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Abstra
t

This paper is dedi
ated to the sear
h of tailored 
on-

trollability 
on
epts for quantum systems intera
ting

with lasers. A negative result for in�nite dimensional

spa
es serves as motivation for a �nite dimensional a-

nalysis. We show that under physi
ally reasonable hy-

pothesis we 
an lo
ally 
ontrol sets of observables. As a

remarkable parti
ular 
ase global exa
t 
ontrollability

is proven for the population of the eigenstates.

1 Introdu
tion

Controlling 
hemi
al rea
tions at the quantum level was

a long-lasting goal [1, 3, 4, 5, 9, 11, 13, 14, 16, 17℄ from

the very beginning of the laser te
hnology. Indeed, due

to the subtle nature of the intera
tions involved, this

kind of manipulation is expe
ted to allow on the one

hand for mu
h eÆ
ient and �ner 
ontrol than 
lassi
al

tools and on the other hand for new phenomena to be

revealed.

The �rst experiments have shown that designing the

laser pulse able to ensure the desired properties of the

system is a non-trivial task that physi
al intuition alone


annot a

omplish. It is only re
ently that tools 
om-

ing from the 
ontrol theory began to give satisfa
tory

results in some parti
ular 
ases.

A legitimate question arises in this 
ontext: what are

the new 
ontrollability 
on
epts that best �t this frame-

work and whi
h are the quantum quantities that 
an be

exa
tly 
ontrolled using su
h an external �eld ? Some

answers are given below.

2 In�nite dimensional 
ontrollability

The problem under study is 
ontrolling the time evolu-

tion of quantum systems. Let us 
onsider su
h a inde-

pendent system with internal Hamiltonian H

0

and let

	

0

(x) be its initial state. Denoting by 	(x; t) the state

at the time t the evolution equations (Time Dependent

S
hr�odinger Equations) for the free system read:

(

i�h

�

�t

	(x; t) = H

0

	(x; t)

	(x; t = 0) = 	

0

(x); k	

0

k

L

2

(R




)

= 1

(2.1)

The external a
tion expe
ted to allow for 
ontrol is a

laser �eld modeled by a laser intensity �(t) 2 R and by

a 
ertain time independent dipole moment operator B

(see also [18℄). The new Hamiltonian is H = H

0

��(t)B

and the dynami
al equations read:

(

i�h

�

�t

	

�

(x; t) = H	

�

(x; t)

	

�

(x; t = 0) = 	

0

(x)

(2.2)

In a �rst approximation the goal may be formalized as

to �nd (if any) a �nal time T and a �nite energy laser

pulse �(t), �(t) 2 L

2

([0; T ℄) able to steer the system from

	

0

(x) to some prede�ned target 	

�

(x; T ) = 	

target

(x).

Note that the L

2

norm of 	

�

is 
onserved throughout

the evolution:

k	

�

(x; t)k

L

2

x

(R




)

= k	

0

k

L

2

(R




)

; 8t > 0: (2.3)

In general, for any autoadjoint operator O su
h that

[H

0

; O℄ and [B; O℄ are both zero [19℄ one obtains

< 	

�

(x; t)jOj	

�

(x; t) >=< 	

0

jOj	

0

>; 8t > 0; (2.4)

with the usual notation < 	jOj	 >=< 	; O	 >

L

2

=<

O	;	 >

L

2

. One remarkable 
lass of operators are L

2

-

proje
tions to 
losed subspa
es. Let P be a proje
tion

to a 
losed subspa
e X of L

2

(R




). Then [H

0

; P ℄ =

[B; P ℄ = 0 mean in parti
ular that X and its orthogonal


omplement X

?

are involutive for H

0

and B, i.e.

(

8	 2 X : H

0

	 2 X; B	 2 X

8	 2 X

?

: H

0

	 2 X

?

; B	 2 X

?

(2.5)

The system 
an then be viewed as de
omposed into two

independent subsystems with wavefun
tions the proje
-

tions of the total wavefun
tion to X and X

?

. Of 
ourse

this de
omposition 
an be further re�ned for any addi-

tional proje
tion operator that 
ommutes with H

0

and

B. In order not to introdu
e unne
essary 
ompli
ations,

we will suppose in all that follows that the system has

only a �nite number of independent subsystems (al-

though the theory 
an be a

ommodated to �t a 
ount-

able number of subsystems whi
h 
an be proved to be



the general 
ase), ea
h being asso
iated its L

2

-proje
tor

P

1

,...,P

K

su
h that:

[H

0

; P

i

℄ = [B; P

i

℄ = 0; 8i = 1; :::;K (2.6)

Moreover one 
an prove that the proje
tors 
an be 
ho-

sen to ful�ll the following 
onditions:

K

X

i=1

P

i

= I; P

i

P

j

= 0; 8i 6= j; i; j = 1; :::K (2.7)

Denote by S

	

0

the produ
t of hyper-spheres: S

	

0

=

ff 2 L

2

(R




); kP

i

fk

L

2

(R




)

= kP

i

	

0

k

L

2

(R




)

; i =

1; :::;Kg By using 2.4 for the proje
tors P

1

,...,P

k

one


an prove that the system evolves on S

	

0

.

Let us point out that due to the quantum nature of the

system it follows by the un
ertainty prin
iple that one

will never be able to experimentally verify, neither fully

exploit, the exa
t 
ontrollability. In fa
t even if one

obtains exa
tly the desired target state 	

target

the free

evolution (i.e. when laser is swit
hed o� �(t) = 0; t � T )

of the quantum system instantaneously modi�es

this state (by a time dependent phase shift if 	

target

is

an eigenfun
tion of H

0

and by the (2.1) formula in gen-

eral). In this 
ontext a negative 
ontrollability result is

therefore not really restri
tive. In fa
t using arguments

as in [2℄ we may prove (see also [20℄) :

Theorem 2.1 Let B be a bounded operator from

H

2

x

(R




) to itself and let H

0

generate a C

0

semigroup

of bounded linear operators on H

2

x

(R




). Denote by

	

�

(x; t) the solution of (2.2). Then the set of attainable

states from 	

0

de�ned by

AS = [

T>0

f	

�

(x; T ); �(t) 2 L

2

([0; T ℄)g (2.8)

is 
ontained in a 
ountable union of 
ompa
t subsets

of H

2

x

(R




) \ S

	

0

. In parti
ular its 
omplement with

respe
t to S

	

0

: N = S

	

0

n AS is everywhere dense

on S

	

0

. The same holds true for the 
omplement with

respe
t to S

	

0

\H

2

x

(R




).

Proof: To prove the �rst part of the theorem one

applies Thm. 3.6 from [2℄ on the spa
e H

2

x

(R




) for

the operators �iH

0

and �iB (and restri
ts �(t) to L

2

fun
tions). Denote for any set A:

A

r

1

;:::;r

K

= f

K

X

i=1

s

i

P

i

f ; 0 � s

i

� r

i

; f 2 Ag

Then for any 
ompa
t subset C of X C

r

1

;:::;r

K

is also


ompa
t. Applying this to the 
ompa
t 
omponents C

of AS one notes that

[

r

1

�0;:::;r

K

�0

AS

r

1

;:::;r

K

= [

n2N

�

AS

n;:::;n

is also a 
ountable union of 
ompa
ts subsets of

H

2

x

(R




). It follows by the Baire 
ategory theorem

that [

r

1

�0;:::;r

K

�0

AS

r

1

;:::;r

K

has dense 
omplement in

H

2

x

(R




); in parti
ular the 
omplement of AS with re-

spe
t to S

	

0

\H

2

x

(R




) has to be everywhere dense on

S

	

0

\H

2

x

(R




).

Given this result the sear
h for exa
tly 
ontrollable

quantities has to be dire
ted to the �nite dimensional

setting.

3 Finite dimensional 
ontrollability

Let D = f	

i

(x); i = 1; ::; Ng be an orthonormal basis

for a �nite dimensional sub-spa
e F of L

2

(R




) [21℄ and

A and B be the matri
es of the operators H

0

and B

with respe
t to this base.

Denote C = (


i

)

N

i=1

as the 
oeÆ
ients of 	

i

(x) in the

formula of the evolving state 	(x; t) =

P

N

i=1




i

(t)	

i

(x).

From now we will work in atomi
 units only (�h = 1) ;

the equations (2.2) read

i

�

�t

C

�

= AC

�

� �(t)BC

�

; C

�

(t = 0) = C

0

(3.1)

C

0

= (


0i

)

N

i=1

; 


0i

=< 	

0

;	

i

> (3.2)

The 
ontrollability of (3.1) has been dealt with in the

literature (
f. [12℄) by deriving results from the 
ontrol-

lability of a system posed on the spa
e of the unitary

matri
es of dimensionN . This approa
h has the bene�t

of granting a

ess to the general tools on the 
ontrol-

lability of bilinear systems on Lie groups. However,

these results give only suÆ
ient 
onditions for exa
t


ontrollability (due to the setting whi
h is more gen-

eral). Finally there exists a 
lass of simple quantum

systems 
ontrollable in a sense to be de�ned further on

that do not verify the 
riteria emerging from the Lie

group analysis. We have therefore judged instru
tive

to study this issue in a new framework; we were thus

lead into identifying simple ne
essary and suÆ
ient


onditions for the �nite dimensional 
ontrollability (see

also [5℄ for an introdu
tion to this topi
).

In the 
ase of our modeling the Amatrix is diagonal and

B is symmetri
al with null diagonal elements (see [15℄

for the general 
ase). Let us denote by �

i

; i = 1; ::; N

the diagonal elements of A (the energies of the states

	

i

). Before presenting the theoreti
al results we will

introdu
e the 
ontrollability 
on
ept used.

Let O

1

,...,O

p

be positive quantum observables (positive

autoadjoint operators). We say that the distribution of

observables Æ = (Æ

i

)

p

i=1

, Æ

i

� 0, i = 1; :::; p is rea
hable

from the initial state C

0

if for any � > 0 there exists a

�nal time T

d

> 0 and an ele
tri
 �eld �(t) 2 L

2

([0; T

d

℄)

su
h that the solution of (3.1) satis�es:

j < 	(x; T

d

)jO

i

j	(x; T

d

) > �Æ

2

i

j < �; i = 1; :::; p



If this is also true for � = 0 we say that the distribution

of observables Æ 
an be exa
tly rea
hed from the initial

state C

0

.

A spe
ial 
ase of positive observables are the proje
tions

on the eigenstates P

	

i

de�ned by P

	

i

	 =< 	;	

i

>

L

2

	

i

, i = 1; :::N . The observable quantities < 	jP

	

i

j	 >


orresponding to this operators are 
alled populations

of the eigenstates. In our 
ase these are j


�

k

(T

d

)j

2

. A

remarkable property of these observables is that when

the system is evolving freely ((3.1) with �(t) = 0) the

populations of the eigenstates do not 
hange.

As it was previously seen the system evolves on the

unit sphere of L

2

x

(R




) whi
h in �nite dimensional rep-

resentation reads

P

N

i=1

j


�

i

(t)j

2

= 1; 8t � 0. We 
all

population distribution for the system (3.1) anyN -tuple

d 2 R

N

su
h that

N

X

i=1

d

2

i

= 1; d

i

� 0; i = 1; :::; N (3.3)

A population distribution being a parti
ular 
ase of dis-

tribution of observables we extend the rea
hability 
on-


epts de�ned above to this 
ase also.

4 Transfer graph and ne
essary 
onditions

We de�ne as in [15℄ the non-oriented transfer graph of

the system G = (V;E) whi
h 
orresponds to the intu-

itive image of population 
ow among di�erent eigen-

states of the system. The set V of verti
es is the set of

eigenstates 	

i

and the set of edges E is the set of all

pairs of eigenstates 
oupled by the matrix B:

G = (V;E); V = f	

1

; :::;	

N

g E = f(	

i

;	

j

);B

ij

6= 0g

(4.1)

This graph 
an be de
omposed into 
onne
ted 
ompo-

nents G

�

= (V

�

; E

�

), a = 1; ::;K that 
orrespond to a

blo
-diagonal stru
ture of the matrix B (modulo per-

mutations on the indi
es). It is worthwhile mentioning

that this operation is the dis
rete version of the de-


omposition using proje
tion operators that was under-

taken for the in�nite dimensional 
ase; indeed, for ea
h


onne
ted 
omponent G

�

, � = 1; :::;K, one 
an asso-


iate the linear spa
e spanned by the eigenfun
tions in

V

�

and prove that the (dis
rete) proje
tion operator on

this spa
e P

�


ommutes with A and B.

Let

~

D = f

~

	

1

; :::;

~

	

N

g be an orthonormal basis for the

�nite dimensional spa
e F and

~

P

1

; :::;

~

P

N

proje
tions

operators on

~

	

1

,...,

~

	

N

respe
tively. Suppose moreover

that these observables are 
ommuting with P

1

; :::; P

K

,

whi
h is equivalent to the fa
t that

~

D is the union of

orthonormal basis for ea
h subsystem. Denote by U

the unitary matrix that allow to 
hange between the

orthonormal basis D and

~

D:

~

	

i

=

P

j

U

ij

	

j

. We will

suppose in all that follows that all entries in U are real.

One 
an 
he
k by the de�nition of G and using equa-

tions (3.1) that for all � = 1; ::;K: i

d

dt

kP

�

	(x; t)k

2

L

2

=

0 ; ea
h subsystem (
onne
ted 
omponent) 
omply

therefore with the 
onservation laws

X

fi;	

i

2V

�

g

< 	(x; t)j

~

P

i

j	(x; t) >= 
onstant;

t > 0; � = 1; ::;K (4.2)

This allows us to give ne
essary 
onditions for 
ontrol-

lability

Lemma 4.1 If the distribution of observables Æ is

rea
hable from the initial 
on�guration C

0

then

X

fi;	

i

2V

�

g

< 	

0

j

~

P

i

j	

0

>=

X

fi;	

i

2V

�

g

Æ

2

i

; � = 1; ::;K:

(4.3)

As a parti
ular 
ase one obtains the following

Corollary 4.1 If the population distribution d is

rea
hable from the initial 
on�guration C

0

then

X

fi;	

i

2V

�

g

j


0i

j

2

=

X

fi;	

i

2V

�

g

d

2

i

; � = 1; ::;K: (4.4)

5 Controllability results

Denote !

kl

= �

k

� �

l

; k; l = 1; :::; N . Let us introdu
e

the following hypothesis:

H A The 
omponents G

�

; � = 1; ::;K of G re-

main 
onne
ted after elimination of all edge pairs

(	

i

;	

j

); (	

a

;	

b

) su
h that !

ij

= !

ab

(degenerate tran-

sitions).

Theorem 5.1 (Lo
al exa
t 
ontrollability) Let T > 0

be a given �nal time, �

0

(t) 2 L

2

([0; T ℄) a given laser

�eld su
h that:

H B lim

t!T

�

0

(t) = 0,

so in parti
ular the limit lim

t!T

�

0

(t) is supposed to exist

(see also Remark 5.1); let 	

T

be the state at time T of

the system propagated with the laser �eld �

0

and Æ

T

(d

T

)

the distribution of observables (populations) asso
iated

to the state 	

T

:

Æ

T

= (

q

< 	

T

j

~

P

i

j	

T

>)

N

i=1

;

d

T

= (j < 	

T

;	

i

>

L

2
j)

N

i=1

= (j


0i

j)

N

i=1

:



Suppose (d

T

)

i

6= 0; (Æ

T

)

i

6= 0; i = 1; :::; N and that the

hypothesis H A is veri�ed. Suppose also that:

H C For ea
h 
onne
ted 
omponent G

�

; � = 1; :::;K

of G it does not exists a partition V

�

= V

1

�

[ V

2

�

, V

1

�

\

V

2

�

= ; su
h that

j

X

a2V

1

�

U

jq

< 	

T

;	

a

> j = j

X

b2V

2

�

U

jb

< 	

T

;	

b

> j; 8j 2 V

�

(5.1)

or if su
h a partition exists then

P

a2V

1

�

U

ja

< 	

T

;	

a

>

P

b2V

2

�

U

jb

< 	

T

;	

b

>

= 
onstant; 8j 2 V

�

:

Then there exists an open neighborhood D of Æ

T

on the

surfa
e of R

N

given by the ne
essary 
onditions (4.3)

endowed with the 
anoni
al topology su
h that one 
an

exa
tly rea
h any distribution of observables Æ in D

from C

0

.

Remark 5.1 The hypothesis H B is not really restri
-

tive. In all pra
ti
al 
ases �

0

(t) is 
ontinuous (at least

at �nal/initial time) whi
h assures the existen
e of the

limit. The requirement that the limit of �

0

(t) in T

be exa
tly 0 
an be readily satis�ed by repla
ing the

triplet (�

0

; A;B) by (� � �

0

(T ); A + �

0

(T )B;B), where

�

0

(T ) = lim

t!T

�

0

(t). Note that in this situation the hy-

pothesis H A has to be veri�ed for the eigenvalues of

A+ �

0

(T )B whi
h are in general di�erent from those of

A. Finally, note that the set of �nal states 	

T

that do

not 
omply with the hypothesis H C is of null 
anoni
al

measure for any (real) unitary matrix U .

Remark 5.2 The result above may be somehow sur-

prising due to the spe
i�
 
on
ept of lo
ality used. In

fa
t, suppose that the evolution of the system has ended

in some �nal state p

T

with the 
orresponding distribu-

tion of observables Æ

T

. Then, in order to obtain some

other admissible distribution Æ





lose to Æ

T

one has to

go ba
k in time and modify the ele
tri
 �eld rather than

to start from p

T

and go for Æ




! To understand this one

has to remember that the observables do not ne
essar-

ily 
ommute with the hamiltonian so the free evolution

(from p

T

) drags the distribution of observables towards

the dire
tion given by the evolution equations 2.2; there

is therefore no reason to hope that small perturbations

(after the time T ) 
an always 
ounter-balan
e this bias

and at the same time �ll out a neighborhood of Æ

T

.

Remark 5.3 The te
hni
al 
onditions (Æ

T

)

i

6= 0; i =

1; :::; N 
an also be intuitively justi�ed. Indeed if some

(Æ

T

)

i

= 0 one have to take 
are when 
hoosing the good

target set to expe
t exa
t 
ontrollability into, sin
e there

is no reason to hope in (exa
tly) rea
hing \distribu-

tions" having some stri
tly negative observables, as

any proje
tion-like observable is a positive operator.

Proof: For the sake of simpli
ity we treat only the


ase !

ij

6= !

ab

; 8(i; j) 6= (a; b), the general 
ase bearing

no new 
on
epts. Let us denote A = �iA and B =

�iB. Then (3.1) be
ome:

�

�t

C

�

= (A+ �(t)B)C

�

; C

�

(t = 0) = C

0

(5.2)

Denote by 
(�; C

0

; t) = (


a

(�; C

0

; t))

N

a=1

the solution at

the time t of (3.1) for the initial (t = 0) data C

0

and

ele
tri
 �eld �(t). Denote also w(t) = 
(�

0

; C

0

; t) and


onsider the 
anoni
al base fe

1

; :::; e

N

g of R

N

.

We de�ne the appli
ation M : L

2

(R)! R

N

given by

M(�) = (< 
(�; C

0

; T )j

~

P

a

j
(�; C

0

; T ) >)

N

a=1

(5.3)

Note that by the ne
essary 
onditions (4.3) the range

of M is a subset of

�

(x

i

)

N

i=1

2 R

N

;

X

fi;	

i

2V

�

g

x

i

=

X

fi;	

i

2V

�

g

< 	

0

j

~

P

i

j	

0

>

� = 1; ::;K

	

The lo
al 
ontrollability is in fa
t a parti
ular surje
tiv-

ity property of M . We will prove that the di�erential

DM ofM has the surje
tivity property we desire and by

the impli
it fun
tion theorem the 
on
lusion will follow

then for M itself. More pre
isely we prove that DM is

onto the linear manifold (P) (produ
t of hyper-planes

of R


ardinality(S

�

)

; � = 1; ::;K):

�

(x

i

)

N

i=1

2 R

N

;

X

fi;	

i

2V

�

g

x

i

= 0; � = 1; ::;K

	

whose M(�

0

)-translation is tangent to the range of M .

Denote by f

a

; a = 1; :::; N the 
omponents of DM :

DM(�)j

�=�

0

� ~� =

�

< f

a

; ~� >

L

2

�

N

a=1

(5.4)

Due to the �nite dimensionality of our setting we just

have to show that the range of DM(�)j

�=�

0

has a null

orthogonal with respe
t to (P), that is any ve
tor k =

(k

a

)

N

a=1

2 R

N

su
h that

X

fi;	

i

2V

�

g

k

i

= 0; � = 1; ::;K (5.5)

N

X

i=1

k

i

� < f

i

; ~� >

L

2
= 0; 8~� 2 L

2

([0; T ℄) (5.6)

is ne
essary the null ve
tor. Equation (5.6) 
an also be

written

X

i=1

k

i

� f

i

(s) = 0; 80 � s � T (5.7)



The system (5.2) 
an be written in the integral form:


(t) = e

R

t

0

A+�

0

B


(0) +

Z

t

0

e

R

t

s

A+�

0

B

(�(s)� �

0

(s))B
(s)ds

(5.8)

whi
h gives [2℄ the formula of the (Fr�e
het) derivative

D

�


(�; C

0

; t) of 
(�; C

0

; t) with respe
t to � 
omputed at

�(t) = �

0

(t):

D

�


(�; C

0

; t)j

�=0

� ~� =

Z

t

0

e

R

t

s

A+�

0

B

~�(s)Be

R

s

0

A+�

0

B


(0)ds

(5.9)

Then it is easy to see that

DM(�)j

�=0

� ~� =

h

2Re < D

�

w(T ) � ~�j

~

P

a

jw(T ) >

i

N

a=1

(5.10)

so we obtain after some manipulations

f

a

(s) = 2Re < e

R

T

s

A+�

0

B

Be

R

s

T

A+�

0

B

w(T )j

~

P

a

jw(T ) >

(5.11)

From 5.7 we obtain that

N

X

a=1

k

a

d

k

ds

k

f

a

(s)j

s=T

= 0 (5.12)

To 
ompute the derivatives

d

k

ds

k

f

a

(s)j

s=T

we make use of

a variant of the Campbell - Baker - Hausdor� formula:

e

�Y �

Ze

Y �

= Z + � [Y; Z℄ +

�

2

2

[Y; [Y; Z℄℄ + ::: (5.13)

De�ne re
ursively ad

i

Z

Y = [Y; ad

i�1

Z

Y ℄ and ad

0

Z

Y = Z;

we obtain after making use of the hypothesis �

0

(T ) = 0:

Re < ad

q

B

Aw(T )j

N

X

a=1

k

a

~

P

a

jw(T ) >= 0; q � 0 (5.14)

The matrix of the operator

~

P

a

in the basis

~

D is simply

diagfÆ

ia

g

N

i=1

so the matrix of

P

N

a=1

k

a

~

P

a

with respe
t

to the basis D is U

t

�

diagfk

a

g

N

a=1

�

U . By straightfor-

ward 
omputations one obtains

ad

q

B

A =

�

(�i)

q+1

!

q

ab

B

ab

�

N

a;b=1

:

Note also the general property that when !

ab

(a < b)

are all di�erent then the only way to have

X

a<b

!

q

ab

r

ab

= 0; q = 0; 1; :::

is when r

ab

are all zero. Denote ~w(T ) = Uw(T ) (the


oeÆ
ients of

P

i

w

i

(T )	

i

in the base

~

D). Using the

ingredients above one proves that

If B

kl

6= 0 :

N

X

i;j=1

(k

i

� k

j

) ~w

i

(T ) ~w

j

(T )U

ik

U

jl

= 0

(5.15)

All that remains to be done is to show that the only

way to have (5.5, 5.15) is when k = 0. Note that

be
ause any 
onne
ted 
omponent G

�

has at least


ardinality(V

�

) � 1 edges, in (5.5, 5.15) there are at

least N relations so this is in fa
t a linear system to

solve. We will suppose in all that follows that G has

only one 
onne
ted 
omponent; the general 
ase 
an be

redu
ed to this one due to the 
ommutation relations

[

~

P

a

; P

b

℄ = 0; a = 1; :::; N; b = 1; :::;K.

The remaining of the proof being rather te
hni
al so we

will only sket
h it. Denote v = U

t

(diagfk

j

g

N

j=1

)Uw(T );

then equation 5.15 
an be written w

k

(T )v

l

= w

l

(T )v

k

or, sin
e w

i

(T ) 6= 0; i = 1; :::; N :

If B

kl

6= 0 then:

v

k

w

k

(T )

=

�

v

l

w

l

(T )

�

(5.16)

By the 
onne
tivity of G one obtains that there exists


 su
h that for ea
h i = 1; :::; N v

i

= 
w

i

(T ) or v

i

=


w

i

(T ). If 
 is real one 
an infer k = 0 by the de�nition

of v. If 
 is not real then divide indexes in two sets V

1

and V

2

su
h that for i 2 V

1

: v

i

= 
w

i

(T ) and for j 2 V

2

:

v

j

= 
w

j

(T ). One 
an obtain then a formula for k

i

:

k

i

=

(U

t

v)

i

~w

i

(T )

=




P

j2V

1

U

im

w

m

(T ) + 


P

j2V

1

U

im

w

m

(T )

~w

i

(T )

:

(5.17)

By this formula, for k

i

to be real equation 5.1 from the

hypothesis H C has to be true; if this is not the 
ase

then 
 is real and thus k = 0. On the other side if the

se
ond assumption of H C is true then it is easy to prove

k

a

is a 
onstant that does not depend of a; a = 1; :::; N

so by 5.5 we obtain again k = 0.

A straightforward appli
ation of the theorem above is

the following (Thm. 2 from [15℄):

Corollary 5.1 (Lo
al exa
t 
ontrollability for popula-

tions) Let d

0

be the population distribution asso
iated

to the initial state C

0

: d

0

= (j


0i

j)

i=1;:::;N

. Suppose

d

0i

6= 0; i = 1; :::; N and that the hypothesis H A is

veri�ed. Then there exists an open neighborhood D of

d

0

on the surfa
e of R

N

given by the ne
essary 
on-

ditions (4.4) endowed with the 
anoni
al topology su
h

that one 
an exa
tly rea
h any population distribution

d in D from C

0

.



Proof: Apply the theorem 5.1 for arbitrary �nal

time T and null ele
tri
 �eld �(t) � 0. Sin
e the free

evolution of the system preserves the populations of

the eigenstates, we obtain for

~

P

i

= P

	

i

that Æ

T

= d

T

=

(j


0i

j)

N

i=1

so the only hypothesis left to verify is H C .

This also is trivial sin
e in this 
ase U = I and for j

su
h that (for instan
e) j 2 V

1

a

the �rst part of H C


an be written j < 	

T

;	

j

> j = 0, impossible sin
e

j < 	

T

;	

j

> j = j


0j

j 6= 0.

Let us also mention for the sake of 
ompleteness the

global exa
t 
ontrollability result that 
an be proved

[15℄ using on the one hand the Corollary 5.1 and on the

other hand approximate global 
ontrollability results

(Thm. 3 [15℄).

Theorem 5.2 (Global exa
t 
ontrollability) Let d

0

be

the population distribution asso
iated to the initial state

C

0

: d

0

= (j


0i

j)

i=1;:::;N

. Under the hypothesis H A

any population distribution d = (d

i

)

N

i=1

su
h that d

i

6=

0; i = 1; :::; N whi
h veri�es the ne
essary 
onditions

(4.4) 
an be exa
tly rea
hed from C

0

.

6 Con
lusions

Controllability of the bilinear quantum systems has

been studied in the in�nite and �nite dimensional set-

tings. The 
lassi
al 
ontrol 
on
epts seem to be not

very well adapted to the the in�nite dimensional 
ase

and a negative result has been given as illustration.

For the �nite dimensional 
ase, positive results have

been obtained for exa
t lo
al 
ontrollability of sets of

proje
tion-type observables and global 
ontrollability

has been proven for the parti
ular 
ase when the ob-

servables are the populations of eigenstates. Easy to


he
k and intuitively simple to understand ne
essary

and suÆ
ient 
onditions have been obtained to 
hara
-

terize the attainable set.
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