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ASCI-CNRS Laboratory, Bat. 506, Universit�e Paris Sud, 91405 Orsay Cedex

turinii�asi.fr

Abstrat

This paper is dediated to the searh of tailored on-

trollability onepts for quantum systems interating

with lasers. A negative result for in�nite dimensional

spaes serves as motivation for a �nite dimensional a-

nalysis. We show that under physially reasonable hy-

pothesis we an loally ontrol sets of observables. As a

remarkable partiular ase global exat ontrollability

is proven for the population of the eigenstates.

1 Introdution

Controlling hemial reations at the quantum level was

a long-lasting goal [1, 3, 4, 5, 9, 11, 13, 14, 16, 17℄ from

the very beginning of the laser tehnology. Indeed, due

to the subtle nature of the interations involved, this

kind of manipulation is expeted to allow on the one

hand for muh eÆient and �ner ontrol than lassial

tools and on the other hand for new phenomena to be

revealed.

The �rst experiments have shown that designing the

laser pulse able to ensure the desired properties of the

system is a non-trivial task that physial intuition alone

annot aomplish. It is only reently that tools om-

ing from the ontrol theory began to give satisfatory

results in some partiular ases.

A legitimate question arises in this ontext: what are

the new ontrollability onepts that best �t this frame-

work and whih are the quantum quantities that an be

exatly ontrolled using suh an external �eld ? Some

answers are given below.

2 In�nite dimensional ontrollability

The problem under study is ontrolling the time evolu-

tion of quantum systems. Let us onsider suh a inde-

pendent system with internal Hamiltonian H

0

and let

	

0

(x) be its initial state. Denoting by 	(x; t) the state

at the time t the evolution equations (Time Dependent

Shr�odinger Equations) for the free system read:

(

i�h

�

�t

	(x; t) = H

0

	(x; t)

	(x; t = 0) = 	

0

(x); k	

0

k

L

2

(R



)

= 1

(2.1)

The external ation expeted to allow for ontrol is a

laser �eld modeled by a laser intensity �(t) 2 R and by

a ertain time independent dipole moment operator B

(see also [18℄). The new Hamiltonian is H = H

0

��(t)B

and the dynamial equations read:

(

i�h

�

�t

	

�

(x; t) = H	

�

(x; t)

	

�

(x; t = 0) = 	

0

(x)

(2.2)

In a �rst approximation the goal may be formalized as

to �nd (if any) a �nal time T and a �nite energy laser

pulse �(t), �(t) 2 L

2

([0; T ℄) able to steer the system from

	

0

(x) to some prede�ned target 	

�

(x; T ) = 	

target

(x).

Note that the L

2

norm of 	

�

is onserved throughout

the evolution:

k	

�

(x; t)k

L

2

x

(R



)

= k	

0

k

L

2

(R



)

; 8t > 0: (2.3)

In general, for any autoadjoint operator O suh that

[H

0

; O℄ and [B; O℄ are both zero [19℄ one obtains

< 	

�

(x; t)jOj	

�

(x; t) >=< 	

0

jOj	

0

>; 8t > 0; (2.4)

with the usual notation < 	jOj	 >=< 	; O	 >

L

2

=<

O	;	 >

L

2

. One remarkable lass of operators are L

2

-

projetions to losed subspaes. Let P be a projetion

to a losed subspae X of L

2

(R



). Then [H

0

; P ℄ =

[B; P ℄ = 0 mean in partiular that X and its orthogonal

omplement X

?

are involutive for H

0

and B, i.e.

(

8	 2 X : H

0

	 2 X; B	 2 X

8	 2 X

?

: H

0

	 2 X

?

; B	 2 X

?

(2.5)

The system an then be viewed as deomposed into two

independent subsystems with wavefuntions the proje-

tions of the total wavefuntion to X and X

?

. Of ourse

this deomposition an be further re�ned for any addi-

tional projetion operator that ommutes with H

0

and

B. In order not to introdue unneessary ompliations,

we will suppose in all that follows that the system has

only a �nite number of independent subsystems (al-

though the theory an be aommodated to �t a ount-

able number of subsystems whih an be proved to be



the general ase), eah being assoiated its L

2

-projetor

P

1

,...,P

K

suh that:

[H

0

; P

i

℄ = [B; P

i

℄ = 0; 8i = 1; :::;K (2.6)

Moreover one an prove that the projetors an be ho-

sen to ful�ll the following onditions:

K

X

i=1

P

i

= I; P

i

P

j

= 0; 8i 6= j; i; j = 1; :::K (2.7)

Denote by S

	

0

the produt of hyper-spheres: S

	

0

=

ff 2 L

2

(R



); kP

i

fk

L

2

(R



)

= kP

i

	

0

k

L

2

(R



)

; i =

1; :::;Kg By using 2.4 for the projetors P

1

,...,P

k

one

an prove that the system evolves on S

	

0

.

Let us point out that due to the quantum nature of the

system it follows by the unertainty priniple that one

will never be able to experimentally verify, neither fully

exploit, the exat ontrollability. In fat even if one

obtains exatly the desired target state 	

target

the free

evolution (i.e. when laser is swithed o� �(t) = 0; t � T )

of the quantum system instantaneously modi�es

this state (by a time dependent phase shift if 	

target

is

an eigenfuntion of H

0

and by the (2.1) formula in gen-

eral). In this ontext a negative ontrollability result is

therefore not really restritive. In fat using arguments

as in [2℄ we may prove (see also [20℄) :

Theorem 2.1 Let B be a bounded operator from

H

2

x

(R



) to itself and let H

0

generate a C

0

semigroup

of bounded linear operators on H

2

x

(R



). Denote by

	

�

(x; t) the solution of (2.2). Then the set of attainable

states from 	

0

de�ned by

AS = [

T>0

f	

�

(x; T ); �(t) 2 L

2

([0; T ℄)g (2.8)

is ontained in a ountable union of ompat subsets

of H

2

x

(R



) \ S

	

0

. In partiular its omplement with

respet to S

	

0

: N = S

	

0

n AS is everywhere dense

on S

	

0

. The same holds true for the omplement with

respet to S

	

0

\H

2

x

(R



).

Proof: To prove the �rst part of the theorem one

applies Thm. 3.6 from [2℄ on the spae H

2

x

(R



) for

the operators �iH

0

and �iB (and restrits �(t) to L

2

funtions). Denote for any set A:

A

r

1

;:::;r

K

= f

K

X

i=1

s

i

P

i

f ; 0 � s

i

� r

i

; f 2 Ag

Then for any ompat subset C of X C

r

1

;:::;r

K

is also

ompat. Applying this to the ompat omponents C

of AS one notes that

[

r

1

�0;:::;r

K

�0

AS

r

1

;:::;r

K

= [

n2N

�

AS

n;:::;n

is also a ountable union of ompats subsets of

H

2

x

(R



). It follows by the Baire ategory theorem

that [

r

1

�0;:::;r

K

�0

AS

r

1

;:::;r

K

has dense omplement in

H

2

x

(R



); in partiular the omplement of AS with re-

spet to S

	

0

\H

2

x

(R



) has to be everywhere dense on

S

	

0

\H

2

x

(R



).

Given this result the searh for exatly ontrollable

quantities has to be direted to the �nite dimensional

setting.

3 Finite dimensional ontrollability

Let D = f	

i

(x); i = 1; ::; Ng be an orthonormal basis

for a �nite dimensional sub-spae F of L

2

(R



) [21℄ and

A and B be the matries of the operators H

0

and B

with respet to this base.

Denote C = (

i

)

N

i=1

as the oeÆients of 	

i

(x) in the

formula of the evolving state 	(x; t) =

P

N

i=1



i

(t)	

i

(x).

From now we will work in atomi units only (�h = 1) ;

the equations (2.2) read

i

�

�t

C

�

= AC

�

� �(t)BC

�

; C

�

(t = 0) = C

0

(3.1)

C

0

= (

0i

)

N

i=1

; 

0i

=< 	

0

;	

i

> (3.2)

The ontrollability of (3.1) has been dealt with in the

literature (f. [12℄) by deriving results from the ontrol-

lability of a system posed on the spae of the unitary

matries of dimensionN . This approah has the bene�t

of granting aess to the general tools on the ontrol-

lability of bilinear systems on Lie groups. However,

these results give only suÆient onditions for exat

ontrollability (due to the setting whih is more gen-

eral). Finally there exists a lass of simple quantum

systems ontrollable in a sense to be de�ned further on

that do not verify the riteria emerging from the Lie

group analysis. We have therefore judged instrutive

to study this issue in a new framework; we were thus

lead into identifying simple neessary and suÆient

onditions for the �nite dimensional ontrollability (see

also [5℄ for an introdution to this topi).

In the ase of our modeling the Amatrix is diagonal and

B is symmetrial with null diagonal elements (see [15℄

for the general ase). Let us denote by �

i

; i = 1; ::; N

the diagonal elements of A (the energies of the states

	

i

). Before presenting the theoretial results we will

introdue the ontrollability onept used.

Let O

1

,...,O

p

be positive quantum observables (positive

autoadjoint operators). We say that the distribution of

observables Æ = (Æ

i

)

p

i=1

, Æ

i

� 0, i = 1; :::; p is reahable

from the initial state C

0

if for any � > 0 there exists a

�nal time T

d

> 0 and an eletri �eld �(t) 2 L

2

([0; T

d

℄)

suh that the solution of (3.1) satis�es:

j < 	(x; T

d

)jO

i

j	(x; T

d

) > �Æ

2

i

j < �; i = 1; :::; p



If this is also true for � = 0 we say that the distribution

of observables Æ an be exatly reahed from the initial

state C

0

.

A speial ase of positive observables are the projetions

on the eigenstates P

	

i

de�ned by P

	

i

	 =< 	;	

i

>

L

2

	

i

, i = 1; :::N . The observable quantities < 	jP

	

i

j	 >

orresponding to this operators are alled populations

of the eigenstates. In our ase these are j

�

k

(T

d

)j

2

. A

remarkable property of these observables is that when

the system is evolving freely ((3.1) with �(t) = 0) the

populations of the eigenstates do not hange.

As it was previously seen the system evolves on the

unit sphere of L

2

x

(R



) whih in �nite dimensional rep-

resentation reads

P

N

i=1

j

�

i

(t)j

2

= 1; 8t � 0. We all

population distribution for the system (3.1) anyN -tuple

d 2 R

N

suh that

N

X

i=1

d

2

i

= 1; d

i

� 0; i = 1; :::; N (3.3)

A population distribution being a partiular ase of dis-

tribution of observables we extend the reahability on-

epts de�ned above to this ase also.

4 Transfer graph and neessary onditions

We de�ne as in [15℄ the non-oriented transfer graph of

the system G = (V;E) whih orresponds to the intu-

itive image of population ow among di�erent eigen-

states of the system. The set V of verties is the set of

eigenstates 	

i

and the set of edges E is the set of all

pairs of eigenstates oupled by the matrix B:

G = (V;E); V = f	

1

; :::;	

N

g E = f(	

i

;	

j

);B

ij

6= 0g

(4.1)

This graph an be deomposed into onneted ompo-

nents G

�

= (V

�

; E

�

), a = 1; ::;K that orrespond to a

blo-diagonal struture of the matrix B (modulo per-

mutations on the indies). It is worthwhile mentioning

that this operation is the disrete version of the de-

omposition using projetion operators that was under-

taken for the in�nite dimensional ase; indeed, for eah

onneted omponent G

�

, � = 1; :::;K, one an asso-

iate the linear spae spanned by the eigenfuntions in

V

�

and prove that the (disrete) projetion operator on

this spae P

�

ommutes with A and B.

Let

~

D = f

~

	

1

; :::;

~

	

N

g be an orthonormal basis for the

�nite dimensional spae F and

~

P

1

; :::;

~

P

N

projetions

operators on

~

	

1

,...,

~

	

N

respetively. Suppose moreover

that these observables are ommuting with P

1

; :::; P

K

,

whih is equivalent to the fat that

~

D is the union of

orthonormal basis for eah subsystem. Denote by U

the unitary matrix that allow to hange between the

orthonormal basis D and

~

D:

~

	

i

=

P

j

U

ij

	

j

. We will

suppose in all that follows that all entries in U are real.

One an hek by the de�nition of G and using equa-

tions (3.1) that for all � = 1; ::;K: i

d

dt

kP

�

	(x; t)k

2

L

2

=

0 ; eah subsystem (onneted omponent) omply

therefore with the onservation laws

X

fi;	

i

2V

�

g

< 	(x; t)j

~

P

i

j	(x; t) >= onstant;

t > 0; � = 1; ::;K (4.2)

This allows us to give neessary onditions for ontrol-

lability

Lemma 4.1 If the distribution of observables Æ is

reahable from the initial on�guration C

0

then

X

fi;	

i

2V

�

g

< 	

0

j

~

P

i

j	

0

>=

X

fi;	

i

2V

�

g

Æ

2

i

; � = 1; ::;K:

(4.3)

As a partiular ase one obtains the following

Corollary 4.1 If the population distribution d is

reahable from the initial on�guration C

0

then

X

fi;	

i

2V

�

g

j

0i

j

2

=

X

fi;	

i

2V

�

g

d

2

i

; � = 1; ::;K: (4.4)

5 Controllability results

Denote !

kl

= �

k

� �

l

; k; l = 1; :::; N . Let us introdue

the following hypothesis:

H A The omponents G

�

; � = 1; ::;K of G re-

main onneted after elimination of all edge pairs

(	

i

;	

j

); (	

a

;	

b

) suh that !

ij

= !

ab

(degenerate tran-

sitions).

Theorem 5.1 (Loal exat ontrollability) Let T > 0

be a given �nal time, �

0

(t) 2 L

2

([0; T ℄) a given laser

�eld suh that:

H B lim

t!T

�

0

(t) = 0,

so in partiular the limit lim

t!T

�

0

(t) is supposed to exist

(see also Remark 5.1); let 	

T

be the state at time T of

the system propagated with the laser �eld �

0

and Æ

T

(d

T

)

the distribution of observables (populations) assoiated

to the state 	

T

:

Æ

T

= (

q

< 	

T

j

~

P

i

j	

T

>)

N

i=1

;

d

T

= (j < 	

T

;	

i

>

L

2
j)

N

i=1

= (j

0i

j)

N

i=1

:



Suppose (d

T

)

i

6= 0; (Æ

T

)

i

6= 0; i = 1; :::; N and that the

hypothesis H A is veri�ed. Suppose also that:

H C For eah onneted omponent G

�

; � = 1; :::;K

of G it does not exists a partition V

�

= V

1

�

[ V

2

�

, V

1

�

\

V

2

�

= ; suh that

j

X

a2V

1

�

U

jq

< 	

T

;	

a

> j = j

X

b2V

2

�

U

jb

< 	

T

;	

b

> j; 8j 2 V

�

(5.1)

or if suh a partition exists then

P

a2V

1

�

U

ja

< 	

T

;	

a

>

P

b2V

2

�

U

jb

< 	

T

;	

b

>

= onstant; 8j 2 V

�

:

Then there exists an open neighborhood D of Æ

T

on the

surfae of R

N

given by the neessary onditions (4.3)

endowed with the anonial topology suh that one an

exatly reah any distribution of observables Æ in D

from C

0

.

Remark 5.1 The hypothesis H B is not really restri-

tive. In all pratial ases �

0

(t) is ontinuous (at least

at �nal/initial time) whih assures the existene of the

limit. The requirement that the limit of �

0

(t) in T

be exatly 0 an be readily satis�ed by replaing the

triplet (�

0

; A;B) by (� � �

0

(T ); A + �

0

(T )B;B), where

�

0

(T ) = lim

t!T

�

0

(t). Note that in this situation the hy-

pothesis H A has to be veri�ed for the eigenvalues of

A+ �

0

(T )B whih are in general di�erent from those of

A. Finally, note that the set of �nal states 	

T

that do

not omply with the hypothesis H C is of null anonial

measure for any (real) unitary matrix U .

Remark 5.2 The result above may be somehow sur-

prising due to the spei� onept of loality used. In

fat, suppose that the evolution of the system has ended

in some �nal state p

T

with the orresponding distribu-

tion of observables Æ

T

. Then, in order to obtain some

other admissible distribution Æ



lose to Æ

T

one has to

go bak in time and modify the eletri �eld rather than

to start from p

T

and go for Æ



! To understand this one

has to remember that the observables do not neessar-

ily ommute with the hamiltonian so the free evolution

(from p

T

) drags the distribution of observables towards

the diretion given by the evolution equations 2.2; there

is therefore no reason to hope that small perturbations

(after the time T ) an always ounter-balane this bias

and at the same time �ll out a neighborhood of Æ

T

.

Remark 5.3 The tehnial onditions (Æ

T

)

i

6= 0; i =

1; :::; N an also be intuitively justi�ed. Indeed if some

(Æ

T

)

i

= 0 one have to take are when hoosing the good

target set to expet exat ontrollability into, sine there

is no reason to hope in (exatly) reahing \distribu-

tions" having some stritly negative observables, as

any projetion-like observable is a positive operator.

Proof: For the sake of simpliity we treat only the

ase !

ij

6= !

ab

; 8(i; j) 6= (a; b), the general ase bearing

no new onepts. Let us denote A = �iA and B =

�iB. Then (3.1) beome:

�

�t

C

�

= (A+ �(t)B)C

�

; C

�

(t = 0) = C

0

(5.2)

Denote by (�; C

0

; t) = (

a

(�; C

0

; t))

N

a=1

the solution at

the time t of (3.1) for the initial (t = 0) data C

0

and

eletri �eld �(t). Denote also w(t) = (�

0

; C

0

; t) and

onsider the anonial base fe

1

; :::; e

N

g of R

N

.

We de�ne the appliation M : L

2

(R)! R

N

given by

M(�) = (< (�; C

0

; T )j

~

P

a

j(�; C

0

; T ) >)

N

a=1

(5.3)

Note that by the neessary onditions (4.3) the range

of M is a subset of

�

(x

i

)

N

i=1

2 R

N

;

X

fi;	

i

2V

�

g

x

i

=

X

fi;	

i

2V

�

g

< 	

0

j

~

P

i

j	

0

>

� = 1; ::;K

	

The loal ontrollability is in fat a partiular surjetiv-

ity property of M . We will prove that the di�erential

DM ofM has the surjetivity property we desire and by

the impliit funtion theorem the onlusion will follow

then for M itself. More preisely we prove that DM is

onto the linear manifold (P) (produt of hyper-planes

of R

ardinality(S

�

)

; � = 1; ::;K):

�

(x

i

)

N

i=1

2 R

N

;

X

fi;	

i

2V

�

g

x

i

= 0; � = 1; ::;K

	

whose M(�

0

)-translation is tangent to the range of M .

Denote by f

a

; a = 1; :::; N the omponents of DM :

DM(�)j

�=�

0

� ~� =

�

< f

a

; ~� >

L

2

�

N

a=1

(5.4)

Due to the �nite dimensionality of our setting we just

have to show that the range of DM(�)j

�=�

0

has a null

orthogonal with respet to (P), that is any vetor k =

(k

a

)

N

a=1

2 R

N

suh that

X

fi;	

i

2V

�

g

k

i

= 0; � = 1; ::;K (5.5)

N

X

i=1

k

i

� < f

i

; ~� >

L

2
= 0; 8~� 2 L

2

([0; T ℄) (5.6)

is neessary the null vetor. Equation (5.6) an also be

written

X

i=1

k

i

� f

i

(s) = 0; 80 � s � T (5.7)



The system (5.2) an be written in the integral form:

(t) = e

R

t

0

A+�

0

B

(0) +

Z

t

0

e

R

t

s

A+�

0

B

(�(s)� �

0

(s))B(s)ds

(5.8)

whih gives [2℄ the formula of the (Fr�ehet) derivative

D

�

(�; C

0

; t) of (�; C

0

; t) with respet to � omputed at

�(t) = �

0

(t):

D

�

(�; C

0

; t)j

�=0

� ~� =

Z

t

0

e

R

t

s

A+�

0

B

~�(s)Be

R

s

0

A+�

0

B

(0)ds

(5.9)

Then it is easy to see that

DM(�)j

�=0

� ~� =

h

2Re < D

�

w(T ) � ~�j

~

P

a

jw(T ) >

i

N

a=1

(5.10)

so we obtain after some manipulations

f

a

(s) = 2Re < e

R

T

s

A+�

0

B

Be

R

s

T

A+�

0

B

w(T )j

~

P

a

jw(T ) >

(5.11)

From 5.7 we obtain that

N

X

a=1

k

a

d

k

ds

k

f

a

(s)j

s=T

= 0 (5.12)

To ompute the derivatives

d

k

ds

k

f

a

(s)j

s=T

we make use of

a variant of the Campbell - Baker - Hausdor� formula:

e

�Y �

Ze

Y �

= Z + � [Y; Z℄ +

�

2

2

[Y; [Y; Z℄℄ + ::: (5.13)

De�ne reursively ad

i

Z

Y = [Y; ad

i�1

Z

Y ℄ and ad

0

Z

Y = Z;

we obtain after making use of the hypothesis �

0

(T ) = 0:

Re < ad

q

B

Aw(T )j

N

X

a=1

k

a

~

P

a

jw(T ) >= 0; q � 0 (5.14)

The matrix of the operator

~

P

a

in the basis

~

D is simply

diagfÆ

ia

g

N

i=1

so the matrix of

P

N

a=1

k

a

~

P

a

with respet

to the basis D is U

t

�

diagfk

a

g

N

a=1

�

U . By straightfor-

ward omputations one obtains

ad

q

B

A =

�

(�i)

q+1

!

q

ab

B

ab

�

N

a;b=1

:

Note also the general property that when !

ab

(a < b)

are all di�erent then the only way to have

X

a<b

!

q

ab

r

ab

= 0; q = 0; 1; :::

is when r

ab

are all zero. Denote ~w(T ) = Uw(T ) (the

oeÆients of

P

i

w

i

(T )	

i

in the base

~

D). Using the

ingredients above one proves that

If B

kl

6= 0 :

N

X

i;j=1

(k

i

� k

j

) ~w

i

(T ) ~w

j

(T )U

ik

U

jl

= 0

(5.15)

All that remains to be done is to show that the only

way to have (5.5, 5.15) is when k = 0. Note that

beause any onneted omponent G

�

has at least

ardinality(V

�

) � 1 edges, in (5.5, 5.15) there are at

least N relations so this is in fat a linear system to

solve. We will suppose in all that follows that G has

only one onneted omponent; the general ase an be

redued to this one due to the ommutation relations

[

~

P

a

; P

b

℄ = 0; a = 1; :::; N; b = 1; :::;K.

The remaining of the proof being rather tehnial so we

will only sketh it. Denote v = U

t

(diagfk

j

g

N

j=1

)Uw(T );

then equation 5.15 an be written w

k

(T )v

l

= w

l

(T )v

k

or, sine w

i

(T ) 6= 0; i = 1; :::; N :

If B

kl

6= 0 then:

v

k

w

k

(T )

=

�

v

l

w

l

(T )

�

(5.16)

By the onnetivity of G one obtains that there exists

 suh that for eah i = 1; :::; N v

i

= w

i

(T ) or v

i

=

w

i

(T ). If  is real one an infer k = 0 by the de�nition

of v. If  is not real then divide indexes in two sets V

1

and V

2

suh that for i 2 V

1

: v

i

= w

i

(T ) and for j 2 V

2

:

v

j

= w

j

(T ). One an obtain then a formula for k

i

:

k

i

=

(U

t

v)

i

~w

i

(T )

=



P

j2V

1

U

im

w

m

(T ) + 

P

j2V

1

U

im

w

m

(T )

~w

i

(T )

:

(5.17)

By this formula, for k

i

to be real equation 5.1 from the

hypothesis H C has to be true; if this is not the ase

then  is real and thus k = 0. On the other side if the

seond assumption of H C is true then it is easy to prove

k

a

is a onstant that does not depend of a; a = 1; :::; N

so by 5.5 we obtain again k = 0.

A straightforward appliation of the theorem above is

the following (Thm. 2 from [15℄):

Corollary 5.1 (Loal exat ontrollability for popula-

tions) Let d

0

be the population distribution assoiated

to the initial state C

0

: d

0

= (j

0i

j)

i=1;:::;N

. Suppose

d

0i

6= 0; i = 1; :::; N and that the hypothesis H A is

veri�ed. Then there exists an open neighborhood D of

d

0

on the surfae of R

N

given by the neessary on-

ditions (4.4) endowed with the anonial topology suh

that one an exatly reah any population distribution

d in D from C

0

.



Proof: Apply the theorem 5.1 for arbitrary �nal

time T and null eletri �eld �(t) � 0. Sine the free

evolution of the system preserves the populations of

the eigenstates, we obtain for

~

P

i

= P

	

i

that Æ

T

= d

T

=

(j

0i

j)

N

i=1

so the only hypothesis left to verify is H C .

This also is trivial sine in this ase U = I and for j

suh that (for instane) j 2 V

1

a

the �rst part of H C

an be written j < 	

T

;	

j

> j = 0, impossible sine

j < 	

T

;	

j

> j = j

0j

j 6= 0.

Let us also mention for the sake of ompleteness the

global exat ontrollability result that an be proved

[15℄ using on the one hand the Corollary 5.1 and on the

other hand approximate global ontrollability results

(Thm. 3 [15℄).

Theorem 5.2 (Global exat ontrollability) Let d

0

be

the population distribution assoiated to the initial state

C

0

: d

0

= (j

0i

j)

i=1;:::;N

. Under the hypothesis H A

any population distribution d = (d

i

)

N

i=1

suh that d

i

6=

0; i = 1; :::; N whih veri�es the neessary onditions

(4.4) an be exatly reahed from C

0

.

6 Conlusions

Controllability of the bilinear quantum systems has

been studied in the in�nite and �nite dimensional set-

tings. The lassial ontrol onepts seem to be not

very well adapted to the the in�nite dimensional ase

and a negative result has been given as illustration.

For the �nite dimensional ase, positive results have

been obtained for exat loal ontrollability of sets of

projetion-type observables and global ontrollability

has been proven for the partiular ase when the ob-

servables are the populations of eigenstates. Easy to

hek and intuitively simple to understand neessary

and suÆient onditions have been obtained to hara-

terize the attainable set.
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