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P. Latil a, L. Orgéas a,∗, C. Geindreau a, P.J.J. Dumont b,
S. Rolland du Roscoat a,c
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Abstract

The present study provides original experimental data concerning the evolution of
the microstructure of a bundle of fibres during its deformation. For that purpose,
a model saturated fibre bundle was processed and was subjected to a compres-
sion loading by using a specially designed micro-compression rheometer which was
mounted on a synchrotron X-ray microtomograph. Thus, 3D images of the evolving
fibrous microstructure could be obtained. Results first show that the compression
induced both the bundle consolidation and liquid phase migration. Secondly, (i)
the position, the orientation, the displacement and the deformation of each fibre
together with (ii) the position and the evolution of each fibre-fibre contact were
followed during the compression. The in situ tracking of these microstructure de-
scriptors allows the consolidation micro-mechanisms to be analysed and provides
useful information for theoretical or numerical models used to predict fibre bundle
deformation during processing of fibre bundle reinforced polymer composites.
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1 Introduction

In the past decades, the use of fibre-reinforced polymer composites in struc-

tural or functional applications has increased in various domains such as au-

tomotive or aerospace industries. Most of the fibrous reinforcements of these

materials are made up of bundles containing few hundreds to few thousands

continuous or discontinuous fibres. For this reason, these composite materials

exhibit multiple scales: a macroscopic one, i.e. the part scale, a mesoscopic

one, i.e. the fibre bundle scale, and a microscopic scale, i.e. the fibre scale. Dur-

ing their processing, e.g. sheet forming of long fibre reinforced thermoplatics,

sheet forming of dry woven textiles for the Liquid Composite Moulding (LCM)

processes, or compression molding of sheet moulding compounds, glass mat

thermoplastics or hybrids, it is well known that the fibre bundles of these ma-

terials can be subjected to important displacements and deformations such as,

for instance, orientation, consolidation, stretching, bending, twisting, shearing,

bundle filamentation and breakage... [1–8]. These bundle mesoscale deforma-

tion mechanisms are induced both by the complex relative motions and the

deformation of fibres at the microscopic level within the bundles. They dras-

tically affect the rheological behaviour of the composites during their forming

by modifying, for instance, the permeability and the anisotropy of the fibrous

networks [5,9–14]. They also affect final physical and mechanical properties of

produced parts. For those reasons, mesoscale deformation mechanisms of fibre

bundles have been deeply studied experimentally by using various observation

and characterisation techniques (see above references). All these crucial exper-

imental data are very useful and partially contribute to the (in)validation of

some of the assumptions stated in meso-macro or micro-macro modelling ap-

proaches dedicated to this type of fibrous media [6,15–18,20,21]. Among them,

the X-ray microtomography technique which is now widely used in materials

science [22,23] is of particular interest since it can provide full 3D characterisa-
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tion of networks of fibres and their mesoscale deformation, even in composite

materials with an optically opaque matrix. For instance, the orientation, the

curvature, the compression and the breakage of discontinuous sized fibre bun-

dles, occurring during the compression molding of an industrial SMC, were

observed and quantified by using synchrotron X-ray microtomography with

the phase contrast mode [7]. Similarly, by performing with dry woven fab-

rics in situ shear and biaxial tests inside a laboratory X-ray microtomograph,

Badel et al [6] have underlined the very large shape and surface changes the

cross sections of continuous fibre bundles of deformed textile reinforcements

could be subjected to.

By contrast and surprisingly, deformation mechanisms at the fibre scale, which

are however responsible for the mesoscale bundle deformation, still remain not

very well understood. What is the relative motion of fibres contained inside

a bundle when it is subjected to a mesoscale consolidating/dilating and/or

shear loading? Meanwhile, do fibres stretch, bend or twist? What is their ori-

entation evolution? How many fibre-fibre contacts are there in the bundle?

Where are these contacts located? How do they evolve during the overall bun-

dle deformation? What is their orientation? Can a fibre bundle be seen as a

continuum at the mesoscale? Such type of crucial but still opened questions

greatly hinder the development and the validation of the above meso-macro

or micro-macro models. Discrete/finite element simulation performed at the

fibre scale could be a relevant tool to answer them [17–19,24,25]. However, this

type of approaches must be previously validated and compared with experi-

mental data collected at the fibre scale. The objective of this contribution is

thus to propose an experimental methodology for the quantitative analysis of

deformation mechanisms occurring at the fibre scale when a bundle of fibres is

subjected to a mechanical loading. In this preliminary work, the methodology

is built and illustrated by compressing a model bundle of fibres (section 2),
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but other mechanical loading conditions and other fibre bundles could be used

in future. The compression experiment is performed with a micro-rheometrer

that is mounted in a synchrotron X-Ray microtomograph, which allows in situ

observations of the bundle microstructures to be performed during the test.

Therefrom, 3D relevant microstructure descriptors are quantified by using the

3D scanned images and image analysis subroutines (section 3). Thus, it is

then possible to follow (section 4) and to discuss (section 5) the simultaneous

evolutions of both the mesocopic mechanical response of the bundle and its

associated microstructure descriptors.

2 Material and experimental procedure

In this preliminary study, the fibre bundle which was deformed was hand-

made. It consists of N = 69 rather straight and rather aligned fibres of length

L = 11 mm and diameter D = 150 µm. These fibres were extracted from a

fluorocarbon (PVDF) continuous elastic fishing wire (tensile Young’s modulus

E ≈ 2 GPa). The bundle was saturated with olive oil which behaves as a low

viscosity Newtonian fluid at room temperature (shear viscosity µ ≈ 70 mPa

s) and which is solid below 5oC. This property is interesting since it allows

the freezing of the bundle fibrous microstructure: this facilitates the bundle

handling before mechanical testing which was performed at room temperature,

i.e. when the oil is a fluid.

The fibre bundle was subjected to a simple compression loading at a low strain

rate, i.e. ≈ 5 10−3 s−1, with a compression micro-rheometer which was pur-

posely designed. As shown in the scheme displayed in figure 1, the bundle was

put between an upper fixed plate and a lower one which was actuated verti-

cally (with a piezo-motor not shown here). Before starting the test, the

bundle was subjected to a very slight pre-compression, in order to
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ensure its upper and lower surfaces to be parallel with the rheometer

plates. During this phase, no measurable force could be recorded.

The end of this pre-compression was arbitrarily chosen as the initial

state. During the test, the upper and lower faces of the bundle were

subjected to a compression force F2 along the e2-direction which was

recorded with a load cell (maximum capacity 500 N) together with the

current height of the bundle l2. The other surfaces of the bundle

remained stress free. The compression loading was interrupted at five

compression strains ε22 = ln(l2/l20), l20 being the initial height of the bun-

dle. During these stops, slight decreases (≈ 10%) of the compression force

were observed for ≈ 30 s [3], corresponding to a rearrangement of the fibrous

microstructure and the fluid. Afterwards, the force remained constant and 3D

images of the fibrous microstructure could be obtained. For that purpose, the

micro-rheometer was installed in the X-ray microtomograph of the ID19 beam-

line at the European Synchrotron Radiation Facilities (Grenoble, France). At

each compression stop, a fast scan of the bundle was achieved (overall scan-

ning time ≈ 1 min) consisting in 1500 X-ray 2D projections obtained from the

incremental rotation along e2 of the micro-rheometer with respect to the syn-

chrotron X-ray source (overall rotation = 180o, beam energy = 25 keV). After

proper reconstruction of the 2D projections, 3D maps of the X-ray absorption

coefficient inside the bundle could be obtained (volumes of maximal size of

2048× 2048× 512 voxels, voxel size = 7.5 µm). The maps were denoised by

using suitable filtering operations which faded their noise/signal ratio induced

by the very short exposure time. Then, these five 3D maps could be cut in or-

der to get cross sections of the micro-rheometer and the bundle (see figure 1).

They can also be used to characterise the bundle microstructure (see below).
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3 Image analysis and data post-treatment

To analyse quantitatively both the mesoscopic mechanical response and the

microstructure of the bundle of fibres, the five scanned volumes were subjected

to several image analysis operations achieved with the softwares ImageJ and

Matlab. These operations are described below and summarised in figure 2.

3.1 Volume of analysis - Mesoscale strains and stresses

The evolving volume of fibres V , (i) from which the mesoscopic mechanical

response was estimated and (ii) within which the microstructure parameters

of the bundle were extracted and analysed, was chosen in order to follow the

mesoscopic deformation of the fibre bundle. After a first observation of the 3D

images acquired during the test, it was found that the bundle flow was alike

a lubricated compression, where the flow along the e3-direction was negligible

compared to that in the (e1, e2) plane. From this observation, V was chosen

as a rectangular box (see figures 1 and 2(b)): its current height l2 was given as

the distance between the two plates of the micro-rheometer, its current width

l1 was set in order to contain all the fibres of the bundle and its length l3 was

set constant. As shown in figure 1(b), notice that due to the heterogeneity of

fibres’ lengths (induced by the manufacturing protocol), l3 was such that it

slightly and arbitrarily truncates (about 1 mm) the ends of some of the longest

fibres which are not involved in the mechanical response of the bundle. It was

then possible to estimate the mean strain the bundle was subjected to. For

instance, the mean Hencki strain tensor ε could be estimated:

ε ≈ ε11e1 ⊗ e1 + ε22e2 ⊗ e2 with ε11 ≈ ln
l1
l10

and ε22 ≈ ln
l2
l20

(1)
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together with its associated volume change εv and deviatoric strain εd:

εv = ε : δ, εd =

√

2

3
(ε−

εv
3
δ) : (ε−

εv
3
δ), (2)

where δ is the identity tensor. Furthermore, as the bundle was deformed at

a very low strain rate with a very low viscosity saturating fluid, its compres-

sion could reasonably be considered as a drained compression during which

interstitial fluid pressure effects are negligible: the monitored com-

pression force was principally related to the microscale deformation of the

fibres and their contacts. From this remark and from the estimation of the

current volume of the bundle V , it is possible to estimate the mean Cauchy

stress tensor of the bundle Σ as

Σ = Σ22e2 ⊗ e2 with Σ22 ≈
F2

l1l3
. (3)

3.2 Detection / Description of fibres

Within the volume V , a standard thresholding operation was achieved in order

to extract the fibre phase from the grey scale images (figure 2(a)), as illus-

trated in the binarised 3D views shown in figure 2(b). Hence, a first relevant

microstructure descriptor, i.e. the volume fraction of fibres Φ, was simply esti-

mated by the ratio [number of voxels of the fibrous phase] / [number of voxels

contained in V ]. To analyse possible microstructure heterogenities, the volume

fraction of fibre Φ′ in the core of the bundle was also estimated similarly, by

choosing a volume V ′ centred in V and such that l′
1
= l1/3, l

′
2
= l2 and l′

3
= l3.

In order to detect the centrelines of all the fibres contained in V from the pre-

vious binarised images (see figure 2(c)), a procedure which is very efficient for

almost parallel fibres with convex cross sections was used. Firstly, as depicted

in figure 3(d), eleven planar slices parallel to the (e1, e2) plane and separated

by a distance of 110 voxels were extracted from the scanned volumes. Secondly,
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on each 2D slice, adjoining fibre cross sections were separated by a standard

2D watershed algorithm without major difficulties, as shown in figure 3(a-b).

Thirdly, the position of the centre of mass of each fibre cross section was cal-

culated automatically and labellised (see figure 3(b-c)). Notice that due to

the chosen resolution, the accuracy of their positions was about ±7.5 µm.

If this had negligible impact on the characterisation of fibre centrelines, this

induced noticeable discrepancies on the detection of fibre-fibre contacts (see

next subsection). Thirdly, the eleven detected centres of mass belonging to

a given fibre i were used to form its centreline (this operation was done

manually), here discretised by a piecewise linear 3D parametric curve xi(si),

si being the curvilinear abscissa of the considered fibre i (cf. figure 3(e)).

Therefrom, the fibrous medium was entirely reconstructed numerically (see

figure 2(d)), by assuming that the fibre diameter D was constant. It was then

possible to estimate numerically the direction of the lowest inertia axis p̄i of

each fibre i. For the studied bundle, where the fibres are rather straight, p̄i

can be considered as a relevant measure of the mean orientation of the fibre i.

Each centreline i was also associated with a local Frenet basis (ti,ni,bi). This

constitutes a possible way to characterise the local geometry of the centreline

i (figure 3(f)). The tangent, normal and binormal unit vectors of this basis are

respectively defined as (no summation on the indice i):

ti =
dxi

dsi
, ni =

1

||dti/dsi||

dti

dsi
, bi = ti × ni. (4)

They are also linked by the Frenet-Serret formulae (no summation on i):

dti

dsi
= κini,

dni

dsi
= −κiti + τ ibi,

dbi

dsi
= −τ ini, (5)

where κi and τ i are the local geometrical curvature and torsion of the fi-

bre centreline i at its curvilinear abscissa si. In this work, a finite differ-

ence scheme was used to estimate the local Frenet bases, the geometrical

curvatures and torsions from the discretised representation of the fibre cen-
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trelines. Lastly, let us remark that the geometrical torsion is not

equivalent to the mechanical twist of the fibres. It is the rate of

change of the osculating plane (ti,ni) of the fibre centreline xi(si).

If it is different of zero, the centreline is not a 2D curve.

3.3 Detection / Description of fibre-fibre and fibre/plate contacts

A fibre-fibre contact, e.g. like the one displayed in figure 2(e), was detected

as soon as the local distance dj between two neighbouring fibre centrelines

was equal to or below a given contact distance h. Therefrom, in order to

characterise locally the contact, a local normal unit vector qj corresponding

to the local normal contacting plane and a local contact position yj were

associated with dj . A similar procedure was achieved to detect the fibre-plate

contacts, with a contact distance equal to h/2. To account for the uncertainty

on the determination of the positions of the fibre centrelines (see previous

subsection), three contact distances h were used to detect fibre-fibre contacts:

the fibre diameter D and D ± 7.5 µm. Each contact j was then characterised

by (i) its length lj along the centrelines of the considered contacting fibres (see

figure 2(e)), (ii) its average contact distance d̄j, its average spatial position ȳj

and (iii) its average orientation q̄j (see figure 2(e)) (the indice “0” related to

lj0 and dj0 in figure 2(e) and in the following correspond to the initial state).

4 Results

4.1 Mesoscale mechanical behaviour

The mesoscale mechanical response of the bundle is summarised in figure 4.

This figure first shows that during its compression the fibre bundle is subjected
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to a pronounced consolidation. Indeed, its volumetric strain εv is negative, its

magnitude is as high as the deviatoric strain εd and raises up to 0.45. This

is accompanied with a drastic increase of the mean volume fraction of fibres

Φ from Φ0 = 0.29 to 0.45 and, consequently, with the migration of the fluid

out of the bundle. Within the core of the bundle, i.e. in V ′, a similar trend

is observed, but the volume fraction of fibres is higher: during the test, Φ′

goes from Φ′
0
=0.39 (showing the initial heterogeneity of the bundle) to 0.58.

Finally, figure 4 also shows that the mean compression stress Σ22 exhibits a

significant hardening which is an increasing function of Φ.

4.2 In situ characterisation of fibres

(i) Orientation - Figure 5(a-b) gives the fibre orientation in the initial and

the final steps. Two representations of the fibre orientation are used in this

figure. The first one is the richest and uses unit spheres. On the surfaces of

the spheres, spots represent the extremities of the N orientation vectors p̄i,

their origin being located at the centre of the sphere. The second one, more

compact, is the second order fibre orientation tensors Af [26], defined here in

its discrete form as

Af =
1

N

N
∑

i=1

p̄i ⊗ p̄i. (6)

As evident from figure 5(a), both representations show that in the initial state,

fibres are mostly aligned along the e3 direction, and that the disorientation is

more pronounced in the plane (e1, e3) than in the (e1, e2) one. This figure also

proves that these two trends are slightly accentuated during the compression.

(ii) Geometrical torsions and curvatures - The calculation of geometrical tor-

sions τ i proved that the average geometrical torsion τ̄ is negligible, i.e. below

10−18m−1. This is not the case for the curvature. To illustrate this, the

evolutions of the mean local radii of curvature R̄i = 1/κ̄i with the
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position x3 along the bundle have been plotted in figure 6(a) (κ̄i

represents the average of the κi estimated at x3 for all the fibres

in the bundle). This graph first shows that in the initial non-deformed state,

fibres already exhibit finite curvature radii, with a mean value close to 50 mm.

This is expected because the fluorocarbon fishing wire, from which the fibres

were extracted, was initially rolled onto a 25 mm radius reel and thus pre-

sented an initial curved shape at rest, which mainly contributes to the initial

curvatures observed in figure 6 [27]. The graph also points out that whatever

the compression state, the curvature radii R̄i are more or less constant and

with values close to the average curvature radius R̄. Figure 6(b) lastly proves

that the local bending of fibres is drastically increased during the compression,

since R̄ is decreased from approximately 50 mm to 20 mm at the end of the

test. This can also be observed qualitatively by looking at, for instance, the

two contacting fibres shown in figure 2(e): these fibres are much more bent

locally in the final compression state than in the initial one.

4.3 In situ characterisation of contacts

(i) Spatial distribution - As illustrated qualitatively in figure 5(c) and (d),

fibre-fibre contacts are preferentially located in the core of the bundle, i.e.

within V ′, where the fibre content is higher.

(ii) Number - The number of contacts in V , N , substantially increases during

the compression, from 61 to 239 (when h = D). To illustrate this, figure 7(a)

shows the evolution of the average number of contacts per fibre or equivalently

the average coordination number z̄ = 2nc/nf as a function of Φ, nc = N /V

and nf = 4Φ/πD2L being the numbers of contacts and fibres per unit volume,

respectively: z̄ undergoes a non linear increase from ≈ 2.2 to ≈ 8.2 as Φ goes

from 0.29 to 0.45. If the trend is preserved, noticeable shifts are observed by
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using h = D ± 7.5µm, as emphasised by the error bars. Similar conclusions

can be drawn by considering the average coordination number z̄′ in V ′ (figure

7(b)). However, in accordance with the previous point (see figure 5(c-d)), this

graph proves that z̄′ is higher than z̄.

(iii) Orientation - The unit spheres displayed in figure 5(e-f), together with

the second order contact orientation tensors Ac defined as

Ac =
1

N

N
∑

j=1

q̄j ⊗ q̄j, (7)

first prove that contacts are mostly orientated in the (e1, e2) plane: this is

mainly due to the weak misalignment of fibres. Furthermore, these two

orientation representations underline the preferential orientation of contacts

parallel to the compression direction e2, whatever the considered compression

state: for instance, Ac
22

> Ac
11
.

(iv) Contact geometry - Figure 7(c) gives the evolution of the dimensionless

average contact distance d̄/d̄0 with Φ: this distance slightly decreases during

the first steps of compression, the decrease is sharper for the last two steps and

reaches ≈ 4% at the end of the test. By the same time, the average contact

length l̄/l̄0 noticeably diminishes during the compression, up to 0.67 (see figure

7(d)), even if this trend seems to be reversed at the last compression step. It is

interesting to notice that the error bars induced by the choice of h are smaller

for these two descriptors than those obtained for z̄ and z̄′.

5 Discussion

The mesoscopic mechanical response of the studied bundle, which is charac-

terised by marked consolidation and hardening effects (cf. figure 4), is a be-

haviour that is commonly observed during the compression of dry/saturated
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disordered/ordered fibrous media made up of contacting elastic fibres [1,4,15].

In particular, the experimental data plotted in figure 4(b) can be fitted by the

following power-law type expression which is often proposed [15]:

Σ22 = kE(Φm − Φm
0
). (8)

The two constitutive parameters k and m were here set to 54.8 and 14.25, re-

spectively: the value of m is consistent with those reported in the literature for

similar fibrous media, i.e. 7 ≤ m ≤ 16 [15]. Beyond these phenomenological

considerations, it is important to notice that trends reported in figure 4 are di-

rectly connected to the actual microstructure of the bundle and its evolution,

which is ruled by micro-mechanisms arising at the fibre scale. By using stan-

dard micro-meso theories dedicated to discrete media (granular or fibrous),

it would be possible, in principle, to account for these microscale effects and

predict their mesoscale behaviour. For instance, the mesoscale stress tensor Σ

of a fibrous medium containing Nc fibre-fibre contacts inside a representative

volume Vf can be expressed as [15–17,21]:

Σ =
1

Vf

Nc
∑

j=1

ξj ⊗ f j , (9)

where f j is the contact force at the contact j, between a fibre i of centre of mass

Gi and a fibre k of centre of mass Gk, and where ξj = GiGk. In regard to the

current experimental work, this expression brings up the following comments:

(i) The role of the fibrous microstructure on the mesocopic behaviour is obvi-

ously underlined from (9). In particular, such an expression shows that stress

levels depend on the relative positions of contacting fibres, i.e. ξj, which in turn

depends on the fibre geometry (aspect ratio, cross section, waviness), content

and orientation. Similarly, (9) also emphasises the role of the number of con-

tacts Nc in Vf , or equivalently the coordination numbers Z in Vf . The method

proposed in this study is a possible “experimental way” to get estimates of
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these descriptors (e.g. figures 5-7). Nonetheless, this has to be achieved cau-

tiously. For example, it was shown that the bundle displayed heterogeneous

fibre content along its width and that this heterogeneity was preserved during

the consolidation: this partially explains why the mean coordination number

in V ′, i.e. z̄′, is higher than the one in V , i.e. z̄ (cf. figure 7(a-b)). Edge effects

at the lateral free surfaces x1 = ±l1/2 could also contribute to this observation.

The method also provides experimental evidences to (in)validate microstruc-

ture models of the literature. Among them, one of the simplest is the soft core

tube model [15,17,28,29]. By assuming that (a) fibres are uniformly distributed

in the space and (b) can be seen as straight cylinders that can overlap, the

tube model provides, for instance, an estimate of the average coordination

number Z̄ in an volume Vf containing a sufficient number of fibres Nf :

Z̄ = 4φ





2

π
r
1

N2

f

Nf
∑

i=1

Nf
∑

k=1

||p̄i × p̄k||+
1

N2

f

Nf
∑

i=1

Nf
∑

k=1

|p̄i · p̄k|+ 1



 , (10)

This expression emphasises the role of the fibre aspect ratio r = L/D, orienta-

tion p̄i and content Φ on Z̄. It was used to estimate the average coordination

numbers z̄ and z̄′, by setting respectively in it φ to Φ and Φ′, Nf to N and

N ′, and by using the measured value of the orientation vectors p̄i in V and

V ′, respectively. If the experimental trend is more or less reproduced, figure

7(a-b) shows that the analytical tube model (10) largely overestimates the

experimental coordination numbers. This is mainly due to the tested bundle

which does not fulfil the hypothesis (a) of the tube model. Indeed, within V

and V ′, fibres are not homogeneously distributed spatially, in particular along

the e3-direction. This trend is enhanced in V since noticeable variations of the

fibre content are recorded (e.g. Φ < Φ′). Besides, experimental estimations of

z̄ and z̄′ were achieved with a low number of fibres and by accounting for pos-

sible edge effects at fibre-plate contacts. This is further enhanced for z̄, since

additional edge effects might occur at the free surface of the bundle, i.e. at
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x1 = ±l1/2 (see above). By forgetting the assumption (a) of the tube model,

i.e. by reconstructing numerically a bundle with N straight overlapping cylin-

ders, the centres of mass and the orientations of which correspond to those

measured in the tested bundle, figure 7(a-b) shows that predictions of the

tube model (without assumption (a)) are much closer to experimental values.

However, due to the simplicity of assumption (b), i.e. soft core model plus no

bending of fibres, the predicted coordination numbers remain overestimated.

(ii) The role of the deformation micro-mechanisms in (9) is also emphasised

from the contact forces f j which contribute to the transfer, from fibre to fi-

bre, of the mesoscopic compression loading. Firstly, contact forces induce the

bending of fibres between consecutive contacts when fibres are not properly

aligned: this explains the trends emphasised in figures 2(e) and 6. Secondly,

while increasing the mesoscopic loading, load transfers from fibre to fibre also

lead to deform contact zones and increase, in case of elastic fibres, the mag-

nitude contact forces f j. These deformation mechanisms, together with the

increase of the coordination numbers z̄ or z̄′ (figure 7(a-b)), contribute to the

trends reported in figure 4, i.e. the severe hardening of stress levels, the bundle

consolidation and the drainage of the fluid. In the present study, it is interest-

ing to notice that such mechanisms may be quite complex. For example, figure

7(c-d) shows that the contact distance d̄/d̄0 and, more surprisingly, the contact

length l̄/l̄0 were decreasing during the compression. The last decrease could

be due to the slight misalignment of fibres observed during the compression

(figure 5(a-b)).

6 Conclusion

The preliminary results that have been obtained in this study are very en-

couraging. By combining a mechanical test on a fibrous medium, in situ 3D

15



  

observations of its evolving microstructure and suitable image analysis subrou-

tines, they prove that it was possible to characterise simultaneously meso but

also micro deformation mechanisms in this fibrous medium. We have shown

with some examples that obtained results could provide useful information to

understand the mechanics of fibrous media, but also to validate theoretical

frameworks dedicated to the modelling of their microstructure and deforma-

tion. Future work will enter more deeply in this process, (i) by studying various

types of fibrous media, (ii) by subjecting them to various types of mesoscale

mechanical loading, (iii) by estimating quantitatively the mesoscale stress ten-

sor (9).
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[7] T.H. Le, P. Dumont, L. Orgéas, D. Favier, L. Salvo, E. Boller, X-ray phase

contrast microtomography for the analysis of the fibrous microstructure of SMC

composites, Compos. Part A 39 (2008) 91–103.

[8] S. Lomov, P. Boisse, E. Deluycker, F. Morestin, K. Vanclooster, D. Vandepitte,

I. Verpoest, A. Willems, Full-field strain measurements in textile deformability

studies, Compos. Part A 39 (2008) 1232–1234.

[9] C. Lai, W. Young, Model resin permeation of fibre reinforcements after shear

deformation, Polym. Compos. 18 (1997) 6428.

[10] P. Smith, C. Rudd, A. Long, The effect of shear deformation on the processing

and mechanical properties of aligned reinforcements, Compos. Sci. Technol. 57

(1997) 327–344.

[11] M. Buntain, S. Bickerton, Compression flow permeability measurement: a

continuous technique, Compos. Part A 34 (2003) 445–457.

[12] S. Comas-Cardona, C. Binetruy, P. Krawczak, Unidirectional compression of

fibre reinforcements. Part 2: A continuous permeability tensor measurement,

Compos. Sci. Technol. 67 (2007) 638–645.
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Fig. 1. Scheme of the micro-rheometer and the model fibre bundle (reconstructed

slices) which were put inside the ESRF X-ray microtomograph: vertical cross section

in a plane parallel to (e1, e2) (a), horizontal cross section in a plane parallel to

(e1, e3) (b).
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Fig. 2. Illustration of the various image analysis operations used to estimate

microstructure descriptors. The left pictures concern the initial non-deformed state,

the right ones the last step of compression: reconstructed 3D grey scale volumes

(a), volumes of fibres V after fibre segmentation (b), fibre centrelines (c), volumes

of fibres V after reconstruction (d), detection of a fibre-fibre contact between

two contacting fibres (e). In the left picture (e), two sections (A-A and

B-B) are sketched in order to illustrate distances dj
0
and h used to

detect fibre-fibre contacts (here with h = D).
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Fig. 3. Method used to detect and characterise the fibre centrelines in V : (a) example

of one of the 11 parallel slices shown in (d); (b) same slice after a 2D watershed;

(c) same slice with the centres of mass of the cross sections; (d) generating the

centreline of one fibre; (e) view of all centrelines; (f) local Frenet basis associated

to one centreline.
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Fig. 4. Mechanical response at the mesoscale: evolution of the mean stress Σ22 with

the volume fraction of fibres Φ in V (outer graph), evolution of the mean deviatoric

strain εd as a function of the mean volumetric strain εv . Around the graphs, 3D

segmented volumes obtained at the five compression steps have been represented.
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Fig. 5. Orientation fibres and fibre-fibre contacts. Orientation unit spheres and

associated second order orientation tensors for the fibres (a-b) and for the fibre-fibre

contacts (e-f). Pictures (c-d) give the fibre centrelines and the contact orientation

vectors q̄j contained in V . The left pictures concern the initial non-deformed state,

the right ones the last step of compression.
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Fig. 7. Evolution of the average coordination numbers z̄ (a) and z̄′ (b) with the

fibre contents Φ (a) and Φ′ (b). Evolution of the dimensionless mean fibre-fibre

distance d̄/d̄0 (d̄0 ≈ 145 ± 7.5 µm) (c) and the dimensionless mean contact length

l̄/l̄0 (l̄0 ≈ 900 ± 7.5 µm) (d) with the fibre content Φ.
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