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NUMERICAL ANALYSIS OF THE ADIABATIC VARIABLE METHOD FOR THE

APPROXIMATION OF THE NUCLEAR HAMILTONIAN

Yvon Maday

1; 2

and Gabriel Turini
i

1

Abstra
t. Many problems in quantum 
hemistry deal with the 
omputation of fundamental or ex
ited

states of mole
ules and lead to the resolution of eigenvalue problems. One of the major diÆ
ulties

in these 
omputations lies in the very large dimension of the systems to be solved. Indeed these

eigenfun
tions depend on 3n variables where n stands for the number of parti
les (ele
trons and/or

nu
leari) in the mole
ule. In order to diminish the size of the systems to be solved, the 
hemists have

proposed many interesting ideas. Among those stands the adiabati
 variable method; we present in this

paper a mathemati
al analysis of this approximation and propose, in parti
ular, an a posteriori estimate

that might allow for verifying the adiabati
ity hypothesis that is done on some variables; numeri
al

simulations that support the a posteriori estimators obtained theoreti
ally are also presented.

R�esum�e. De nombreux probl�emes en 
himie quantique portent sur le 
al
ul d'�etats fondamentaux

ou ex
it�es de mol�e
ules et 
onduisent �a la r�esolution de probl�emes aux valeurs propres. Une des

diÆ
ult�es majeures dans 
es 
al
uls est la tr�es grande dimension des syst�emes qui sont en pr�esen
e

lors des simulations num�eriques. En e�et les modes propres re
her
h�es sont fon
tions de 3n variables

o�u n est le nombre de parti
ules (�ele
trons ou noyaux) de la mol�e
ule. A�n de r�eduire la dimension

des syst�emes �a r�esoudre les 
himistes multiplient les id�ees int�eressantes qui permettent d'appro
her le

syst�eme 
omplet. La m�ethode des variables adiabatiques entre dans 
e 
adre et nous pr�esentons i
i une

�etude math�ematique rigoureuse de 
ette approximation. En parti
ulier nous proposons un estimateur

a posteriori qui pourrait permettre de v�eri�er l'hypoth�ese d'adiabati
it�e faite sur 
ertaines variables ;

des simulations num�eriques qui impl�ementent 
et estimateur sont aussi pr�esent�ees.

AMS Subje
t Classi�
ation. 65N25, 35P15, 81V55.

The dates will be set by the publisher.

1. Introdu
tion

One problem frequently en
ountered in 
omputational quantum 
hemistry (
f. [9℄- [14℄) 
onsists in the evalua-

tion of the eigenmodes of some Hamiltonian operator 
orresponding to eigenvalues smaller than some pres
ribed

value E

MAX

.

Under the Born-Oppenheimer approximation the nu
lear Hamiltonian operator 
an be written asH = T+ V

where V stands for the potential multipli
ative part (assumed to be known by a previous ele
troni
 ab-initio


omputation or by empiri
al means) and T is the kineti
 (Lapla
e) operator.

The number of independent variables being important any argument leading to the simpli�
ation of the

behavior of the solution allows to enlarge the 
lass of mole
ules that 
an be treated.

Keywords and phrases: a posteriori estimator, adiabati
 variable method, 
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Figure 1. Ja
obi 
oordinate system

Firstly it seems natural to introdu
e the �rst eigenmodes of the Lapla
e operator written in the 
oordinate

system and sear
h for the eigenmodes of the Hamiltonian operator in this modal basis. In order to do so we

use some Lan
zos-type iterative method whi
h relies on the 
omputation of a ve
tor sequen
e f 

n

g

n

de�ned

re
ursively by:

 

n+1

= 


0

H( 

n

)� 


1

 

n�1

: (1)

In terms of CPU time the most expensive part is to apply the Hamiltonian operator H to  

n

. In fa
t, even if

the 
hosen basis is well adapted for the Lapla
e operator (su
h that it is diagonal), the potential operator matrix

is full. In general we are interested in determining a large part of the spe
trum, the size of the dis
retization

basis (and hen
e the size of matri
es involved) is usually so large that it forbids any 
omputation. We are then

lead to sear
h for methods allowing us to further redu
e the number of basis fun
tions. The pseudo-spe
tral

adiabati
 variable method proposed in [9℄, [10℄ is one su
h pertinent dis
retization tool that seems to give quite

good results in pra
ti
e.

Its prin
iple is presented below for a triatomi
 mole
ule.

Let the Lapla
e operator be written in Ja
obi 
oordinates (R; r; �) (
f. [9℄), and let us assume that we want

to �nd a fun
tion  on the open bri
k

1


 =℄� 1; 1[

2

�℄0; �[ of R

3

su
h that :

~

H = E ; with

~

H =

~

T

R;r;�

+ V = ��

RR

� �

rr

�

f(R; r)

sin �

�

�

sin ��

�

+ V; (2)

where the fun
tion  has to satisfy

 (�1; r; �) =  (R;�1; �) = 0 ; k k

L

2

(
)

= 1: (3)

1

The initial range for R; r is mapped by aÆne transformations into ℄�1; 1[; the 
oordinates R; r are to be 
onsidered hen
eforth

as relative deviations from some equilibrium position; note that the physi
al meaning of � is preserved.
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Then

1. We identify by a normal-mode analysis around the equilibrium position some spe
ial variable for our system

named the adiabati
 variable. Here it will be � and we write the Hamiltonian using the 
oordinate

transformation z = 
os �.

H = ��

RR

� �

rr

� f(R; r)�

z

(1� z

2

)�

z

+ V = T

R;r;z

+ V: (4)

2. We 
onsider the Hamiltonian operator obtained by removing the terms 
ontaining derivatives in the

adiabati
 variable; we 
all it redu
ed Hamiltonian, here it is

H

r

:= T

R;r;z

� (�f(R; r)�

z

(1� z

2

)�

z

) + V = ��

RR

� �

rr

+ V (5)

and diagonalize it by a fast pro
edure. In fa
t the 3D problem is redu
ed to a small number of 2D

problems by freezing the values of the adiabati
 
oordinate. It is here that the physi
al intuition 
omes

into play, the adiabati
 variable being in a 
ertain way the one that allows us to a

urately des
ribe the

total hamiltonian by its a
tion in a small number of �xed values.

3. Sin
e we are looking for eigenmodes with a 
orresponding energy smaller than E

MAX

, we keep among the

ve
tors obtained in step 2 above only those with energy smaller than (1 + �)E

MAX

(where � > 0).

4. We 
onstru
t by tensor produ
t of the ve
tors obtained in step 3 with 
hara
teristi
 fun
tions of the

adiabati
 variable a redu
ed basis used to �nally diagonalize the full hamiltonian operator H .

In pra
ti
e this pro
edure gives good results. However the 
hoi
e of the adiabati
 variable(s) and/or 
oordinate

system a�e
ts substantially its eÆ
ien
y. Therefore it seems interesting to give some a priori estimates to

help intuition in the 
hoi
e of the adiabati
 variable for a given system and to 
omplement this analysis by

a posteriori estimators so as to de
ide about its usefulness on
e the 
omputation is over and also in order to


on�rm the 
hoi
e of � used in the trun
ation

2

.

Before pro
eeding with the di�erent error analysis, it is important to introdu
e the 
hoi
e of the values of

the adiabati
 variable that are being frozen during step 2. These are the Gauss quadrature points for that

variable. This 
hoi
e 
an be justi�ed by at least two reasons. The �rst one is that these points are optimal

for the evaluation (through quadrature formulas) of integrals involved in the 
omputation of the a
tion of the

potential over the ve
tors required in the Lan
zos re
urren
e. The se
ond argument is that this set of points is

optimal for interpolating in the linear spa
e of polynomials spanned by the �rst eigenmodes of the di�erential

operator �

z

(1 � z

2

)�

z

in the adiabati
 variable, i.e. the Legendre polynomials fL

n

g

n

. The values we freeze

are therefore the Gauss-Legendre points, namely the zeroes f�

i

g

1�i�N+1

of the Legendre polynomial L

N+1

of

degree N +1. It is 
lassi
al to asso
iate to these points a (lo
alized) basis 
ontaining 
hara
teristi
 polynomials

of degree � N , fh

j

g

1�j�N+1

su
h that h

j

(�

i

) = Æ

i;j

, i; j = 1; :::N + 1 (Krone
ker symbol).

We introdu
e the interpolation operator J

N

from C

0

(℄� 1; 1[) to P

N

(℄� 1; 1[) on these nodes. This operator

has optimal approximation properties (
f. [1℄ Thm.13.2, p.299), that is for any real � >

1

2

, there exists some


onstant 
 > 0 su
h that

8v 2 H

�

(℄� 1; 1[); kv �J

N

vk

L

2

(℄�1;1[)

� 
N

��

kvk

H

�

(℄�1;1[)

: (6)

2. A PRIORI ANALYSIS

We propose this analysis for the 
ase of the triatomi
 system (2) - (3) where for simpli
ity we set f(R; r) � 1.

This a priori analysis is not the main purpose of the paper and serves only as preliminary veri�
ation of the

pertinen
e of the algorithm. A more detailed analysis is presented in the next se
tion. As we have already seen,

the dis
retization has 2 steps. Firstly we introdu
e the eigenfun
tions of the operator T

R;r;z

on L

2

(℄ � 1; 1[

3

),

here '

k;`;n

(R; r; z) = sin(

k�

2

(R+ 1)) sin(

`�

2

(r +1))L

n

(z) for (k; `; n) in N

3

. We propose an initial dis
retization

2

This \adiabati
 redu
tion method" has some similarities with the dimension redu
tion method used in me
hani
s. See [15℄ for

a presentation of this method and for adapted error estimators. However the method and the analysis te
hnique are di�erent.
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spa
e X

M;N

spanned by '

k;`;n

for 1 � k; ` �M , 0 � n � N . In the se
ond step we diagonalize over X

M;0

the

2D operators ��

RR

��

rr

+V (:; :; �

i

) for ea
h i, 1 � i � N +1; we 
all

�

�

p;q;i

�

1�p;q�M

and

�

�

p;q;i

�

1�p;q�M

the

L

2

asso
iated normalized eigenve
tors and 
orresponding eigenvalues respe
tively.

We de�ne some Sobolev-type spa
es asso
iated with the kineti
 operator T

R;r;z

. More pre
isely let X

s

0

be the


losure of C

1

0

(℄� 1; 1[

3

)\C

1

(℄� 1; 1[

3

) in the domain of (T

R;r;z

)

s=2

endowed with its 
anoni
al norm. Theorem

5.6 from [6℄ and Theorem 2.3 from [5℄ tome 1 p.19 allow to des
ribe X

s

0

. We obtain for instan
e:

X

2

0

= fu 2 H

1

0

(℄� 1; 1[

3

); �

RR

u; �

rr

u; �

Rr

u;

p

1� z

2

�

Rz

u;

p

1� z

2

�

rz

u; (1� z

2

)�

zz

u 2 L

2

(℄� 1; 1[

3

)g: (7)

Next we introdu
e the linear spa
e E

Æ

spanned by �

p;q;i

(R; r)h

i

(z) (3D fun
tions) that 
orrespond to eigen-

values �

p;q;i

� (1 + �)E

MAX

. The �nal approximation of our problem then 
onsists in sear
hing in E

Æ

the

eigenfun
tions of the operator H

Æ

de�ned for all  ; ' 2 X

1

0

as follows

(H

Æ

';  ) =

R

℄�1;1[

3

�

R

 �

R

'+ �

r

 �

r

'+ (1� z

2

)�

z

 �

z

'dRdrdz

+

R

℄�1;1[

2

P

N+1

i=1

V (R; r; �

i

)( ')(R; r; �

i

)�

i

dRdr; (8)

where f�

i

g

1�i�N+1

are the weights of the Gauss-Legendre quadrature formula.

Remark 2.1. It is interesting to note that �

p;q;j

(R; r)h

j

(z); 1 � p; q �M; 1 � j � N+1 are the eigenfun
tions

on X

M;N

of the operator H

r

Æ

de�ned as follows

(H

r

Æ

';  ) =

Z

℄�1;1[

2

N+1

X

i=1

 

(�

R

 �

R

'+ �

r

 �

r

')(R; r; �

i

) + V (R; r; �

i

)( ')(R; r; �

i

)

!

�

i

dRdr:

This operator is a kind of lo
alized hamiltonian in the points �

i

(
hemists are used to noting it H(R; r; z =

�

i

),i = 1; N + 1) made up by 
ontributions from ea
h �

i

point.

Remark 2.2. The method 
an be readily extended for the 
ase of more than 3 variables by re
ursively applying

the above pro
edure. In fa
t we 
onsider some of them as adiabati
 until we rea
h a matrix that 
an be easily

diagonalized. See [12℄ for an example in the 
ase of 6 variables.

We write our problem in the form:

find u = ( ; �) 2 L

2

(℄� 1; 1[

3

)� R su
h that F (u) = 0; (9)

where F is the smooth (C

1

) fun
tion from L

2

(℄� 1; 1[

3

)� R into the dual (X

2

0

)

�

� R of X

2

0

� R given by:

< F ( ; �); ('; �) >

(X

2

0

)

�

�R;X

2

0

�R

=

R

℄�1;1[

3

 (H'� �') + �

 

R

℄�1;1[

3

 

2

� 1

!

=

R

℄�1;1[

3

 (T

R;r;z

'+ V '� �') + �

 

R

℄�1;1[

3

 

2

� 1

!

: (10)

It is easy to see that F ( ; �) = 0 is equivalent to (2)-(3). Moreover if �

0

is a simple (i.e. of multipli
ity 1)

eigenvalue of (2) 
orresponding to an eigenve
tor  

0

(
hosen with L

2

-norm equal to 1) and V 2 L

1

(whi
h is

never a restri
tion in pra
ti
e), then, applying the Fredholm alternative as proven in Appendix A we 
on
lude

that DF ( 

0

; �

0

) is an isomorphism from L

2

(℄� 1; 1[

3

)�R to (X

2

0

)

�

�R. In order to avoid te
hni
al diÆ
ulties

we will suppose, in what follows, that all eigenvalues under 
onsideration are simple and V 2 L

1

.
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Let �

Æ

be the proje
tor to E

Æ

asso
iated with T

R;r;z

that is for all v 2 X

2

0

; �

Æ

v is the element of E

Æ

that

veri�es

8 u

Æ

2 E

Æ

:

Z

℄�1;1[

3

T

R;r;z

(v ��

Æ

v)u

Æ

= 0: (11)

We de�ne fun
tions F

Æ

from L

2

� R into (X

2

0

)

�

� R by the formulas:

< F

Æ

( ; �); ('; �) >

(X

2

0

)

�

�R;X

2

0

�R

=

R

℄�1;1[

3

 (H

Æ

� �)(�

Æ

')

+�

 

R

℄�1;1[

3

 

2

� 1

!

+

R

℄�1;1[

3

 T

R;r;z

('��

Æ

'): (12)

Proposition 2.3. The solutions of F

Æ

( 

Æ

; �

Æ

) = 0 are exa
tly eigenfun
tions of H

Æ

on E

Æ

.

Proof. Choose �rst ' orthogonal to E

Æ

with respe
t to T

R;r;z

and � = 0 and obtain  2 E

Æ

; then 
hoosing

' = 0 yields k k

L

2

= 1 and �nally ' 2 E

Æ

and � = 0 proves that

(H

Æ

 ; ') = (� ; '); 8' 2 E

Æ

: (13)

We are now applying Theorem 6.1 ( [3℄ vol. 5 p.530) to show that kF

Æ

( 

0

; �

0

)k

(X

2

0

)

�

�R

is an upper bound

(modulo some 
onstant) for the error between ( 

0

; �

0

) and ( 

Æ

; �

Æ

). More pre
isely there exists a 
onstant

C > 0 that does not depend on M ,N or E

MAX

and a neighborhood V of Æ

0

(de�ned as the \limit" value where

F

Æ

0

= F ) su
h that for all Æ 2 V nfÆ

0

g and ( 

0

; �

0

) su
h that F ( 

0

; �

0

) = 0 there exists ( 

Æ

; �

Æ

) solution of

F

Æ

( 

Æ

; �

Æ

) = 0 su
h that:

k 

0

�  

Æ

k

L

2

(
)

+ j�

0

� �

Æ

j � CkF

Æ

( 

0

; �

0

)k

(X

2

0

)

�

�R

: (14)

It remains to evaluate the right hand side of (14) in order to obtain the a priori upper bound for the error

between the exa
t and the dis
rete solution.

Sin
e ( 

0

; �

0

) is a solution to our problem and by the de�nition (11) of the proje
tor �

Æ

we obtain for all

('; �) 2 (X

2

0

)� R :

< F

Æ

( 

0

; �

0

); ('; �) >

(X

2

0

)

�

�R;X

2

0

�R

=

Z

℄�1;1[

3

 

0

(H

Æ

�H)(�

Æ

') + ( 

0

��

Æ

 

0

)T

R;r;z

('��

Æ

'): (15)

De�nition. We state that N ,M and E

MAX

are 
hosen in a 
oherent manner and denote N

2

'M

2

' E

MAX

if there exists 3 
onstants independent of the dis
retization su
h that N

2

� 


1

M

2

� 


2

E

MAX

� 


3

N

2

.

We will make use in the following of some (optimal) approximation properties of proje
tor �

Æ

:

Lemma 2.4. Assume that N

2

'M

2

' E

MAX

. Then for any b � 1 � a � 0 there exists a 
onstant 
(a; b) su
h

that:

8v 2 X

b

0

: kv ��

Æ

vk

X

a

0

� 
(a; b)(�

Æ

)

b�a

kvk

X

b

0

: (16)

where �

Æ

is max

n

1

N

;

1

M

;

1

p

E

MAX

o

Proof. See the appendix A.
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Using lemma 2.4 the optimality properties of the interpolation operator I

N

(stated in (6)) we obtain from

(14) and (15) the following a priori estimate :

Theorem 2.5. Let ( 

0

; �

0

) be a simple eigenmode of (2)-(3) and s � 1, t >

1

2

su
h that  

0

2 X

s

0

and

V  

0

2 L

2

(℄ � 1; 1[

2

;H

t

(℄ � 1; 1[)). Then there exists a 
onstant C(s; t) > 0 su
h that for ea
h Æ there exists a

solution of F

Æ

( 

Æ

; �

Æ

) = 0

3

su
h that:

k 

0

�  

Æ

k

L

2
+ j�

0

� �

Æ

j � C(s; t)

�

(�

Æ

)

s

k( 

0

; �

0

)k

X

s

0

�R

+N

�t

kV  

0

k

L

2

(℄�1;1[

2

;H

t

(℄�1;1[))

�

: (17)

Proof. Inserting in (14) the equality (15) and using the de�nition of the norm in (X

2

0

)

�

� R one obtains

k 

0

�  

Æ

k

L

2

(
)

+ j�

0

� �

Æ

j � C sup

k'k

X

2

0

=1

R

℄�1;1[

3

 

0

(H

Æ

�H)(�

Æ

') + ( 

0

��

Æ

 

0

)T

R;r;z

('��

Æ

')

� C sup

k'k

X

2

0

=1

R

℄�1;1[

3

(V  

0

� (Id

R

2


J

N

)V  

0

)�

Æ

'+ ( 

0

��

Æ

 

0

)T

R;r;z

('��

Æ

')

� sup

k'k

X

2

0

=1

R

℄�1;1[

3

(V  

0

� (Id

R

2


J

N

)V  

0

)�

Æ

'+ sup

k'k

X

2

0

=1

R

℄�1;1[

3

( 

0

��

Æ

 

0

)T

R;r;z

('��

Æ

') (18)

By the de�nition of the proje
tor �

Æ

the se
ond term in the right hand side of (18) equals

sup

k'k

X

2

0

=1

Z

℄�1;1[

3

( 

0

��

Æ

 

0

)T

R;r;z

'; (19)

and 
an be upper bounded by

sup

k'k

X

2

0

=1

k 

0

��

Æ

 

0

k

L

2

kT

R;r;z

(')k

L

2

� k 

0

��

Æ

 

0

k

L

2

� 
(0; s)�

s

Æ

k 

0

k

X

s

0

: (20)

Using (6) and the stability of the proje
tor �

Æ

one 
an now bound the �rst term in the right hand side of (18)

and obtain the 
on
lusion of the theorem.

Remark 2.6. If V is smooth enough, it is obvious that the norms k 

0

k

X

p

0

, kV  

0

k

L

2

(℄�1;1[

2

;H

2p

(℄�1;1[))

and

kV  

0

k

H

2p

(℄�1;1[

2

;L

2

(℄�1;1[))

are upper bounded by 
j�

0

j

p

so that for the natural 
hoi
e N

2

' M

2

' E

MAX

the 
onvergen
e rate s
ales as 
(p)

�

�

0

N

2

�

p

.

3. A POSTERIORI ANALYSIS OF THE METHOD

Let us still fo
us on the 
ase of the triatomi
 system (2) and (3), and let us 
onsider now an a posteriori error

analysis. The goal of su
h a tool is to asses the approximation on
e the 
omputation is done. We are working

as before on the formulation F (u) = 0 de�ned in (10).

The result (17) show that for any simple eigenmode u

0

= ( 

0

; �

0

) of (2)-(3), there exists an eigenmode

( 

Æ

; �

Æ

) whi
h is 
lose enough. To know more pre
isely how 
lose they are, one uses results derived from [10℄

whi
h allow to prove that under 
ertain hypothesis, F (u) is an estimator for the error between u

0

and u. We

shall make use of this abstra
t result in the following form:

Theorem 3.1. Let Z,Y be two Hilbert spa
es and F 2 C

1

(Z; Y ). Let u

0

be a solution of F (u) = 0 su
h that

DF (u

0

) 2 Isom(Z; Y ) and moreover assume DF satis�es a Lips
hitz-type property

9�

u

0

> 0 : k[DF (u

0

) � DF (u

0

+ tU)℄ Uk

Y

� 
tkUk

2

Z

; 8 0 < t < �

u

0

; 8 U 2 Z; kUk < �

u

0

: (21)

3

In fa
t sin
e the eigenmode ( 

0

; �

0

) is simple for Æ 
lose enough to Æ

0

the problem F

Æ

( 

Æ

; �

Æ

) = 0 will have only two solutions

with 
orresponding eigenvalues 
lose to �

0

that is ( 

Æ

; �

Æ

) and (� 

Æ

; �

Æ

).
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Then there exists some R > 0 (R = min

�

1

2

kDF (u

0

)

�1

k

�1

L(Y;Z)

; kDF (u

0

)k

L(Z;Y )

�

) su
h that for all u 2

B(u

0

; R):

1

2

kDF (u

0

)k

�1

L(Z;Y )

� kF (u)k

Y

� ku� u

0

k

Z

� 2kDF (u

0

)

�1

k

L(Y;Z)

� kF (u)k

Y

: (22)

Choose Z = L

2

(℄� 1; 1[

3

)� R and Y = (X

2

0

)

�

� R and note that DF obviously satis�es the hypothesis (21) of

Theorem 3.1 ; re
alling that DF ( 

0

; �

0

) 2 Isom(L

2

(℄� 1; 1[

3

)� R; (X

2

0

)

�

� R) we obtain from Theorem 3.1 :


kF ( 

Æ

; �

Æ

)k

Y

� k 

0

�  

Æ

k

L

2

(℄�1;1[

3

)

+ j�

0

� �

Æ

j � CkF ( 

Æ

; �

Æ

)k

Y

(23)

for two positive 
onstants 
 and C.

We write easily

kF ( 

Æ

; �

Æ

)k

Y

= sup

(';�)2X

2

0

�R

R

℄�1;1[

3

(T

R;r;z

 

Æ

+ V  

Æ

� �

Æ

 

Æ

)'

k('; �)k

X

2

0

�R

; (24)

(note that � does not enter in this estimate). De�ne �

M

as the L

2

-proje
tion operator from L

2

(℄ � 1; 1[

3

) to

X

M;0

; we will use the following approximation property of �

M

(
f. [16℄ Ch.9, p.278): for any � � 0 there exists

a 
onstant 
 > 0 depending only of � su
h that

8v 2 H

�

(℄� 1; 1[

2

;L

2

(℄� 1; 1[)) kv � �

M

vk

L

2

(℄�1;1[

2

;L

2

(℄�1;1[))

� 
N

��

kvk

H

�

(℄�1;1[

2

;L

2

(℄�1;1[))

(25)

By de�ning '

MN

as the L

2

proje
tion of ' on X

MN

we obtain

kF ( 

Æ

; �

Æ

)k

Y

= sup

k'k

X

2

0

=1

R

℄�1;1[

3

((V  

Æ

� �

M


J

N

(V  

Æ

))'+ (T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

)'

= sup

k'k

X

2

0

=1

R

℄�1;1[

3

((V  

Æ

� �

M


J

N

(V  

Æ

))'+ (T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

)'

MN

� sup

k'k

X

2

0

=1

R

℄�1;1[

3

((V  

Æ

� �

M


J

N

(V  

Æ

))'

+sup

'2X

2

0

;k'k

X

2

0

=1

R

℄�1;1[

3

(T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

)'

MN

; (26)

where we have used the fa
t that T

R;r;z

 

Æ

2 X

MN

between the �rst and se
ond line. The �rst 
ontribution

in the right hand side measures the approximation resulting from the redu
tion of the a
tion of V to X

MN

. By

(6) - (25) it 
an be bounded as follows

sup

'2X

2

0

;k'k

X

2

0

=1

j

R

℄�1;1[

3

(V  

Æ

� �

M


J

N

(V  

Æ

))'j

� 
(N

�s

kV  

Æ

k

L

2

(℄�1;1[

2

;H

s

(℄�1;1[)

+M

��

kV  

Æ

k

H

�

(℄�1;1[

2

;L

2

(℄�1;1[))

); (27)

for all � � 0 and s >

1

2

su
h that

V  

Æ

2 L

2

(℄� 1; 1[

2

;H

s

(℄� 1; 1[)) \H

�

(℄� 1; 1[

2

;L

2

(℄� 1; 1[): (28)

The se
ond 
ontribution in the right hand side of (26) represents the loss of information resulting from

negle
ting in X

MN

the eigenmodes �

p;q;i

h

i

having energy larger than (1 + �)E

MAX

. It is this 
ontribution

that allows us to asses the adiabati
ity of the 
hosen 
oordinate system sin
e it measures the amount of energy
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ontained in the proje
tion of (T

R;r;z

 

Æ

+ �

M


 J

N

(V  

Æ

) � �

Æ

 

Æ

) on the reje
ted eigenmodes. Indeed its

proje
tion on all other eigenmodes is zero by the de�nition of  

Æ

. This leads us to

sup

'2X

2

0

;k'k

X

2

0

=1

R

℄�1;1[

3

(T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

)'

MN

= sup

'2X

2

0

;k'k

X

2

0

=1

R

℄�1;1[

3

(T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

)('

MN

� �

E

Æ

('

MN

))

� kT

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

k

L

2

sup

'2X

2

0

;k'k

X

2

0

=1

k'

MN

� �

E

Æ

('

MN

)k

L

2

: (29)

In these estimates, �

E

Æ

is the L

2

proje
tion operator over the redu
ed spa
e E

Æ

.

An upper bound for the last term is given by the

Lemma 3.2. For any element '

MN

in X

M;N

the following estimate is true

k'

MN

� �

E

Æ

('

MN

)k

2

L

2

� (

1

(1 + �)E

MAX

)

2

�

k(��

RR

� �

rr

)'

MN

k

2

L

2

(℄�1;1[

3

)

+ kV k

2

L

1

k'

MN

k

2

L

2

(℄�1;1[

3

)

�

: (30)

Moreover for any b � 0 there exists a 
onstant C independent of M ,N ,E

MAX

su
h that

k'

MN

� �

E

Æ

('

MN

)k

L

2

� C

�

1

p

E

MAX

�

b

k'

MN

k

X

b

0

: (31)

Proof. See the appendix A .

From now on we suppose � smaller than some �xed 
onstant (usually less than 1). Using the stability of the

L

2

proje
tor on eigenmodes we obtain that there exists a 
onstant 
 > 0 su
h that

k'

MN

� �

E

Æ

('

MN

)k

L

2

� (




E

MAX

)(1 + kV k

L

1

)k'k

X

2

0

�


(V )

E

MAX

k'k

X

2

0

: (32)

This allows us to write �rst

sup

k'k

X

2

0

=1

R

℄�1;1[

3

(T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

)'

MN

�


(V )

E

MAX

kT

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

k

L

2

(℄�1;1[

3

)

: (33)

Re
alling the de�nition of  

Æ

, we have

�

E

Æ

(T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

) = 0: (34)

from the de�nition of the eigenmodes that span E

Æ

, we also have

(Id� �

E

Æ

)((��

RR

� �

rr

) 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

) = 0; (35)

hen
e

T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

= (Id� �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

); (36)

so that

sup

k'k

X

2

0

=1

Z

℄�1;1[

3

(T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

)'

MN

�


(V )

E

MAX

k(Id� �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

)k

L

2

(℄�1;1[

3

)

(37)

Combining this inequality with (27) allows us to state the following result:
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Theorem 3.3. Let � � 0, s >

1

2

be su
h that V  

Æ

2 L

2

(℄ � 1; 1[

2

;H

s

(℄ � 1; 1[)) \H

�

(℄ � 1; 1[

2

;L

2

(℄ � 1; 1[)).

Then there exists two 
onstants 
 and 
(V ) su
h that

k 

0

�  

Æ

k

L

2

(℄�1;1[

3

)

+ j�

0

� �

Æ

j �


(V )

E

MAX

k(Id� �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

)k

L

2

(℄�1;1[

3

)

+
(M

��

kV  

Æ

k

H

�

(℄�1;1[

2

;L

2

℄�1;1[)

+N

�s

kV  

Æ

k

L

2

(℄�1;1[

2

;H

s

℄�1;1[)

) (38)

and




sup(M;N)

2

k(Id� �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

)k

L

2

(℄�1;1[

3

)

�

�

k 

0

�  

Æ

k

L

2

(℄�1;1[

3

)

+ j�

0

� �

Æ

j

�

+
(M

��

kV  

Æ

k

H

�

(℄�1;1[

2

;L

2

℄�1;1[)

+N

�s

kV  

Æ

k

L

2

(℄�1;1[

2

;H

s

℄�1;1[)

): (39)

Proof. Only (38) has been proven, we are going to prove (39) after having noti
ed that the �rst term in the

right hand side of (38) a

ounts for the reliability of the adiabati
 variable redu
tion and the se
ond a

ounts

for the 
hoi
e of the �ltering frequen
y (M;N)

4

. All we have to prove is that the estimator in the right hand

side of (38) is not too large. For ' in X

2

0

denote '

MN

as its proje
tion on X

MN

; then for all � 2 R

Z

℄�1;1[

3

(T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

)'

MN

=< F ( 

Æ

; �

Æ

); ('; �) > �

Z

℄�1;1[

3

((V  

Æ

� �

M


J

N

(V  

Æ

))';

so that

sup

k'k

X

2

0

=1

R

℄�1;1[

3

(T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

)'

MN

� sup

k'k

X

2

0

=1

< F ( 

Æ

; �

Æ

); ('; �) > +sup

k'k

X

2

0

=1

R

℄�1;1[

3

((V  

Æ

� �

M


J

N

(V  

Æ

))': (40)

Using the upper bound in (27) we obtain

sup

k'k

X

2

0

=1

R

℄�1;1[

3

(T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

)'

MN

� kF ( 

Æ

; �

Æ

)k

(X

2

0

)

�

�R

+ 
(N

�s

kV  

Æ

k

L

2

(℄�1;1[

2

;H

s

℄�1;1[)

+M

��

kV  

Æ

k

H

�

(℄�1;1[

2

;L

2

℄�1;1[)

) (41)

The term (T

R;r;z

 

Æ

+ �

M


 J

N

(V  

Æ

) � �

Æ

 

Æ

) being in X

MN

hen
e in X

2

0

, we 
hoose it as ' after proper

normalization in the above supremum; re
alling for b = 2, a = 0 the inverse inequality that is true for elements

of X

MN

( [1℄ p.256)

8 b � a � 0; 8 

MN

2 X

M;N

k 

MN

k

X

b

0

� C max(M;N)

b�a

k 

MN

k

X

a

0

: (42)

we obtain trivially from (36) and the �rst inequality in (23) the se
ond estimate of the theorem.

Remark 3.4. The estimator 
an be expli
itly 
omputed sin
e it involves L

2

norms of dis
rete fun
tions ;

moreover its 
omputation 
an be done in a fast manner as it will be seen in se
tion 5, remark 5.1.

4

When the fun
tions involved are regular enough, the se
ond term in the right hand side of (38) 
an be 
onsidered small enough

to be negle
ted (see also [7, 8℄); this is the 
ase for instan
e in formula (38) with N

2

' M

2

' E

MAX

as soon as the regularity

allows to use �; s > 2 (and  

Æ

is 
lose enough to the solution).
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4. FURTHER RESULTS

4.1. X

1

0

estimate

Although the L

2

norm seems the most natural when studying the 
onvergen
e of the eigenfun
tions, there

are some remarkable situations (see below) where another norm, here the X

1

0

norm, is required to measure the

error. Our approa
h lets us the freedom to analyze these 
ases as well, obtaining thus an estimator for the error

expressed as k 

0

�  

Æ

k

X

1

0

+ j�

0

� �

Æ

j.

Indeed, denote by H

s

�

= D(A

s=2

) the domain in L

2

(℄ � 1; 1[) of the s=2-th power of the operator A =

�

z

(1 � z

2

)�

z

endowed with 
anoni
al norm; then, for any � > 0 there exists some 
onstant 


�

> 0 su
h that

the following interpolation property is valid (use (6) and (5.9) p.256, like in Thm. 13.4, p.303 [1℄):

8v 2 H

�

�

(℄� 1; 1[); kv �J

N

vk

H

1

�

� 


�

N

1��

kvk

H

�

�

: (43)

The result reads:

Theorem 4.1. Let � � 0, s >

1

2

be su
h that V  

Æ

2 L

2

(℄ � 1; 1[

2

;H

s

(℄ � 1; 1[)) \H

�

(℄ � 1; 1[

2

;L

2

(℄ � 1; 1[)).

There exists 
onstants 
; C > 0 and 
(V ) > 0 su
h that

k 

0

�  

Æ

k

X

1

0

+ j�

0

� �

Æ

j �


(V )max(M;N)

E

MAX

k(Id� �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

)k

L

2

(℄�1;1[

3

)

+ 
(M

1��

kV  

Æ

k

H

�

(℄�1;1[

2

;L

2

℄�1;1[)

+N

1�s

kV  

Æ

k

L

2

(℄�1;1[

2

;H

s

�

)

) (44)

and

C

max(M;N)

k(Id� �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

)k

L

2

(℄�1;1[

3

)

�

�

k 

0

�  

Æ

k

X

1

0

+ j�

0

� �

Æ

j

�

+
(M

1��

kV  

Æ

k

H

�

(℄�1;1[

2

;L

2

℄�1;1[)

+N

1�s

kV  

Æ

k

L

2

(℄�1;1[

2

;H

s

�

)

): (45)

Proof. We follow the same lines of proof as in Theorem 3.3 making use of the abstra
t result for Z = X

1

0

� R,

Y = X

1

0

�

� R. For the se
ond part we are making use of (42) for b = 1, a = 0.

Remark 4.2. From the a priori estimate (and the 
ommon sense) it is natural to 
hoose N

2

'M

2

' E

MAX

.

Theorem 2 gives an optimal a posteriori estimate to judge on the adiabati
ity of the variable.

4.2. Separate estimates for eigenvalues and eigenfun
tions

The estimators obtained before do not provide separated indi
ations on the 
onvergen
e of the eigenvalues

and the eigenfun
tions alone; moreover they 
annot a

ount for well-known phenomena like super-
onvergen
e

of eigenvalues when 
ompared with the H

1


onvergen
e of eigenfun
tions.

It seems therefore legitimate to us to sear
h for su
h tailored estimators. The framework is the following:

suppose as 
an be hinted from Thm. 3.3 and 4.1 that our dis
retization of the problem allows for a better


onvergen
e of eigenfun
tions in the L

2

norm when 
ompared with H

1

norm

5

. Then we re
all in what follows

that the error for the eigenvalues behaves (asymptoti
ally) like the square of the H

1

error for eigenfun
tions.

We use this to obtain an estimator for the error in the eigenvalues alone; it is that estimator that we illustrate

next in numeri
al experiments.

5

this is generally true for most approximation of nu
lear stru
ture 
omputations while this may however not be the 
ase for

ele
troni
 stru
ture when in
omplete basis are used
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Let ( 

Æ

; �

Æ

) be an approximation of the eigenmode ( 

0

; �

0

) ( 

Æ

and  

0

are L

2

-normalized to 1). Then we


an write:

�

Æ

� �

0

= (H 

Æ

;  

Æ

)� (H 

0

;  

0

) = (H( 

Æ

�  

0

); ( 

Æ

�  

0

)) + 2(H 

0

; ( 

Æ

�  

0

))

= (H( 

Æ

�  

0

); ( 

Æ

�  

0

)) + 2�

0

( 

0

;  

Æ

�  

0

) (46)

Using the normalization of  

Æ

and  

0

we see that 2�

0

( 

0

;  

Æ

� 

0

) equals ��

0

R

( 

Æ

� 

0

)

2

. By the de�nition

of the spa
e X

1

0

we obtain:

�

Æ

� �

0

= k 

Æ

�  

0

k

2

X

1

0

+

Z

(V � �

0

)( 

Æ

�  

0

)

2

: (47)

In what follows we need the following

HYPOTHESIS [A℄: the L

2

= X

0

0

norm of the error for eigenfun
tions 
onverges faster than the X

1

0

norm.

Note that this is typi
ally the 
ase (through an Aubin-Nits
he type argument see for instan
e [1℄) for good

enough approximations, i.e. assuming we are in the 
onvergen
e range.

Assuming hypothesis [A℄ holds, then there exists 


1

and 


2

(
lose to 1) not depending on the parameter Æ

su
h that for Æ small enough




1

k 

Æ

�  

0

k

2

X

1

0

� j�

Æ

� �

0

j � 


2

k 

Æ

�  

0

k

2

X

1

0

: (48)

Let us now assume (to simplify) that M

2

' N

2

' E

MAX

. From the dis
ussion above we know that in

the term k 

0

�  

Æ

k

X

1

0

+ j�

0

� �

Æ

j the leading part is the �rst one (the se
ond one behaving like the square of

the �rst) so we obtain by Theorem 3 a new error estimator


(V )

p

E

MAX

k(Id � �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

)k

L

2

(℄�1;1[

3

)

for

k 

0

�  

Æ

k

X

1

0

and of 
ourse, its square is an estimator for j�

0

� �

Æ

j. We have therefore proven:

Corollary 4.3. Under the hypothesis [A℄ and for the M

2

' N

2

' E

MAX

there exists two 
onstants 
 > 0,

C > 0 and 
(V ) > 0 su
h that

maxfk 

0

�  

Æ

k

X

1

0

;

p

j�

0

� �

Æ

jg �


(V )

p

E

MAX

k(Id� �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

)k

L

2

(℄�1;1[

3

)

+


(M

1��

kV  

Æ

k

H

�

(℄�1;1[

2

;L

2

℄�1;1[)

+N

1�s

kV  

Æ

k

L

2

(℄�1;1[

2

;H

s

�

)

) (49)

and

C

p

E

MAX

k(Id� �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

)k

L

2

(℄�1;1[

3

)

� minfk 

0

�  

Æ

k

X

1

0

;

p

j�

0

� �

Æ

jg


(M

1��

kV  

Æ

k

H

�

(℄�1;1[

2

;L

2

℄�1;1[)

+N

1�s

kV  

Æ

k

L

2

(℄�1;1[

2

;H

s

�

)

): (50)

5. NUMERICAL RESULTS AND CONCLUSIONS

In order to prove the eÆ
ien
y of our error estimator we have 
onsidered some numeri
al experiments. The

system of interest is the water mole
ule : the hydrogen atoms are lo
ated in A and C and the oxygen in B ; we

are interested in �nding the fundamental and the �rst 8 ex
ited states.

Although the theory des
ribed so far was derived (for the sake of simpli
ity) only for some 
onstant multi-

pli
ation fun
tion f(R; r) � 1 in the kineti
 operator in the adiabati
 variable f(R; r)�

z

(1� z

2

)�

z

(see above)

it 
an be easily extended in order to a

ommodate the most appropriate modelisation

f(R; r) =

�

1

R

2

+

�

2

r

2

; r 2℄r

min

; r

max

[; R 2℄R

min

; R

max

[; r

min

; R

min

> 0 (51)

where �

1

and �

2

are stru
tural 
onstants that depend on the system under 
onsideration.
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Remark 5.1. The expli
it 
omputation of the 
ontribution

k(Id� �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

)k

L

2

(℄�1;1[

3

)

(52)


an be done in a \fast" (i.e. less operation than for the evaluation of  

Æ

) manner as follows; let us note

�

z

(1� z

2

)�

z

h

i

=

M

X

j=1




j

i

h

j

for all i = 1; :::; N (53)

�

p;q;i

(R; r) =

M

X

r;s=1

�

rs

pqi

'

r;s;0

(R; r): (54)

Then we 
onsider the following 
hange of basis

�

p;q;i

(R; r) =

M

X

p

0

;q

0

=1

�

p

0

q

0

j

pqi

�

p

0

;q

0

;j

(R; r) for all i; j = 1; ::; N p; q = 1; :::;M; (55)

where, by the orthonormality of all basis involved (i.e. (�

p;q;i

)

M

p;q=1

for every i and ('

r;s;0

)

M

r;s=1

), we have:

�

p

0

q

0

j

pqi

=

M

X

r;s=1

�

rs

pqi

�

rs

p

0

q

0

j

; (56)

hen
e

�

p;q;i

(R; r)(�

z

(1� z

2

)�

z

h

i

)(z) =

M

X

p

0

;q

0

=1

N

X

j=1




j

i

�

p

0

q

0

j

pqi

�

p

0

;q

0

;j

(R; r)h

j

(z): (57)

From the formula  

Æ

=

P

p;q;i

�

 

pqi

�

p;q;i

h

i

given by the solution of the redu
ed problem we noti
e

A 

Æ

:= [�

z

(1� z

2

)�

z

℄ 

Æ

=

X

p

0

;q

0

;j

�

X

p;q;i




j

i

�

p

0

q

0

j

pqi

�

 

pqi

�

�

p

0

;q

0

;j

(R; r)h

j

(z): (58)

This gives us the value of the 
oeÆ
ients A 

Æ

in the orthonormal basis �

p

0

;q

0

;j

(R; r)h

j

(z). By tensorization the


omputation (58) 
an be done in 
max(M;N)

5

operations, less than the number of operations required by the


omputation of  

Æ

(for instan
e, the diagonalization of 2D hamiltonians is of higher 
omplexity) [9, 10, 12℄.

Indeed, our goal is to 
ompute for f(p

0

; q

0

; j); j�

p

0

;q

0

;j

j � (1 + �)E

MAX

g the term:

�

p

0

;q

0

;j

=

X

r;s;p;q;i

�

 

pqi

�

rs

pqi

�

rs

p

0

q

0

j




j

i

; p

0

; q

0

= 1; :::;M; j = 1; :::; N: (59)

It is easy to 
he
k that summing �rst for p and q we obtain in 
max(M;N)

5

operations some 
oeÆ
ients

�

i

rs

=

X

p;q

�

 

pqi

�

rs

pqi

: (60)

Next we sum up for the "i" index and note �

j

rs

=

P

i

�

i

rs




j

i

. Our quantity is:

X

rs

�

j

rs

�

rs

p

0

q

0

j

(61)
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and it is 
lear now that we 
an 
ompute it for all values of (p

0

q

0

j) needed in 
max(M;N)

5

operations. The L

2

norm of k(Id� �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

)k

L

2

(℄�1;1[

3

)

is obtained by summing up the square of �

p

0

;q

0

;j

for all indi
es

f(p

0

; q

0

; j); j�

p

0

;q

0

;j

j < (1+ �)E

MAX

g. Note that only these 
oeÆ
ients have to be 
omputed in (61) and that in

(60) the

�

 

pqi

all vanish for indi
es f(p; q; i); j�

p;q;i

j � (1+ �)E

MAX

g. Taking this into a

ount leads to a further

redu
tion in CPU time [10℄.

The results are displayed in the �gures 2-11. We 
hoose dis
retization parameters M and N su
h that

N

2

'M

2

' E

MAX

. We are plotting the e�e
tivity indexes, i.e. the quotient "true error over estimated error".

Of 
ourse the ideal 
ase would be \e�e
tivity index = 
onstant", but this never happens for dis
retization of

non linear problems. Due to the intri
ate nature of the eigenvalue problem we 
annot expe
t that. What we

do expe
t is that our estimator be robust and rather insensitive to di�erent dis
retization parameters (here

E

MAX

). The quotient \ true error over estimated error" was 
omputed with energy expressed in atomi
 units

(Hartree, E

h

): 1E

h

= 219474:63
m

�1

; the true error was 
omputed with respe
t to a solution obtained with a

very �ne dis
retization.

The relative error was measured with respe
t to the �rst ex
itation of the system, that is the di�eren
e

between the �rst and the se
ond eigenvalue, and was found to be in the range 3% � 0:001%, whi
h is typi
al

for this kind of 
omputations. This 
hoi
e for measuring the relative error is suggested by the fa
t that the

value of zero for the potential (or energy) is de�ned up to an additive 
onstant, thus only relative variations are

relevant. Other pro
edures for measuring the relative error on the i-th eigenvalue 
an be proposed (one may


onsider as basis for 
omputations the di�eren
e between the \i"-th and \i � 1"-th eigenvalues), the present


hoi
e was retained for the sake of uniformity. Finally, let us mention that in pra
ti
e 
hemists are satis�ed

when the energies are known up to several 
m

�1

units, 1
m

�1

= :455 � 10

�5

E

h

. The 
omputations presented

also 
omply with this requirement, as e.g. for the �rst eigenvalue, the error de
reases from 24
m

�1

to less than

1
m

�1

.

E�e
tivity index (error over estimator) for 1-st eigenvalue

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

Relative error

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.00018

0.00016

0.00014

0.00012

0.0001

8e-05

6e-05

4e-05

2e-05

0

Figure 2. First eigenvalue (energy expressed in Hartree (E

h

))
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E�e
tivity index (error over estimator) for the 2-nd eigenvalue

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

Relative error

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.0008

0.0007

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

0

Figure 3. Se
ond eigenvalue (energy expressed in Hartree (E

h

))

E�e
tivity index (error over estimator) for the 3-rd eigenvalue

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

Relative error

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.0025

0.002

0.0015

0.001

0.0005

0

Figure 4. Third eigenvalue (energy expressed in Hartree (E

h

))

E�e
tivity index (error over estimator) for 4-th eigenvalue

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1

0.8

Relative error

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.004

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

0

Figure 5. Fourth eigenvalue (energy expressed in Hartree (E

h

))
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E�e
tivity index (error over estimator) for 5-th eigenvalue

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1

0.8

0.6

Relative error

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.0045

0.004

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

0

Figure 6. Fifth eigenvalue (energy expressed in Hartree (E

h

))

E�e
tivity index (error over estimator) for 6-th eigenvalue

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

Relative error

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.004

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

0

Figure 7. Sixth eigenvalue (energy expressed in Hartree (E

h

))

E�e
tivity index (error over estimator) for 7-th eigenvalue

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

1.3

1.2

1.1

1

0.9

0.8

0.7

Relative error

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.012

0.01

0.008

0.006

0.004

0.002

0

Figure 8. Seventh eigenvalue (energy expressed in Hartree (E

h

))
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E�e
tivity index (error over estimator) for 8-th eigenvalue

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

1.8

1.6

1.4

1.2

1

0.8

0.6

Relative error

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.03

0.025

0.02

0.015

0.01

0.005

0

Figure 9. Eighth eigenvalue (energy expressed in Hartree (E

h

))

E�e
tivity index (error over estimator) for 9-th eigenvalue

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

1

0.9

0.8

0.7

0.6

0.5

0.4

Relative error

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.006

0.005

0.004

0.003

0.002

0.001

0

Figure 10. Ninth eigenvalue (energy expressed in Hartree (E

h

))

We would also want that the estimator quantitatively des
ribe the order of magnitude of the error. For

the e�e
tivity index this 
ondition requires that the ratio between the extremal values of the e�e
tivity index

be no larger than 10. As we 
an see from the results displayed, all our indexes ful�ll this requirement. In fa
t

in our 
ase this ratio is roughly 2 (ex
ept for eigenmodes 4,5 and 8 where it is 
loser to 3).

The index involves the norm of the operator DF ( 

0

; �

0

) and its inverse mapping; it is surprising to noti
e

that the range for the e�e
tivity indexes is basi
ally the same, even for di�erent eigenmodes, whi
h was

not predi
ted by the theory. It seems that the various norms DF ( 

0

; �

0

) vary slowly when 
al
ulated in

di�erent eigenmodes. The variation of the e�e
tivity index for two values of E

MAX

= 0:0797E

h

(17500
m

�1

)

and E

MAX

= 0:1253E

h

(27500
m

�1

) is plotted in �gure 11 for all the nine eigenmodes.

Let us �nally mention that the form of the estimator is not easy to �nd intuitively; other empiri
al 
om-

binations of, for instan
e, powers of E

MAX

and the L

2

\residual" norm involved display divergen
e for the

e�e
tivity index.

Remark 5.2. It is of 
ourse natural to test the estimator on other types of mole
ules and also on other 
hoi
es

of adiabati
 variables that might be less performant. This will allow to investigate the quality of the part of

the estimator related to adiabati
ity. This study requires more heavy dis
ussions with our 
olleagues 
hemists,
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Indexes for di�erent eigenmodes for E = 0:0797E

h

eigenmode no.

I

n

d

e

x

987654321

1.05

1

0.95

0.9

0.85

0.8

Indexes for di�erent eigenmodes for E = 0:1253E

h

eigenmode no.

I

n

d

e

x

987654321

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

Figure 11. E�e
tivity indexes for di�erent eigenmodes and 
ut-o� E

MAX

values.

whi
h is planed to be done in a future work. Some preliminary results were already obtained for the water

mole
ule in a di�erent Ja
obi system: the hydrogen atoms are lo
ated in B and C and the oxygen in A. Due to

this 
hange of the 
oordinate system, the adiabati
 variable, still taken as the angle � (see Figure 1), is di�erent

from the one 
hosen before. As a typi
al example a plot of the e�e
tivity index and of the relative error for the

5-th eigenvalue is presented in Figure 12. Note that a full s
an of the energy (E

MAX

> 0:091) was not possible

due to our limited knowlegde of the potential V . In this range of energy the e�e
tivity index variation does not

ex
eed an order of magnitude, but the (relative) error is about 150 times greater than before (
ompare with

Figure 6). It appears that this 
hoi
e of the adiabati
 
on�guration is less pertinent than the former and our

estimator reveals it here.

E�e
tivity index (error over estimator) for 5-th eigenvalue

E

MAX

I

n

d

e

x

0.0910.0800.0680.0570.0460.034

10

9

8

7

6

5

4

3

2

1

0

Relative error
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Figure 12. The system studied is again the water mole
ule in the Ja
obi 
oordinates. This

time the hydrogen atoms are lo
ated in B and C and the oxygen in A. This 
hoi
e of 
oordinate

system seems to not have good adiabati
ity properties as the relative error is mu
h larger than

in the 
ase of the initial 
oordinate system.

The authors wish to thank C. Leforestier from Laboratoire Stru
ture et Dynamique des Syst�emes Mol�e
ulaires et Solides,

Universit�e de Montpellier 2 for providing his basi
 
ode to use with our estimators and for the dis
ussions on the subje
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Appendix A.

Remark A.1. By the de�nition of the spa
es X

s

0

the operator T

R;r;z

is an isometry between X

2

0

and X

0

0

=

L

2

(℄� 1; 1[

3

) ; for any g 2 L

2

(℄� 1; 1[

3

) the equation

T

R;r;z

f = g (62)

has therefore an unique solution f 2 X

2

0

; moreover the mapping that to g asso
iates the solution f of (62) is a


ompa
t mapping from L

2

(℄� 1; 1[

3

) into L

2

(℄� 1; 1[

3

) (be
ause of the embedding H

1

0

(℄� 1; 1[

3

) � L

2

(℄� 1; 1[

3

)

whi
h is 
ompa
t). By the Lax-Milgram lemma, as soon as V 2 L

1

, � � kV k

L

1

the same properties remain

true for the equation

(H + �Id)f = T

R;r;z

f + V f + �f = g (63)

Is is essential for the a posteriori analysis of the (2)-(3) to study the properties of the di�erential DF ( 

0

; �

0

)

of F in the solution ( 

0

; �

0

) of (2)-(3) ; more pre
isely, it will be proven that if �

0

is a simple eigenmode (i.e.

of multipli
ity 1) of H and V 2 L

1

then DF ( 

0

; �

0

) is an isomorphism from L

2

(℄� 1; 1[

3

)�R into (X

2

0

)

�

�R.

A straightforward 
omputation gives the following formula for DF ( 

0

; �

0

) :

< DF ( 

0

; �

0

)( ; �); ('; �) >=

R

℄�1;1[

3

H' � �

0

 '� � 

0

'+ 2�

R

℄�1;1[

3

 

0

 

=

R

℄�1;1[

3

(H'� �

0

'+ 2� 

0

) �  � �

R

℄�1;1[

3

 

0

' =< ( ; �); DF ( 

0

; �

0

)

�

('; �) > (64)

whereDF ( 

0

; �

0

)

�

is the adjoint ofDF ( 

0

; �

0

). To prove the bije
tivity ofDF ( 

0

; �

0

) we 
he
k thatDF ( 

0

; �

0

)

�

is bije
tive. This is equivalent to prove that for any � 2 R and w 2 L

2

(℄�1; 1[

3

) there exists an (unique) 
ouple
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('; �) su
h that :

H'+ 2� 

0

� �

0

' = w (65)

Z

℄�1;1[

3

 

0

' = � (66)

The equation (65) 
an be written (H ��

0

)' = w� 2� 

0

. If we suppose that �

0

is a simple eigenvalue, then, by

the remark A.1 and by the Fredholm alternative

6

(65) has a solution i� w� 2� 

0

?  

0

that is � =

<w; 

0

>

2

; in

this 
ase the set of solutions is f'

0

+ 
 

0

; 
 2 Rg where '

0

is a parti
ular �xed solution. By (66) we 
ompute


 = �� <  

0

; '

0

> and so we have found a 
ouple (' = '

0

+ 
 

0

; �) that satisfy (65) and (66). It is therefore

natural to suppose that V 2 L

1

and that all eigenvalues under study are simples.

A.1. Proof of lemma 3.2.

Let us remind that all element '

MN

in X

M;N


an be written as

'

MN

(R; r; z) =

N+1

X

p;q;i=1




p;q;i

�

p;q;i

(R; r)h

i

(z); (67)

with




p;q;i

=

Z

R

Z

r

'

MN

(R; r; �

i

)�

p;q;i

(R; r)dRdr: (68)

By the de�nition of eigenmodes �

p;q;i

we have also (by use of integration by parts)




p;q;i

=

R

R

R

r

'

MN

(R; r; �

i

)

1

�

p;q;i

�

(��

RR

� �

rr

� V (R; r; �

i

))�

p;q;i

�

dRdr

=

1

�

p;q;i

R

R

R

r

�

(��

RR

� �

rr

� V (R; r; �

i

))'

MN

�

(R; r; �

i

)�

p;q;i

(R; r)dRdr: (69)

Moreover by the de�nition of the proje
tor we have

�

'

MN

� �

E

Æ

('

MN

)

�

(R; r; z) =

X

(p;q;i);j�

p;q;i

j>(1+�)E

MAX




p;q;i

�

p;q;i

(R; r)h

i

(z); (70)

so that

k'

MN

� �

E

Æ

('

MN

)k

2

L

2

�

P

(p;q;i);j�

p;q;i

j>(1+�)E

MAX

(


p;q;i

)

2

�

i

�

P

(p;q;i);j�

p;q;i

j>(1+�)E

MAX

1

�

2

p;q;i

�

R

R

R

r

�

(��

RR

� �

rr

� V (R; r; �

i

))'

MN

(R; r; �

i

)

�

�

p;q;i

(R; r)dRdr

�

2

�

i

:(71)

By the orthogonality of �

p;q;i

we have

k'

MN

� �

E

Æ

('

MN

)k

2

L

2

� (

1

(1+�)E

MAX

)

2

�

k(��

RR

� �

rr

)'

MN

k

2

L

2

(℄�1;1[

3

)

+k

P

i

(V (:; :; �

i

)'

MN

(:; :; �

i

))

2

�

i

k

2

L

2

(℄�1;1[

2

)

�

(72)

whi
h 
on
ludes the proof of the �rst part of the lemma.

6

we write H��

0

= (H+�Id)� (�+�

0

)Id and we use, for � large enough, the Fredholm alternative ( [4℄ p. 39) for the 
ompa
t

operator (H + �Id)

�1

and the eigenvalue

1

�+�

0

6= 0.
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To prove (31) note that it is trivially true for b = 0 and by the argument above for b = 2 ; using on
e more

in (69) the de�nition of eigenmodes �

p;q;i

and after one supplementary integration by parts we obtain




p;q;i

=

1

�

2

p;q;i

R

R

R

r

�

(��

RR

� �

rr

� V (R; r; �

i

))

2

'

MN

�

(R; r; �

i

)�

p;q;i

(R; r)dRdr (73)

so, by the same line of reasoning as above, upper bound (31) is proved for b = 4 ; by 
ontinuing the pro
edure

for all even values of b and using 
lassi
al interpolation arguments the 
on
lusion will follows.

A.2. Proof of lemma 2.4.

Let �

M;N

be the proje
tor to X

M;N

asso
iated with T

R;r;z

that is for all v 2 X

1

0

; �

M;N

v is the element of

X

M;N

that veri�es

8 u 2 X

M;N

:

Z

℄�1;1[

3

T

R;r;z

(v ��

M;N

v)u = 0: (74)

Note that �

Æ

�

M;N

= �

Æ

. It is 
lassi
al

7

to see that �

M;N

has optimal approximation properties, that is, for

any b � 1 � a � 0 there exists a 
onstant 
 independent of M ,N su
h that

kv ��

M;N

vk

X

a

0

� 


�

1

max(M;N)

�

b�a

kvk

X

b

0

: (75)

Write then :

kv ��

Æ

vk

X

a

0

� kv ��

M;N

vk

X

a

0

+ k�

M;N

v ��

Æ

�

M;N

vk

X

a

0

: (76)

By (75) the �rst term in (76) is optimal, so only the se
ond term remains to be (optimally) upper bounded.

Denote f = �

M;N

v ; re
all the minimization property of �

Æ

:

�

Æ

v = argminfkv � uk

X

1

0

;u 2 E

Æ

g

and write, for a = 1 :

kf ��

Æ

fk

X

1

0

� kf � �

E

Æ

fk

X

1

0

� Cmax(M;N)kf � �

E

Æ

fk

L

2
� Cmax(M;N)

�

1

p

E

MAX

�

b

kfk

X

b

0

; (77)

whi
h ends the proof of the lemma for a = 1 ; the values of a in [0; 1[ are treated by the duality te
hnique of

Aubin and Nits
he (see for instan
e [1℄ p. 274-275).

7

use for instan
e the reasoning in [1℄ p. 262


