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Mod�elisation Math�ematique et Analyse Num�erique

NUMERICAL ANALYSIS OF THE ADIABATIC VARIABLE METHOD FOR THE

APPROXIMATION OF THE NUCLEAR HAMILTONIAN

Yvon Maday

1; 2

and Gabriel Turinii

1

Abstrat. Many problems in quantum hemistry deal with the omputation of fundamental or exited

states of moleules and lead to the resolution of eigenvalue problems. One of the major diÆulties

in these omputations lies in the very large dimension of the systems to be solved. Indeed these

eigenfuntions depend on 3n variables where n stands for the number of partiles (eletrons and/or

nuleari) in the moleule. In order to diminish the size of the systems to be solved, the hemists have

proposed many interesting ideas. Among those stands the adiabati variable method; we present in this

paper a mathematial analysis of this approximation and propose, in partiular, an a posteriori estimate

that might allow for verifying the adiabatiity hypothesis that is done on some variables; numerial

simulations that support the a posteriori estimators obtained theoretially are also presented.

R�esum�e. De nombreux probl�emes en himie quantique portent sur le alul d'�etats fondamentaux

ou exit�es de mol�eules et onduisent �a la r�esolution de probl�emes aux valeurs propres. Une des

diÆult�es majeures dans es aluls est la tr�es grande dimension des syst�emes qui sont en pr�esene

lors des simulations num�eriques. En e�et les modes propres reherh�es sont fontions de 3n variables

o�u n est le nombre de partiules (�eletrons ou noyaux) de la mol�eule. A�n de r�eduire la dimension

des syst�emes �a r�esoudre les himistes multiplient les id�ees int�eressantes qui permettent d'approher le

syst�eme omplet. La m�ethode des variables adiabatiques entre dans e adre et nous pr�esentons ii une

�etude math�ematique rigoureuse de ette approximation. En partiulier nous proposons un estimateur

a posteriori qui pourrait permettre de v�eri�er l'hypoth�ese d'adiabatiit�e faite sur ertaines variables ;

des simulations num�eriques qui impl�ementent et estimateur sont aussi pr�esent�ees.

AMS Subjet Classi�ation. 65N25, 35P15, 81V55.

The dates will be set by the publisher.

1. Introdution

One problem frequently enountered in omputational quantum hemistry (f. [9℄- [14℄) onsists in the evalua-

tion of the eigenmodes of some Hamiltonian operator orresponding to eigenvalues smaller than some presribed

value E

MAX

.

Under the Born-Oppenheimer approximation the nulear Hamiltonian operator an be written asH = T+ V

where V stands for the potential multipliative part (assumed to be known by a previous eletroni ab-initio

omputation or by empirial means) and T is the kineti (Laplae) operator.

The number of independent variables being important any argument leading to the simpli�ation of the

behavior of the solution allows to enlarge the lass of moleules that an be treated.

Keywords and phrases: a posteriori estimator, adiabati variable method, omputational quantum hemistry, nulear hamiltonian
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Figure 1. Jaobi oordinate system

Firstly it seems natural to introdue the �rst eigenmodes of the Laplae operator written in the oordinate

system and searh for the eigenmodes of the Hamiltonian operator in this modal basis. In order to do so we

use some Lanzos-type iterative method whih relies on the omputation of a vetor sequene f 

n

g

n

de�ned

reursively by:

 

n+1

= 

0

H( 

n

)� 

1

 

n�1

: (1)

In terms of CPU time the most expensive part is to apply the Hamiltonian operator H to  

n

. In fat, even if

the hosen basis is well adapted for the Laplae operator (suh that it is diagonal), the potential operator matrix

is full. In general we are interested in determining a large part of the spetrum, the size of the disretization

basis (and hene the size of matries involved) is usually so large that it forbids any omputation. We are then

lead to searh for methods allowing us to further redue the number of basis funtions. The pseudo-spetral

adiabati variable method proposed in [9℄, [10℄ is one suh pertinent disretization tool that seems to give quite

good results in pratie.

Its priniple is presented below for a triatomi moleule.

Let the Laplae operator be written in Jaobi oordinates (R; r; �) (f. [9℄), and let us assume that we want

to �nd a funtion  on the open brik

1


 =℄� 1; 1[

2

�℄0; �[ of R

3

suh that :

~

H = E ; with

~

H =

~

T

R;r;�

+ V = ��

RR

� �

rr

�

f(R; r)

sin �

�

�

sin ��

�

+ V; (2)

where the funtion  has to satisfy

 (�1; r; �) =  (R;�1; �) = 0 ; k k

L

2

(
)

= 1: (3)

1

The initial range for R; r is mapped by aÆne transformations into ℄�1; 1[; the oordinates R; r are to be onsidered heneforth

as relative deviations from some equilibrium position; note that the physial meaning of � is preserved.
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Then

1. We identify by a normal-mode analysis around the equilibrium position some speial variable for our system

named the adiabati variable. Here it will be � and we write the Hamiltonian using the oordinate

transformation z = os �.

H = ��

RR

� �

rr

� f(R; r)�

z

(1� z

2

)�

z

+ V = T

R;r;z

+ V: (4)

2. We onsider the Hamiltonian operator obtained by removing the terms ontaining derivatives in the

adiabati variable; we all it redued Hamiltonian, here it is

H

r

:= T

R;r;z

� (�f(R; r)�

z

(1� z

2

)�

z

) + V = ��

RR

� �

rr

+ V (5)

and diagonalize it by a fast proedure. In fat the 3D problem is redued to a small number of 2D

problems by freezing the values of the adiabati oordinate. It is here that the physial intuition omes

into play, the adiabati variable being in a ertain way the one that allows us to aurately desribe the

total hamiltonian by its ation in a small number of �xed values.

3. Sine we are looking for eigenmodes with a orresponding energy smaller than E

MAX

, we keep among the

vetors obtained in step 2 above only those with energy smaller than (1 + �)E

MAX

(where � > 0).

4. We onstrut by tensor produt of the vetors obtained in step 3 with harateristi funtions of the

adiabati variable a redued basis used to �nally diagonalize the full hamiltonian operator H .

In pratie this proedure gives good results. However the hoie of the adiabati variable(s) and/or oordinate

system a�ets substantially its eÆieny. Therefore it seems interesting to give some a priori estimates to

help intuition in the hoie of the adiabati variable for a given system and to omplement this analysis by

a posteriori estimators so as to deide about its usefulness one the omputation is over and also in order to

on�rm the hoie of � used in the trunation

2

.

Before proeeding with the di�erent error analysis, it is important to introdue the hoie of the values of

the adiabati variable that are being frozen during step 2. These are the Gauss quadrature points for that

variable. This hoie an be justi�ed by at least two reasons. The �rst one is that these points are optimal

for the evaluation (through quadrature formulas) of integrals involved in the omputation of the ation of the

potential over the vetors required in the Lanzos reurrene. The seond argument is that this set of points is

optimal for interpolating in the linear spae of polynomials spanned by the �rst eigenmodes of the di�erential

operator �

z

(1 � z

2

)�

z

in the adiabati variable, i.e. the Legendre polynomials fL

n

g

n

. The values we freeze

are therefore the Gauss-Legendre points, namely the zeroes f�

i

g

1�i�N+1

of the Legendre polynomial L

N+1

of

degree N +1. It is lassial to assoiate to these points a (loalized) basis ontaining harateristi polynomials

of degree � N , fh

j

g

1�j�N+1

suh that h

j

(�

i

) = Æ

i;j

, i; j = 1; :::N + 1 (Kroneker symbol).

We introdue the interpolation operator J

N

from C

0

(℄� 1; 1[) to P

N

(℄� 1; 1[) on these nodes. This operator

has optimal approximation properties (f. [1℄ Thm.13.2, p.299), that is for any real � >

1

2

, there exists some

onstant  > 0 suh that

8v 2 H

�

(℄� 1; 1[); kv �J

N

vk

L

2

(℄�1;1[)

� N

��

kvk

H

�

(℄�1;1[)

: (6)

2. A PRIORI ANALYSIS

We propose this analysis for the ase of the triatomi system (2) - (3) where for simpliity we set f(R; r) � 1.

This a priori analysis is not the main purpose of the paper and serves only as preliminary veri�ation of the

pertinene of the algorithm. A more detailed analysis is presented in the next setion. As we have already seen,

the disretization has 2 steps. Firstly we introdue the eigenfuntions of the operator T

R;r;z

on L

2

(℄ � 1; 1[

3

),

here '

k;`;n

(R; r; z) = sin(

k�

2

(R+ 1)) sin(

`�

2

(r +1))L

n

(z) for (k; `; n) in N

3

. We propose an initial disretization

2

This \adiabati redution method" has some similarities with the dimension redution method used in mehanis. See [15℄ for

a presentation of this method and for adapted error estimators. However the method and the analysis tehnique are di�erent.
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spae X

M;N

spanned by '

k;`;n

for 1 � k; ` �M , 0 � n � N . In the seond step we diagonalize over X

M;0

the

2D operators ��

RR

��

rr

+V (:; :; �

i

) for eah i, 1 � i � N +1; we all

�

�

p;q;i

�

1�p;q�M

and

�

�

p;q;i

�

1�p;q�M

the

L

2

assoiated normalized eigenvetors and orresponding eigenvalues respetively.

We de�ne some Sobolev-type spaes assoiated with the kineti operator T

R;r;z

. More preisely let X

s

0

be the

losure of C

1

0

(℄� 1; 1[

3

)\C

1

(℄� 1; 1[

3

) in the domain of (T

R;r;z

)

s=2

endowed with its anonial norm. Theorem

5.6 from [6℄ and Theorem 2.3 from [5℄ tome 1 p.19 allow to desribe X

s

0

. We obtain for instane:

X

2

0

= fu 2 H

1

0

(℄� 1; 1[

3

); �

RR

u; �

rr

u; �

Rr

u;

p

1� z

2

�

Rz

u;

p

1� z

2

�

rz

u; (1� z

2

)�

zz

u 2 L

2

(℄� 1; 1[

3

)g: (7)

Next we introdue the linear spae E

Æ

spanned by �

p;q;i

(R; r)h

i

(z) (3D funtions) that orrespond to eigen-

values �

p;q;i

� (1 + �)E

MAX

. The �nal approximation of our problem then onsists in searhing in E

Æ

the

eigenfuntions of the operator H

Æ

de�ned for all  ; ' 2 X

1

0

as follows

(H

Æ

';  ) =

R

℄�1;1[

3

�

R

 �

R

'+ �

r

 �

r

'+ (1� z

2

)�

z

 �

z

'dRdrdz

+

R

℄�1;1[

2

P

N+1

i=1

V (R; r; �

i

)( ')(R; r; �

i

)�

i

dRdr; (8)

where f�

i

g

1�i�N+1

are the weights of the Gauss-Legendre quadrature formula.

Remark 2.1. It is interesting to note that �

p;q;j

(R; r)h

j

(z); 1 � p; q �M; 1 � j � N+1 are the eigenfuntions

on X

M;N

of the operator H

r

Æ

de�ned as follows

(H

r

Æ

';  ) =

Z

℄�1;1[

2

N+1

X

i=1

 

(�

R

 �

R

'+ �

r

 �

r

')(R; r; �

i

) + V (R; r; �

i

)( ')(R; r; �

i

)

!

�

i

dRdr:

This operator is a kind of loalized hamiltonian in the points �

i

(hemists are used to noting it H(R; r; z =

�

i

),i = 1; N + 1) made up by ontributions from eah �

i

point.

Remark 2.2. The method an be readily extended for the ase of more than 3 variables by reursively applying

the above proedure. In fat we onsider some of them as adiabati until we reah a matrix that an be easily

diagonalized. See [12℄ for an example in the ase of 6 variables.

We write our problem in the form:

find u = ( ; �) 2 L

2

(℄� 1; 1[

3

)� R suh that F (u) = 0; (9)

where F is the smooth (C

1

) funtion from L

2

(℄� 1; 1[

3

)� R into the dual (X

2

0

)

�

� R of X

2

0

� R given by:

< F ( ; �); ('; �) >

(X

2

0

)

�

�R;X

2

0

�R

=

R

℄�1;1[

3

 (H'� �') + �

 

R

℄�1;1[

3

 

2

� 1

!

=

R

℄�1;1[

3

 (T

R;r;z

'+ V '� �') + �

 

R

℄�1;1[

3

 

2

� 1

!

: (10)

It is easy to see that F ( ; �) = 0 is equivalent to (2)-(3). Moreover if �

0

is a simple (i.e. of multipliity 1)

eigenvalue of (2) orresponding to an eigenvetor  

0

(hosen with L

2

-norm equal to 1) and V 2 L

1

(whih is

never a restrition in pratie), then, applying the Fredholm alternative as proven in Appendix A we onlude

that DF ( 

0

; �

0

) is an isomorphism from L

2

(℄� 1; 1[

3

)�R to (X

2

0

)

�

�R. In order to avoid tehnial diÆulties

we will suppose, in what follows, that all eigenvalues under onsideration are simple and V 2 L

1

.
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Let �

Æ

be the projetor to E

Æ

assoiated with T

R;r;z

that is for all v 2 X

2

0

; �

Æ

v is the element of E

Æ

that

veri�es

8 u

Æ

2 E

Æ

:

Z

℄�1;1[

3

T

R;r;z

(v ��

Æ

v)u

Æ

= 0: (11)

We de�ne funtions F

Æ

from L

2

� R into (X

2

0

)

�

� R by the formulas:

< F

Æ

( ; �); ('; �) >

(X

2

0

)

�

�R;X

2

0

�R

=

R

℄�1;1[

3

 (H

Æ

� �)(�

Æ

')

+�

 

R

℄�1;1[

3

 

2

� 1

!

+

R

℄�1;1[

3

 T

R;r;z

('��

Æ

'): (12)

Proposition 2.3. The solutions of F

Æ

( 

Æ

; �

Æ

) = 0 are exatly eigenfuntions of H

Æ

on E

Æ

.

Proof. Choose �rst ' orthogonal to E

Æ

with respet to T

R;r;z

and � = 0 and obtain  2 E

Æ

; then hoosing

' = 0 yields k k

L

2

= 1 and �nally ' 2 E

Æ

and � = 0 proves that

(H

Æ

 ; ') = (� ; '); 8' 2 E

Æ

: (13)

We are now applying Theorem 6.1 ( [3℄ vol. 5 p.530) to show that kF

Æ

( 

0

; �

0

)k

(X

2

0

)

�

�R

is an upper bound

(modulo some onstant) for the error between ( 

0

; �

0

) and ( 

Æ

; �

Æ

). More preisely there exists a onstant

C > 0 that does not depend on M ,N or E

MAX

and a neighborhood V of Æ

0

(de�ned as the \limit" value where

F

Æ

0

= F ) suh that for all Æ 2 V nfÆ

0

g and ( 

0

; �

0

) suh that F ( 

0

; �

0

) = 0 there exists ( 

Æ

; �

Æ

) solution of

F

Æ

( 

Æ

; �

Æ

) = 0 suh that:

k 

0

�  

Æ

k

L

2

(
)

+ j�

0

� �

Æ

j � CkF

Æ

( 

0

; �

0

)k

(X

2

0

)

�

�R

: (14)

It remains to evaluate the right hand side of (14) in order to obtain the a priori upper bound for the error

between the exat and the disrete solution.

Sine ( 

0

; �

0

) is a solution to our problem and by the de�nition (11) of the projetor �

Æ

we obtain for all

('; �) 2 (X

2

0

)� R :

< F

Æ

( 

0

; �

0

); ('; �) >

(X

2

0

)

�

�R;X

2

0

�R

=

Z

℄�1;1[

3

 

0

(H

Æ

�H)(�

Æ

') + ( 

0

��

Æ

 

0

)T

R;r;z

('��

Æ

'): (15)

De�nition. We state that N ,M and E

MAX

are hosen in a oherent manner and denote N

2

'M

2

' E

MAX

if there exists 3 onstants independent of the disretization suh that N

2

� 

1

M

2

� 

2

E

MAX

� 

3

N

2

.

We will make use in the following of some (optimal) approximation properties of projetor �

Æ

:

Lemma 2.4. Assume that N

2

'M

2

' E

MAX

. Then for any b � 1 � a � 0 there exists a onstant (a; b) suh

that:

8v 2 X

b

0

: kv ��

Æ

vk

X

a

0

� (a; b)(�

Æ

)

b�a

kvk

X

b

0

: (16)

where �

Æ

is max

n

1

N

;

1

M

;

1

p

E

MAX

o

Proof. See the appendix A.
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Using lemma 2.4 the optimality properties of the interpolation operator I

N

(stated in (6)) we obtain from

(14) and (15) the following a priori estimate :

Theorem 2.5. Let ( 

0

; �

0

) be a simple eigenmode of (2)-(3) and s � 1, t >

1

2

suh that  

0

2 X

s

0

and

V  

0

2 L

2

(℄ � 1; 1[

2

;H

t

(℄ � 1; 1[)). Then there exists a onstant C(s; t) > 0 suh that for eah Æ there exists a

solution of F

Æ

( 

Æ

; �

Æ

) = 0

3

suh that:

k 

0

�  

Æ

k

L

2
+ j�

0

� �

Æ

j � C(s; t)

�

(�

Æ

)

s

k( 

0

; �

0

)k

X

s

0

�R

+N

�t

kV  

0

k

L

2

(℄�1;1[

2

;H

t

(℄�1;1[))

�

: (17)

Proof. Inserting in (14) the equality (15) and using the de�nition of the norm in (X

2

0

)

�

� R one obtains

k 

0

�  

Æ

k

L

2

(
)

+ j�

0

� �

Æ

j � C sup

k'k

X

2

0

=1

R

℄�1;1[

3

 

0

(H

Æ

�H)(�

Æ

') + ( 

0

��

Æ

 

0

)T

R;r;z

('��

Æ

')

� C sup

k'k

X

2

0

=1

R

℄�1;1[

3

(V  

0

� (Id

R

2


J

N

)V  

0

)�

Æ

'+ ( 

0

��

Æ

 

0

)T

R;r;z

('��

Æ

')

� sup

k'k

X

2

0

=1

R

℄�1;1[

3

(V  

0

� (Id

R

2


J

N

)V  

0

)�

Æ

'+ sup

k'k

X

2

0

=1

R

℄�1;1[

3

( 

0

��

Æ

 

0

)T

R;r;z

('��

Æ

') (18)

By the de�nition of the projetor �

Æ

the seond term in the right hand side of (18) equals

sup

k'k

X

2

0

=1

Z

℄�1;1[

3

( 

0

��

Æ

 

0

)T

R;r;z

'; (19)

and an be upper bounded by

sup

k'k

X

2

0

=1

k 

0

��

Æ

 

0

k

L

2

kT

R;r;z

(')k

L

2

� k 

0

��

Æ

 

0

k

L

2

� (0; s)�

s

Æ

k 

0

k

X

s

0

: (20)

Using (6) and the stability of the projetor �

Æ

one an now bound the �rst term in the right hand side of (18)

and obtain the onlusion of the theorem.

Remark 2.6. If V is smooth enough, it is obvious that the norms k 

0

k

X

p

0

, kV  

0

k

L

2

(℄�1;1[

2

;H

2p

(℄�1;1[))

and

kV  

0

k

H

2p

(℄�1;1[

2

;L

2

(℄�1;1[))

are upper bounded by j�

0

j

p

so that for the natural hoie N

2

' M

2

' E

MAX

the onvergene rate sales as (p)

�

�

0

N

2

�

p

.

3. A POSTERIORI ANALYSIS OF THE METHOD

Let us still fous on the ase of the triatomi system (2) and (3), and let us onsider now an a posteriori error

analysis. The goal of suh a tool is to asses the approximation one the omputation is done. We are working

as before on the formulation F (u) = 0 de�ned in (10).

The result (17) show that for any simple eigenmode u

0

= ( 

0

; �

0

) of (2)-(3), there exists an eigenmode

( 

Æ

; �

Æ

) whih is lose enough. To know more preisely how lose they are, one uses results derived from [10℄

whih allow to prove that under ertain hypothesis, F (u) is an estimator for the error between u

0

and u. We

shall make use of this abstrat result in the following form:

Theorem 3.1. Let Z,Y be two Hilbert spaes and F 2 C

1

(Z; Y ). Let u

0

be a solution of F (u) = 0 suh that

DF (u

0

) 2 Isom(Z; Y ) and moreover assume DF satis�es a Lipshitz-type property

9�

u

0

> 0 : k[DF (u

0

) � DF (u

0

+ tU)℄ Uk

Y

� tkUk

2

Z

; 8 0 < t < �

u

0

; 8 U 2 Z; kUk < �

u

0

: (21)

3

In fat sine the eigenmode ( 

0

; �

0

) is simple for Æ lose enough to Æ

0

the problem F

Æ

( 

Æ

; �

Æ

) = 0 will have only two solutions

with orresponding eigenvalues lose to �

0

that is ( 

Æ

; �

Æ

) and (� 

Æ

; �

Æ

).
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Then there exists some R > 0 (R = min

�

1

2

kDF (u

0

)

�1

k

�1

L(Y;Z)

; kDF (u

0

)k

L(Z;Y )

�

) suh that for all u 2

B(u

0

; R):

1

2

kDF (u

0

)k

�1

L(Z;Y )

� kF (u)k

Y

� ku� u

0

k

Z

� 2kDF (u

0

)

�1

k

L(Y;Z)

� kF (u)k

Y

: (22)

Choose Z = L

2

(℄� 1; 1[

3

)� R and Y = (X

2

0

)

�

� R and note that DF obviously satis�es the hypothesis (21) of

Theorem 3.1 ; realling that DF ( 

0

; �

0

) 2 Isom(L

2

(℄� 1; 1[

3

)� R; (X

2

0

)

�

� R) we obtain from Theorem 3.1 :

kF ( 

Æ

; �

Æ

)k

Y

� k 

0

�  

Æ

k

L

2

(℄�1;1[

3

)

+ j�

0

� �

Æ

j � CkF ( 

Æ

; �

Æ

)k

Y

(23)

for two positive onstants  and C.

We write easily

kF ( 

Æ

; �

Æ

)k

Y

= sup

(';�)2X

2

0

�R

R

℄�1;1[

3

(T

R;r;z

 

Æ

+ V  

Æ

� �

Æ

 

Æ

)'

k('; �)k

X

2

0

�R

; (24)

(note that � does not enter in this estimate). De�ne �

M

as the L

2

-projetion operator from L

2

(℄ � 1; 1[

3

) to

X

M;0

; we will use the following approximation property of �

M

(f. [16℄ Ch.9, p.278): for any � � 0 there exists

a onstant  > 0 depending only of � suh that

8v 2 H

�

(℄� 1; 1[

2

;L

2

(℄� 1; 1[)) kv � �

M

vk

L

2

(℄�1;1[

2

;L

2

(℄�1;1[))

� N

��

kvk

H

�

(℄�1;1[

2

;L

2

(℄�1;1[))

(25)

By de�ning '

MN

as the L

2

projetion of ' on X

MN

we obtain

kF ( 

Æ

; �

Æ

)k

Y

= sup

k'k

X

2

0

=1

R

℄�1;1[

3

((V  

Æ

� �

M


J

N

(V  

Æ

))'+ (T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

)'

= sup

k'k

X

2

0

=1

R

℄�1;1[

3

((V  

Æ

� �

M


J

N

(V  

Æ

))'+ (T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

)'

MN

� sup

k'k

X

2

0

=1

R

℄�1;1[

3

((V  

Æ

� �

M


J

N

(V  

Æ

))'

+sup

'2X

2

0

;k'k

X

2

0

=1

R

℄�1;1[

3

(T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

)'

MN

; (26)

where we have used the fat that T

R;r;z

 

Æ

2 X

MN

between the �rst and seond line. The �rst ontribution

in the right hand side measures the approximation resulting from the redution of the ation of V to X

MN

. By

(6) - (25) it an be bounded as follows

sup

'2X

2

0

;k'k

X

2

0

=1

j

R

℄�1;1[

3

(V  

Æ

� �

M


J

N

(V  

Æ

))'j

� (N

�s

kV  

Æ

k

L

2

(℄�1;1[

2

;H

s

(℄�1;1[)

+M

��

kV  

Æ

k

H

�

(℄�1;1[

2

;L

2

(℄�1;1[))

); (27)

for all � � 0 and s >

1

2

suh that

V  

Æ

2 L

2

(℄� 1; 1[

2

;H

s

(℄� 1; 1[)) \H

�

(℄� 1; 1[

2

;L

2

(℄� 1; 1[): (28)

The seond ontribution in the right hand side of (26) represents the loss of information resulting from

negleting in X

MN

the eigenmodes �

p;q;i

h

i

having energy larger than (1 + �)E

MAX

. It is this ontribution

that allows us to asses the adiabatiity of the hosen oordinate system sine it measures the amount of energy
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ontained in the projetion of (T

R;r;z

 

Æ

+ �

M


 J

N

(V  

Æ

) � �

Æ

 

Æ

) on the rejeted eigenmodes. Indeed its

projetion on all other eigenmodes is zero by the de�nition of  

Æ

. This leads us to

sup

'2X

2

0

;k'k

X

2

0

=1

R

℄�1;1[

3

(T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

)'

MN

= sup

'2X

2

0

;k'k

X

2

0

=1

R

℄�1;1[

3

(T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

)('

MN

� �

E

Æ

('

MN

))

� kT

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

k

L

2

sup

'2X

2

0

;k'k

X

2

0

=1

k'

MN

� �

E

Æ

('

MN

)k

L

2

: (29)

In these estimates, �

E

Æ

is the L

2

projetion operator over the redued spae E

Æ

.

An upper bound for the last term is given by the

Lemma 3.2. For any element '

MN

in X

M;N

the following estimate is true

k'

MN

� �

E

Æ

('

MN

)k

2

L

2

� (

1

(1 + �)E

MAX

)

2

�

k(��

RR

� �

rr

)'

MN

k

2

L

2

(℄�1;1[

3

)

+ kV k

2

L

1

k'

MN

k

2

L

2

(℄�1;1[

3

)

�

: (30)

Moreover for any b � 0 there exists a onstant C independent of M ,N ,E

MAX

suh that

k'

MN

� �

E

Æ

('

MN

)k

L

2

� C

�

1

p

E

MAX

�

b

k'

MN

k

X

b

0

: (31)

Proof. See the appendix A .

From now on we suppose � smaller than some �xed onstant (usually less than 1). Using the stability of the

L

2

projetor on eigenmodes we obtain that there exists a onstant  > 0 suh that

k'

MN

� �

E

Æ

('

MN

)k

L

2

� (



E

MAX

)(1 + kV k

L

1

)k'k

X

2

0

�

(V )

E

MAX

k'k

X

2

0

: (32)

This allows us to write �rst

sup

k'k

X

2

0

=1

R

℄�1;1[

3

(T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

)'

MN

�

(V )

E

MAX

kT

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

k

L

2

(℄�1;1[

3

)

: (33)

Realling the de�nition of  

Æ

, we have

�

E

Æ

(T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

) = 0: (34)

from the de�nition of the eigenmodes that span E

Æ

, we also have

(Id� �

E

Æ

)((��

RR

� �

rr

) 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

) = 0; (35)

hene

T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

= (Id� �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

); (36)

so that

sup

k'k

X

2

0

=1

Z

℄�1;1[

3

(T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

)'

MN

�

(V )

E

MAX

k(Id� �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

)k

L

2

(℄�1;1[

3

)

(37)

Combining this inequality with (27) allows us to state the following result:



NUMERICAL ANALYSIS OF THE ADIABATIC VARIABLE METHOD 9

Theorem 3.3. Let � � 0, s >

1

2

be suh that V  

Æ

2 L

2

(℄ � 1; 1[

2

;H

s

(℄ � 1; 1[)) \H

�

(℄ � 1; 1[

2

;L

2

(℄ � 1; 1[)).

Then there exists two onstants  and (V ) suh that

k 

0

�  

Æ

k

L

2

(℄�1;1[

3

)

+ j�

0

� �

Æ

j �

(V )

E

MAX

k(Id� �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

)k

L

2

(℄�1;1[

3

)

+(M

��

kV  

Æ

k

H

�

(℄�1;1[

2

;L

2

℄�1;1[)

+N

�s

kV  

Æ

k

L

2

(℄�1;1[

2

;H

s

℄�1;1[)

) (38)

and



sup(M;N)

2

k(Id� �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

)k

L

2

(℄�1;1[

3

)

�

�

k 

0

�  

Æ

k

L

2

(℄�1;1[

3

)

+ j�

0

� �

Æ

j

�

+(M

��

kV  

Æ

k

H

�

(℄�1;1[

2

;L

2

℄�1;1[)

+N

�s

kV  

Æ

k

L

2

(℄�1;1[

2

;H

s

℄�1;1[)

): (39)

Proof. Only (38) has been proven, we are going to prove (39) after having notied that the �rst term in the

right hand side of (38) aounts for the reliability of the adiabati variable redution and the seond aounts

for the hoie of the �ltering frequeny (M;N)

4

. All we have to prove is that the estimator in the right hand

side of (38) is not too large. For ' in X

2

0

denote '

MN

as its projetion on X

MN

; then for all � 2 R

Z

℄�1;1[

3

(T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

)'

MN

=< F ( 

Æ

; �

Æ

); ('; �) > �

Z

℄�1;1[

3

((V  

Æ

� �

M


J

N

(V  

Æ

))';

so that

sup

k'k

X

2

0

=1

R

℄�1;1[

3

(T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

)'

MN

� sup

k'k

X

2

0

=1

< F ( 

Æ

; �

Æ

); ('; �) > +sup

k'k

X

2

0

=1

R

℄�1;1[

3

((V  

Æ

� �

M


J

N

(V  

Æ

))': (40)

Using the upper bound in (27) we obtain

sup

k'k

X

2

0

=1

R

℄�1;1[

3

(T

R;r;z

 

Æ

+ �

M


J

N

(V  

Æ

)� �

Æ

 

Æ

)'

MN

� kF ( 

Æ

; �

Æ

)k

(X

2

0

)

�

�R

+ (N

�s

kV  

Æ

k

L

2

(℄�1;1[

2

;H

s

℄�1;1[)

+M

��

kV  

Æ

k

H

�

(℄�1;1[

2

;L

2

℄�1;1[)

) (41)

The term (T

R;r;z

 

Æ

+ �

M


 J

N

(V  

Æ

) � �

Æ

 

Æ

) being in X

MN

hene in X

2

0

, we hoose it as ' after proper

normalization in the above supremum; realling for b = 2, a = 0 the inverse inequality that is true for elements

of X

MN

( [1℄ p.256)

8 b � a � 0; 8 

MN

2 X

M;N

k 

MN

k

X

b

0

� C max(M;N)

b�a

k 

MN

k

X

a

0

: (42)

we obtain trivially from (36) and the �rst inequality in (23) the seond estimate of the theorem.

Remark 3.4. The estimator an be expliitly omputed sine it involves L

2

norms of disrete funtions ;

moreover its omputation an be done in a fast manner as it will be seen in setion 5, remark 5.1.

4

When the funtions involved are regular enough, the seond term in the right hand side of (38) an be onsidered small enough

to be negleted (see also [7, 8℄); this is the ase for instane in formula (38) with N

2

' M

2

' E

MAX

as soon as the regularity

allows to use �; s > 2 (and  

Æ

is lose enough to the solution).



10 YVON MADAY AND GABRIEL TURINICI

4. FURTHER RESULTS

4.1. X

1

0

estimate

Although the L

2

norm seems the most natural when studying the onvergene of the eigenfuntions, there

are some remarkable situations (see below) where another norm, here the X

1

0

norm, is required to measure the

error. Our approah lets us the freedom to analyze these ases as well, obtaining thus an estimator for the error

expressed as k 

0

�  

Æ

k

X

1

0

+ j�

0

� �

Æ

j.

Indeed, denote by H

s

�

= D(A

s=2

) the domain in L

2

(℄ � 1; 1[) of the s=2-th power of the operator A =

�

z

(1 � z

2

)�

z

endowed with anonial norm; then, for any � > 0 there exists some onstant 

�

> 0 suh that

the following interpolation property is valid (use (6) and (5.9) p.256, like in Thm. 13.4, p.303 [1℄):

8v 2 H

�

�

(℄� 1; 1[); kv �J

N

vk

H

1

�

� 

�

N

1��

kvk

H

�

�

: (43)

The result reads:

Theorem 4.1. Let � � 0, s >

1

2

be suh that V  

Æ

2 L

2

(℄ � 1; 1[

2

;H

s

(℄ � 1; 1[)) \H

�

(℄ � 1; 1[

2

;L

2

(℄ � 1; 1[)).

There exists onstants ; C > 0 and (V ) > 0 suh that

k 

0

�  

Æ

k

X

1

0

+ j�

0

� �

Æ

j �

(V )max(M;N)

E

MAX

k(Id� �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

)k

L

2

(℄�1;1[

3

)

+ (M

1��

kV  

Æ

k

H

�

(℄�1;1[

2

;L

2

℄�1;1[)

+N

1�s

kV  

Æ

k

L

2

(℄�1;1[

2

;H

s

�

)

) (44)

and

C

max(M;N)

k(Id� �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

)k

L

2

(℄�1;1[

3

)

�

�

k 

0

�  

Æ

k

X

1

0

+ j�

0

� �

Æ

j

�

+(M

1��

kV  

Æ

k

H

�

(℄�1;1[

2

;L

2

℄�1;1[)

+N

1�s

kV  

Æ

k

L

2

(℄�1;1[

2

;H

s

�

)

): (45)

Proof. We follow the same lines of proof as in Theorem 3.3 making use of the abstrat result for Z = X

1

0

� R,

Y = X

1

0

�

� R. For the seond part we are making use of (42) for b = 1, a = 0.

Remark 4.2. From the a priori estimate (and the ommon sense) it is natural to hoose N

2

'M

2

' E

MAX

.

Theorem 2 gives an optimal a posteriori estimate to judge on the adiabatiity of the variable.

4.2. Separate estimates for eigenvalues and eigenfuntions

The estimators obtained before do not provide separated indiations on the onvergene of the eigenvalues

and the eigenfuntions alone; moreover they annot aount for well-known phenomena like super-onvergene

of eigenvalues when ompared with the H

1

onvergene of eigenfuntions.

It seems therefore legitimate to us to searh for suh tailored estimators. The framework is the following:

suppose as an be hinted from Thm. 3.3 and 4.1 that our disretization of the problem allows for a better

onvergene of eigenfuntions in the L

2

norm when ompared with H

1

norm

5

. Then we reall in what follows

that the error for the eigenvalues behaves (asymptotially) like the square of the H

1

error for eigenfuntions.

We use this to obtain an estimator for the error in the eigenvalues alone; it is that estimator that we illustrate

next in numerial experiments.

5

this is generally true for most approximation of nulear struture omputations while this may however not be the ase for

eletroni struture when inomplete basis are used
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Let ( 

Æ

; �

Æ

) be an approximation of the eigenmode ( 

0

; �

0

) ( 

Æ

and  

0

are L

2

-normalized to 1). Then we

an write:

�

Æ

� �

0

= (H 

Æ

;  

Æ

)� (H 

0

;  

0

) = (H( 

Æ

�  

0

); ( 

Æ

�  

0

)) + 2(H 

0

; ( 

Æ

�  

0

))

= (H( 

Æ

�  

0

); ( 

Æ

�  

0

)) + 2�

0

( 

0

;  

Æ

�  

0

) (46)

Using the normalization of  

Æ

and  

0

we see that 2�

0

( 

0

;  

Æ

� 

0

) equals ��

0

R

( 

Æ

� 

0

)

2

. By the de�nition

of the spae X

1

0

we obtain:

�

Æ

� �

0

= k 

Æ

�  

0

k

2

X

1

0

+

Z

(V � �

0

)( 

Æ

�  

0

)

2

: (47)

In what follows we need the following

HYPOTHESIS [A℄: the L

2

= X

0

0

norm of the error for eigenfuntions onverges faster than the X

1

0

norm.

Note that this is typially the ase (through an Aubin-Nitshe type argument see for instane [1℄) for good

enough approximations, i.e. assuming we are in the onvergene range.

Assuming hypothesis [A℄ holds, then there exists 

1

and 

2

(lose to 1) not depending on the parameter Æ

suh that for Æ small enough



1

k 

Æ

�  

0

k

2

X

1

0

� j�

Æ

� �

0

j � 

2

k 

Æ

�  

0

k

2

X

1

0

: (48)

Let us now assume (to simplify) that M

2

' N

2

' E

MAX

. From the disussion above we know that in

the term k 

0

�  

Æ

k

X

1

0

+ j�

0

� �

Æ

j the leading part is the �rst one (the seond one behaving like the square of

the �rst) so we obtain by Theorem 3 a new error estimator

(V )

p

E

MAX

k(Id � �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

)k

L

2

(℄�1;1[

3

)

for

k 

0

�  

Æ

k

X

1

0

and of ourse, its square is an estimator for j�

0

� �

Æ

j. We have therefore proven:

Corollary 4.3. Under the hypothesis [A℄ and for the M

2

' N

2

' E

MAX

there exists two onstants  > 0,

C > 0 and (V ) > 0 suh that

maxfk 

0

�  

Æ

k

X

1

0

;

p

j�

0

� �

Æ

jg �

(V )

p

E

MAX

k(Id� �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

)k

L

2

(℄�1;1[

3

)

+

(M

1��

kV  

Æ

k

H

�

(℄�1;1[

2

;L

2

℄�1;1[)

+N

1�s

kV  

Æ

k

L

2

(℄�1;1[

2

;H

s

�

)

) (49)

and

C

p

E

MAX

k(Id� �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

)k

L

2

(℄�1;1[

3

)

� minfk 

0

�  

Æ

k

X

1

0

;

p

j�

0

� �

Æ

jg

(M

1��

kV  

Æ

k

H

�

(℄�1;1[

2

;L

2

℄�1;1[)

+N

1�s

kV  

Æ

k

L

2

(℄�1;1[

2

;H

s

�

)

): (50)

5. NUMERICAL RESULTS AND CONCLUSIONS

In order to prove the eÆieny of our error estimator we have onsidered some numerial experiments. The

system of interest is the water moleule : the hydrogen atoms are loated in A and C and the oxygen in B ; we

are interested in �nding the fundamental and the �rst 8 exited states.

Although the theory desribed so far was derived (for the sake of simpliity) only for some onstant multi-

pliation funtion f(R; r) � 1 in the kineti operator in the adiabati variable f(R; r)�

z

(1� z

2

)�

z

(see above)

it an be easily extended in order to aommodate the most appropriate modelisation

f(R; r) =

�

1

R

2

+

�

2

r

2

; r 2℄r

min

; r

max

[; R 2℄R

min

; R

max

[; r

min

; R

min

> 0 (51)

where �

1

and �

2

are strutural onstants that depend on the system under onsideration.
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Remark 5.1. The expliit omputation of the ontribution

k(Id� �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

)k

L

2

(℄�1;1[

3

)

(52)

an be done in a \fast" (i.e. less operation than for the evaluation of  

Æ

) manner as follows; let us note

�

z

(1� z

2

)�

z

h

i

=

M

X

j=1



j

i

h

j

for all i = 1; :::; N (53)

�

p;q;i

(R; r) =

M

X

r;s=1

�

rs

pqi

'

r;s;0

(R; r): (54)

Then we onsider the following hange of basis

�

p;q;i

(R; r) =

M

X

p

0

;q

0

=1

�

p

0

q

0

j

pqi

�

p

0

;q

0

;j

(R; r) for all i; j = 1; ::; N p; q = 1; :::;M; (55)

where, by the orthonormality of all basis involved (i.e. (�

p;q;i

)

M

p;q=1

for every i and ('

r;s;0

)

M

r;s=1

), we have:

�

p

0

q

0

j

pqi

=

M

X

r;s=1

�

rs

pqi

�

rs

p

0

q

0

j

; (56)

hene

�

p;q;i

(R; r)(�

z

(1� z

2

)�

z

h

i

)(z) =

M

X

p

0

;q

0

=1

N

X

j=1



j

i

�

p

0

q

0

j

pqi

�

p

0

;q

0

;j

(R; r)h

j

(z): (57)

From the formula  

Æ

=

P

p;q;i

�

 

pqi

�

p;q;i

h

i

given by the solution of the redued problem we notie

A 

Æ

:= [�

z

(1� z

2

)�

z

℄ 

Æ

=

X

p

0

;q

0

;j

�

X

p;q;i



j

i

�

p

0

q

0

j

pqi

�

 

pqi

�

�

p

0

;q

0

;j

(R; r)h

j

(z): (58)

This gives us the value of the oeÆients A 

Æ

in the orthonormal basis �

p

0

;q

0

;j

(R; r)h

j

(z). By tensorization the

omputation (58) an be done in max(M;N)

5

operations, less than the number of operations required by the

omputation of  

Æ

(for instane, the diagonalization of 2D hamiltonians is of higher omplexity) [9, 10, 12℄.

Indeed, our goal is to ompute for f(p

0

; q

0

; j); j�

p

0

;q

0

;j

j � (1 + �)E

MAX

g the term:

�

p

0

;q

0

;j

=

X

r;s;p;q;i

�

 

pqi

�

rs

pqi

�

rs

p

0

q

0

j



j

i

; p

0

; q

0

= 1; :::;M; j = 1; :::; N: (59)

It is easy to hek that summing �rst for p and q we obtain in max(M;N)

5

operations some oeÆients

�

i

rs

=

X

p;q

�

 

pqi

�

rs

pqi

: (60)

Next we sum up for the "i" index and note �

j

rs

=

P

i

�

i

rs



j

i

. Our quantity is:

X

rs

�

j

rs

�

rs

p

0

q

0

j

(61)
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and it is lear now that we an ompute it for all values of (p

0

q

0

j) needed in max(M;N)

5

operations. The L

2

norm of k(Id� �

E

Æ

)(�

z

(1� z

2

)�

z

 

Æ

)k

L

2

(℄�1;1[

3

)

is obtained by summing up the square of �

p

0

;q

0

;j

for all indies

f(p

0

; q

0

; j); j�

p

0

;q

0

;j

j < (1+ �)E

MAX

g. Note that only these oeÆients have to be omputed in (61) and that in

(60) the

�

 

pqi

all vanish for indies f(p; q; i); j�

p;q;i

j � (1+ �)E

MAX

g. Taking this into aount leads to a further

redution in CPU time [10℄.

The results are displayed in the �gures 2-11. We hoose disretization parameters M and N suh that

N

2

'M

2

' E

MAX

. We are plotting the e�etivity indexes, i.e. the quotient "true error over estimated error".

Of ourse the ideal ase would be \e�etivity index = onstant", but this never happens for disretization of

non linear problems. Due to the intriate nature of the eigenvalue problem we annot expet that. What we

do expet is that our estimator be robust and rather insensitive to di�erent disretization parameters (here

E

MAX

). The quotient \ true error over estimated error" was omputed with energy expressed in atomi units

(Hartree, E

h

): 1E

h

= 219474:63m

�1

; the true error was omputed with respet to a solution obtained with a

very �ne disretization.

The relative error was measured with respet to the �rst exitation of the system, that is the di�erene

between the �rst and the seond eigenvalue, and was found to be in the range 3% � 0:001%, whih is typial

for this kind of omputations. This hoie for measuring the relative error is suggested by the fat that the

value of zero for the potential (or energy) is de�ned up to an additive onstant, thus only relative variations are

relevant. Other proedures for measuring the relative error on the i-th eigenvalue an be proposed (one may

onsider as basis for omputations the di�erene between the \i"-th and \i � 1"-th eigenvalues), the present

hoie was retained for the sake of uniformity. Finally, let us mention that in pratie hemists are satis�ed

when the energies are known up to several m

�1

units, 1m

�1

= :455 � 10

�5

E

h

. The omputations presented

also omply with this requirement, as e.g. for the �rst eigenvalue, the error dereases from 24m

�1

to less than

1m

�1

.

E�etivity index (error over estimator) for 1-st eigenvalue

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

Relative error

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.00018

0.00016

0.00014

0.00012

0.0001

8e-05

6e-05

4e-05

2e-05

0

Figure 2. First eigenvalue (energy expressed in Hartree (E

h

))
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E�etivity index (error over estimator) for the 2-nd eigenvalue

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

Relative error

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.0008

0.0007

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

0

Figure 3. Seond eigenvalue (energy expressed in Hartree (E

h

))

E�etivity index (error over estimator) for the 3-rd eigenvalue

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

Relative error

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.0025

0.002

0.0015

0.001

0.0005

0

Figure 4. Third eigenvalue (energy expressed in Hartree (E

h

))

E�etivity index (error over estimator) for 4-th eigenvalue

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1

0.8

Relative error

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.004

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

0

Figure 5. Fourth eigenvalue (energy expressed in Hartree (E

h

))
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E�etivity index (error over estimator) for 5-th eigenvalue

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1

0.8

0.6

Relative error

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.0045

0.004

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

0

Figure 6. Fifth eigenvalue (energy expressed in Hartree (E

h

))

E�etivity index (error over estimator) for 6-th eigenvalue

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

Relative error

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.004

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

0

Figure 7. Sixth eigenvalue (energy expressed in Hartree (E

h

))

E�etivity index (error over estimator) for 7-th eigenvalue

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

1.3

1.2

1.1

1

0.9

0.8

0.7

Relative error

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.012

0.01

0.008

0.006

0.004

0.002

0

Figure 8. Seventh eigenvalue (energy expressed in Hartree (E

h

))
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E�etivity index (error over estimator) for 8-th eigenvalue

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

1.8

1.6

1.4

1.2

1

0.8

0.6

Relative error

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.03

0.025

0.02

0.015

0.01

0.005

0

Figure 9. Eighth eigenvalue (energy expressed in Hartree (E

h

))

E�etivity index (error over estimator) for 9-th eigenvalue

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

1

0.9

0.8

0.7

0.6

0.5

0.4

Relative error

E

MAX

I

n

d

e

x

0.1250.1140.1030.0910.0800.0680.057

0.006

0.005

0.004

0.003

0.002

0.001

0

Figure 10. Ninth eigenvalue (energy expressed in Hartree (E

h

))

We would also want that the estimator quantitatively desribe the order of magnitude of the error. For

the e�etivity index this ondition requires that the ratio between the extremal values of the e�etivity index

be no larger than 10. As we an see from the results displayed, all our indexes ful�ll this requirement. In fat

in our ase this ratio is roughly 2 (exept for eigenmodes 4,5 and 8 where it is loser to 3).

The index involves the norm of the operator DF ( 

0

; �

0

) and its inverse mapping; it is surprising to notie

that the range for the e�etivity indexes is basially the same, even for di�erent eigenmodes, whih was

not predited by the theory. It seems that the various norms DF ( 

0

; �

0

) vary slowly when alulated in

di�erent eigenmodes. The variation of the e�etivity index for two values of E

MAX

= 0:0797E

h

(17500m

�1

)

and E

MAX

= 0:1253E

h

(27500m

�1

) is plotted in �gure 11 for all the nine eigenmodes.

Let us �nally mention that the form of the estimator is not easy to �nd intuitively; other empirial om-

binations of, for instane, powers of E

MAX

and the L

2

\residual" norm involved display divergene for the

e�etivity index.

Remark 5.2. It is of ourse natural to test the estimator on other types of moleules and also on other hoies

of adiabati variables that might be less performant. This will allow to investigate the quality of the part of

the estimator related to adiabatiity. This study requires more heavy disussions with our olleagues hemists,
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Indexes for di�erent eigenmodes for E = 0:0797E

h

eigenmode no.

I

n

d

e

x

987654321

1.05

1

0.95

0.9

0.85

0.8

Indexes for di�erent eigenmodes for E = 0:1253E

h

eigenmode no.

I

n

d

e

x

987654321

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

Figure 11. E�etivity indexes for di�erent eigenmodes and ut-o� E

MAX

values.

whih is planed to be done in a future work. Some preliminary results were already obtained for the water

moleule in a di�erent Jaobi system: the hydrogen atoms are loated in B and C and the oxygen in A. Due to

this hange of the oordinate system, the adiabati variable, still taken as the angle � (see Figure 1), is di�erent

from the one hosen before. As a typial example a plot of the e�etivity index and of the relative error for the

5-th eigenvalue is presented in Figure 12. Note that a full san of the energy (E

MAX

> 0:091) was not possible

due to our limited knowlegde of the potential V . In this range of energy the e�etivity index variation does not

exeed an order of magnitude, but the (relative) error is about 150 times greater than before (ompare with

Figure 6). It appears that this hoie of the adiabati on�guration is less pertinent than the former and our

estimator reveals it here.

E�etivity index (error over estimator) for 5-th eigenvalue

E

MAX

I

n

d

e

x

0.0910.0800.0680.0570.0460.034

10

9

8

7

6

5

4

3

2

1

0

Relative error

E

MAX

I

n

d

e

x

0.0910.0800.0680.0570.0460.034

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 12. The system studied is again the water moleule in the Jaobi oordinates. This

time the hydrogen atoms are loated in B and C and the oxygen in A. This hoie of oordinate

system seems to not have good adiabatiity properties as the relative error is muh larger than

in the ase of the initial oordinate system.

The authors wish to thank C. Leforestier from Laboratoire Struture et Dynamique des Syst�emes Mol�eulaires et Solides,

Universit�e de Montpellier 2 for providing his basi ode to use with our estimators and for the disussions on the subjet.
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Appendix A.

Remark A.1. By the de�nition of the spaes X

s

0

the operator T

R;r;z

is an isometry between X

2

0

and X

0

0

=

L

2

(℄� 1; 1[

3

) ; for any g 2 L

2

(℄� 1; 1[

3

) the equation

T

R;r;z

f = g (62)

has therefore an unique solution f 2 X

2

0

; moreover the mapping that to g assoiates the solution f of (62) is a

ompat mapping from L

2

(℄� 1; 1[

3

) into L

2

(℄� 1; 1[

3

) (beause of the embedding H

1

0

(℄� 1; 1[

3

) � L

2

(℄� 1; 1[

3

)

whih is ompat). By the Lax-Milgram lemma, as soon as V 2 L

1

, � � kV k

L

1

the same properties remain

true for the equation

(H + �Id)f = T

R;r;z

f + V f + �f = g (63)

Is is essential for the a posteriori analysis of the (2)-(3) to study the properties of the di�erential DF ( 

0

; �

0

)

of F in the solution ( 

0

; �

0

) of (2)-(3) ; more preisely, it will be proven that if �

0

is a simple eigenmode (i.e.

of multipliity 1) of H and V 2 L

1

then DF ( 

0

; �

0

) is an isomorphism from L

2

(℄� 1; 1[

3

)�R into (X

2

0

)

�

�R.

A straightforward omputation gives the following formula for DF ( 

0

; �

0

) :

< DF ( 

0

; �

0

)( ; �); ('; �) >=

R

℄�1;1[

3

H' � �

0

 '� � 

0

'+ 2�

R

℄�1;1[

3

 

0

 

=

R

℄�1;1[

3

(H'� �

0

'+ 2� 

0

) �  � �

R

℄�1;1[

3

 

0

' =< ( ; �); DF ( 

0

; �

0

)

�

('; �) > (64)

whereDF ( 

0

; �

0

)

�

is the adjoint ofDF ( 

0

; �

0

). To prove the bijetivity ofDF ( 

0

; �

0

) we hek thatDF ( 

0

; �

0

)

�

is bijetive. This is equivalent to prove that for any � 2 R and w 2 L

2

(℄�1; 1[

3

) there exists an (unique) ouple
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('; �) suh that :

H'+ 2� 

0

� �

0

' = w (65)

Z

℄�1;1[

3

 

0

' = � (66)

The equation (65) an be written (H ��

0

)' = w� 2� 

0

. If we suppose that �

0

is a simple eigenvalue, then, by

the remark A.1 and by the Fredholm alternative

6

(65) has a solution i� w� 2� 

0

?  

0

that is � =

<w; 

0

>

2

; in

this ase the set of solutions is f'

0

+  

0

;  2 Rg where '

0

is a partiular �xed solution. By (66) we ompute

 = �� <  

0

; '

0

> and so we have found a ouple (' = '

0

+  

0

; �) that satisfy (65) and (66). It is therefore

natural to suppose that V 2 L

1

and that all eigenvalues under study are simples.

A.1. Proof of lemma 3.2.

Let us remind that all element '

MN

in X

M;N

an be written as

'

MN

(R; r; z) =

N+1

X

p;q;i=1



p;q;i

�

p;q;i

(R; r)h

i

(z); (67)

with



p;q;i

=

Z

R

Z

r

'

MN

(R; r; �

i

)�

p;q;i

(R; r)dRdr: (68)

By the de�nition of eigenmodes �

p;q;i

we have also (by use of integration by parts)



p;q;i

=

R

R

R

r

'

MN

(R; r; �

i

)

1

�

p;q;i

�

(��

RR

� �

rr

� V (R; r; �

i

))�

p;q;i

�

dRdr

=

1

�

p;q;i

R

R

R

r

�

(��

RR

� �

rr

� V (R; r; �

i

))'

MN

�

(R; r; �

i

)�

p;q;i

(R; r)dRdr: (69)

Moreover by the de�nition of the projetor we have

�

'

MN

� �

E

Æ

('

MN

)

�

(R; r; z) =

X

(p;q;i);j�

p;q;i

j>(1+�)E

MAX



p;q;i

�

p;q;i

(R; r)h

i

(z); (70)

so that

k'

MN

� �

E

Æ

('

MN

)k

2

L

2

�

P

(p;q;i);j�

p;q;i

j>(1+�)E

MAX

(

p;q;i

)

2

�

i

�

P

(p;q;i);j�

p;q;i

j>(1+�)E

MAX

1

�

2

p;q;i

�

R

R

R

r

�

(��

RR

� �

rr

� V (R; r; �

i

))'

MN

(R; r; �

i

)

�

�

p;q;i

(R; r)dRdr

�

2

�

i

:(71)

By the orthogonality of �

p;q;i

we have

k'

MN

� �

E

Æ

('

MN

)k

2

L

2

� (

1

(1+�)E

MAX

)

2

�

k(��

RR

� �

rr

)'

MN

k

2

L

2

(℄�1;1[

3

)

+k

P

i

(V (:; :; �

i

)'

MN

(:; :; �

i

))

2

�

i

k

2

L

2

(℄�1;1[

2

)

�

(72)

whih onludes the proof of the �rst part of the lemma.

6

we write H��

0

= (H+�Id)� (�+�

0

)Id and we use, for � large enough, the Fredholm alternative ( [4℄ p. 39) for the ompat

operator (H + �Id)

�1

and the eigenvalue

1

�+�

0

6= 0.
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To prove (31) note that it is trivially true for b = 0 and by the argument above for b = 2 ; using one more

in (69) the de�nition of eigenmodes �

p;q;i

and after one supplementary integration by parts we obtain



p;q;i

=

1

�

2

p;q;i

R

R

R

r

�

(��

RR

� �

rr

� V (R; r; �

i

))

2

'

MN

�

(R; r; �

i

)�

p;q;i

(R; r)dRdr (73)

so, by the same line of reasoning as above, upper bound (31) is proved for b = 4 ; by ontinuing the proedure

for all even values of b and using lassial interpolation arguments the onlusion will follows.

A.2. Proof of lemma 2.4.

Let �

M;N

be the projetor to X

M;N

assoiated with T

R;r;z

that is for all v 2 X

1

0

; �

M;N

v is the element of

X

M;N

that veri�es

8 u 2 X

M;N

:

Z

℄�1;1[

3

T

R;r;z

(v ��

M;N

v)u = 0: (74)

Note that �

Æ

�

M;N

= �

Æ

. It is lassial

7

to see that �

M;N

has optimal approximation properties, that is, for

any b � 1 � a � 0 there exists a onstant  independent of M ,N suh that

kv ��

M;N

vk

X

a

0

� 

�

1

max(M;N)

�

b�a

kvk

X

b

0

: (75)

Write then :

kv ��

Æ

vk

X

a

0

� kv ��

M;N

vk

X

a

0

+ k�

M;N

v ��

Æ

�

M;N

vk

X

a

0

: (76)

By (75) the �rst term in (76) is optimal, so only the seond term remains to be (optimally) upper bounded.

Denote f = �

M;N

v ; reall the minimization property of �

Æ

:

�

Æ

v = argminfkv � uk

X

1

0

;u 2 E

Æ

g

and write, for a = 1 :

kf ��

Æ

fk

X

1

0

� kf � �

E

Æ

fk

X

1

0

� Cmax(M;N)kf � �

E

Æ

fk

L

2
� Cmax(M;N)

�

1

p

E

MAX

�

b

kfk

X

b

0

; (77)

whih ends the proof of the lemma for a = 1 ; the values of a in [0; 1[ are treated by the duality tehnique of

Aubin and Nitshe (see for instane [1℄ p. 274-275).

7

use for instane the reasoning in [1℄ p. 262


