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Abstract

This paper is dedicated to the search of tailored con-
trollability concepts for quantum systems interacting
with lasers. A negative result for infinite dimensional
spaces serves as motivation for a finite dimensional a-
nalysis. We show that under physically reasonable hy-
pothesis we can locally control sets of observables. As a
remarkable particular case global exact controllability
is proven for the population of the eigenstates.

1 Introduction

Controlling chemical reactions at the quantum level was
a long-lasting goal [1, 3, 4, 5, 9, 11, 13, 14, 16, 17] from
the very beginning of the laser technology. Indeed, due
to the subtle nature of the interactions involved, this
kind of manipulation is expected to allow on the one
hand for much efficient and finer control than classical
tools and on the other hand for new phenomena to be
revealed.

The first experiments have shown that designing the
laser pulse able to ensure the desired properties of the
system is a non-trivial task that physical intuition alone
cannot accomplish. It is only recently that tools com-
ing from the control theory began to give satisfactory
results in some particular cases.

A legitimate question arises in this context: what are
the new controllability concepts that best fit this frame-
work and which are the quantum quantities that can be
exactly controlled using such an external field 7 Some
answers are given below.

2 Infinite dimensional controllability

The problem under study is controlling the time evolu-
tion of quantum systems. Let us consider such a inde-
pendent system with internal Hamiltonian Hy and let
Uy (x) be its initial state. Denoting by ¥(z,t) the state
at the time ¢ the evolution equations (Time Dependent

Schrédinger Equations) for the free system read:

(2.1)

ih 2 (z,t) = Ho¥(z,t)
U(z,t =0) = Yo(), ||¥oll2rr) =1

The external action expected to allow for control is a
laser field modeled by a laser intensity e(¢) € R and by
a certain time independent dipole moment operator B
(see also [18]). The new Hamiltonian is H = Hy —¢€(t)B
and the dynamical equations read:

{ih%\h(m,t) = HV(z,1) (2.2)

‘Ile('rat = 0) = ‘IIO(‘T)

In a first approximation the goal may be formalized as
to find (if any) a final time 7" and a finite energy laser
pulse €(t), €(t) € L?([0,T]) able to steer the system from
U (x) to some predefined target ¥.(z,T) = Yiarget ().

Note that the L2 norm of ¥, is conserved throughout
the evolution:

1Pe(z, )|z (r) = [YollL2(ry), VE>0. (2.3)

In general, for any autoadjoint operator O such that
[Ho, O] and [B, O] are both zero [19] one obtains

< W (2, 8)|0¥, (2,t) >=< Tg|O|To >, ¥t >0, (2.4)

with the usual notation < ¥|O|¥ >=< T, 00 >;2=<
OU, ¥ >;>. One remarkable class of operators are L>-
projections to closed subspaces. Let P be a projection
to a closed subspace X of L?(R”). Then [Hy, P] =
[B, P] = 0 mean in particular that X and its orthogonal
complement X are involutive for Hy and B, i.e.

VeX: HiWe X, BV e X
{Ve o e X, BY € (2.5)

YU eXt: HWeXt BreXxt

The system can then be viewed as decomposed into two
independent subsystems with wavefunctions the projec-
tions of the total wavefunction to X and X*. Of course
this decomposition can be further refined for any addi-
tional projection operator that commutes with Hy and
B. In order not to introduce unnecessary complications,
we will suppose in all that follows that the system has
only a finite number of independent subsystems (al-
though the theory can be accommodated to fit a count-
able number of subsystems which can be proved to be



the general case), each being associated its L?-projector
Py,...,Pg such that:

[Ho, P =[B,P]=0,Vi=1,.,K  (2.6)

Moreover one can prove that the projectors can be cho-
sen to fulfill the following conditions:

K
N P=I,PP=0,Yi#£j,ij=1..K (27

i=1

Denote by Sw, the product of hyper-spheres: Sy, =
{f € L2R);Piflleeey = I1Pi%lle2mrr),i =

., K} By using 2.4 for the projectors Pi,...,P; one
can prove that the system evolves on Sy, .

Let us point out that due to the quantum nature of the
system it follows by the uncertainty principle that one
will never be able to experimentally verify, neither fully
exploit, the exact controllability. In fact even if one
obtains exactly the desired target state Wiqpger the free
evolution (i.e. when laser is switched off e(t) = 0,¢ > T')
of the quantum system instantaneously modifies
this state (by a time dependent phase shift if W;q; gt is
an eigenfunction of Hy and by the (2.1) formula in gen-
eral). In this context a negative controllability result is
therefore not really restrictive. In fact using arguments
as in [2] we may prove (see also [20]) :

Theorem 2.1 Let B be a bounded operator from
H2(RY) to itself and let Hy generate a C° semigroup
of bounded linear operators on H2(RY). Denote by
U (z,t) the solution of (2.2). Then the set of attainable
states from ¥, defined by

AS = Urso{Te(z, T);e(t) € L2([0, 7D} (2.8)

is contained in a countable union of compact subsets
of HX(RY) N Sw,. In particular its complement with
respect to Swy: N = Sw, \ AS is everywhere dense
on Sg,. The same holds true for the complement with
respect to Sy, N H2(R").

Proof: To prove the first part of the theorem one
applies Thm. 3.6 from [2] on the space H2(R") for
the operators —iHp and —iB3 (and restricts €(t) to L?
functions). Denote for any set A:

K
A’I‘17...7T‘K = {Z sszf; 0 S S4 S Ti, f € A}
i=1
Then for any compact subset C' of X C,, . is also
compact. Applying this to the compact components C
of AS one notes that
Ur120,...,7‘KZOAST1,...,TK = UnGN*ASn,...,n

is also a countable union of compacts subsets of
H2(R"). It follows by the Baire category theorem

that Uy, >0,...,rx>0ASr ... r has dense complement in
H2(R"); in particular the complement of AS with re-
spect to Sy, N H2(R7) has to be everywhere dense on
Sy, N H2(RY). m

Given this result the search for exactly controllable
quantities has to be directed to the finite dimensional
setting.

3 Finite dimensional controllability

Let D = {¥;(z);i = 1,..,N} be an orthonormal basis
for a finite dimensional sub-space F' of L?(R") [21] and
A and B be the matrices of the operators Hy and B
with respect to this base.

Denote C' = (c;)¥, as the coefficients of ¥;(z) in the
formula of the evolving state U (z,t) = Zl LCi(t) ().
From now we will work in atomic units only (A = 1) ;
the equations (2.2) read
0
iaC’E = AC. — €(t)BC, C.(t =0) = Cy (3.1)

Co = (co)lVy, coi =< ¥o, ¥; > (3.2)

The controllability of (3.1) has been dealt with in the
literature (cf. [12]) by deriving results from the control-
lability of a system posed on the space of the unitary
matrices of dimension N. This approach has the benefit
of granting access to the general tools on the control-
lability of bilinear systems on Lie groups. However,
these results give only sufficient conditions for exact
controllability (due to the setting which is more gen-
eral). Finally there exists a class of simple quantum
systems controllable in a sense to be defined further on
that do not verify the criteria emerging from the Lie
group analysis. We have therefore judged instructive
to study this issue in a new framework; we were thus
lead into identifying simple necessary and sufficient
conditions for the finite dimensional controllability (see
also [5] for an introduction to this topic).

In the case of our modeling the A matrix is diagonal and
B is symmetrical with null diagonal elements (see [15]
for the general case). Let us denote by A\;, i =1,..,N
the diagonal elements of A (the energies of the states
;). Before presenting the theoretical results we will
introduce the controllability concept used.

Let Oy,...,0, be positive quantum observables (positive
autoadjoint operators). We say that the distribution of
observables § = (8;)_;, 6; > 0,7 = 1,...,p is reachable
from the initial state Cy if for any n > 0 there exists a
final time Ty > 0 and an electric field €(¢) € L?([0,T}])
such that the solution of (3.1) satisfies:

| < W(2,Ty)|0i|¥ (2, Ty) > =67| <n, i=1,....,p



If this is also true for n = 0 we say that the distribution
of observables § can be exactly reached from the initial
state Cy.

A special case of positive observables are the projections
on the eigenstates Py, defined by Py, ¥ =< ¥, ¥; >
¥,;,i =1,...N. The observable quantities < ¥|Py,|¥ >
corresponding to this operators are called populations
of the eigenstates. In our case these are |c¢,(Ty)|*. A
remarkable property of these observables is that when
the system is evolving freely ((3.1) with e(t) = 0) the
populations of the eigenstates do not change.

As it was previously seen the system evolves on the
unit sphere of L2(R”) which in finite dimensional rep-
resentation reads Y, |ce;(£)[2 = 1, V& > 0. We call
population distribution for the system (3.1) any N-tuple
d € R" such that

N
> di=1,d;>0,i=1,.,N (3.3)

i=1

A population distribution being a particular case of dis-
tribution of observables we extend the reachability con-
cepts defined above to this case also.

4 Transfer graph and necessary conditions

We define as in [15] the non-oriented transfer graph of
the system G = (V, E) which corresponds to the intu-
itive image of population flow among different eigen-
states of the system. The set V' of vertices is the set of
eigenstates ¥; and the set of edges E is the set of all
pairs of eigenstates coupled by the matrix B:

G = (V7 E)7 V= {‘Ijla--w‘IIN} E = {(qlh‘II])’Bl] 7é 0}
(4.1)

This graph can be decomposed into connected compo-
nents G, = (Va,, Eo), a = 1, .., K that correspond to a
bloc-diagonal structure of the matrix B (modulo per-
mutations on the indices). It is worthwhile mentioning
that this operation is the discrete version of the de-
composition using projection operators that was under-
taken for the infinite dimensional case; indeed, for each
connected component G, a = 1,..., K, one can asso-
ciate the linear space spanned by the eigenfunctions in
V., and prove that the (discrete) projection operator on
this space P, commutes with A and B.

Let D = {¥,...,¥x} be an orthonormal basis for the
finite dimensional space F' and f’l, ...,13N projections
operators on ¥,..., ¥y respectively. Suppose moreover
that these observables are commuting with P, ..., Pk,
which is equivalent to the fact that D is the union of
orthonormal basis for each subsystem. Denote by U
the unitary matrix that allow to change between the

orthonormal basis D and D: ¥; = 22 Uij ;. We will
suppose in all that follows that all entries in U are real.

One can check by the definition of G and using equa-
tions (3.1) that for all @ = 1,.., K: i-ZL|| Py ¥ (z,t)||2, =
0 ; each subsystem (connected component) comply
therefore with the conservation laws

Z < W(z,t)|P;|¥(x,t) >= constant,
{69 €Va}
t>0,a=1,.,K (42)

This allows us to give necessary conditions for control-
lability

Lemma 4.1 If the distribution of observables § is
reachable from the initial configuration Cy then

Z < ‘Ifo|p,'|\1»'0 >= Z

{i;¥; €V} {;¥; €V}

82, a=1,.K.

(4.3)
As a particular case one obtains the following

Corollary 4.1 If the population distribution d is
reachable from the initial configuration Cy then

Yo leilP= >, &, a=1,,K. (44

{;¥; €V} {;¥; €V}

5 Controllability results

Denote wi; = A — A\, k,l =1,...,N. Let us introduce
the following hypothesis:

HA The components Go, o = 1,.,K of G re-
main connected after elimination of all edge pairs
(¥, 9,),(¥e,Uy) such that wij = wep (degenerate tran-
sitions).

Theorem 5.1 (Local exact controllability) Let T > 0
be a given final time, eo(t) € L?([0,T]) a given laser
field such that:

H’]]]B lim Go(t) = 0,
t—=T

so in particular the limit tliH%Go(t) is supposed to exist
—

(see also Remark 5.1); let ¥ be the state at time T of
the system propagated with the laser field ey and dy (dr)
the distribution of observables (populations) associated
to the state Wr:

or = (\/ < ¥r|B|¥r >N,

dr = (| <7, i >p2 ), = (Jeoi)iLs-



Suppose (dr); #0,(0r); #0, i = 1,..., N and that the
hypothesis HIA is verified. Suppose also that:

HC For each connected component Gy, a = 1,...,. K
of G it does not ezists a partition Vo, = VI UVZ, V1IN
V2 =0 such that

|Zqu<\IIT7\IJE>|:|ZUjb<‘IIT7‘IIb>|7 Vjeva

acV}! beV2
(5.1)

or if such a partition exists then

Z(ZEV; Uja < qIT, q’g >
dpeve Ujp < ¥r, ¥y >

= constant, Vj € V,.

Then there exists an open neighborhood D of 1 on the
surface of RN given by the necessary conditions (4.3)
endowed with the canonical topology such that one can
exactly reach any distribution of observables § in D
from Cy.

Remark 5.1 The hypothesis HIB is not really restric-
tive. In all practical cases €y(t) is continuous (at least
at final/initial time) which assures the existence of the
limit. The requirement that the limit of eo(t) in T
be exactly 0 can be readily satisfied by replacing the
triplet (eo, A, B) by (e — eo(T), A + eo(T)B, B), where
e(T) = tli_{r%eg(t). Note that in this situation the hy-

pothesis HA has to be verified for the eigenvalues of
A+¢€y(T)B which are in general different from those of
A. Finally, note that the set of final states U that do
not comply with the hypothesis HC is of null canonical
measure for any (real) unitary matriz U.

Remark 5.2 The result above may be somehow sur-
prising due to the specific concept of locality used. In
fact, suppose that the evolution of the system has ended
in some final state pr with the corresponding distribu-
tion of observables 0. Then, in order to obtain some
other admissible distribution §. close to dt one has to
go back in time and modify the electric field rather than
to start from pr and go for 6. ! To understand this one
has to remember that the observables do not necessar-
ily commute with the hamiltonian so the free evolution
(from pr) drags the distribution of observables towards
the direction given by the evolution equations 2.2; there
is therefore no reason to hope that small perturbations
(after the time T') can always counter-balance this bias
and at the same time fill out a neighborhood of or.

Remark 5.3 The technical conditions (d1); # 0, i =
1,...,N can also be intuitively justified. Indeed if some
(01); = 0 one have to take care when choosing the good
target set to expect exact controllability into, since there

is no reason to hope in (exactly) reaching “distribu-
tions” having some strictly negative observables, as
any projection-like observable is a positive operator.

Proof:  For the sake of simplicity we treat only the
case wjj # Wap, V(i,7) # (a,b), the general case bearing
no new concepts. Let us denote A = —iA and B =
—iB. Then (3.1) become:

9 _ _
EC} =(A+¢(t)B)C,, C.(t=0)=Cy (5.2)
Denote by c(e, Co,t) = (ca(e, Co,t))Y_; the solution at
the time ¢ of (3.1) for the initial (¢ = 0) data Cy and
electric field e(t). Denote also w(t) = ¢(eg,Co,t) and
consider the canonical base {e,...,en} of RY.

We define the application M : L>(R) — R" given by
M(e) = (< c(e,Co,T)|Pale(e, Co, T) >)N.;  (5.3)

Note that by the necessary conditions (4.3) the range
of M is a subset of

{(z))iL, € RY; Z T = Z

{59 €Va} {i;T:€Va}

< ‘I/0|Pl|‘:[/0 >
a= 1,..,[(}

The local controllability is in fact a particular surjectiv-
ity property of M. We will prove that the differential
DM of M has the surjectivity property we desire and by
the implicit function theorem the conclusion will follow
then for M itself. More precisely we prove that DM is
onto the linear manifold (P) (product of hyper-planes
of Rcardinality(SQ) a=1, ..,K):

{(z)iL, e RY; Z

{i;¥;€Va}

z; =0, a:l,..,K}

whose M (€p)-translation is tangent to the range of M.
Denote by f,, a =1,..., N the components of DM:

DM (€)]ceeq - € = (< far&>12) "

a=1

(5.4)

Due to the finite dimensionality of our setting we just
have to show that the range of DM (€)|c=., has a null
orthogonal with respect to (P), that is any vector k =
(ka)_; € RY such that

> k=0, a=1,,K (5.5)
{4;¥: €Va}

N
> kit < fi,€>2=0, Ve € L*([0,T)) (5.6)
i=1

is necessary the null vector. Equation (5.6) can also be
written

> ki fi(s)=0,V0<s<T (5.7)



The system (5.2) can be written in the integral form:

c(t) = elo AteoB (o) + /0 els A+eoB (¢(s) — eo(s))Be(s)ds

which gives [2] the formula of the (Fréchet) derivative
D.c(e, Cy,t) of ¢(e, Co, t) with respect to € computed at

e(t) = eo(t):

t _ _
Dc(e, Co,t)]e=o - € = / els AteoBe(g)Bels A+e0B(0)ds
0
(5.9)

Then it is easy to see that

2

DM(€)|e—o - € = [2Re < Dew(T) - & By w(T) >]

so we obtain after some manipulations

fa(s) =2Re < els A+oBRel: Z"'“)EUJ(T)HE’Q|w(T) >

(5.11)
From 5.7 we obtain that
N g

; ka7 fa(s)|s=r =0 (5.12)

To compute the derivatives % fa(8)|s=r we make use of
a variant of the Campbell - Baker - Hausdorff formula:

2

e Y2 = Z 4 1]V, 2] + %[Y, Y, Z]] + ... (5.13)

Define recursively ad,Y = [V, ad}; 'Y] and ad}Y = Z;
we obtain after making use of the hypothesis ¢y(7") = 0:

N
Re < adLAw(T)| Y ko Palw(T) >=0, ¢ >0 (5.14)
a=1

The matrix of the operator P, in the basis D is simply
diag{di,} ¥, so the matrix of 32| k, P, with respect
to the basis D is U* (diag{kq})_,) U. By straightfor-
ward computations one obtains

N
a,b=1"

aquZ = ((—i)q+1w3bBab)

Note also the general property that when wy(a < b)
are all different then the only way to have

ngbrab =0,¢=0,1,...
a<b

is when 4, are all zero. Denote w(7") = Uw(T) (the
coefficients of )", w;(T)¥; in the base D). Using the
ingredients above one proves that

N
If Bu#0: Y (ki = ky)di(T)d;(T)UUji = 0
i,j=1

(5.15)

All that remains to be done is to show that the only
way to have (5.5, 5.15) is when k = 0. Note that
because any connected component G, has at least
cardinality (V,) — 1 edges, in (5.5, 5.15) there are at
least N relations so this is in fact a linear system to
solve. We will suppose in all that follows that G has
only one connected component; the general case can be
reduced to this one due to the commutation relations
[Po,Ps]=0,a=1,..,N, b=1,.... K.

The remaining of the proof being rather technical so we
will only sketch it. Denote v = Ut(diag{k; }éy:l)Uw(T);
then equation 5.15 can be written wy(T)v; = wi(T)vy,
or, since w;(T) #0, i =1,...,N:

Y
If Bkl 75 0 then: ’LUk(T) = (’LU[(T))

By the connectivity of G one obtains that there exists
v such that for each i = 1,..., N v; = yw;(T) or v; =
Fw;(T). If 7 is real one can infer k = 0 by the definition
of v. If v is not real then divide indexes in two sets V;
and V5 such that for i € Vi: v; = yw;(T') and for j € Vs:
v; = Jw;(T). One can obtain then a formula for &;:

(5.16)

ke — (Ut’U)i _ 72]’6% Uimwm (T) +72jev1 Uimwm (T)
i = = .

w; (T w; (T
(5.17)

By this formula, for k; to be real equation 5.1 from the
hypothesis HIC has to be true; if this is not the case
then v is real and thus k = 0. On the other side if the
second assumption of HIC is true then it is easy to prove
kq is a constant that does not depend of @, a =1,..., N
so by 5.5 we obtain again k = 0. m

A straightforward application of the theorem above is
the following (Thm. 2 from [15]):

Corollary 5.1 (Local exact controllability for popula-
tions) Let dy be the population distribution associated
to the initial state Co: do = (|coil)i=1,....N. Suppose
doi # 0, i = 1,.... N and that the hypothesis HA is
verified. Then there exists an open neighborhood D of
do on the surface of RN given by the necessary con-
ditions (4.4) endowed with the canonical topology such
that one can exactly reach any population distribution
d in D from Cy.



Proof: Apply the theorem 5.1 for arbitrary final
time 7' and null electric field €(¢) = 0. Since the free
evolution of the system preserves the populations of
the eigenstates, we obtain for P, = Py, that o7 =dr =
(Jcos])Y; so the only hypothesis left to verify is HC.
This also is trivial since in this case U = I and for j
such that (for instance) j € V! the first part of HC
can be written | < ¥, ¥; > | = 0, impossible since
| < Wp, ¥ > | = |cos| # 0. -

Let us also mention for the sake of completeness the
global exact controllability result that can be proved
[15] using on the one hand the Corollary 5.1 and on the
other hand approximate global controllability results
(Thm. 3 [15]).

Theorem 5.2 (Global exact controllability) Let dy be
the population distribution associated to the initial state
Co: do = (|coil)i=1,...n. Under the hypothesis HA
any population distribution d = (d;)N, such that d; #
0, © = 1,...,N which verifies the necessary conditions
(4.4) can be exactly reached from Cy.

6 Conclusions

Controllability of the bilinear quantum systems has
been studied in the infinite and finite dimensional set-
tings. The classical control concepts seem to be not
very well adapted to the the infinite dimensional case
and a negative result has been given as illustration.
For the finite dimensional case, positive results have
been obtained for exact local controllability of sets of
projection-type observables and global controllability
has been proven for the particular case when the ob-
servables are the populations of eigenstates. Easy to
check and intuitively simple to understand necessary
and sufficient conditions have been obtained to charac-
terize the attainable set.
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