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NUMERICAL ANALYSIS OF THE ADIABATIC VARIABLE METHOD FOR THE
APPROXIMATION OF THE NUCLEAR HAMILTONIAN

YVON MaADAY 2 AND GABRIEL TURINICI!

Abstract. Many problems in quantum chemistry deal with the computation of fundamental or excited
states of molecules and lead to the resolution of eigenvalue problems. Omne of the major difficulties
in these computations lies in the very large dimension of the systems to be solved. Indeed these
eigenfunctions depend on 3n variables where n stands for the number of particles (electrons and/or
nucleari) in the molecule. In order to diminish the size of the systems to be solved, the chemists have
proposed many interesting ideas. Among those stands the adiabatic variable method; we present in this
paper a mathematical analysis of this approximation and propose, in particular, an a posteriori estimate
that might allow for verifying the adiabaticity hypothesis that is done on some variables; numerical
simulations that support the a posteriori estimators obtained theoretically are also presented.

Résumé. De nombreux problémes en chimie quantique portent sur le calcul d’états fondamentaux
ou excités de molécules et conduisent a la résolution de problemes aux valeurs propres. Une des
difficultés majeures dans ces calculs est la trés grande dimension des systemes qui sont en présence
lors des simulations numériques. En effet les modes propres recherchés sont fonctions de 3n variables
ou n est le nombre de particules (électrons ou noyaux) de la molécule. Afin de réduire la dimension
des systemes a résoudre les chimistes multiplient les idées intéressantes qui permettent d’approcher le
systeme complet. La méthode des variables adiabatiques entre dans ce cadre et nous présentons ici une
étude mathématique rigoureuse de cette approximation. En particulier nous proposons un estimateur
a posteriori qui pourrait permettre de vérifier I'hypothese d’adiabaticité faite sur certaines variables ;
des simulations numériques qui implémentent cet estimateur sont aussi présentées.

AMS Subject Classification. 65N25, 35P15, 81V55.

The dates will be set by the publisher.

1. INTRODUCTION

One problem frequently encountered in computational quantum chemistry (cf. [9]- [14]) consists in the evalua-
tion of the eigenmodes of some Hamiltonian operator corresponding to eigenvalues smaller than some prescribed
value EMAX .

Under the Born-Oppenheimer approximation the nuclear Hamiltonian operator can be writtenas H = T+ V
where V' stands for the potential multiplicative part (assumed to be known by a previous electronic ab-initio
computation or by empirical means) and T is the kinetic (Laplace) operator.

The number of independent variables being important any argument leading to the simplification of the
behavior of the solution allows to enlarge the class of molecules that can be treated.
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Jacobi
coordinates

M = center of
mass of B and C

FIGURE 1. Jacobi coordinate system

Firstly it seems natural to introduce the first eigenmodes of the Laplace operator written in the coordinate
system and search for the eigenmodes of the Hamiltonian operator in this modal basis. In order to do so we
use some Lanczos-type iterative method which relies on the computation of a vector sequence {¢,},, defined
recursively by:

VYnt1 = coH (Pn) — c1 Pn-1. (1)

In terms of CPU time the most expensive part is to apply the Hamiltonian operator H to v,. In fact, even if
the chosen basis is well adapted for the Laplace operator (such that it is diagonal), the potential operator matrix
is full. In general we are interested in determining a large part of the spectrum, the size of the discretization
basis (and hence the size of matrices involved) is usually so large that it forbids any computation. We are then
lead to search for methods allowing us to further reduce the number of basis functions. The pseudo-spectral
adiabatic variable method proposed in [9], [10] is one such pertinent discretization tool that seems to give quite
good results in practice.

Its principle is presented below for a triatomic molecule.

Let the Laplace operator be written in Jacobi coordinates (R, r,0) (cf. [9]), and let us assume that we want

to find a function 9 on the open brick! Q =] — 1,1[?>%]0, 7[ of R® such that :
Hy = B, with H =Tr,o+V = —0pr — O — fifl’g') Dpsindy + V, 2)
where the function ¢ has to satisfy
P(£1,7,0) = (R, £1,0) = 0, [[¢[|L2(@) = 1. (3)

!The initial range for R, r is mapped by affine transformations into ] — 1, 1[; the coordinates R, are to be considered henceforth
as relative deviations from some equilibrium position; note that the physical meaning of @ is preserved.
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Then

1. We identify by a normal-mode analysis around the equilibrium position some special variable for our system
named the adiabatic variable. Here it will be 6§ and we write the Hamiltonian using the coordinate
transformation z = cos#.

H=-0rr —O0pr — f(R,7)0,(1-2%0, + V=Tr,. + V. (4)

2. We consider the Hamiltonian operator obtained by removing the terms containing derivatives in the
adiabatic variable; we call it reduced Hamiltonian, here it is

H" .= TR,nz — (—f(R, ’I“)az(]. — 22)82) + V= _aRR - arr +V (5)

and diagonalize it by a fast procedure. In fact the 3D problem is reduced to a small number of 2D
problems by freezing the values of the adiabatic coordinate. It is here that the physical intuition comes
into play, the adiabatic variable being in a certain way the one that allows us to accurately describe the
total hamiltonian by its action in a small number of fixed values.

3. Since we are looking for eigenmodes with a corresponding energy smaller than Ej;4x, we keep among the
vectors obtained in step 2 above only those with energy smaller than (1 + €)Epax (where € > 0).

4. We construct by tensor product of the vectors obtained in step 3 with characteristic functions of the
adiabatic variable a reduced basis used to finally diagonalize the full hamiltonian operator H.

In practice this procedure gives good results. However the choice of the adiabatic variable(s) and/or coordinate
system affects substantially its efficiency. Therefore it seems interesting to give some a priori estimates to
help intuition in the choice of the adiabatic variable for a given system and to complement this analysis by
a posteriori estimators so as to decide about its usefulness once the computation is over and also in order to
confirm the choice of € used in the truncation?.

Before proceeding with the different error analysis, it is important to introduce the choice of the values of
the adiabatic variable that are being frozen during step 2. These are the Gauss quadrature points for that
variable. This choice can be justified by at least two reasons. The first one is that these points are optimal
for the evaluation (through quadrature formulas) of integrals involved in the computation of the action of the
potential over the vectors required in the Lanczos recurrence. The second argument is that this set of points is
optimal for interpolating in the linear space of polynomials spanned by the first eigenmodes of the differential
operator 0,(1 — 2?)0, in the adiabatic variable, i.e. the Legendre polynomials {L,},. The values we freeze
are therefore the Gauss-Legendre points, namely the zeroes {(;}1<i<n+1 of the Legendre polynomial Ly of
degree N + 1. It is classical to associate to these points a (localized) basis containing characteristic polynomials
of degree < N, {h;}1<j<n+1 such that h;((;) = 655, 4,5 = 1,...N + 1 (Kronecker symbol).

We introduce the interpolation operator Jxn from C°(] —1,1[) to Pn(] — 1, 1) on these nodes. This operator
has optimal approximation properties (cf. [1] Thm.13.2, p.299), that is for any real o > %, there exists some
constant ¢ > 0 such that

Voe B~ 11), lv— Invllzzq-1ap < eNllollaeg-vap- (6)

2. A PRIORI ANALYSIS

We propose this analysis for the case of the triatomic system (2) - (3) where for simplicity we set f(R,r) = 1.
This a priori analysis is not the main purpose of the paper and serves only as preliminary verification of the
pertinence of the algorithm. A more detailed analysis is presented in the next section. As we have already seen,
the discretization has 2 steps. Firstly we introduce the eigenfunctions of the operator Tg . on L*(] — 1,1[?),
here @ ¢, (R, 7,2) = sin(EX (R + 1)) sin(Z (r + 1)) L (2) for (k,¢,n) in N°. We propose an initial discretization

2This “adiabatic reduction method” has some similarities with the dimension reduction method used in mechanics. See [15] for
a presentation of this method and for adapted error estimators. However the method and the analysis technique are different.
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space X ,n spanned by g ¢, for 1 <k, < M, 0<n < N. In the second step we diagonalize over X, the
2D operators —Ogrr — Opr + V (., G;) for each i, 1 <@ < N +1; we call (®p,g,i); .,y a0d (Apg,i); o, <y the
L? associated normalized eigenvectors and corresponding eigenvalues respectively.

We define some Sobolev-type spaces associated with the kinetic operator Tg .. More precisely let X§ be the
closure of C§(] —1,1[*)NC>(] - 1,1[%) in the domain of (Tg.,.)*/? endowed with its canonical norm. Theorem
5.6 from [6] and Theorem 2.3 from [5] tome 1 p.19 allow to describe X§. We obtain for instance:

X2 ={u€ H}(] - 1,1[*); Orru, Oprut, Oppu, V' 1 — 2205 u, V1 — 220,u, (1 — 22)0,.u € L*(] - 1,1[%)}.  (7)

Next we introduce the linear space & spanned by @, ,:(R,r)h;(z) (3D functions) that correspond to eigen-
values Ap i < (1 + €)Epax. The final approximation of our problem then consists in searching in & the
eigenfunctions of the operator Hy defined for all ¢, € X} as follows

(Hsp,¢) = jiflyl[s OrYORY + 0ppOrp + (1 — 22)6z¢az§0derdZ
+ Jiap D V(R G (W) (R, 1, ) ped Rl (8)

where {p;}1<i<n41 are the weights of the Gauss-Legendre quadrature formula.

Remark 2.1. It is interesting to note that ®, , ;(R,7)h;(z), 1 < p,q < M, 1 < j < N+1 are the eigenfunctions
on Xz, n of the operator Hy defined as follows

(HgQD, 1/}) = /] . Z ((aRZ/JaR‘P + 87‘1/}87‘90) (R7 r, Cz) + V(R7 r, Cz)("/"p) (R7 r, Cz)) PzdeT

This operator is a kind of localized hamiltonian in the points ¢; (chemists are used to noting it H(R,r,z =
¢i),i = 1,N + 1) made up by contributions from each ¢; point.

Remark 2.2. The method can be readily extended for the case of more than 3 variables by recursively applying
the above procedure. In fact we consider some of them as adiabatic until we reach a matrix that can be easily
diagonalized. See [12] for an example in the case of 6 variables.

We write our problem in the form:
find u= (¢Y,\) € L*(]— 1,1[*) x R such that F(u) = 0, 9)

where F' is the smooth (C') function from L?*(] — 1,1[*) x R into the dual (X2)* x R of X2 x R given by:
< F(¢7 >‘)7 (()07/1') >(Xg)*><R,Xg><R: ]_171[3¢(H§0 - A(p) + N(ji_Ll[a 1/12 - 1)

= ]-1,1[3 Q/J(TR,nz(p + ch - /\90) +p (f]_171[3 1/)2 - 1) . (10)

It is easy to see that F'(¢,\) = 0 is equivalent to (2)-(3). Moreover if \g is a simple (i.e. of multiplicity 1)
eigenvalue of (2) corresponding to an eigenvector ¢ (chosen with L2-norm equal to 1) and V € L> (which is
never a restriction in practice), then, applying the Fredholm alternative as proven in Appendix A we conclude
that DF (19, Ao) is an isomorphism from L?(] — 1,1[*) X R to (X&)* x R. In order to avoid technical difficulties
we will suppose, in what follows, that all eigenvalues under consideration are simple and V' € L.
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Let II5 be the projector to & associated with Tg.,. . that is for all v € XZ, Ilsv is the element of & that
verifies

Yus€&s : / Trr (v —Hsv)us = 0. (11)
=113

We define functions Fs from L? x R into (X3)* x R by the formulas:
< Fs(,A), (o, 1) >(X2)* xR, X2xR= ]-1,1[3 Y(Hs — N (Ilsp)

th (f]—MP Y- 1) + fi_yap TRz (0 = Ls). (12)

Proposition 2.3. The solutions of F5(15,\s) = 0 are exactly eigenfunctions of Hs on Es.

Proof. Choose first ¢ orthogonal to £ with respect to Tg, . and p = 0 and obtain ) € & ; then choosing
p = 0 yields ||¢]|z2 = 1 and finally ¢ € & and p = 0 proves that

(HJQ/);()D) = (/\7/1;90)7 V‘P € &s. (13)

O

We are now applying Theorem 6.1 ( [3] vol. 5 p.530) to show that ||F5(t)o, Ao)l(x2)+xr is an upper bound
(modulo some constant) for the error between (1o, Ao) and (b5, As). More precisely there exists a constant
C > 0 that does not depend on M,N or Ejpax and a neighborhood V of dy (defined as the “limit” value where
Fs5, = F) such that for all 6 € V\{do} and (¢0o, Ao) such that F(ig, o) = 0 there exists (¢5, As) solution of
Fg(d)g, )\5) = 0 such that:

1o = Ysllr2(e) + [Ao — As| < C||Fs(vo, Ao)l(x2)* xr- (14)

It remains to evaluate the right hand side of (14) in order to obtain the a priori upper bound for the error
between the exact and the discrete solution.
Since (g, Ao) is a solution to our problem and by the definition (11) of the projector II5 we obtain for all

(o, 1) € (X5) xR

< F5(¥0,X0), (95 1) > (x2)* xr, x2xR= /]1 " Yo(Hs — H)(Isp) + (o — Usv0)Th,r,= (¢ — Lsp). (15)

Definition. We state that N,M and Ejrax are chosen in a coherent manner and denote N2 ~ M? ~ Eyax
if there exists 3 constants independent of the discretization such that N2 < ¢; M2 < csEprax < csN2.
We will make use in the following of some (optimal) approximation properties of projector IL; :

Lemma 2.4. Assume that N> ~ M? ~ Epax. Then for any b> 1> a > 0 there exists a constant c(a,b) such
that:

Vo € Xg: [lv —Tsvllxg < c(a,b)(es)" (vl xs- (16)

. 11 1
where €5 18 max{N, A m}

Proof. See the appendix A. O
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Using lemma 2.4 the optimality properties of the interpolation operator Zy (stated in (6)) we obtain from
(14) and (15) the following a priori estimate :

Theorem 2.5. Let (1o, \o) be a simple eigenmode of (2)-(3) and s > 1, t > L such that o € X§ and
Vapo € L?(] — 1,1[%, HY(] — 1,1[)). Then there exists a constant C(s,t) > 0 such that for each § there exists a
solution of Fs(1bs, \s) = 0% such that:

llvo = ¥sllzz + |Ao — As| < C(s,t) ((65)s||(¢0,>\0)||xgxk + N_t||V¢0||L2(17171[2;Ht(]71,1[)))- (17)

Proof. Inserting in (14) the equality (15) and using the definition of the norm in (X3)" x R one obtains

1Yo — ¥sllL2(0) + Ao — As| < CSUP||¢||X§:1 Jioiap Yo(Hs — H)ILsp) + (0 — st0) Tr,rz (¢ — Isp)
< CSUPWHngl Jim 1 (Vibo = (Tdg> ® In)Vipo) s + (o — Mstho) T, (0 — Isp)
< SUP|jg|| =1 Joiap(Vibo = (Tdge @ In)Vho)ILsep + SUP|lg]| y3=1 Jo1ap (o = Msp0) Tr 2 (0 — s0) (18)

By the definition of the projector IIs the second term in the right hand side of (18) equals

sup / (Yo — H6¢0)TR71",Z‘P> (19)
]-11[3

=1
el

and can be upper bounded by

H ﬁup [0 — Wstpoll 2| TR, r=(2)ll22 < [0 — stboll L2 < (0, s)€f|1ol
'3 ngl

X (20)

Using (6) and the stability of the projector Il one can now bound the first term in the right hand side of (18)
and obtain the conclusion of the theorem. |

Remark 2.6. If V' is smooth enough, it is obvious that the norms ||¢o||xz, HV@ZJO||L2(]_1,1[2;H2p(]_1,1[)) and
IVabollm2r g—1,12;2(—1,11)) are upper bounded by c¢|Ag|? so that for the natural choice N? ~ M? ~ Epax

p
the convergence rate scales as ¢(p) (%) .

3. A POSTERIORI ANALYSIS OF THE METHOD

Let us still focus on the case of the triatomic system (2) and (3), and let us consider now an a posteriori error
analysis. The goal of such a tool is to asses the approximation once the computation is done. We are working
as before on the formulation F'(u) = 0 defined in (10).

The result (17) show that for any simple eigenmode ug = (t0o, Ag) of (2)-(3), there exists an eigenmode
(¥s,As) which is close enough. To know more precisely how close they are, one uses results derived from [10]
which allow to prove that under certain hypothesis, F'(u) is an estimator for the error between ug and u. We
shall make use of this abstract result in the following form:

Theorem 3.1. Let Z,Y be two Hilbert spaces and F € C*(Z,Y). Let ug be a solution of F(u) = 0 such that
DF(up) € Isom(Z,Y) and moreover assume DF' satisfies a Lipschitz-type property

Jew, >0: |[[DF(up) — DF(up+tU)] Ully < ct||U||%, Y0<t< ey, YU E Z, [|U|| < €y,- (21)

31n fact since the eigenmode (1o, Ao) is simple for § close enough to dp the problem Fj(1s,As) = 0 will have only two solutions
with corresponding eigenvalues close to Ag that is (15, As) and (—vs, As).
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Then there exists some R > 0 (R = min{%HDF(uo)_lHE(lYZ) , ||DF(U0)||£(Z7y)}) such that for all u €
B(UO,R).'

1 _ _
§||DF(Uo)||L(12,y) AF@ly < llu = uollz < 21DF(uo) ™ lleqv,z) - I1F (w)lly- (22)

Choose Z = L?(] — 1,1[>) x R and Y = (X&)* x R and note that DF obviously satisfies the hypothesis (21) of
Theorem 3.1 ; recalling that DF (19, Ao) € Isom(L*(] — 1,1]*) x R, (XZ)* x R) we obtain from Theorem 3.1 :

c|F (s, As)lly < Mo — Usllr2q—1,13) + |0 — As| < Cl|F (¥s, As)lly (23)
for two positive constants ¢ and C.

We write easily

||F(’1/}5 /\5)|| _ sup f]_171[3 (TR,r,zwé + V¢6 - )\51;[]5)90
’ Y —

(p,u)EXZXR (0, ,U)HngR

; (24)

(note that p does not enter in this estimate). Define my; as the L2-projection operator from L2(] — 1,1[3) to
Xn,0; we will use the following approximation property of mps (cf. [16] Ch.9, p.278): for any o > 0 there exists
a constant ¢ > 0 depending only of ¢ such that

Vo e H7(| = L1 L2 = L1D) v — marvllpag1azzg-1ap) < N lllgeg-rapz2g-10p)  (25)
By defining parn as the L2 projection of ¢ on Xjrn we obtain
|1F' (s, As)lly = SUP||g|| 2 =1 f]_Ll[s((V'(/)d =7 @ INVs))p + (Trr20s + 7 @ IN(Vs) — Asths)p
= 8Dy =t Jo1 s (Vs = 7 @ TN (Vb)) + (Trrz s + m @ TN (Vibs) — Astbs) pmn

< SUP g | o =1 S ((Vbs = ma ® I (Vibs))p
+ 5D Xz Il =1 St Troratbs + 7 ® In(Vips) — Asths)omn (26)

where we have used the fact that Tr , .95 € Xarn between the first and second line. The first contribution
in the right hand side measures the approximation resulting from the reduction of the action of V' to Xp;n. By
(6) - (25) it can be bounded as follows

SUPeex, ol 3 =1 | S (Vs — mar @ In(Vds)) gl
< (N2 IWVsllzzg-razmsg-1ap + MONVEs |l e g-1,12,220-1.10)) (27)
for all ¢ > 0 and s > % such that
Vips € L(| = L% HY( - L)) N H7 (] - L[5 L*( - L, 1)) (28)
The second contribution in the right hand side of (26) represents the loss of information resulting from

neglecting in Xsn the eigenmodes ®, , ;h; having energy larger than (1 + €)Epax. It is this contribution
that allows us to asses the adiabaticity of the chosen coordinate system since it measures the amount of energy
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contained in the projection of (Tr, .95 + ma © In(Vps) — Astps) on the rejected eigenmodes. Indeed its
projection on all other eigenmodes is zero by the definition of s . This leads us to

SUPpe X3, ol xa =1 Sio1ap T ztbs + w1 ® TN (Vibs) — Asths)omn
= SUPexX ol g =1 f]_Ll[s (Tr,r2%s + 70 @ IN(Vhs) — Ass) (N — Tes (mn))
S|Trp2s + v @ IN(Vibs) — Asths]| L2 SUPpex3, ol x3=1 llemn — me; (omn)ll 2. (29)

In these estimates, 7, is the L? projection operator over the reduced space &s.
An upper bound for the last term is given by the

Lemma 3.2. For any element @pn in Xy n the following estimate is true

. 1
loarn = mes (o) i < (; 72 (I1=0rr = Orm)ornIBz sy + IVIE=llernFag-r ). (30)

1+e€)Epmax
Moreover for any b > 0 there ezists a constant C independent of M ,N,Eyax such that
1 b
lomn — me; (mn)llzz < C(m) llonnllxe- (31)

Proof. See the appendix A . O

From now on we suppose € smaller than some fixed constant (usually less than 1). Using the stability of the
L? projector on eigenmodes we obtain that there exists a constant ¢ > 0 such that

(V)

MAX

C
lerrn — mes (Prn)lLe < ( - YA+ [IVIz=)llellxz < lellxz- (32)

This allows us to write first
SupH‘PHngl f]_171[3 (TR,T,Z¢5 + 7T R jN(V’wJ) - AJ@Z’(S)‘PMN

W) || g, 005 + a0 © In(Vbs) — AsWslr2q-1,11)- (33)

— Emax

Recalling the definition of 15, we have
Tes (Thyr2s + T @ IN(Vibs) — Astps) = 0. (34)
from the definition of the eigenmodes that span &5, we also have
(Id — me;)((=OrR — Opr)tbs + s ® TN (Vhs) — Asths) =0, (35)
hence
Try-s + 7o @ In(Vibs) — Astbs = (Id — me; ) (0= (1 — 2°): 1), (36)

so that

V) )

Fupax 100~ mes) (0 (1= 2%)0:5)l|22-1,119)

(37)

sup / 3(TR,m?,/J(s + 7 @ In(Vihs) — Asths)pmn <
J-1,1]

=1
el

Combining this inequality with (27) allows us to state the following result:
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Theorem 3.3. Let o > 0, s > L be such that Vips € L*(] — 1,1[%; H*(] — 1,1))) N H° (] — 1,1[%; L*(] — 1,1])).
Then there exists two constants ¢ and (V') such that

c(V .
[0 = sllz2q-1,13) + Ao = As| < E(—)II(M — e, ) (0= (1 = 2%)0:405) [ L2 (- 1,153)
MAX
+e(M™NVsl|lgoq-11z:L21- 10 + N7V sllLzq 10200 -1,10) (38)
and
—r 10d = 76,)(9:(1 = 2)0:40)ll12g-1.a9) < (o = YsllLzg-rap) + Ao = Aol
sup(M, N)? s = '

+e(M|\Vbs||me-112:02—-110) + N Vsl p2q—1,102;807-1,10))- (39)
Proof. Ouly (38) has been proven, we are going to prove (39) after having noticed that the first term in the
right hand side of (38) accounts for the reliability of the adiabatic variable reduction and the second accounts

for the choice of the filtering frequency (M, N)*. All we have to prove is that the estimator in the right hand
side of (38) is not too large. For ¢ in X denote ¢y as its projection on Xy ; then for all p € R

/] " (Tryr2%5 + 70 @ IN(VPs) — Asts)omn =< F (s, As), (p, 1) > —/ (Vips — mtar @ In(Vibs)) o,

=113

so that

SUP|j | x5 =1 Sioiap Trir=ts + 7 @ In(Vibs) — Asths)pmn
< SUP|jp|lyp=1 < F(is, As), (0, 1) > + SUP|jy | x5 =1 S (Vs — mr @ In (Vb)) - (40)

Using the upper bound in (27) we obtain

SUP|j | x5 =1 Soiap Trir=s + 7 @ In(Vidbs) — Asths)pmn
SNE@s, M)l x2y+ xr + N (IVsllLzqr1pzme) 1,1 + M NV sl o -1102,02)-11]) (41)
The term (Tr, %5 + 7 @ IN(Vhs) — As¥s) being in Xprn hence in X3, we choose it as ¢ after proper
normalization in the above supremum; recalling for b = 2, @ = 0 the inverse inequality that is true for elements
of XMN ( [1] p256)
Vb>a>0, Voun € Xun [[Pmnllxy < O max(M,N)"~|lurnllxg- (42)

we obtain trivially from (36) and the first inequality in (23) the second estimate of the theorem. O

Remark 3.4. The estimator can be explicitly computed since it involves L? norms of discrete functions ;
moreover its computation can be done in a fast manner as it will be seen in section 5, remark 5.1.

4When the functions involved are regular enough, the second term in the right hand side of (38) can be considered small enough
to be neglected (see also [7,8]); this is the case for instance in formula (38) with N2 ~ M? ~ Epax as soon as the regularity
allows to use o, s > 2 (and s is close enough to the solution).
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4. FURTHER RESULTS

4.1. X} estimate

Although the L? norm seems the most natural when studying the convergence of the eigenfunctions, there
are some remarkable situations (see below) where another norm, here the X} norm, is required to measure the
error. Our approach lets us the freedom to analyze these cases as well, obtaining thus an estimator for the error
expressed as ||t — ¢s[xz + [Xo — Asl-

Indeed, denote by H? = D(A®/?) the domain in L?(] — 1,1]) of the s/2-th power of the operator A =
9.(1 — 22)0, endowed with canonical norm; then, for any a > 0 there exists some constant ¢, > 0 such that
the following interpolation property is valid (use (6) and (5.9) p.256, like in Thm. 13.4, p.303 [1]):

Vo e HY(1-1,1), llo—Invlla: < caN'~*[Jv]le. (43)

The result reads:

Theorem 4.1. Let o0 > 0, s > 1 be such that Vs € L*(] — 1,1[% H*(] — 1,1))) N H*(] — 1, 1[%; L*(] — 1,1])).
There exists constants ¢,C > 0 and c¢(V) > 0 such that

(V) max(M, N)

C
1Yo — tsllxz +1Xo — As| < 1(Zd = mg;) (0= (1 = 2%)0:405) || 2-1,112)

Enrax
+  eMNVsll e oz + NUIVsllpegoraea) (44)
and
— 0.(1— 220 < Ao — A
max(M, N) 1(Td = mg; ) (0: (1 — 27)0:905) | L2 -1,012) < (||1/J0—1/15||x3 + Ao — al)

+e(M [V ps| e g1 apziz2—1ap + N2 IVYs || L2 zme))- (45)

Proof. We follow the same lines of proof as in Theorem 3.3 making use of the abstract result for Z = X§ x R,
Y = X}* x R. For the second part we are making use of (42) for b= 1, a = 0. O

Remark 4.2. From the a priori estimate (and the common sense) it is natural to choose N? ~ M? ~ Ejrax.
Theorem 2 gives an optimal a posteriori estimate to judge on the adiabaticity of the variable.

4.2. Separate estimates for eigenvalues and eigenfunctions

The estimators obtained before do not provide separated indications on the convergence of the eigenvalues
and the eigenfunctions alone; moreover they cannot account for well-known phenomena like super-convergence
of eigenvalues when compared with the H' convergence of eigenfunctions.

It seems therefore legitimate to us to search for such tailored estimators. The framework is the following:
suppose as can be hinted from Thm. 3.3 and 4.1 that our discretization of the problem allows for a better
convergence of eigenfunctions in the L? norm when compared with H! norm®. Then we recall in what follows
that the error for the eigenvalues behaves (asymptotically) like the square of the H! error for eigenfunctions.
We use this to obtain an estimator for the error in the eigenvalues alone; it is that estimator that we illustrate
next in numerical experiments.

5this is generally true for most approximation of nuclear structure computations while this may however not be the case for
electronic structure when incomplete basis are used
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Let (5,As) be an approximation of the eigenmode (¢pg, Ag) (105 and 1)y are L%-normalized to 1). Then we
can write:

As — Ao = (Hs,s5) — (Hebo, o) = (H (s — o), (Vs — o)) + 2(Hrbo, (s — 1o))
= (H(¢s — o), (s — o)) + 2X0 (Y0, s — %o) (46)

Using the normalization of ¢5 and 1)y we see that 2Xo (1o, ts —10) equals —Xg [ (1)s —1)?. By the definition
of the space X} we obtain:

As — Ao = ||vs — ¢0||§(5 + /(V — o) (%5 — to)?. (47)

In what follows we need the following
HYPOTHESIS [A]: the L? = X norm of the error for eigenfunctions converges faster than the X} norm.
Note that this is typically the case (through an Aubin-Nitsche type argument see for instance [1]) for good
enough approximations, i.e. assuming we are in the convergence range.

Assuming hypothesis [A] holds, then there exists ¢; and ¢y (close to 1) not depending on the parameter &
such that for 4 small enough

exlls — Yolldy < A — Dol < callghs — wolly- (48)

Let us now assume (to simplify) that M2 ~ N? ~ Ejyax. From the discussion above we know that in
the term [[tyo — 5]|xz + [Ao — As| the leading part is the first one (the second one behaving like the square of

the first) so we obtain by Theorem 3 a new error estimator \/%H(Id — ;) (02 (1 — 2%)02405) || L2(1—1,12) for
llPo — sl x2 and of course, its square is an estimator for [\g — As|. We have therefore proven:

Corollary 4.3. Under the hypothesis [A] and for the M? ~ N? ~ Epax there exists two constants ¢ > 0,
C >0 and c(V) > 0 such that

max{||ho — Ysllxg, /o = Asl} < = [(Td — e, ) (9= (1 — 22)0:405) |2 g—1,1) +
C(Ml_a||V¢5||Hv(]71,1[2;L2]7171[) + Nl_s||V¢5||L2(]71,1[2;Hg)) (49)

and

Tl (Id = 7e, ) (9:(1 = 2%)0:46) | 2(1-1,12) < min{|[ho — ¥sllxz, /Ao = Asl}
(M| \Vips|| e g=1112522 1,07 + NP2 IV 5| 21,1025 m))- (50)

5. NUMERICAL RESULTS AND CONCLUSIONS

In order to prove the efficiency of our error estimator we have considered some numerical experiments. The
system of interest is the water molecule : the hydrogen atoms are located in A and C and the oxygen in B ; we
are interested in finding the fundamental and the first 8 excited states.

Although the theory described so far was derived (for the sake of simplicity) only for some constant multi-
plication function f(R,r) = 1 in the kinetic operator in the adiabatic variable f(R,r)0.(1 — 22)0. (see above)
it can be easily extended in order to accommodate the most appropriate modelisation

f(R,T) = % + %7 r e]rminarmaaz[a R E]RminaRmaaz[a T'min, Rmzn >0 (51)

where p; and py are structural constants that depend on the system under consideration.
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Remark 5.1. The explicit computation of the contribution
1(1d — me;) (0= (1 = 2)0:905) || L2 —1.19) (52)

can be done in a “fast” (i.e. less operation than for the evaluation of 1)5) manner as follows; let us note

M
0.(1—2)0:hi = 4 by foralli=1,.,N (53)
j=1
M
¢P7q7i(R7T) = Z a;gi()OT,S,O(R7T)' (54)
r,s=1

Then we consider the following change of basis

M
@, (R, )= Z npql ¢, 0i(R,7) foralli,j=1,.,Np,g=1,.., M, (55)

phe'=1

where, by the orthonormality of all basis involved (i.e. (®p4.:) for every i and (py,5,0)2—;), we have:

M

P,q=1

p'dj _

npqz Z apqz pq]? (56)
r,s=1

hence

PyQy (R ’I")(a (1 -2 Z Z’Yz npqz P’yql7j(R7 r)hJ (Z) (57)

r,q'=1j=1

From the formula ¢5 =3 Upqi®p.q.ihi given by the solution of the reduced problem we notice

Atps :=1[0:(1 -z ) Z {Z '7zjnpqz @Z’pqi] (}p’,q’,j(R: r)hj (2). (58)

p4",J "p,q;t

This gives us the value of the coefficients At); in the orthonormal basis @, 4 ;(R,7)h;(2z). By tensorization the

computation (58) can be done in cmax(M, N)® operations, less than the number of operations required by the

computation of ¥ (for instance, the diagonalization of 2D hamiltonians is of higher complexity) [9,10,12].
Indeed, our goal is to compute for {(p,¢,7); |Ap.q,j] > (1 +€)Epax} the term:

Boai= Y. Cpgitpmicriivl, vd =1,.,M, j=1,..,N. (59)
7,8,P,q51
It is easy to check that summing first for p and ¢ we obtain in cmax(M, N)® operations some coefficients

05 = Z J’pqia%i- (60)

p,q

»: 77

Next we sum up for the index and note Y7, =3 9”7] Our quantity is:

D Xha0iy (61)
rs
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and it is clear now that we can compute it for all values of (pq’j) needed in cmax(M, N)° operations. The L?
norm of [|(Id — mg;)(9.(1 — 2%).1s)||2(—1,1%) is obtained by summing up the square of 3, s ; for all indices
{0, d,7);1Ap,q.51 < (1+€)Epmax}. Note that only these coefficients have to be computed in (61) and that in

(60) the 1ppq; all vanish for indices {(p, q,7);|Ap.q,il > (1+€)Epax}. Taking this into account leads to a further
reduction in CPU time [10].

The results are displayed in the figures 2-11. We choose discretization parameters M and N such that
N? ~ M? ~ Ejprax. We are plotting the effectivity indexes, i.e. the quotient ”true error over estimated error”.
Of course the ideal case would be “effectivity index = constant”, but this never happens for discretization of
non linear problems. Due to the intricate nature of the eigenvalue problem we cannot expect that. What we
do expect is that our estimator be robust and rather insensitive to different discretization parameters (here
Eprrax). The quotient “ true error over estimated error” was computed with energy expressed in atomic units
(Hartree, Ep,): 1E, = 219474.63cm ™! ; the true error was computed with respect to a solution obtained with a
very fine discretization.

The relative error was measured with respect to the first excitation of the system, that is the difference
between the first and the second eigenvalue, and was found to be in the range 3% — 0.001%, which is typical
for this kind of computations. This choice for measuring the relative error is suggested by the fact that the
value of zero for the potential (or energy) is defined up to an additive constant, thus only relative variations are
relevant. Other procedures for measuring the relative error on the i-th eigenvalue can be proposed (one may
consider as basis for computations the difference between the “”-th and “i — 1”-th eigenvalues), the present
choice was retained for the sake of uniformity. Finally, let us mention that in practice chemists are satisfied
when the energies are known up to several em ™! units, lem™' = .455 - 107°E},. The computations presented
also comply with this requirement, as e.g. for the first eigenvalue, the error decreases from 24cm ™! to less than

lem™t.

Effectivity index (error over estimator) for 1-st eigenvalue Relative error
1.3 0.00018 | T T T T T
12 000016
11 0.00014 =N R e e
' 0.00012 |- S ERRRRRAES oo P
g 1 £ 0.0001 g | g | |
E 09 EoSeds NG
- 6e-05 R P p
08 4e-05 [ N e e
0.7 2e-05 i L) SR L L
0.6 - 0 1
0.057 0.068 0.080 0.091 0.103 0.114 0.125 0.057 0.068 0.080 0.091 0.103 0.114 0.125
EMAX EMAX

FIGURE 2. First eigenvalue (energy expressed in Hartree (Ep))
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Effectivity index (error over estimator) for the 2-nd eigenvalue

0.85 I I 0.0008 _

0.8 : i 0.0007

0.75 0.0006
5 07 | 4 0.0005 3
e | < 0.0004 :
= § = 0.0003 :
0.6 0.0002
0.55 ; N 0.0001 :
I I I I I I

0.5

0.057 0.068 0.080 0.091

Eyax

0.103 0.114 0.125

Relative error

0.057 0.068 0.080 0.091 0.103 0.114 0.125

Eyax

FIGURE 3. Second eigenvalue (energy expressed in Hartree (E}))

Effectivity index (error over estimator) for the 3-rd eigenvalue

0.85 0.0025
0.8F 1
0.75 0.002
0.7
_"g 0.65 _qg 0.0015
= 06 =
RS = 0.001
0.55
0.5 0.0005 : :
0.45 I 1 |
0.4 0 1 | ]
0.057 0.068 0.080 0.091 0.103 0.114 0.125 0.057 0.068 0.080 0.091 0.103 0.114 0.125
Emax Emax
FIGURE 4. Third eigenvalue (energy expressed in Hartree (Ep))
Effectivity index (error over estimator) for 4-th eigenvalue Relative error
3-2' 0.0035 R R R
5 0.008 [P\
. 9 o 0.0025 [N oo
<] <)
< 18 0002\
= i-g P 0.0015 e\
ol N B R i Tt S
P SRS N S RN e N L R S
0.8 ' l l 0 ] | |
0.057 0.068 0.080 0.091 0.103 0.114 0.125 0.057 0.068 0.080 0.091 0.103 0.114 0.125

Eyrax

Relative error

Eyrax

FIGURE 5. Fourth eigenvalue (energy expressed in Hartree (Ep,))
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Effectivity index (error over estimator) for 5-th eigenvalue
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Index

0.057 0.068

Effectivity index (error over estimator) for 6-th eigenvalue

0.080 0.091

Eyax

0.103 0.114 0.125

0.0045
0.004
0.0035
0.003
0.0025
0.002
0.0015
0.001
0.0005
0

Relative error

0.057 0.068 0.080 0.091 0.103 0.114 0.125

Eyax

FIGURE 6. Fifth eigenvalue (energy expressed in Hartree (E},))

0.9
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0.5
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0.4

Index

0.057 0.068 0.080 0.091

Effectivity index (error over estimator) for 7-th eigenvalue

0.103 0.114 0.125
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0.004
0.0035
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0.0015
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0

Relative error

0.057 0.068 0.080 0.091 0.103 0.114 0.125
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FIGURE 7. Sixth eigenvalue (energy expressed in Hartree (Ej))
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0.057 0.068 0.080 0.091 0.103 0.114 0.125
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0.012
0.01 |
0.008
0.006
0.004
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FIGURE 8. Seventh eigenvalue (energy expressed in Hartree (Ej))
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Effectivity index (error over estimator) for 8-th eigenvalue

Relative error

1.6 1 H0PS5) R R 1R SRTITER SRR R -
1.4 0.02 N\ -
g g
T 12 L e et S S -
1 0.01 N\ -
0.8 | | | i | 0,005 [ -
0.6 ' ' ' ' ' 0 | !
0.057 0.068 0.080 0.091 0.103 0.114 0.125 0.057 0.068 0.080 0.091 0.103 0.114 0.125
Emax Evax
FIGURE 9. Eighth eigenvalue (energy expressed in Hartree (Ej))
Effectivity index (error over estimator) for 9-th eigenvalue Relative error
1. , , , , , 0.006
0.9 o TR b 4 0005
Rl T N e 4 0.004
g g
S 0T — 4 < 0003
= i =
] s e I 47 0.002
05 """"""""""""""""" : """""""""""""""" - 0-001 : : :
04 | | | | | 0 | | | | i
0.057 0.068 0.080 0.091 0.103 0.114 0.125 0.057 0.068 0.080 0.091 0.103 0.114 0.125

Eyrax

Enrax

FIGURE 10. Ninth eigenvalue (energy expressed in Hartree (Ep,))

We would also want that the estimator quantitatively describe the order of magnitude of the error. For

the effectivity index this condition requires that the ratio between the extremal values of the effectivity index
be no larger than 10. As we can see from the results displayed, all our indexes fulfill this requirement. In fact
in our case this ratio is roughly 2 (except for eigenmodes 4,5 and 8 where it is closer to 3).

The index involves the norm of the operator DF (¢, A¢) and its inverse mapping; it is surprising to notice
that the range for the effectivity indexes is basically the same, even for different eigenmodes, which was
not predicted by the theory. It seems that the various norms DF (i, \g) vary slowly when calculated in
different eigenmodes. The variation of the effectivity index for two values of Eyjax = 0.0797Ep(17500cm 1)
and Epyax = 0.1253Eh(275006m’1) is plotted in figure 11 for all the nine eigenmodes.

Let us finally mention that the form of the estimator is not easy to find intuitively; other empirical com-
binations of, for instance, powers of Eyrax and the L? “residual” norm involved display divergence for the
effectivity index.

Remark 5.2. It is of course natural to test the estimator on other types of molecules and also on other choices
of adiabatic variables that might be less performant. This will allow to investigate the quality of the part of
the estimator related to adiabaticity. This study requires more heavy discussions with our colleagues chemists,
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Indexes for different eigenmodes for £ = 0.1253E},
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1.05 0.85
0.8
1 0.75
0.7
g 0-95 0'65-
209 0.6
0.55
0.85] 0.5
0.45 1 :
0.8 0.4 '
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7T 8 9

eigenmode no. eigenmode no.

F1GURE 11. Effectivity indexes for different eigenmodes and cut-off Ej;4x values.

which is planed to be done in a future work. Some preliminary results were already obtained for the water
molecule in a different Jacobi system: the hydrogen atoms are located in B and C and the oxygen in A. Due to
this change of the coordinate system, the adiabatic variable, still taken as the angle € (see Figure 1), is different
from the one chosen before. As a typical example a plot of the effectivity index and of the relative error for the
5-th eigenvalue is presented in Figure 12. Note that a full scan of the energy (Eprax > 0.091) was not possible

due to o

ur limited knowlegde of the potential V. In this range of energy the effectivity index variation does not

exceed an order of magnitude, but the (relative) error is about 150 times greater than before (compare with
Figure 6). It appears that this choice of the adiabatic configuration is less pertinent than the former and our
estimator reveals it here.

Effectivity index (error over estimator) for 5-th eigenvalue

10

Index

CORNWE IO ~] 0

Relative error

lr T T T T
0.9 g A
08 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0.7 2\
% 0.6
T 0D N\
0 N\
03 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0.2 = N e IS
LY e R i |
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EMAX EMAX

FIGURE 12. The system studied is again the water molecule in the Jacobi coordinates. This
time the hydrogen atoms are located in B and C' and the oxygen in A. This choice of coordinate
system seems to not have good adiabaticity properties as the relative error is much larger than
in the case of the initial coordinate system.

The authors wish to thank C. Leforestier from Laboratoire Structure et Dynamique des Systéemes Moléculaires et Solides,
Université de Montpellier 2 for providing his basic code to use with our estimators and for the discussions on the subject.
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APPENDIX A.

Remark A.1l. By the definition of the spaces X§ the operator Tg . is an isometry between X¢ and X =
L*(] = 1,1]3) ; for any g € L*(] — 1, 1[?) the equation

TRm,zf =g (62)

has therefore an unique solution f € XZ ; moreover the mapping that to g associates the solution f of (62) is a
compact mapping from L?(] —1,1[3) into L?(] — 1,1[?) (because of the embedding H} (] —1,1[%) C L?(] - 1,1[?)
which is compact). By the Lax-Milgram lemma, as soon as V € L, « > ||[V||L~ the same properties remain
true for the equation

(H+ald)f =T, .f+Vf+af=g (63)

Is is essential for the a posteriori analysis of the (2)-(3) to study the properties of the differential D F'(1)g, Ag)
of F in the solution (¢, Ag) of (2)-(3) ; more precisely, it will be proven that if Ao is a simple eigenmode (i.e.
of multiplicity 1) of H and V' € L™ then DF (19, \) is an isomorphism from L?(] —1,1[*) x R into (X2)" x R.
A straightforward computation gives the following formula for DF (19, o) :

< DF(’I/J(), A0)(1/}7 A)? (QO,,U/) >= f]le[S HQM/J - AO’I/JSO - A'(/)()QO + 2”,[],1’1[3 1/)01/}
= f],m[s (Hp = dop + 2utho) - ¢ — )‘f]le[S Yoy =< (¢, A), DF (0, X0)" (0, 1) > (64)

where DF (19, Ag)* is the adjoint of DF' (109, Ag). To prove the bijectivity of DF (1, Ao) we check that DF (1, Ao)*
is bijective. This is equivalent to prove that for any 8 € R and w € L?(] — 1, 1[?) there exists an (unique) couple
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(¢, 1) such that :
He +2upo — dop = w (65)
[ we=s (66)

]7171[3

The equation (65) can be written (H — \g)yp = w — 2utby. If we suppose that Ao is a simple eigenvalue, then, by
the remark A.1 and by the Fredholm alternative® (65) has a solution iff w — 2utpy L tpo that is p = %& ;in
this case the set of solutions is {¢g + Y10;y € R} where ¢y is a particular fixed solution. By (66) we compute

v = B— < 1o, po > and so we have found a couple (¢ = po + Yo, 1) that satisfy (65) and (66). It is therefore
natural to suppose that V € L* and that all eigenvalues under study are simples.

A.1. Proof of lemma 3.2.

Let us remind that all element ¢p/n in X, n can be written as

N+1
emn (R, T, 2) Z Cp,q,i®p,q,i (R, 7)hi(2), (67)
p,q,i=1
with
Cp.q,i :/ /(pMN(R,T', Ci)‘}p,q,i(R; ’I“)deT' (68)
RJr

By the definition of eigenmodes @, ,; we have also (by use of integration by parts)

Cpoaii fRf oun(R,7,G)—— —— (( OrR — Orr — V(R, 1, C,-))<I>pq,-)der
fR f ( 8RR - arr - (R7 r, Cl))(pMN)(Ra r, Cl) D,q,? (R T')de’I" (69)

qu

Moreover by the definition of the projector we have

(‘PMN — TEs (@MN))(R; r,2) = Z Cp,q,i®p,q,i(R,7)hi(2), (70)

(P,0,9);|Ap,q,i|>(1+€) Enrax

so that

lomn = Tes (PmN) T2 < 3000018y i[> (140 Barax (Cpasi) i

S D (pa0si)i A pai|> (146 Earax A2 » (fRf ((=0rR = Orr = VI(R, 7, Gi))omn (R, 1, Gi)) Bp,g,i (R, T)deT) pi(71)

By the orthogonality of ®, ,; we have

lkpary = mes (earmle < Grrgrbmras) (I1(=0rR = e )l 11
HIZV (s PN G G2 il 21112 ) (72)
which concludes the proof of the first part of the lemma.

Swe write H — Ao = (H +ald) — (a+Xo)Id and we use, for a large enough, the Fredholm alternative ( [4] p. 39) for the compact
operator (H + ald)~! and the eigenvalue oH}/\o # 0.
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To prove (31) note that it is trivially true for b = 0 and by the argument above for b = 2 ; using once more
in (69) the definition of eigenmodes @, ,; and after one supplementary integration by parts we obtain

Cp,qi = ﬁ fR fr ((—8RR — 8” — V(R, r, Ci))QcpMN) (R, r, Ci)q)p7q7i(R, T')deT (73)

so0, by the same line of reasoning as above, upper bound (31) is proved for b = 4 ; by continuing the procedure
for all even values of b and using classical interpolation arguments the conclusion will follows.

A.2. Proof of lemma 2.4.

Let II5r,n be the projector to X, n associated with T . that is for all v € X&, Iy, vv is the element of
X, N that verifies

Yuée XM7N : / TRJ-’Z(’U—HM7N’U)’U,:0. (74)
]7171[3

Note that [I;I1y, n = II5. It is classical” to see that Iy, y has optimal approximation properties, that is, for
any b > 1> a > 0 there exists a constant ¢ independent of M ,N such that

1 b—a
m) vl xg- (75)

o = Taswvll s < e
Write then :
lv — Msvllxg < llv—a,nvllxg + ITa,vv — HsIlag nol xg (76)

By (75) the first term in (76) is optimal, so only the second term remains to be (optimally) upper bounded.
Denote f = I, nv ; recall the minimization property of Il :

50 = argmin{||v — ul|x1; u € Es}

and write, for a =1 :

1
VEnax

which ends the proof of the lemma for a = 1 ; the values of a in [0, 1] are treated by the duality technique of
Aubin and Nitsche (see for instance [1] p. 274-275).

b
If = Tsfllxg < 17 = 7e, Fllxg < Cmax(M, N)||f = me, fll g < Cmax(M, N)( ) Ifllg. ()

Tuse for instance the reasoning in [1] p. 262



