row h + 1s. Let us for example look at one case: Suppose that, in the row s in T , there is ⋆|a|0 , then, in the double, there is: .

→
We see that the HS condition holds since:

x 3 > sup(B 2 ), e 2 > sup(E 21 ), and x 2 ≥ e 2 > sup(B 11 ).

7. The map p = (ojdt) max is bijective

We are now in position to define the map 'push' or p from SS [λ] to µ≤λ QS [µ] .

Let T be an orthogonal semistandard tableau, with shape λ.

If T is quasistandard, we put p(T ) = T . If T is not quasistandard, we consider the greatest s for which T ∈ NQS t , for each t > s). The entry in the box (s, 1) in T is s, then the two entries in the boxes (s, 1) and (s, 2) in dble(T ) are s also, moreover, the HS condition holds on the row s. We remove the s top boxes in the first column of T , getting the skew tableau T \ S and apply the ojdt s times to T \ S.

Lemma 7.1.

Let λ ′ be the shape of ojdt s (T \ S), we get λ ′ by removing a column with height s and we have ojdt(T ) / ∈ NQS

[λ ′ ]
t , for each t > s.

Proof. After the horizontal action by ojdt s on T , we clearly get a tableau with the anounced shape. Now in [AK] it is proved that the action of the sjdt on a symplectic semistandard tableau which is in NQS µ s but not in NQS µ t , for any t > s is still not in NQS µ ′ t , for any t > s.

Applying two times this result on the tableau dble(T ), we get that dble(ojdt(T )) / ∈ NQS 2λ ′ t , for any t > s, that means the HS condition does not hold on the row t, for any t > s, or ojdt(T ) / ∈ NQS

[λ ′ ]
t , for any t > s. Replace now T by ojdt s (T \ S) and repeat the above analyse. It is clear that, after a finite number of steps, this algorithm gives an orthogonal quasistandard tableau, with a shape smaller than the shape of T . We denote this

  Since dble(C) = C 0 C, where C 0 is the trivial column 1 . . . n , a tableau T is semistandard if and only if Ψ(T ) is semistandard in the meaning of Lecouvey.

  and only if dble(T ) is not quasistandard in s, dble(T ) ∈ NQS 2λ s .

  If u s = e s and v s = b s are unbarred, then u s is in A, and: either e s = b s are in A \ I or e s ∈ I, e s = x i and b s = y i . 2. If u s = e s is unbarred and v s = f s is barred, then e s and f s are in K, f s = z 1 and e s = z k . 3. If u s = c s and v s = f s are barred, then f s ∈ D and, either c s = f s ∈ D \ I or f s ∈ I, f s = x i and c s = y i . Proof. Case 1 If e s = b s , then b s / ∈ K, e s / ∈ K, e s ∈ A, and e s ∈ A \ B = A \ I. If e s < b s , let us assume e s ∈ K, since K is the largest possible

  2 Let us now prove e is not in K 2 :Assume e ∈ K 2 . Then b = e, with our hypothesis HS, b is not in E 2 , so b / ∈ A 2 , and then b ∈ J 2 . Set I 21 = {t ∈ I 2 , t < e}, A 21 = {t ∈ A 2 , t < e}, same definition for K 21 , B 21 . Then E 21 \ I 21 = (A 21 \ I 21 ) ∪ K 21 , A 21 \ I 21 ⊂ B 21 , K 21 ∩ B 21 = ∅. Since b ∈ J 2 , there exists t ∈ I 21 , t = x i such that b = y i , so #(J 2 ∩ B 21 ) < #I 21 , or #(B 21 \ J 2 ) > #(A 21 \ I 21 ).Then there exists a ∈ B 21 \ J 2 ⊂ A 2 \ I 2 such that a / ∈ A 21 , b > a > e, so we have

  = γ B 11 ∪B 12 ∪F 1 (e 2 ) ≤ e 2 , andwith inf E 22 > x 3 = γ B 2 ∪F 2 (e 3 ) > sup(B 2 ).After the action of σ, we get:

			F 32 C 3 F ′ 2	C ′ 2 E 22	F ′ 1 B 12	C 1 E 12
	→	h+1-s	⋆ F 31 B 3	⋆ e 3 E ′ 3 B 2 E 21 x 3	e 2 B 11	x 2 E 11
			E 11	B 11	E 21 B 2 E 3	B 3 F 31
		s	⋆	⋆	e 2	b 2 e 3	f 3	.
			E 12 C 1	B 12 F 1	E 22 C 2	F 2 C 3 F 32
	This gives successively:					
			E 11	B 11	E 21 B 2 E 3	B 3 F 31
	→	s	E 12 C 1 x 2	B 12 F ′ 1 e 2	2 C ′ E 22 ⋆	F 2 C 3 F 32 ⋆ e 3 f 3	,
	with x 2 →	s	E 11 E 12 C 1 x 2	B 11 B 12 F ′ 1 e 2	E 21 B 2 E ′ 3 E 22 C ′ 2 2 C 3 F 32 B 3 F 31 F ′ x 3 e 3 ⋆ ⋆	,

tableau by: T ′ = p(T ) = (ojdt) max (T ). Remark that if the first column of T was a non trivial spin column, then the first column in T ′ is a spin column. In all other cases, there is no spin column in T ′ .

The above algorithm defines the map p : SS [λ] -→ µ≤λ QS [µ] . Let us look at the inverse map. We follow the method of [AK].

Start with an orthognal quasistandard tableau U, with shape µ. Let λ be a shape larger than µ.

Apply σ to U, seing it as a skew tableau inside a skew tableau with shape σ(λ), put a ⋆ in the lowest inner corner in σ(λ) \ σ(µ), and apply the ojdt, getting a new skew tableau with shape σ(µ ′ ). Repeat this operation as far as there is inner corner in σ(λ) \ σ(µ ′ ).

At the end of this operation, get a skew tableau T ′ with shape σ(λ \ µ), consider T = σ(T ′ ) where the empty boxes are filled up in the top µ shape by a trivial tableau. By construction T is orthogonal semistandard, with shape λ, and the above algorithm (ojdt) max apllied on T is the inverse of this sequence of σ • ojdt • σ, that means p(T ) = U, and p is a bijective map.

Remark that if U contains a spin column, this column becomes the last column in σ(U), and at the end it becomes a spin column in T , as the first column of T .

Theorem 7.2.

The orthogonal jeu de taquin defines a bijection p = (ojdt) max from the set SS [λ] of orthogonal semistandard tableaux with shape λ onto the disjoint union µ≤λ QS [µ] of the set of orthogonal quasistandard tableaux with shape µ (µ ≤ λ).

Here is an example.

Example 7.3. Suppose n = 5, or g = so(11)

. The ojdt gives successively:

with U ∈ QS (0,0,1,1,0) . Conversely: