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Description of the minimizers of least squares regularized with ℓ0-norm.
Uniqueness of the global minimizer

Mila Nikolova∗

(in pressa)

Abstract. We have an M × N real-valued arbitrary matrix A (e.g. a dictionary) with M < N and data d
describing the sought-after object with the help of A. This work provides an in-depth analysis of
the (local and global) minimizers of an objective function Fd combining a quadratic data-fidelity term
and an ℓ0 penalty applied to each entry of the sought-after solution, weighted by a regularization
parameter β > 0. For several decades, this objective has attracted a ceaseless effort to conceive
algorithms approaching a good minimizer. Our theoretical contributions, summarized below, shed
new light on the existing algorithms and can help the conception of innovative numerical schemes.
To solve the normal equation associated with any M-row submatrix of A is equivalent to compute a
local minimizer û of Fd. (Local) minimizers û of Fd are strict if and only if the submatrix, composed
of those columns of A whose indexes form the support of û, has full column rank. An outcome is
that strict local minimizers of Fd are easily computed without knowing the value of β. Each strict
local minimizer is linear in data. It is proved that Fd has global minimizers and that they are always
strict. They are studied in more details under the (standard) assumption that rank(A) = M < N.
The global minimizers with M-length support are seen to be impractical. Given d, critical values βK

for any K 6 M− 1 are exhibited such that if β > βK, all global minimizers of Fd are K-sparse. An
assumption on A is adopted and proved to fail only on a closed negligible subset. Then for all data
d beyond a closed negligible subset, the objective Fd for β > βK, K 6 M − 1, has a unique global
minimizer and this minimizer is K-sparse. Instructive small-size (5 × 10) numerical illustrations
confirm the main theoretical results.
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——————————————————————————————————————–

1. Introduction. Let A be an arbitrary matrix (e.g., a dictionary) such that

A ∈ RM×N for M < N ,

where the positive integers M and N are fixed. Given a data vector d ∈ RM, we consider an
objective function Fd : RN → R of the form

Fd(u) = ‖Au− d‖22 + β‖u‖0 , β > 0 ,(1)

‖u‖0 = ♯ σ(u) ,
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2 MILA NIKOLOVA

where u ∈ RN contains the coefficients describing the sought-after object, β is a regularization
parameter, ♯ stands for cardinality and σ(u) is the support of u (i.e., the set of all i ∈
{1, · · · ,N} for which the ith entry of u satisfies u[i] 6= 0). By an abuse of language, the
penalty in (1) is called the ℓ0-norm. Define φ : R → R by

(2) φ(t)
def
=

{
0 if t = 0 ,
1 if t 6= 0 .

Then ‖u‖0 =

N∑

i=1

φ(u[i]) =
∑

i∈σ(u)

φ(u[i]), so Fd in (1) equivalently reads

(3) Fd(u) = ‖Au− d‖22 + β

N∑

i=1

φ(u[i]) = ‖Au− d‖22 + β
∑

i∈σ(u)

φ(u[i]) .

We focus on all (local and global) minimizers û of an objective Fd of the form (1):

(4) û ∈ RN such that Fd(û) = min
u∈O

Fd(u) ,

where O is an open neighborhood of û . We note that finding a global minimizer of Fd must
be an NP-hard computational problem [11, 40].

The function φ in (2) served as a regularizer for a long time. In the context of Markov
random fields it was used by Geman and Geman in 1984 [20] and Besag in 1986 [5] as a prior
in MAP energies to restore labeled images. The MAP objective reads as

(5) Fd(u) = ‖Au− d‖22 + β
∑

k

φ(Dku) ,

where Dk is a finite difference operator and φ is given by (2). This label-designed form is
known as the Potts prior model, or as the multi-level logistic model [6, 24]. Various stochastic
and deterministic algorithms have been considered to minimize (5). Leclerc [23] proposed in
1989 a deterministic continuation method to restore piecewise constant images. Robini, Lachal
and Magnin [33] introduced the stochastic continuation approach and successfully used it to
reconstruct 3D tomographic images. Robini and Magnin refined the method and the theory in
[34]. Very recently, Robini and Reissman [35] gave theoretical results relating the probability
for global convergence and the computation speed.

The problem stated in (1) and (4)—to (locally) minimize Fd—arises when sparse solutions
are desired. Typical application fields are signal and image processing, morphologic component
analysis, compression, dictionary building, inverse problems, compressive sensing, machine
learning, model selection, classification, and subset selection, among others. The original hard-
thresholding method proposed by Donoho and Johnstone [15] amounts to1 minimizing Fd,
where d contains the coefficients of a signal or an image expanded in a wavelet basis (M = N).
When M < N, various (usually strong) restrictions on ‖u‖0 (often ‖u‖0 is replaced by a less

1As a reminder, if d are some noisy coefficients, the restored coefficients û minimize ‖u− d‖2 + β‖u‖0 and
read û[i] = 0 if |d[i]| 6 √

β and û[i] = d[i] otherwise.
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THE MINIMIZERS OF LEAST SQUARES REGULARIZED WITH ℓ0-NORM 3

irregular function) and on A (e.g., RIP-like criteria, conditions on ‖A‖, etc.) are needed to
conceive numerical schemes approximating a minimizer of Fd, to establish local convergence
and derive the asymptotic of the obtained solution. In statistics the problem has been widely
considered for subset selection, and numerous algorithms have been designed, with limited
theoretical production, as explained in the book by Miller [30]. More recently, Haupt and
Nowak [22] investigate the statistical performances of the global minimizer of Fd and propose
an iterative bound-optimization procedure. Fan and Li [17] discuss a variable splitting and
penalty decomposition minimization technique for (1), along with other approximations of the
ℓ0-norm. Liu and Wu [25] mix the ℓ0 and ℓ1 penalties, establish some asymptotic properties
of the new estimator and use mixed integer programming aimed at global minimization. For
model selection, Lv and Fan [27] approximate the ℓ0 penalty using functions that are concave
on R+ and prove a nonasymptotic nearly oracle property of the resultant estimator. Thiao,
Dinh, and Thi [39] reformulate the problem so that an approximate solution can be found
using difference-of-convex-functions programming. Blumensath and Davies [7] propose an
iterative thresholding scheme to approximate a solution and prove convergence to a local
minimizer of Fd. Lu and Zhang [26] suggest a penalty decomposition method to minimize Fd.
Fornasier and Ward [18] propose an iterative thresholding algorithm for minimizing Fd where
ℓ0 is replaced by a reasonable sparsity-promoting relaxation given by φ(t) = min{|t|, 1}; then
convergence to a local minimizer is established. In a recent paper by Chouzenoux et al. [9],
a mixed ℓ2 − ℓ0 regularization is considered: a slightly smoothed version of the objective
is analyzed and a majorize-minimize subspace approach, satisfying a finite length property,
converges to a critical point. Since the submission of our paper, image reconstruction methods
have been designed where ℓ0 regularization is applied to the coefficients of the expansion of
the sought-after image in a wavelet frame [42, 14]: the provided numerical results outperform
ℓ1 regularization for a reasonable computational cost achieved using penalty decomposition
techniques. In a general study on the convergence of descent methods for nonconvex objectives,
Attouch, Bolte, and Svaiter [1] apply an inexact forward-backward splitting scheme to find a
critical point of Fd. Several other references can be evoked, e.g., [31, 19].

Even though overlooked for several decades, the objective Fd was essentially considered
from a numerical standpoint. The motivation naturally comes from the promising applications
and the intrinsic difficulty of minimizing Fd.

The goal of this work is to analyze the (local and global) minimizers û of objectives Fd of
the form (1).

• We provide detailed results on the minimization problem.
• The uniqueness of the global minimizer of Fd is examined as well.

We do not propose an algorithm. However, our theoretical results raise salient questions about
the existing algorithms and can help the conception of innovative numerical schemes.

The minimization of Fd in (1) might seem close to its constraint variants:

(6)
given ε > 0, minimize ‖u‖0 subject to ‖Au− d‖2 6 ε ,
given K ∈ IM, minimize ‖Au− d‖2 subject to ‖u‖0 6 K .

The latter problems are abundantly studied in the context of sparse recovery in different fields.
An excellent account is given in [8], see also the book [28]. For recent achievements, we refer
the reader to [10]. It is worth emphasizing that in general, there is no equivalence between the
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4 MILA NIKOLOVA

problems stated in (6) and the minimization of Fd in (1) because all of these problems are
nonconvex.

1.1. Main notation and definitions. We recall that if û is a (local) minimizer of Fd, the
value Fd(û) is a (local) minimum2 of Fd reached at (possibly numerous) points û. Saying that
a (local) minimizer û is strict means that there is a neighborhood O ⊂ RN, containing û, such
that Fd(û) < Fd(v) for any v ∈ O \{û}. So û is an isolated minimizer.

Let K be any positive integer. The expression
{
u ∈ RK : u satisfying property P

}

designates the subset of RK formed from all elements u that meet P. The identity operator
on RK is denoted by IK. The entries of a vector u ∈ RK read as u[i], for any i. The ith vector
of the canonical basis3 of RK is denoted by ei ∈ RK. Given u ∈ RK and ρ > 0, the open ball
at u of radius ρ with respect to the ℓp-norm for 1 6 p 6 ∞ reads as

Bp(u, ρ)
def
= {v ∈ RK : ‖v − u‖p < ρ} .

To simplify the notation, the ℓ2-norm is systematically denoted by

‖ · ‖ def
= ‖ · ‖2 .

We denote by IK the totally and strictly ordered index set4

(7) IK
def
=

(
{1, · · · ,K}, <

)
,

where the symbol < stands for the natural order of the positive integers. Accordingly, any
subset ω ⊆ IK inherits the property of being totally and strictly ordered.

We shall often consider the index set IN. The complement of ω ⊆ IN in IN is denoted by

ωc = IN \ω ⊆ IN .

Definition 1.1. For any u ∈ RN, the support σ(u) of u is defined by

σ(u) =
{
i ∈ IN : u[i] 6= 0

}
⊆ IN .

If u = 0, clearly σ(u) = ∅.
The ith column in a matrix A ∈ RM×N is denoted by ai. It is systematically assumed that

(8) ai 6= 0 ∀ i ∈ IN .

For a matrix A ∈ RM×N and a vector u ∈ RN, with any ω ⊆ IN, we associate the submatrix
Aω and the subvector uω given by

Aω
def
=

(
aω[1], · · · , aω[ ♯ ω]

)
∈ RM× ♯ ω ,(9)

uω
def
=

(
u
[
ω[1]

]
, · · · , u

[
ω[ ♯ ω]

])
∈ R ♯ ω ,(10)

2These two terms are often confused in the literature.
3More precisely, for any i ∈ IK, the vector ei ∈ RK is defined by ei[i] = 1 and ei[j] = 0, ∀ j ∈ IK \ {i}.
4E.g. without strict order we have ω = {1, 2, 3} = {2, 1, 1, 3} in which case the notation in (9)-(10) below

is ambiguous.
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THE MINIMIZERS OF LEAST SQUARES REGULARIZED WITH ℓ0-NORM 5

respectively, as well as the zero padding operator Zω : R ♯ ω → RN that inverts (10):

(11) u = Zω (uω) , u[i] =

{
0 if i 6∈ ω ,
uω[k] for the unique k such that ω[k] = i.

Thus for ω = ∅ one finds u∅ = ∅ and u = Z∅ (u∅) = 0 ∈ RN .
Using Definition 1.1 and the notation in (9)-(10), for any u ∈ RN \ {0} we have

(12) ω ∈ IN and ω ⊇ σ(u) ⇒ Au = Aωuω .

To simplify the presentation, we adopt the following definitions 5:

(13)
(a) A∅ = [ ] ∈ RM×0 ,
(b) rank (A∅) = 0 .

In order to avoid possible ambiguities6, we set

AT
ω

def
= (Aω)

T ,

where the superscript T stands for transposed. If Aω is invertible, similarly A−1
ω

def
= (Aω)

−1.
In the course of this work, we shall frequently refer to the constrained quadratic optimiza-

tion problem stated next.
Given d ∈ RM and ω ⊆ IN, problem (Pω ) reads as:

(14)





min
u∈RN

‖Au− d‖2 ,

subject to u[i] = 0, ∀ i ∈ ωc .

(Pω )

Clearly, problem (Pω ) always admits a solution.
The definition below will be used to evaluate the extent of some subsets and assumptions.
Definition 1.2. A property (an assumption) is called generic on RK if it holds true on a

dense open subset of RK.
As usual, a subset S ⊂ RK is said to be negligible in RK if there exists Z ⊂ RK whose

Lebesgue measure in RK is LK(Z) = 0 and S ⊆ Z . If a property fails only on a negligible set,
it is said to hold almost everywhere, meaning “with probability one”. Definition 1.2 requires
much more than almost everywhere . Let us explain.

If a property holds true for all v ∈ RK \ S, where S ⊆ Z ⊂ RK, Z is closed in RK and
LK(Z) = 0, then this property is generic on RK. Indeed, RK \Z contains a dense open subset
of RK. So if a property is generic on RK, then it holds true almost everywhere on RK. But
the converse is false: an almost everywhere true property is not generic if the closure of its
negligible subset has a positive measure,7 because then RK \Z does not contains an open

5Note that (a) corresponds to the zero mapping on R0 and that (b) is the usual definition for the rank of
an empty matrix.

6In the light of (9), AT
ω could also mean

(
AT

)
ω
.

7 There are many examples—e.g. Z = {x ∈ [0, 1] : x is rational}, then L1(Z) = 0 and L1(closure(Z)) = 1.
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6 MILA NIKOLOVA

subset of RK. In this sense, a generic property is stable with respect to the objects to which
it applies.

The elements of a set S ⊂ RK where a generic property fails are highly exceptional in RK.
The chance that a truly random v ∈ RK—i.e., a v following a non singular probability distri-
bution on RK—comes across such an S can be ignored in practice.

1.2. Content of the paper. The main result in section 2 tells us that finding a solution
of (Pω ) for ω ⊂ IN is equivalent to computing a (local) minimizer of Fd. In section 3 we
prove that the (local) minimizers û of Fd are strict if and only if the submatrix Aσ(û) has full
column rank. The strict minimizers of Fd are shown to be linear in data d. The importance of
the (M − 1)-sparse strict minimizers is emphasized. The global minimizers of Fd are studied
in section 4. Their existence is proved. They are shown to be strict for any d and for any
β > 0. More details are provided under the standard assumption that rank(A) = M < N.
Given d ∈ RM, critical values βK for K ∈ IM−1 are exhibited such that all global minimizers
of Fd are K-sparse8 if β > βK.

In section 5, a gentle assumption on A is shown to be generic for all M×N real matrices.
Under this assumption, for all data d ∈ RM beyond a closed negligible subset, the objective
Fd for β > βK, K ∈ IM−1, has a unique global minimizer and this minimizer is K-sparse.

Small size (A is 5× 10) numerical tests in section 6 illustrate the main theoretical results.

2. All minimizers of Fd.

2.1. Preliminary results. First, we give some basic facts on problem (Pω ) as defined
in (14) that are needed for later use. If ω = ∅, then ωc = IN, so the unique solution of
(Pω ) is û = 0. For an arbitrary ω ⊂ IN meeting ♯ ω > 1, (Pω ) amounts to minimizing a
quadratic term with respect to only ♯ ω components of u, the remaining entries being null.
This quadratic problem (Qω ) reads as

(15) min
v∈R ♯ ω

∥∥Aωv − d
∥∥2, ♯ ω > 1 , (Qω )

and it always admits a solution. Using the zero-padding operator Zω in (11), we have

[
ûω ∈ R ♯ ω solves (Qω ) and û = Zω (ûω)

]
⇔

[
û ∈ RN solves (Pω ) , ♯ ω > 1

]
.

The optimality conditions for (Qω ) , combined with the definition in (13)(a), give rise to the
following equivalence, which holds true for any ω ⊆ IN:

(16)
[
û ∈ RN solves (Pω )

]
⇔

[
ûω ∈ R ♯ ω solves AT

ωAω v = AT
ωd and û = Zω (ûω)

]
.

Note that AT
ωAω v = AT

ωd in (16) is the normal equation associated with Aω v = d. The
remark below shows that the optimal value of (Pω ) in (14) can also be seen as an orthogonal
projection problem.

8 As usual, a vector u is said to be K-sparse if ‖u‖0 6 K.
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THE MINIMIZERS OF LEAST SQUARES REGULARIZED WITH ℓ0-NORM 7

Remark 1. Let r
def
= rank(Aω) and Bω ∈ RM×r be an orthonormal basis for range(Aω).

Then Aω = BωHω for a uniquely defined matrix Hω ∈ Rr× ♯ ω with rank(Hω) = r. Using (16),
we have

AT
ωAωûω = AT

ωd ⇔ Hω
THωûω = Hω

TBω
Td ⇔ Hωûω = Bω

Td ⇔ Aωûω = BωBω
Td .

In addition, Πrange(Aω) = BωBω
T is the orthogonal projector onto the subspace spanned by

the columns of Aω, see e.g. [29]. The expression above combined with (16) shows that

[
û ∈ RN solves (Pω)

]
⇔

[
ûω ∈ R ♯ω meets Aωûω = Πrange(Aω)d and û = Z̟(û̟)

]
.

Obviously, Aû = Aωûω is the orthogonal projection of d onto the basis Bω.
For ω ⊆ IN, let Kω denote the vector subspace

(17) Kω
def
=

{
v ∈ RN : v[i] = 0, ∀ i ∈ ωc

}
.

This notation enables problem (Pω ) in (14) to be rewritten as

(18) min
u∈Kω

‖Au− d‖2 .

The technical lemma below will be used in what follows. We emphasize that its statement
is independent of the vector û ∈ RN \ {0}.

Lemma 2.1. Let d ∈ RM, β > 0, and û ∈ RN \ {0} be arbitrary. For σ̂
def
= σ(û), set

(19) ρ
def
= min



min

i∈σ̂

∣∣ û[i]
∣∣, β

2
(
‖AT (Aû− d)‖1 + 1

)



 .

Then ρ > 0.
(i) For φ as defined in (2), we have

v ∈ B∞(0, ρ) ⇒
∑

i∈IN

φ
(
û[i] + v[i]

)
=

∑

i∈σ̂

φ (û[i]) +
∑

i∈σ̂c

φ (v[i]) .

(ii) For Kσ̂ defined according to (17), Fd satisfies

v ∈ B∞(0, ρ) ∩
(
RN \Kσ̂

)
⇒ Fd(û+ v) > Fd(û) ,

where the inequality is strict whenever σ̂c 6= ∅.
The proof is outlined in Appendix 8.1.

2.2. The (local) minimizers of Fd solve quadratic problems.

It is worth emphasizing that no special assumptions on the matrix A are adopted.
We begin with an easy but cautionary result.
Lemma 2.2. For any d ∈ RM and for all β > 0, Fd has a strict (local) minimum at

û = 0 ∈ RN.

ha
l-0

07
23

81
2,

 v
er

si
on

 6
 - 

14
 M

ay
 2

01
3



8 MILA NIKOLOVA

Proof. Using the fact that Fd(0) = ‖d‖2 > 0, we have

Fd(v) = ‖Av − d‖2 + β‖v‖0 = Fd(0) +Rd(v) ,(20)

where Rd(v) = ‖Av‖2 − 2〈v,AT d〉+ β‖v‖0 .(21)

Noticing that β‖v‖0 > β > 0 for v 6= 0 leads to

v ∈ B2

(
0,

β

2‖AT d‖+ 1

)
\ {0} ⇒ Rd(v) > −2‖v‖ ‖ATd‖+ β > 0 .

Inserting this implication into (20) proves the lemma. �

For any β > 0 and d ∈ RM, the sparsest strict local minimizer of Fd reads û = 0.
Initialization with zero of a suboptimal algorithm should generally be a bad choice. Indeed,
experiments have shown that such an initialization can be harmful; see, e.g., [30, 7].

The next proposition states a result that is often evoked in this work.
Proposition 2.3. Let d ∈ RM. Given an ω ⊆ IN, let û solve problem (Pω ) as formulated

in (14). Then for any β > 0, the objective Fd in (1) reaches a (local) minimum at û and

(22) σ(û) ⊆ ω ,

where σ(û) is given in Definition 1.1.
Proof. Let û solve problem (Pω ) , and let β > 0. The constraint in (Pω ) entails (22).

Consider that û 6= 0, in which case for σ̂
def
= σ(û) we have 1 6 ♯ σ̂ 6 ♯ ω. Using the

equivalent formulation of (Pω ) given in (17)-(18), yields

(23) v ∈ Kω ⇒ ‖A(û + v)− d‖2 > ‖Aû− d‖2 .
The inclusion in (22) is equivalent to ωc ⊆ σ̂c . Let Kσ̂ be defined according to (17) as well.
Then

û ∈ Kσ̂ ⊆ Kω.

Combining the latter relation with (23) leads to

(24) v ∈ Kσ̂ ⇒ ‖A(û+ v)− d‖2 > ‖Aû− d‖2 .
Let ρ be defined as in (19) Lemma 2.1. Noticing that by (2) and (17)

(25) v ∈ Kσ̂ ⇒ φ (v[i]) = 0 ∀ i ∈ σ̂c ,

the following inequality chain is derived:

v ∈ B∞(0, ρ) ∩Kσ̂ ⇒ Fd(û+ v) = ‖A(û+ v)− d‖2 + β
∑

i∈IN

φ (û[i] + v[i])

[
by Lemma 2.1(i)

]
= ‖A(û+ v)− d‖2 + β

∑

i∈σ̂

φ (û[i]) + β
∑

i∈σ̂c

φ (v[i])

[
by (25)

]
= ‖A(û+ v)− d‖2 + β

∑

i∈σ̂

φ (û[i])

[
by (24)

]
> ‖Aû− d‖2 + β

∑

i∈σ̂

φ (û[i])

[
by (3)

]
= Fd(û) .
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THE MINIMIZERS OF LEAST SQUARES REGULARIZED WITH ℓ0-NORM 9

Combining the obtained implication with Lemma 2.1(ii) shows that

Fd(û+ v) > Fd(û) ∀ v ∈ B∞(0, ρ) .

If û = 0, this is a (local) minimizer of Fd by Lemma 2.2. �

Many authors mention that initialization is paramount for the success of approximate
algorithms minimizing Fd. In view of Proposition 2.3, if one already has a well-elaborated
initialization, it could be enough to solve the relevant problem (Pω ) .

The statement reciprocal to Proposition 2.3 is obvious but it helps the presentation.

Lemma 2.4. For d ∈ RM and β > 0, let Fd have a (local) minimum at û. Then û solves

(Pσ̂ ) for σ̂
def
= σ(û).

Proof. Let û be a (local) minimizer of Fd. Denote σ̂
def
= σ(û). Then û solves the problem

min
u∈RN

{
‖Au− d‖2 + β ♯ σ̂

}
subject to u[i] = 0 ∀ i ∈ σ̂c.

Since ♯ σ̂ is a constant, û solves (Pσ̂ ) . �

Remark 2. By Proposition 2.3 and Lemma 2.4, solving (Pω ) for some ω ⊆ IN
is equivalent to finding a (local) minimizer of Fd.

This equivalence underlies most of the theory developed in this work.

Corollary 2.5. For d ∈ RM and β > 0, let û be a (local) minimizer of Fd. Set σ̂
def
= σ(û).

Then

(26) û = Zσ̂(ûσ̂) , where ûσ̂ satisfies AT
σ̂Aσ̂ûσ̂ = AT

σ̂ d .

Conversely, if û ∈ RN satisfies (26) for σ̂ = σ(û), then û is a (local) minimizer of Fd.

Proof. By Lemma 2.4, û solves (Pσ̂ ) . The equation in (26) follows directly from (16).
The last claim is a straightforward consequence of (16) and Proposition 2.3. �

Remark 3. Equation (26) shows that a (local) minimizer û of Fd follows a pseudo-hard
thresholding scheme9: the nonzero part ûσ̂ of û is the least squares solution with respect to
the submatrix Aσ̂ and the whole data vector d is involved in its computation. Unlike the hard
thresholding scheme in [15], unsignificant or purely noisy data entries can hardly be discarded
from û and they threaten to pollute its nonzero part ûσ̂. See also Remark 6.

Noisy data d should degrade ûσ̂ and this effect is stronger if AT
σ̂Aσ̂ is ill-conditioned [13].

The quality of the outcome critically depends on the selected (local) minimizer and on the
pertinence of A.

It may be interesting to evoke another consequence of Proposition 2.3:

Remark 4. Given d ∈ RM, for any ω ⊆ IN, Fd has a (local) minimizer û defined by (26)
and obeying σ(û) ⊆ ω.

9In a Bayesian setting, the quadratic data fidelity term in Fd models data corrupted with Gaussian i.i.d.
noise.
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10 MILA NIKOLOVA

3. The strict minimizers of Fd.

We remind, yet again, that no special assumptions on A ∈ RM×N are adopted.

Strict minimizers of an objective function enable unambiguous solutions of inverse prob-
lems. The definition below is useful in characterizing the strict minimizers of Fd.

Definition 3.1. Given a matrix A ∈ RM×N, for any r ∈ IM we define Ωr as the subset of all
r-length supports that correspond to full column rank M× r submatrices of A, i.e.,

Ωr =
{
ω ⊂ IN : ♯ ω = r = rank (Aω)

}
.

Set Ω0 = ∅ and define as well

Ω
def
=

M−1⋃

r=0

Ωr and Ωmax
def
= Ω ∪ ΩM .

Definition 3.1 shows that for any r ∈ IM,

rank(A) = r > 1 ⇔ Ωr 6= ∅ and Ωt = ∅ ∀ t > r + 1 .

3.1. How to recognize a strict minimizer of Fd?. The theorem below gives an exhaustive
answer to this question.

Theorem 3.2. Given d ∈ RM and β > 0, let û be a (local) minimizer of Fd. Define

σ̂
def
= σ(û) .

The following statements are equivalent:

(i) The (local) minimum that Fd has at û is strict;

(ii) rank (Aσ̂) = ♯ σ̂ ;

(iii) σ̂ ∈ Ωmax .

If û is a strict (local) minimizer of Fd, then it reads

(27) û = Zσ̂ (ûσ̂) for ûσ̂ =
(
AT

σ̂Aσ̂

)−1
AT

σ̂ d

and satisfies ♯ σ̂ = ‖û‖0 6 M .

Proof. We break the proof into four parts.

[(i)⇒(ii)]. We recall that by the rank-nullity theorem [21, 29]

(28) dimker (Aσ̂) = ♯ σ̂ − rank (Aσ̂) .

Let10 û 6= 0 be a strict (local) minimizer of Fd. Assume that (ii) fails. Then (28) implies that

(29) dimker (Aσ̂) > 1 .

10This part can alternatively be proven using Remark 1.
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THE MINIMIZERS OF LEAST SQUARES REGULARIZED WITH ℓ0-NORM 11

By Lemma 2.4, û solves (Pσ̂ ) . Let ρ read as in (19) and let Kσ̂ be defined according to (17).
Noticing that

(30) v ∈ Kσ̂, σ̂ 6= ∅ ⇒ Av = Aσ̂vσ̂ ,

Lemma 2.1(i) shows that





v ∈ B∞(0, ρ) ∩Kσ̂ ,

vσ̂ ∈ ker (Aσ̂)
⇒ Fd(û+ v) = ‖Aσ̂ (ûσ̂ + vσ̂)− d‖2 + β

∑

i∈σ̂

φ (û[i] + v[i])

[
by Lemma 2.1(i)

]
= ‖Aσ̂ûσ̂ − d‖2 + β

∑

i∈σ̂

φ (û[i]) + β
∑

i∈σ̂c

φ (v[i])

[
by (25)

]
= ‖Aσ̂ûσ̂ − d‖2 + β

∑

i∈σ̂

φ (û[i])

[
by (3)

]
= Fd(û) ,

i.e., that û is not a strict minimizer, which contradicts (i). Hence the assumption in (29) is
false. Therefore (ii) holds true.

If û = 0, then σ̂ = ∅; hence Aσ̂ ∈ RM×0 and rank (Aσ̂) = 0 = ♯ σ̂ according to (13).

[(ii) ⇒ (i)]. Let û be a minimizer of Fd that satisfies (ii). To have ♯ σ̂ = 0 is equivalent to
û = 0. By Lemma 2.2, û is a strict minimizer. Focus on ♯ σ̂ > 1. Since rank (Aσ̂) = ♯ σ̂ 6 M

and problem (Qω ) in (15) is strictly convex for ω = σ̂, its unique solution ûσ̂ satisfies

v ∈ R ♯ σ̂ \ {0} ⇒ ‖Aσ̂ (ûσ̂ + v)− d‖2 > ‖Aσ̂ûσ̂ − d‖2 .

Using (30), this is equivalent to

(31) v ∈ Kσ̂ \ {0} ⇒ ‖A(û+v)−d‖2 = ‖Aσ̂ (ûσ̂ + vσ̂)−d‖2 > ‖Aσ̂ûσ̂−d‖2 = ‖Aû−d‖2 .

Lemma 2.1(i), along with (25), yields

v ∈ B∞(0, ρ) ∩Kσ̂ \ {0} ⇒ Fd(û+ v) = ‖A(u + v)− d‖2 + β
∑

i∈σ̂

φ (û[i])

[
by (31)

]
> ‖Aû− d‖2 + β

∑

i∈σ̂

φ (û[i])

= Fd(û) .

Since ♯ σ̂ 6 M 6 N− 1, we have σ̂c 6= ∅. So Lemma 2.1(ii) tells us that

v ∈ B∞(0, ρ) \Kσ̂ ⇒ Fd(û+ v) > Fd(û) .

Combining the last two implications proves (i).

[(ii) ⇒ (iii)]. Comparing (iii) with Definitions 1.1 and 3.1 proves the claim.
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12 MILA NIKOLOVA

[Equation (27)]. The proof follows from equation (26) in Corollary 2.5 where11 AT
σ̂Aσ̂ is

invertible. �

Theorem 3.2 provides a simple rule enabling one to verify whether or not a numerical
scheme has reached a strict (local) minimizer of Fd.

The notations Ωr, Ω and Ωmax are frequently used in this paper. Their interpretation
is obvious in the light of Theorem 3.2. For any d ∈ RM and for all β > 0, the set Ωmax is
composed of the supports of all possible strict (local) minimizers of Fd, while Ω is is the subset
of those that are (M− 1)-sparse.

An easy and useful corollary is presented next.
Corollary 3.3. Let d ∈ RM. Given an arbitrary ω ∈ Ωmax, let û solve (Pω ) . Then
(i) û reads as

(32) û = Zω (ûω) , where ûω =
(
AT

ωAω

)−1
AT

ωd ,

and obeys σ̂
def
= σ(û) ⊆ ω and σ̂ ∈ Ωmax ;

(ii) for any β > 0, û is a strict (local) minimizer of Fd;
(iii) û solves (Pσ̂ ) .
Proof. Using (16), û fulfills (i) since AT

ωAω is invertible and σ(û) ⊆ ω by the constraint in
(Pω ) . If σ̂ = ∅, (ii) follows from Lemma 2.2. For ♯ σ̂ > 1, Aσ̂ is an M × ♯ σ̂ submatrix of
Aω. Since rank (Aω) = ♯ ω, we have rank (Aσ̂) = ♯ σ̂ and so σ̂ ∈ Ωmax. By Proposition 2.3 û
is a (local) minimizer of Fd, and Theorem 3.2 leads to (ii). Lemma 2.4 and Corollary 3.3(ii)
yield (iii). �

Remark 5. One can easily compute a strict (local) minimizer û of Fd without knowing the
value of the regularization parameter β. Just data d and an ω ∈ Ωmax are needed.

This consequence of Corollary 3.3 might be striking.

Clearly, the support σ(ū) of a nonstrict local minimizer ū of Fd contains some subsupports
yielding strict (local) minimizers of Fd. It is easy to see that among them, there is σ̂ $ σ(ū)
such that the corresponding û given by (27) strictly decreases the value of Fd; i.e., Fd(û) <
Fd(ū).

3.2. Every strict (local) minimizer of Fd is linear in d. Here we explore the behavior
of the strict (local) minimizers of Fd with respect to variations of d. An interesting sequel of
Theorem 3.2 is presented in the following corollary.

Corollary 3.4. For d ∈ RM and β > 0, let û be a (local) minimizer of Fd satisfying σ̂
def
=

σ(û) ∈ Ω . Define

Nσ̂
def
= ker

(
AT

σ̂

)
⊂ RM .

We have dimNσ̂ = M− ♯ σ̂ > 1 and

d ′ ∈ Nσ̂ ⇒ Fd+d ′ has a strict (local) minimum at û .

11For σ̂ = ∅, (11) and (13)(a) show that (27) yields û = 0.
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THE MINIMIZERS OF LEAST SQUARES REGULARIZED WITH ℓ0-NORM 13

Proof. Since σ̂ ∈ Ω, the minimizer û is strict by Theorem 3.2. By d ′ ∈ ker
(
AT

σ̂

)
we find

AT
σ̂ (d+d

′) = AT
σ̂ d for any d ′ ∈ Nσ̂. Inserting this into (27) in Theorem 3.2 yields the result. �

All data located in the vector subspace Nσ̂ % {0} yield the same strict (local) minimizer
û.

Remark 6. If data contain noise n, it can be decomposed in a unique way as n = nNσ̂
+nN⊥

σ̂

where nNσ̂
∈ Nσ̂ and nN⊥

σ̂
∈ N⊥

σ̂ . The component nNσ̂
is removed (Corollary 3.4), while nN⊥

σ̂

is transformed according to (27) and added to ûσ̂.

We shall use the following definition.
Definition 3.5.Let O ⊆ RM be an open domain. We say that U : O → RN is a local

minimizer function for the family of objectives FO
def
= {Fd : d ∈ O} if for any d ∈ O, the

function Fd reaches a strict (local) minimum at U(d).
Corollary 3.3 shows that for any d ∈ RM, each strict (local) minimizer of Fd is entirely

described by an ω ∈ Ωmax via equation (32) in the same corollary. Consequently, a local
minimizer function U is associated with every ω ∈ Ωmax.

Lemma 3.6. For some arbitrarily fixed ω ∈ Ωmax and β > 0, the family of functions FRM

has a linear (local) minimizer function U : RM → RN that reads as

(33) ∀ d ∈ RM, U(d) = Zω (Uω d) , where Uω =
(
AT

ωAω

)−1
AT

ω ∈ R ♯ ω×M .

Proof. The function U in (33) is linear in d. From Corollary 3.3, for any β > 0 and for
any d ∈ RM, Fd has a strict (local) minimum at û = U(d). Hence U fits Definition 3.5. �

Thus, even if Fd has many strict (local) minimizers, each is linear in d.

Next we exhibit a closed negligible subset of RM, associated with a nonempty ω ∈ Ωmax,
whose elements are data d leading to ‖U(d)‖0 < ♯ω.

Lemma 3.7. For any ω ∈ Ωmax, define the subset Dω ⊂ RM by

(34) Dω
def
=

♯ ω⋃

i=1

{
g ∈ RM :

〈
ei ,

(
AT

ωAω

)−1
AT

ω g
〉
= 0

}
.

Then Dω is closed in RM and LM (Dω) = 0.

Proof. If ω = ∅ then Dω = ∅, hence the claim. Let ♯ ω > 1. For some i ∈ I ♯ ω, set

D
def
=

{
g ∈ RM :

〈
ei ,

(
AT

ωAω

)−1
AT

ω g
〉
= 0

}

=
{
g ∈ RM :

〈
Aω

(
AT

ωAω

)−1
ei, g

〉
= 0

}
.

Since rank
(
Aω

(
AT

ωAω

)−1
)
= ♯ ω, ker

(
Aω

(
AT

ωAω

)−1
)
= {0}. Hence Aω

(
AT

ωAω

)−1
ei 6= 0.

Therefore D is a vector subspace of RM of dimension M− 1 and so LM (D) = 0. The conclu-
sion follows from the fact that Dω in (34) is the union of ♯ ω subsets like D (see, e.g., [36, 16]). �
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14 MILA NIKOLOVA

Proposition 3.8. For some arbitrarily fixed ω ∈ Ωmax and β > 0, let U : RM → RN be the
relevant (local) minimizer function for FRM as given in (33) (Lemma 3.6). Let Dω read as in
(34). Then the function d 7→ Fd

(
U(d)

)
is C∞ on RM \Dω and

d ∈ RM \Dω ⇒ σ (U(d)) = ω ,

where the set RM \Dω contains an open and dense subset of RM.
Proof. The statement about RM \Dω is a direct consequence of Lemma 3.7.
If ω = ∅, then U(d) = 0 for all d ∈ RM, so all claims in the proposition are trivial. Consider

that ♯ ω > 1. For any i ∈ I ♯ ω, the ω[i]th component of U(d) reads as (see Lemma 3.6)

Uω[i](d) =
〈
ei ,

(
AT

ωAω

)−1
AT

ω d
〉
.

The definition of Dω shows that

d ∈ RM \Dω and i ∈ I ♯ ω ⇒ Uω[i](d) 6= 0 ,

whereas Ui(d) = 0 for all i ∈ ωc. Consequently,

ω ∈ Ωmax and d ∈ RM \Dω ⇒ σ (U(d)) = ω .

Then ‖U(d)‖0 is constant on RM \Dω and

ω ∈ Ωmax and d ∈ RM \Dω ⇒ Fd(U(d)) =
∥∥AU(d)− d

∥∥2 + β ♯ω .

We infer from (33) that d 7→
∥∥AU(d)−d

∥∥2 is C∞ on RM, so d 7→ Fd

(
U(d)

)
is C∞ on RM \Dω. �

A generic property is that a local minimizer function corresponding to Fd produces solu-
tions sharing the same support. The application d 7→ Fd

(
U(d)

)
is discontinuous on the closed

negligible subset Dω, where the support of U(d) is shrunk.
3.3. Strict minimizers with an M-length support. Here we explain why minimizers with

an M-length support are useless in general.
Proposition 3.9. Let rank(A) = M, β > 0 and for d ∈ RM set

UM
def
=

{
û ∈ RN : û is a strict (local) minimizer of Fd meeting ‖û‖0 = M

}
.

Put

(35) QM
def
=

⋃

ω∈ΩM

⋃

i∈IM

{
g ∈ RM :

〈
ei , A

−1
ω g

〉
= 0

}
.

Then RM \QM contains a dense open subset of RM and

d ∈ RM \QM ⇒ ♯UM = ♯ΩM and Fd(û) = βM ∀ û ∈ UM .

ha
l-0

07
23

81
2,

 v
er

si
on

 6
 - 

14
 M

ay
 2

01
3



THE MINIMIZERS OF LEAST SQUARES REGULARIZED WITH ℓ0-NORM 15

Proof. Using the notation in (34), QM reads as

QM =
⋃

ω∈ΩM

Dω .

The claim on RM \QM follows from Lemma 3.7. Since rank(A) = M, we have ♯ΩM > 1.

Consider that d ∈ RM \QM. By Proposition 3.8

d ∈ RM \QM and ω ∈ ΩM ⇒ Fd has a strict (local) minimizer û obeying σ(û) = ω .

Hence û ∈ UM. Therefore, we have a mapping b : ΩM → UM such that û = b(ω) ∈ UM. Using
Lemma 2.4 and Corollary 3.3, it reads as

b(ω) = Zω(A
−1
ω d) .

For (ω,̟) ∈ ΩM × ΩM with ̟ 6= ω one obtains û = b(ω) ∈ UM, ū = b(̟) ∈ UM and û 6= ū,
hence b is one-to-one. Conversely, for any û ∈ UM there is ω ∈ ΩM such that û = b(ω) and
σ(û) = ω (because d 6∈ QM). It follows that b maps ΩM onto UM. Therefore, ΩM are UM in
one-to-one correspondence, i.e. ♯ΩM = ♯UM.

Last, it is clear that ω ∈ ΩM and d 6∈ QM lead to ‖Aû− d‖2 = 0 and Fd(û) = βM. �

For any β > 0, a generic property of Fd is that it has ♯ΩM strict minimizers û obeying
‖û‖0 = M and Fd(û) = βM. It is hard to discriminate between all these minimizers. Hence
the interest in minimizers with supports located in Ω, i.e., strict (M− 1)-sparse minimizers of
Fd.

4. On the global minimizers of Fd. The next proposition gives a necessary condition for a
global minimizer of Fd. It follows directly from [32, Proposition 3.4] where12 the regularization
term is ‖Du‖0 for a full row rank matrix D. For Fd in (1) with ‖ai‖2 = 1, ∀ i ∈ IN, a simpler
condition was derived later in [40, Theorem 12], using different tools. For completeness, the
proof for a general A is outlined in Appendix 8.2.

Proposition 4.1. For d ∈ RM and β > 0, let Fd have a global minimum at û. Then13

(36) i ∈ σ(û) ⇒
∣∣ û[i]

∣∣ >
√
β

‖ai‖
.

Observe that the lower bound on
{∣∣ û[i]

∣∣ : i ∈ σ(û)
}
given in (36) is independent of d.

This means that in general, (36) provides a pessimistic bound.

The proof of the statement shows that (36) is met also by all (local) minimizers of Fd sat-
isfying

Fd(û) 6 Fd(û+ ρei) ∀ ρ ∈ R, ∀ i ∈ IN .

12 Just set gi = ei, P = IM and H = IN in [32, Proposition 3.4].
13Recall that ai 6= 0 for all i ∈ IN by (8) and that ‖ · ‖ = ‖ · ‖2.
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16 MILA NIKOLOVA

4.1. The global minimizers of Fd are strict.

Remark 7. Let d ∈ RM and β > ‖d‖2. Then Fd has a strict global minimum at û = 0.
Indeed,

v 6= 0 ⇒ ‖v‖0 > 1 ⇒ Fd(0) = ‖d‖2 < β 6 ‖Av − d‖2 + β‖v‖0 .

For least-squares regularized with a more regular φ, one usually gets û = 0 asymptotically
as β → +∞ but û 6= 0 for finite values of β. This does not hold for Fd by Remark 7.

Some theoretical results on the global minimizers of Fd have been obtained [32, 22, 40, 7].
Surprisingly, the question about the existence of global minimizers of Fd has never been raised.
We answer this question using the notion of asymptotically level stable functions introduced
by Auslender [2] in 2000. As usual,

lev (Fd, λ)
def
= {v ∈ RN : Fd(v) 6 λ} for λ > inf Fd .

The following definition is taken from [3, p. 94].

Definition 4.2. Let Fd : RN → R∪ {+∞} be lower semicontinuous and proper. Then Fd is
said to be asymptotically level stable if for each ρ > 0, each bounded sequence {λk} ∈ R and
each sequence {vk} ∈ RN satisfying

(37) vk ∈ lev (Fd, λk), ‖vk‖ → +∞, vk ‖vk‖−1 → v̄ ∈ ker ((Fd)∞) ,

where (Fd)∞ denotes the asymptotic (or recession) function of Fd, there exists k0 such that

(38) vk − ρv̄ ∈ lev (Fd, λk) ∀ k > k0 .

One can note that a coercive function is asymptotically level stable, since (37) is empty.
We prove that our discontinuous noncoercive objective Fd is asymptotically level stable as
well.

Proposition 4.3. Let Fd : RN → R be of the form (1). Then ker ((Fd)∞) = ker(A) and Fd

is asymptotically level stable.

The proof is outlined in Appendix 8.3.

Theorem 4.4.Let d ∈ RM and β > 0. Then

(i) the set of the global minimizers of Fd

(39) Û
def
=

{
û ∈ RN : û = min

u∈RN
Fd(u)

}

is nonempty;
(ii) every û ∈ Û is a strict minimizer of Fd, i.e.,

σ(û) ∈ Ωmax ,

hence ‖û‖0 6 M.
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THE MINIMIZERS OF LEAST SQUARES REGULARIZED WITH ℓ0-NORM 17

Proof. For claim (i), we use the following statement14, whose proof can be found in the
monograph by Ausleneder and Teboulle [3]:

[3, Corollary 3.4.2] Let Fd : RN → R∪{+∞} be asymptotically level stable with inf Fd > −∞.
Then the optimal set Û—as given in (39)—is nonempty .

From Proposition 4.3, Fd is asymptotically level stable and inf Fd > 0 from (1). Hence Û 6= ∅.

(ii). Let û be a global minimizer of Fd. Set σ̂ = σ(û).

If û = 0, (ii) follows from Lemma 2.2. Suppose that the global minimizer û 6= 0 of Fd is
nonstrict. Then Theorem 3.2(ii) fails to hold; i.e.,

(40) dimker (Aσ̂) > 1 .

Choose vσ̂ ∈ ker (Aσ̂) \ {0} and set v = Zσ̂ (vσ̂). Select an i ∈ σ̂ obeying v[i] 6= 0. Define ũ by

(41) ũ
def
= û− û[i]

v

v[i]
.

We have ũ[i] = 0 and û[i] 6= 0 . Set σ̃
def
= σ (ũ). Then

(42) σ̃ $ σ̂ hence ♯ σ̃ 6 ♯ σ̂ − 1 .

From vσ̂
û[i]

v[i]
∈ ker (Aσ̂), using (12) and Remark 1 shows that15 Aû = Aσ̂ûσ̂ = Aσ̃ũσ̃ = Aũ.

Then

Fd (ũ) = ‖Aũ− d‖2 + β ♯ σ̃

6 Fd (û)− β = ‖Aû− d‖2 + β ( ♯ σ̂ − 1) .

It follows that û is not a global minimizer, hence (40) is false. Therefore rank (Aσ̂) = ♯ σ̂ and
û is a strict minimizer of Fd (Theorem 3.2). �

One can note that if rank(A) = M, any global minimizer û of Fd obeys Fd(û) 6 βM .

According to Theorem 4.4, the global minimizers of Fd are strict and their number is
finite: this is a nice property that fails for many convex nonsmooth optimization problems.

4.2. K-sparse global minimizers for K 6 M − 1. In order to simplify the presentation,
in what follows we consider that

rank(A) = M < N .

Since Fd has a large number (typically equal to ♯ΩM) of strict minimizers with ‖û‖0 = M

yielding the same value Fd(û) = βM (see Proposition 3.9 and the comments given after its
proof), it is important to be sure that the global minimizers of Fd are (M− 1)-sparse.

14This result was originally exhibited in [4] (without the notion of asymptotically level stable functions).
15In detail we have Aû = Aσ̂ûσ̂ = Aσ̂

(
ûσ̂ − vσ̂

û[i]
v[i]

)
= Aσ̂ũσ̂ = Aσ̃ũσ̃ = Aũ .
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18 MILA NIKOLOVA

We introduce a notation which is used in the rest of this paper. For any K ∈ IM−1, put

(43) ΩK
def
=

K⋃

r=0

Ωr

where Ωr was set up in Definition 3.1. Theorem 3.2 gives a clear meaning of the sets16 ΩK.
For any d ∈ RM and any β > 0, for any fixed K ∈ IM−1, the set ΩK is composed of the supports
of all possible K-sparse strict (local) minimizers of Fd.

The next propositions checks the existence of β > 0 ensuring that all the global minimizers
of Fd are K-sparse, for some K ∈ IM−1.

Proposition 4.5. Let d ∈ RM. For any K ∈ IM−1, there exists βK > 0 such that if β > βK,
then each global minimizer û of Fd satisfies

(44) ‖û‖0 6 K and σ(û) ∈ ΩK .

One can choose βK = ‖Aũ− d‖2 where ũ solves (Pω ) for some ω ∈ ΩK.
The proof is given in Appendix 8.4. The value of βK in the statement is easy to compute,

but in general it is not sharp17.

5. Uniqueness of the global minimizer of Fd. The presentation is simplified using the
notation introduced next. Given a matrix A ∈ RM×N, with any ω ∈ Ω (see Definition 3.1),
we associate the M×M matrix Πω that yields the orthogonal projection18 onto the subspace
spanned by the columns of Aω:

(45) Πω
def
= Aω

(
AT

ωAω

)−1
AT

ω .

For ω ∈ Ω, the projector in Remark 1 reads Πrange(Aω) = Πω.
Checking whether a global minimizer û of Fd is unique requires us to compare its value

Fd(û) with the values Fd(ū) of the concurrent strict minimizers ū. Let û be an (M−1)-sparse

strict (local) minimizer of Fd. Then σ̂
def
= σ(û) ∈ Ω. Using Remark 1 shows that

Fd(û) = ‖Aσ̂ûσ̂ − d‖2 + β ♯ σ̂ = ‖Πσ̂d− d‖2 + β ♯ σ̂

= dT (IM −Πσ̂) d+ β ♯ σ̂ .(46)

Let ū be another (M− 1)-sparse strict minimizer of Fd; set σ̄
def
= σ(ū). Then

Fd(û)−Fd(ū) = dT (Πσ̄ −Πσ̂) d+ β( ♯ σ̂ − ♯ σ̄) .

If both û and ū 6= û are global minimizers of Fd, the previous equality yields

(47) Fd(û) = Fd(ū) ⇔ dT (Πσ̄ −Πσ̂) d = −β( ♯ σ̂ − ♯ σ̄) .

Equation (47) reveals that the uniqueness of the global minimizer of Fd cannot be guaranteed
without suitable assumptions on A and on d.

16Clearly, ΩM−1 = Ω .
17 For β ' βK the global minimizers of Fd might be k-sparse for k ≪ K. A sharper βK can be obtained as

βK = minω∈ΩK

{
‖Aũ− d‖2 : ũ solve (Pω ) for ω ∈ ΩK

}
.

18 If ω = ∅, we have Aω ∈ RM×0 and so Πω is an M×M null matrix.
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THE MINIMIZERS OF LEAST SQUARES REGULARIZED WITH ℓ0-NORM 19

5.1. A generic assumption on A. We adopt an assumption on the matrix A in Fd in
order to restrict the cases when (47) takes place for some supports σ̂ 6= σ̄ obeying ♯ σ̂ = ♯ σ̄.

H1. The matrix A ∈ RM×N, where M < N, is such that for some given K ∈ IM−1,

(48) r ∈ IK and (ω,̟) ∈ (Ωr × Ωr), ω 6= ̟ ⇒ Πω 6= Π̟ .

Assumption H1 means that the angle (or the gap) between the equidimensional subspaces
range (Aω) and range (A̟) must be nonzero [29]. For instance, if (i, j) ∈ IN× IN satisfy i 6= j,
H1 implies that ai 6= κaj for any κ ∈ R \ {0} since Π{i} = aia

T
i /‖ai‖2 .

Checking whether H1 holds for a given matrix A requires a combinatorial search over all
possible couples (̟,ω) ∈ (Ωr × Ωr) satisfying ̟ 6= ω, ∀ r ∈ IK. This is hard to do. Instead,
we wish to know whether or not H1 is a practical limitation. Using some auxiliary claims, we
shall show that H1 fails only for a closed negligible subset of matrices in the space of all M×N

real matrices.
Lemma 5.1. Given r ∈ IM−1 and ̟ ∈ Ωr, define the following set of submatrices of A:

H̟ =
{
Aω : ω ∈ Ωr and Πω = Π̟

}
.

Then H̟ belongs to an (r × r)-dimensional subspace of the space of all M× r matrices.
Proof. Using the fact that ̟ ∈ Ωr and ω ∈ Ωr, we have19

(49) Πω = Π̟ ⇔ Aω = Π̟Aω .

Therefore H̟ equivalently reads

(50) H̟ =
{
Aω : ω ∈ Ωr and Aω = Π̟Aω

}
.

Let Aω ∈ H̟. Denote the columns of Aω by ãi for i ∈ Ir. Then (50) yields

Π̟ãi = ãi, ∀ i ∈ Ir ⇒ ãi ∈ range(A̟), ∀ i ∈ Ir .

Hence all ãi, i ∈ Ir, live in the r-dimensional vector subspace range(A̟). All the columns of
each matrix Aω ∈ H̟ belong to range(A̟) as well. It follows that H̟ belongs to a (closed)
subspace of dimension r × r in the space of all M× r matrices, where r 6 M− 1. �

More details on the submatrices of A living in H̟ are given next.
Remark 8. The closed negligible subsetH̟ in Lemma 5.1 is formed from all the submatrices

of A that are column equivalent to A̟ (see [29, p. 171]), that is,

(51) Aω ∈ H̟ ⇔ ∃P ∈ Rr×r such that rank(P ) = r and Aω = A̟P .

19Using (45), as well as the fact that Aω = ΠωAω, ∀ ω ∈ Ωr, one easily derives (49) since

Πω = Π̟ ⇔
{

Aω

(
AT

ωAω

)−1
AT

ω = Π̟

A̟

(
AT

̟A̟

)−1
AT

̟ = Πω

⇒
{

Aω = Π̟Aω

A̟ = ΠωA̟
⇒

{
Πω = Π̟Πω

Π̟ = ΠωΠ̟
⇒ Πω = Π̟.
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20 MILA NIKOLOVA

Observe that P has r2 unknowns that must satisfyMr equations and that P must be invertible.
It should be quite unlikely that such a matrix P does exist.

This remark can help to discern whether or not structured dictionaries satisfy H1.

Next we inspect the set of all matrices A failing assumption H1.

Lemma 5.2. Consider the set H formed from M× N real matrices described next:

H def
=

{
A ∈ RM×N : ∃ r ∈ IM−1, ∃ (̟,ω) ∈ Ωr × Ωr, ̟ 6= ω and Π̟ = Πω

}
.

Then H belongs to a finite union of vector subspaces in RM×N whose Lebesgue measure in
RM×N is null.

Proof. Let A ∈ H. Then there exist at least one integer r ∈ IM−1 and at least one pair
(̟,ω) ∈ Ωr × Ωr such that ̟ 6= ω and Π̟ = Πω. Using Lemma 5.1, A contains (at least)
one M× r submatrix A̟ belonging to an r × r vector subspace in the space of all M× r real
matrices. Identifying A with an MN-length vector, its entries are included in a vector subspace
of RMN of dimension no larger than MN− 1. The claim of the lemma is straightforward. �

We can now clarify assumption H1 and show that it is really good.

Theorem 5.3. Given an arbitrary K ∈ IM−1, consider the set of M× N real matrices below

AK
def
=

{
A ∈ RM×N : A satisfies H1 for K

}
.

Then AK contains an open and dense subset in the space of all M× N real-valued matrices.

Proof. The complement of AK in the space of all M× N real matrices reads as

Ac
K =

{
A ∈ RM×N : H1 fails for A and K

}
.

It is clear that Ac
K ⊂ H , where H is described in Lemma 5.2. By the same lemma, Ac

K is
included in a closed subset of vector subspaces in RM×N whose Lebesgue measure in RM×N is
null. Consequently, AK satisfies the statement of the theorem. �

For any K ∈ IM−1, H1 is a generic property of all M × N real matrices meeting M < N.
This is the meaning of Theorem 5.3 in terms of Definition 1.2.

We can note that

AK+1 ⊆ AK, ∀ K ∈ IM−2 .

One can hence presume that H1 is weakened as K decreases. This issue is illustrated in
section 6.

5.2. A generic assumption on d. A preliminary result is stated next.

Lemma 5.4. Let (ω,̟) ∈ ΩK ×ΩK for ω 6= ̟ and let H1 hold for K ∈ IM−1. Given κ ∈ R,
define

Tκ
def
= {g ∈ RM : gT (Πω −Π̟) g = κ} .

Then Tκ is a closed subset of RM and LM (Tκ) = 0.
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THE MINIMIZERS OF LEAST SQUARES REGULARIZED WITH ℓ0-NORM 21

Proof. Define f : RM → R by f(g) = gT (Πω −Π̟) g . Then

(52) Tκ = {g ∈ RM : f(g) = κ} .

Using H1, Tκ is closed in RM. Set

Q = {g ∈ RM : ∇f(g) 6= 0} and Qc = RM \Q.

Consider an arbitrary g ∈ Tκ ∩ Q. From H1, rank(∇f(g)) = 1. For simplicity, assume
that

∇f(g)[M] =
df(g)

dg[M]
6= 0 .

By the implicit functions theorem, there are open neighborhoodsOg ⊂ Q ⊂ RM and V ⊂ RM−1

of g and gIM−1
, respectively, and a unique C1-function hg : V → R with ∇hg bounded, such

that

(53) γ = (γIM−1
, γ[M]) ∈ Og and f(γ) = κ ⇔ γIM−1

∈ V and γ[M] = hg(γIM−1
) .

From (52) and (53) it follows that20

Og ∩ Tk = ψg
(
Og ∩ (RM−1 × {0})

)
,

where ψg is a diffeomorphism on Og given by

ψg
i (γ) = γ[i], 1 6 i 6 M− 1 and ψg

M(γ) = hg(γIM−1
) + γ[M] .

Since LM
(
Og ∩ (RM−1 × {0})

)
= 0 and ∇ψg is bounded on Og, it follows from [37, Lemma

7.25] that21 LM (Vg ∩ Tk) = 0. We have thus obtained that

(54) S ⊂ Q and S bounded ⇒ LM(S ∩Tk) = 0 .

Using that every open subset of RM can be written as a countable union22 of cubes in RM

[36, 16, 38], the result in (54) entails that LM(Tκ ∩Q) = 0.
Next, Qc= ker (Πω −Π̟). By H1, dimker (Πω−Π̟) 6 M− 1. Hence LM(Tκ ∩Qc) = 0.
The proof follows from the equality LM(Tκ) = LM(Tκ ∩Q) + LM(Tκ ∩Qc). �

We exhibit a closed negligible subset of data in RM that can still meet the equality in (47).
Proposition 5.5. For β > 0 and K ∈ IM−1, put

(55) ΣK
def
=

K⋃

n=−K

⋃

ω∈ΩK

⋃

̟∈ΩK

{
g ∈ RM : ω 6= ̟ and gT

(
Πω −Π̟

)
g = nβ

}
,

where ΩK is given in (43). Let H1 hold for K. Then ΣK is closed in RM and LM (ΣK) = 0.

20From (53), V is the restriction of Og to RM−1.
21The same result follows from the change-of-variables theorem for the Lebesgue integral, see e.g. [37].
22From (54), adjacent cubes can also intersect in our case.
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22 MILA NIKOLOVA

Proof. For some n ∈ {−K, · · · ,K} and (ω,̟) ∈ (ΩK × ΩK) such that ω 6= ̟, put

Σ
def
=

{
g ∈ RM : gT

(
Πω −Π̟

)
g = nβ

}
.

If ♯ ω 6= ♯̟, then rank
(
Πω −Π̟

)
> 1. If ♯ ω = ♯̟, H1 guarantees that rank

(
Πω−Π̟

)
> 1,

yet again. The number nβ ∈ R is given. According to Lemma 5.4, Σ is a closed subset of
RM and LM (Σ) = 0. The conclusion follows from the fact that ΣK is a finite union of subsets
like Σ. �

We assume hereafter that if H1 holds for some K ∈ IM−1, data d satisfy

d ∈ {g ∈ RM : g 6∈ ΣK} = RM \ΣK .

5.3. The unique global minimizer of Fd is K-sparse for K 6 (M − 1). We are looking
for guarantees that Fd has a unique global minimizer û obeying

‖û‖0 6 K for some fixed K ∈ IM−1 .

This is the aim of the next theorem.

Theorem 5.6. Given K ∈ IM−1, let H1 hold for K, β > βK where βK meets Proposition 4.5
and ΣK ⊂ RM reads as in (55). Consider that

d ∈ RM \ΣK .

Then

(i) the set RM \ΣK is open and dense in RM;
(ii) Fd has a unique global minimizer û, and ‖û‖0 6 K.

Proof. Statement (i) follows from Proposition 5.5.

Since β > βK, all global minimizers of Fd have their support in ΩK (Proposition 4.5).
Using the fact that d ∈ RM \ΣK , the definition of ΣK in (55) shows that

(56) −K 6 n 6 K and (ω,̟) ∈ (ΩK ×ΩK), ω 6= ̟ ⇒ dT
(
Πω −Π̟

)
d 6= nβ .

The proof is conducted by contradiction. Let û and ū 6= û be two global minimizers of Fd.
Then

σ̂
def
= σ(û) ∈ ΩK and σ̄

def
= σ(ū) ∈ ΩK ,

and σ̂ 6= σ̄. By Fd(û) = Fd(ū), (47) yields

(57) dT (Πσ̂ −Πσ̄) d = β( ♯ σ̂ − ♯ σ̄) .

An enumeration of all possible values of ♯ σ̂ − ♯ σ̄ shows that

β ( ♯ σ̂ − ♯ σ̄) = nβ for some n ∈ {−K, · · · ,K} .
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THE MINIMIZERS OF LEAST SQUARES REGULARIZED WITH ℓ0-NORM 23

Inserting this equation into (57) leads to

dT (Πσ̂ −Πσ̄) d = nβ for some n ∈ {−K, · · · ,K} .

The last result contradicts (56); hence it violates the assumptions H1 and d ∈ RM \ΣK. Con-
sequently, Fd cannot have two global minimizers. Since Fd always has global minimizers
(Theorem 4.4(i)), it follows that Fd has a unique global minimizer, say û. And ‖û‖0 6 K

because σ(û) ∈ ΩK. �

For β > βK, the objective Fd in (1) has a unique global minimizer and it is K-sparse for
K 6 M − 1. For all K ∈ IM−1, the claim holds true in a generic sense. This is the message
of Theorem 5.6 using Definition 1.2.

6. Numerical illustrations.

6.1. On assumption H1. Assumption H1 requires that Πω 6= Π̟ when (ω,̟) ∈ Ωr×Ωr,
ω 6= ̟ for all r 6 K ∈ IM−1. From a practical viewpoint, the magnitude of (Πω −Π̟) should
be discernible. One way to assess the viability of H1 for a matrix A and K ∈ IM−1 is to
calculate

ξK(A)
def
= min

r∈IK
µr(A) ,(58)

where µr(A) = min
(ω,̟) ∈ Ωr × Ωr

ω 6= ̟

‖Πω −Π̟‖2 , ∀ r ∈ IK .

In fact, ‖Πω −Π̟‖2 = sin(θ), where θ ∈ [0, π/2] is the maximum angle between range (Aω)
and range (A̟); see [29, p. 456]. These subspaces have the same dimension and Πω 6= Π̟

when (ω,̟) ∈ Ωr × Ωr, ω 6= ̟ and r ∈ IK, hence θ ∈ (0, π/2]. Consequently,

H1 holds for K ∈ IM−1 ⇒ µr(A) ∈ (0, 1] ∀ r ∈ IK ⇒ ξK(A) ∈ (0, 1] .

According to (58), we have ξK > ξK+1, ∀ K ∈ IM−2. Our guess that assumption H1 is lightened
when K decreases (see the comments following the proof of Theorem 5.3) means that

(59) ξ1(A) > · · · > ξM−1(A) .

We provide numerical tests on two subsets of real-valued random matrices for M = 5 and
N = 10, denoted by AN

20 and AU
1000. The values of ξK(·), K ∈ IM−1 = I4, for every matrix

in AN
20 and in AU

1000, were calculated using an exhaustive combinatorial search. All tested
matrices satisfy assumption H1, which confirms Theorem 5.3 and its consequences. In order
to evaluate the extent of H1, we computed the worst and the best values of ξK(·) over these
sets:

(60)





ξworstK = min
A∈A

ξK(A)

ξbestK = max
A∈A

ξK(A)

∀ K ∈ IM−1 , A ∈
{
AN

20, AU
1000

}
.
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24 MILA NIKOLOVA

Set AN
20. This set was formed from 20 matrices An, n ∈ I20 of size 5 × 10. The compo-

nents of each matrix An were independent and uniformly drawn from the standard normal
distribution with mean zero and variance one. The values of ξK(·) are depicted in Fig. 6.1. We
have23 ξ1(A

10) = ξ2(A
10) and ξ1(A

17) = ξ2(A
17). In all other cases (59) is satisfied. Fig. 6.1

clearly shows that ξK(·) increases as K decreases (from M− 1 to 1).

1 10 17 20

0

0.1

0.8

(a) ξK(A
n) for the matrices in A20

n

ξK(A
n)

1 20
0

0.1

z
o
o
m

(b) Zoom of (a) – y-axis

K = 1: green ◦

K = 2: red ♦
K = 3: blue �
K = 4: magenta △

Figure 6.1. x-axis: the list of the 20 random matrices in AN
20. (a) y-axis: the value ξK(A

n) according
to (58) for all K ∈ IM−1 and for all n ∈ I20. The plot in (b) is a zoom of (a) along the y-axis.

The worst and the best values of ξK(·) over the whole set AN
20 are displayed in Table 6.1.

Table 6.1
The worst and the best values of ξK(A), for K ∈ IM−1, over the set AN

20, see (60).

K = 1 K = 2 K = 3 K = 4

ξworstK 0.3519 0.1467 0.0676 0.0072

ξbestK 0.8666 0.5881 0.3966 0.0785

Set AU
1000. The set AU

1000 was composed of one thousand 5 × 10 matrices An, n ∈ I1000.
The entries of each matrix An were independent and uniformly sampled on [−1, 1]. The
obtained values for ξworstK and ξbestK , calculated according to (60), are shown in Table 6.2.

For K ∈ I3, the best values of ξK(·) were obtained for the same matrix, A964. Note that
ξ4(A

964) = 0.0425 ≫ ξworst4 . The worst values in Table 6.2 are smaller than those in Table 6.1,
while the best values in Table 6.2 are larger than those in Table 6.1; one credible reason is
that AU

1000 is much larger than AN
20.

23 This is why on the figure, in columns 10 and 17, the green “◦” and the red “♦” overlap.
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THE MINIMIZERS OF LEAST SQUARES REGULARIZED WITH ℓ0-NORM 25

Table 6.2
The worst and the best values of ξK(A), for K ∈ IM−1, over the set AU

1000.

K = 1 K = 2 K = 3 K = 4

ξworstK 0.1085 0.0235 0.0045 0.0001

ξbestK 0.9526 0.8625 0.5379 0.1152

Table 6.3
Percentage of the cases in AU

1000 when (59) fails to hold.

ξ1(A
n) = ξ2(A

n) ξ2(A
n) = ξ3(A

n) ξ3(A
n) = ξ4(A

n)

occurrences {n} 5 % 1.6 % 0.1 %

Overall, (59) is satisfied on AU
1000—the percentages in Table 6.3 are pretty small. All three

tables and Figure 6.1 agree with our guess that H1 is more viable for smaller values of K.
Based on the magnitudes for ξbestK in Tables 6.1 and 6.2, one can expect that there are

some classes of matrices (random or not) that fit H1 for larger values of ξK(·).
6.2. On the global minimizers of Fd. Here we summarize the outcome of a series of

experiments corresponding to several matrices A ∈ RM×N where M = 5 and N = 10, satisfying
H1 for K = M − 1, different original vectors ü ∈ RN and data samples d = Aü + noise, for
various values of β > 0. In each experiment, we computed the complete list of all different
strict (local) minimizers of Fd, say

(
ûi
)n
i=1

. Then the sequence of values
(
Fd(û

i)
)n
i=1

was

sorted in increasing order, Fd

(
ûi1

)
6 Fd

(
ûi2

)
6 · · · 6 Fd

(
ûin

)
. A global minimizer ûi1

is unique provided that Fd

(
ûi1

)
< Fd

(
ûi2

)
. In order to discard numerical errors, we also

checked whether
∣∣Fd

(
ûi1

)
−Fd

(
ûi2

)∣∣ is easy to detect.
In all experiments we carried out, the following facts were observed:
• The global minimizer of Fd was unique—manifestly data d never did belong to the

closed negligible subset ΣK in Proposition 5.5. This confirms Theorem 5.6.
• The global minimizers of Fd remained unchanged under large variations of β.
• The necessary condition for a global minimizer in Proposition 4.1 was met.

Next we present in detail two of these experiments where Fd is defined using

(61) A =




7 2 4 9 0 3 3 6 6 7
3 4 9 3 3 9 1 3 1 5
5 4 2 4 0 7 1 9 2 9
8 4 0 9 6 0 4 2 3 7
6 3 6 5 0 9 0 0 3 8




d = Aü+ n ,

where n is noise and

ü =
(
0 , 1 , 8 , 0 , 3 , 0 , 0 , 0 , 0 , 9

)T
.

Only integers appear in (61) for better readability. We have rank(A) = M = 5. An exhaustive
combinatorial test shows that the arbitrary matrix A in (61) satisfies H1 for K = M− 1. The
values of ξK(A) are seen in Table 6.4. One notes that µ2(A) > µ1(A); hence ξ1(A) = ξ2(A).

One expects (at least when data are noise-free) that the global minimizer û of Fd obeys
σ̂ ⊆ σ(ü), where ü is the original in (61), and that the vanished entries of û correspond to
the least entries of ü. This inclusion provides a partial way to rate the quality of the solution
provided by a global minimizer û of Fd.
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26 MILA NIKOLOVA

Table 6.4
The values of ξK(A) and µK(A), ∀ K ∈ IM−1, for the matrix A in (61).

K = 1 K = 2 K = 3 K = 4

ξK(A) 0.2737 0.2737 0.2008 0.0564

µK(A) 0.2737 0.2799 0.2008 0.0564

The experiments described hereafter correspond to two data samples relevant to (61)—
without and with noise—and to several values of β > 0.

Noise-free data. The noise-free data in (61) read as:

(62) d = Aü =
(
97 , 130 , 101 , 85 , 123

)T
.

For different values of β, the global minimizer û is given in Table 6.5. Since σ(ü) ∈ Ω and

Table 6.5
The global minimizer û of Fd and its value Fd(û) for the noise-free data d in (62) for different values of

β. Last row: the original ü in (61).

β The global minimizer û of Fd (row vector) ‖û‖0 Fd(û)

1
102

103

104

7·104

0 1 8 0 3 0 0 0 0 9
0 0 8.12 0 3.31 0 0 0 0 9.33
0 0 0 0 0 12.58 20.28 0 0 0
0 29.95 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

4
3
2
1
0

4
301.52
2179.3
14144
58864

ü = 0 1 8 0 3 0 0 0 0 9

the data are noise-free, Fd does not have global minimizers with ‖û‖0 = 5. Actually, applying
Proposition 4.5 for ũ = ü yields βM−1 = 0, hence for any β > 0 all global minimizers of Fd

have a support in Ω = ΩM−1 (see Definition 3.1 and (43)). The global minimizer û for β = 1

meets û = ü. For β = 100, the global minimizer û obeys σ̂
def
= σ(û) = {3, 5, 10} $ σ(ü) and

‖û‖0 = 3—the least nonzero entry of the original ü is canceled, which is reasonable. The
global minimizers corresponding to β > 300 are meaningless. We could not find any positive
value of β giving better 2-sparse global minimizers. Recalling that data are noise-free, this
confirms Remark 3: the global minimizers of Fd realize a only pseudo-hard thresholding. For
β > 7 · 104 > ‖d‖2, the global minimizer of Fd is û = 0 which confirms Remark 7.

Noisy data. Now we consider noisy data in (61) for

(63) n =
(
4 , − 1 , 2 , − 3 , 5

)T
.

This arbitrary noise yields a signal-to-noise ratio24 (SNR) equal to 14.07 dB. If β 6 0.04,
Fd has 252 different strict global minimizers û obeying ‖û‖0 = M and Fd(û) = βM (recall
Proposition 3.9). For β > 0.05, the global minimizer û of Fd is unique and satisfies σ(û) ∈ Ω.
It is given in Table 6.6 for several values of β > 0.05. For β = 1, the global minimizer is

24 Let us denote d̈ = Aü and d = d̈+ n. The SNR reads [41] SNR(d̈, d) = 10 log10

∑M
i=1(d̈[i]− 1

M

∑M
i=1

d̈[i])2
∑

M
i=1

(d[i]−d̈[i])2
.
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THE MINIMIZERS OF LEAST SQUARES REGULARIZED WITH ℓ0-NORM 27

Table 6.6
The global minimizer û of Fd and its value Fd(û) for noisy data given by (61) and (63), for different values

of β. Last row: the original ü.

β The global minimizer û of Fd (row vector) ‖û‖0 Fd(û)

1
102

103

104

7·104

0 6.02 2.66 6.43 0 6.85 0 0 0 0
0 0 8.23 0 2.3 0 0 0 0 9.71
0 0 8.14 0 0 0 0 0 0 10.25
0 0 0 0 0 0 0 0 0 14.47
0 0 0 0 0 0 0 0 0 0

4
3
2
1
0

4.0436
301.94
2174.8
14473
60559

ü = 0 1 8 0 3 0 0 0 0 9

meaningless. We could not find any positive value of β yielding a better global minimizer with

a 4-length support. For the other values of β, the global minimizer û meets σ̂
def
= σ(û) & σ(ü),

and its vanished entries correspond to the least entries in the original ü. For β = 100, the
global minimizer seems to furnish a good approximation to ü. Observe that the last entry of
the global minimizer û[10], corresponding to the largest magnitude in ü, freely increases when
β increases from 102 to 104. We tested a tight sequence of intermediate values of β without
finding better results. Yet again, β > 7 · 104 > ‖d‖2 leads to a unique null global minimizer
(see Remark 7).

(a) The values of all strict (local) minimizers of Fd
(b) Zoom of (a) along the y-axis

4 104

(0, 0) 637{û}
302

Fd(û)

Fd(û) for

‖û‖0=1: green

‖û‖0=2: red

‖û‖0=3: blue

‖û‖0=4: magenta

‖û‖0=5: black

Fd(û)

302

500

Fd(û)

637{û}0

‖û‖0=3 ‖û‖0 = 4 ‖û‖0 = 5

Figure 6.2. All 638 strict (local) minima of Fd in (61) for β = 100 and data d corrupted with the arbitrary
noise in (63). The x-axis lists all strict (local) minimizers {û} of Fd sorted according to their ℓ0-norm ‖û‖0 in
increasing order. (a) The y-axis shows the value Fd(û) of these minimizers marked with a star. The value of
Fd for û = 0 is not shown because it is too large (Fd(0) = 60559 = ‖d‖2). (b) A zoom of (a) along the y-axis.
It clearly shows that Fd has a very recognizable unique global minimizer
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28 MILA NIKOLOVA

Figure 6.2 shows the value Fd(û) of all the strict local minimizers of Fd for β = 100. In
the zoom in Figure 6.2(b) it is easily seen that the global minimizer is unique (remember
Theorem 5.6). It obeys ‖û‖0 = 3 and Fd(û) = 301.94. One observes that Fd has 252 = ♯ΩM

different strict local minimizers û with ‖û‖0 = 5 = M and Fd(û) = 500 = βM. This confirms
Proposition 3.9—obviously d does not belong to the closed negligible subset QM described in
the proposition.

7. Conclusions and perspectives. We provided a detailed analysis of the (local and
global) minimizers of a regularized objective Fd composed of a quadratic data fidelity term
and an ℓ0 penalty weighted by a parameter β > 0, as given in (1). We exhibited easy necessary
and sufficient conditions ensuring that a (local) minimizer û of Fd is strict (Theorem 3.2).
The global minimizers of Fd (whose existence was proved) were shown to be strict as well
(Theorem 4.4). Under very mild conditions, Fd was shown to have a unique global minimizer
(Theorem 5.6). Other interesting results were listed in the abstract. Below we pose some
perspectives and open questions raised by this work.

• The relationship between the value of the regularization parameter β and the sparsity
of the global minimizers of Fd (Proposition 4.5) can be improved.

• The generic linearity in data d of each strict (local) minimizer of Fd (subsection 3.2)
should be exploited to better characterize the global minimizers of Fd.

• Is there a simple way to check whether assumption H1 is satisfied by a given matrix
A ∈ RM×N when N and M < N are large? Remark 8 and in particular (51) could
help to discard some nonrandom matrices. Conversely, one can ask whether there is a
systematic way to construct matrices A that satisfy H1.
An alternative would be to exhibit families of matrices that satisfy H1 for large values
of ξK(·), where the latter quantifiers are defined in equation (58).

• A proper adaptation of the results to matrices A and data d with complex entries
should not present inherent difficulties.

• The theory developed here can be extended to MAP energies of the form evoked in (5).
This is important for the imaging applications mentioned there.

• Based on Corollary 2.5, and Remarks 3 and 6, and the numerical tests in subsection
6.2, one is justified in asking for conditions ensuring that the global minimizers of Fd

perform a valid work. Given the high quality of the numerical results provided in
many papers (see e.g., [33, 34]), the question deserves attention.

There exist numerous algorithms aimed at approximating a (local) minimizer of Fd. As
a by-product of our research, we obtained simple rules to verify whether or not an algorithm
could find

- a (local) minimizer û of Fd—by checking whether û satisfies (26) in Corollary 2.5;
- and whether this local minimizer is strict by testing whether the submatrix whose
columns are indexed by the support of û (i.e., Aσ(û)) has full column rank (Theo-
rem 3.2).

Some properties of the minimizers of Fd given in this work can be inserted in numerical
schemes in order to quickly escape from shallow local minimizers.

Many existing numerical methods involve a studious choice of the regularization parameter
β, and some of them are proved to converge to a local minimizer of Fd. We have seen that
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THE MINIMIZERS OF LEAST SQUARES REGULARIZED WITH ℓ0-NORM 29

finding a (strict or nonstrict) local minimizer of Fd is easy and that it is independent of
the value of β (Corollaries 2.5 and 3.3). It is therefore obscure what meaning to attach to
“choosing a good β and proving (local) convergence”. Other successful algorithms are not
guaranteed to converge to a local minimizer of Fd. Whenever algorithms do a good job, the
choice of β, the assumptions on A and on ‖û‖0, and the iterative scheme and its initialization
obviously provide a tool for selecting a meaningful solution by minimizing Fd. There is a
theoretical gap that needs clarification.

The connection between the existing algorithms and the description of the minimizers
exposed in this paper deserves deep exploration. What conditions ensure that an algorithm
minimizing Fd yields meaningful solutions? Clearly, showing local convergence does not answer
this important question.

One can expect such research to give rise to innovative and more efficient algorithms
enabling one to compute relevant solutions by minimizing the tricky objective Fd.

8. Appendix.

8.1. Proof of Lemma 2.1. Since û 6= 0, the definition of σ̂ shows that min
i∈σ̂

∣∣ û[i]
∣∣ > 0.

Then ρ in (19) fulfills ρ > 0.

(i). Since ♯ σ̂ > 1, we have

i ∈ σ̂ , v ∈ B∞(0, ρ) ⇒ max
j∈σ̂

∣∣ v[j]
∣∣ < ρ

⇒ max
j∈σ̂

∣∣ v[j]
∣∣ < min

j∈σ̂

∣∣ û[j]
∣∣

⇒ |û[i] + v[i]| > |û[i]| − |v[i]|
> min

j∈σ̂
|û[j]| −max

j∈σ̂
|v[j]| > ρ−max

j∈σ̂
|v[j]| > 0

⇒ û[i] + v[i] 6= 0[
by (2)

]
⇒ φ (û[i] + v[i]) = φ (û[i]) = 1 .(64)

If σ̂c = ∅ the result is proved. Let σ̂c 6= ∅. Then û[i] = 0 = φ (û[i]), ∀ i ∈ σ̂c. Inserting this
and (64) into

∑

i∈IN

φ
(
û[i] + v[i]

)
=

∑

i∈σ̂

φ
(
û[i] + v[i]

)
+

∑

i∈σ̂c

φ
(
û[i] + v[i]

)

proves claim (i).
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30 MILA NIKOLOVA

(ii). Using the fact that ‖A(û + v) − d‖2 = ‖Aû − d‖2 + ‖Av‖2 + 2〈Av, Aû − d〉, one
obtains

v ∈ B∞(0, ρ) \Kσ̂ ⇒ Fd(û+ v) = ‖Aû− d‖2 + ‖Av‖2 + 2〈Av, Aû− d〉[
by Lemma 2.1(i)

]
+β

∑

i∈σ̂

φ (û[i]) + β
∑

i∈σ̂c

φ (v[i])

[
using (3)

]
= Fd(û) + ‖Av‖2 + 2〈Av, Aû− d〉+ β

∑

i∈σ̂c

φ (v[i])

> Fd(û)−
∣∣2〈v, AT (Aû− d)〉

∣∣ + β‖vσ̂c‖0[
by Hölder’s inequality

]
> Fd(û)− 2‖v‖∞ ‖AT (Aû− d)‖1 + β‖vσ̂c‖0 .(65)

If ♯ σ̂c = 0, then Kσ̂ = RN, so v ∈ R0 and ‖v‖∞ = 0; hence we have the inequality.

Let ♯ σ̂c > 1. For v 6∈ Kσ̂, there at least one index i ∈ σ̂c such that v[i] 6= 0; hence
‖vσ̂c‖0 > 1. The definition of ρ in (19) shows that

v ∈ B∞(0, ρ) \Kσ̂ ⇒ − ‖v‖∞ > −ρ > − β

2
(
‖AT (Aû− d)‖1 + 1

)

⇒ − 2‖v‖∞ ‖AT (Aû− d)‖1 + β‖vσ̂c‖0 > − 2β‖AT (Aû− d)‖1
2
(
‖AT (Aû− d)‖1 + 1

) + β > 0 .

Introducing the last inequality into (65) shows that for ♯ σ̂c > 1, the inequality in (ii) is strict.

8.2. Proof of Proposition 4.1. If û = 0, the statement is obvious. We focus on û 6= 0.
For an arbitrary i ∈ IN, define

û(i)
def
=

(
û[1], · · · , û[i− 1], 0, û[i+ 1], · · · , û[N]

)
∈ RN .

We shall use the equivalent formulation of Fd given in (3). Clearly25,

Fd(û) = Fd

(
û(i) + eiû[i]

)
= ‖Aû(i) + aiû[i]− d‖2 + β

∑

j∈IN

φ
(
û(i)[j]

)
+ φ (û[i]) .

Consider f : R → R as given below

(66) f(t)
def
= Fd

(
û(i) + eit

)
.

Since û is a global minimizer of Fd, for any i ∈ IN, we have

f (û[i]) = Fd

(
û(i) + eiû[i]

)

6 Fd

(
û(i) + ei t

)
= f(t) ∀ t ∈ R .

25Using the definition of û(i), we have û(i) = A(IN \ {i})û(IN \ {i}) , hence Aû(i) is independent of û[i].
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THE MINIMIZERS OF LEAST SQUARES REGULARIZED WITH ℓ0-NORM 31

Equivalently, for any i ∈ IN , f (û[i]) is the global minimum of f(t) on R. Below we will
determine the global minimizer(s) t̂ = û[i] of f as given in (66), i.e.,

t̂ = û[i] = argmin
t∈R

f(t) .

In detail, the function f reads as

f(t) = ‖Aû(i) + ait− d‖2 + β
∑

j∈IN

φ
(
û(i)[j]

)
+ βφ(t)

= ‖Aû(i) − d‖2 + ‖ai‖2t2 + 2t〈ai, Aû(i) − d〉+ β
∑

j∈IN

φ
(
û(i)[j]

)
+ βφ(t)

= ‖ai‖2t2 + 2t〈ai, Aû(i) − d〉+ βφ(t) + C ,(67)

where
C = ‖Aû(i) − d‖2 + β

∑

j∈IN

φ
(
û(i)[j]

)
.

Note that C does not depend on t. The function f has two local minimizers denoted by t̂0
and t̂1. The first is

(68) t̂0 = 0 ⇒ f(t̂0) = C .

The other one, t̂1 6= 0, corresponds to φ(t) = 1. From (67), t̂1 solves

2‖ai‖2t+ 2〈ai, Aû(i) − d〉 = 0 .

Recalling that ai 6= 0, ∀ i ∈ IN (see (8)), it follows that

(69) t̂1 = −〈ai, Aû(i) − d〉
‖ai‖2

⇒ f(t̂1) = −〈ai, Aû(i) − d〉2
‖ai‖2

+ β + C .

Next we check whether t̂0 or t̂1 is a global minimizer of f . From (68) and (69) we get

f(t̂0)− f(t̂1) =
〈ai, Aû(i) − d〉2

‖ai‖2
− β .

Furthermore,

f(t̂0) < f(t̂1) ⇒ û[i] = t̂0 = 0 ,

f(t̂1) < f(t̂0) ⇒ û[i] = t̂1 = −〈ai, Aû(i) − d〉
‖ai‖2

,(70)

f(t̂0) = f(t̂1) ⇒ t̂0 and t̂1 are global minimizers of f .

In particular, we have

f(t̂1) 6 f(t̂0) ⇔ 〈ai, Aû(i) − d〉2 > β‖ai‖2(71)
[
by (70)

]
⇒ |û[i]| =

∣∣〈ai, Aû(i) − d〉
∣∣

‖ai‖2
[
by (71)

]
>

√
β‖ai‖
‖ai‖2

=

√
β

‖ai‖
.

It is clear that the conclusion holds true for any i ∈ IN.
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32 MILA NIKOLOVA

8.3. Proof of Proposition 4.3. The asymptotic function (Fd)∞ (v) of Fd can be calculated
according to26 [3, Theorem 2.5.1]

(Fd)∞ (v) = lim inf
v′ → v
t→ ∞

Fd(tv
′)

t
.

Then

(Fd)∞ (v) = lim inf
v′ → v
t→ ∞

‖Av′ − d‖2 + β‖v′‖0
t

= lim inf
v′ → v
t→ ∞

(
t‖Av′‖2 − 2〈d,Av′〉+ ‖d‖2 + β‖v′‖0

t

)

=

{
0 if v ∈ ker(A) ,
+∞ if v 6∈ ker(A) .

Hence

(72) ker ((Fd)∞) = ker(A) ,

where ker ((Fd)∞) = {v ∈ RN : (Fd)∞(v) = 0}.
Let {vk} satisfy (37) with vk ‖vk‖−1 → v̄ ∈ ker(A). Below we compare the numbers ‖vk‖0

and ‖vk − ρv̄‖0 where ρ > 0. There are two options.
1. Consider that i ∈ σ(v̄), that is, v̄[i] = lim

k→∞
vk[i] ‖vk‖−1 6= 0. Then | vk[i] | > 0 for all

but finitely many k as otherwise, vk[i] ‖vk‖−1 would converge to 0. Therefore, there
exists ki such that

(73) | vk[i]− ρ v̄[i] | > 0 and | vk[i] | > 0 ∀ k > ki .

2. If i ∈ (σ(v̄))c, i.e. v̄[i] = 0, then clearly

(74) vk[i] − ρ v̄[i] = vk[i] .

Combining (73) and (74), the definition of ‖ · ‖0 using φ in (2) shows that

(75) ‖vk − ρ v̄‖0 6 ‖vk‖0 ∀ k > k0
def
= max

i∈σ(v̄)
ki .

By (72), Av̄ = 0. This fact, jointly with (75), entails that

Fd(vk − ρv̄) = ‖A(vk + ρv̄)− d‖2 + β‖vk − ρv̄‖0
= ‖Avk − d‖2 + β‖vk − ρv̄‖0
6 ‖Avk − d‖2 + β‖vk‖0 = Fd(vk) ∀ k > k0 .

26In the nonconvex case, the notion of asymptotic functions and the representation formula were first given
by J.P. Dedieu [12].
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THE MINIMIZERS OF LEAST SQUARES REGULARIZED WITH ℓ0-NORM 33

It follows that for any k > k0 we have

vk ∈ lev (Fd, λk) ⇒ vk − ρv̄ ∈ lev (Fd, λk) ,

and thus Fd satisfies Definition 4.2.

8.4. Proof of Proposition 4.5. Given K ∈ IM−1, set

(76) UK+1
def
=

⋃

ω⊂IN

{ū : ū solves (Pω ) and ‖ū‖0 > K+ 1} .

• Let UK+1 6= ∅. By Proposition 2.3, for any β > 0, Fd has a (local) minimum at each
ū ∈ UK+1. Thus

(77) ū is a (local) minimizer of Fd and ‖ū‖0 > K+ 1 ⇔ ū ∈ UK+1 .

Then for any β > 0

(78) Fd(ū) > β(K+ 1) ∀ ū ∈ UK+1 .

Let ũ be defined by27:

ũ solves (Pω ) for some ω ∈ ΩK .

Then

(79) ‖ũ‖0 6 K .

Set β and βK according to

(80) β > βK
def
= ‖Aũ− d‖2 .

For such a β we have

Fd(ũ) = ‖Aũ− d‖2 + β‖ũ‖0[
by (79) and (80)

]
< β + βK = β(K+ 1)

[
by (78)

]
6 Fd(ū) ∀ ū ∈ UK+1 .

Let û be a global minimizer of Fd. Then

Fd(û) 6 Fd(ũ) < Fd(ū) ∀ ū ∈ UK+1 .

Using (76)-(77), we find
‖û‖0 6 K .

• UK+1 = ∅ entails that28

(81) ū solves (Pω ) for ω ⊂ IN, ♯ ω > K+ 1 ⇒ ‖ū‖0 6 K .

Let û be a global minimizer of Fd. By (81) we have

‖û‖0 6 K .

According to Theorem 4.4(ii), any global minimizer of Fd is strict, hence σ(û) ∈ ΩK .

27Such a ũ always exists; see subsection 1.1. By Proposition 2.3 and Theorem 3.2, it is uniquely defined.
28Let A = (e1, e2, e3, e4, e1) ∈ R4×5 and d = e1 ∈ R4. For K = M− 1 = 3 one can check that UK+1 = ∅.
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