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Abstract: A computational model of multiscale composites is developed on the basis of the fiber 
bundle model with the hierarchical load sharing rule, and employed to study the effect of the 
microstructures of hierarchical composites on their damage resistance.  Two types of hierarchical 
materials were considered: “hierarchical tree” (bundles-of-bundles of fibers) and self-similar 
particle and fiber reinforced composite (in which reinforcements at each scale level represents 
composites in turn consisting of lower level reinforcements and matrix). For the case of the 
hierarchical tree (“bundle-of-bundles” material), it was observed that the increase in the amount of 
hierarchy levels leads to the lower strength of material. In the self-similar fiber reinforced matrix 
materials, as differed from the hierarchical trees, the damage resistance of the hierarchical materials 
increases with increasing the amount of hierarchy levels. The effect of mixed fiber and particle 
reinforcement on the damage resistance of the hierarchical composites is investigated as well.  

Keywords: C: Modeling; B: Strength; C: Probabilistic methods; C: Stress transfer; C: Damage 
mechanics 

1. Introduction 

In recent years, the interest to the hierarchical, multiscaled composites and to the methods 
of their modeling has increased. This is related to several factors. First, the investigations 
of microstructures-properties relationships of natural materials (wood, bones, etc.) 
suggested that these materials represent hierarchical composites with fibrous 
reinforcement, and that their extraordinary properties (high strength, fracture toughness, 
etc.) are determined to a large degree by the hierarchical architectures of the materials [1-
4]. Further, the reserves of the optimization of composite properties by varying their 
structures at the microscale level, first of all, volume content and properties of 
reinforcement are approaching their limits.  While some properties (e.g., stiffness) are 
improved by increasing the volume content of hard reinforcement in composites, other 
properties (fracture toughness) degrade in this case. The idea to create a new family of 
materials, by tailoring material properties using the “simultaneous control of different 
structural elements, such as shape and size, at plural scale levels” has been studied in the 
framework of the Japanese “Synergy Ceramics Projects” [5]. Kanzaki et al. [5] presented 
an example of the improved material which has both high strength and toughness achieved 
by combination of aligned anisotropic grains (at microlevel) with the intragranular 
dispersion of nanoparticles (at nanolevel). Another example of a material with a 
hierarchical microstructure, and excellent properties (extremely high compressive yield 
strength) is a “trimodal” Al-composite developed by Ye et al. [5]. In this composite, 
coarse-grained Al is introduced into the nanocrystalline Al reinforced with B4C particles 
in order to achieve both improved strength and acceptable ductility.  



  

 2 

The multiscale composite design allowed to improve different mechanical properties of 
different groups of composites: 80% improvement of fracture toughness in a carbon fiber 
reinforced epoxy composites achieved as a result of carbon nanotubes (CNTs) engineered 
matrix [8], drastic improvements in elastic modulus, compressive strength and 
interlaminar strength of carbon fiber/polymer composites caused by dispersed carbon 
nanofibers [9], 85% increased fracture toughness of carbon fiber reinforced epoxy/clay 
nanocomposites CFRENCs  with the introduction of 4 phr nanoclay in epoxy [7], 38% 
increased flexural strength due to small amount of nanoclay (2 phr) added into the epoxy 
of carbon/ epoxy composites [7]. Thus, tailoring of material properties at different scale 
level makes it possible to improve qualitatively mechanical properties of composites, 
including their competing properties.  

In order to to analyze the effect of the microstructures of hierarchical materials on the 
strength and mechanical properties, a number of mathematical models of the materials 
have been developed. Carpinteri and Paggi [10] developed a model of hierarchical, fractal 
grained composite, in which mesograins are recursively composed of smaller and smaller 
micrograins. Using top down approach, rule of the mixture and generalized Hall-Petch 
relationship (for hardness), and the authors analyzed the effect of the multiple hierarchy 
levels on the material hardness and toughness. They demonstrated that “a hierarchical 
material is tougher than its conventional counterpart”, and that the material hardness 
increases with increasing the amount of hierarchy levels. Joshi and Ramesh [10] 
developed a micromechanical model of particle reinforced, multiscale composites, “where 
at least one phase is itself a composite at a finer scale”. They used the multiscale secant 
Mori-Tanaka method and added subscale terms, in particular, grain size, particle size and 
dispersoid strengthening, and computed overall response of the material. Yao and Gao [12] 
developed self-similar models of hierarchical materials, one corresponding to gecko 
attachment system and one to the microstructure of bone. They demonstrated that “a 
hierarchical material with multi-scale cohesive law can be designed from bottom up to 
achieve flaw insensitivity”. A series of analytical models of hierarchical materials, based 
on fracture mechanics approach, has been presented by Gao [2]. Using the “fractal bone” 
model (multiple level self-similar composite structure), Gao demonstrated that a 
hierarchical material with different properties at different length scales “can be designed 
to tolerate crack-like flaws”. 

While the general conclusion of these works is that the hierarchical materials have higher 
strength and damage resistance than common composites, this conclusion is in contrast 
with the numerical results from [24, 25], and with experimental and numerical 
observations showing that clustering and bundling of reinforcement in composites leads to 
the lower damage resistance [Chapter 8 from 4, 28, 29]. (It should be noted that the term 
“clustering” is used here in more materials science sense, as the close arrangement, 
grouping of reinforcing elements, and should not be mixed with, lets say, the clustering of 
failed fibers in the fiber bundle models).  

Another group of models are based on the fiber bundle model and the renormalization 
methods, and seek to analyze the asymptotic strength distributions of the fiber bundles 
[13-17], taking into account the effects of time dependent behavior of fibers and different 
load sharing rules. A more detailed overview of various fiber bundle models can be found 
in the works by Newman, Phoenix, Hansen, Herrmann, Bazant and colleagues. Some 
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references can be found in [4, Chapter 10]. 

In this paper, we seek to analyze which aspects of the hierarchical microstructures of 
composites ensure higher damage resistance of the material. In order to solve this problem, 
a program code for the damage analysis based on the fiber bundle model with the 
hierarchical load sharing rule is developed. This code is applied for the analysis of the 
effect of the microstructure, amount of hierarchy levels, type of reinforcement, degree of 
clustering of elements on the damage resistance of the hierarchical composite.  Due to the 
space limitation, we do not discuss strength distributions, or the time dependent fiber 
behavior in this paper.  

2. Computational Model:  Multiscale Fiber Bundle Model with Hierarchical Load Sharing  

In this section, we develop numerical tools for the computational analysis of the 
microstructure-damage resistance relationships of hierarchical materials. A program code 
for the simulation of damage evolution in materials was developed on FORTRAN, on the 
basis of multiscale fiber bundle model and hierarchical load transfer rule.  

Let us consider a multiscale fiber bundle model (see Figure 1). The system, built as a 
hierarchical tree, is subject to a tensile mechanical loading (Figure 2). In the following, we 
will use the following designations: N – total amount of fibers on the lowest hierarchy 
level (actual fibers), M – amount of hierarchy levels, z – branching number (i.e., the 
amount of lower level bundles in an upper level bundle, or the amount of fibers in the 2nd 
level bundle). 

In the hierarchical load sharing rule (HLS), the load is transferred from the upper elements 
of the hierarchical “tree” (“roots”, corresponding to the “bundles-of-bundles-of-bundles-
of-fibers in a 3 level material) to the lower (“branches”) and down to the lowest elements 
of the material (fibers, in this case). The load is shared equally amount all the sub-
elements of a given higher level element (as long as they are intact) or to remaining intact 
sub-elements after some of them fail. In the easiest version, the amount of sub-elements in 
each higher level element (hereafter called branching number or simply branching) is 
supposed to be constant at all the levels. More complex versions when the branching 
number is varied at different scale levels or in different phases was implemented as well 
and is discussed in the section 3.3. 

At the lowest level (which consist not of bundles, but of actual fibers), the elements are 
assigned the strength, using to the Weibull probability law random number generator. The 
fibers are taken as glass fibers in our model (in some special case, we model also carbon 
fibers, epoxy matrix or glass particle/matrix elements). The properties of the glass fiber 
are:  Young modulus EP=72 GPa, and Poisson’s ratio 0.26. The failure strength of glass 
fibers follows the Weibull probability law, with parameters �0=1649 MPa and m=3.09 [19, 
20, 21].  

The failure condition of fibers is checked for each fiber, in the increasing order from the 
lowest strength/stress ratios to the highest ones. If the strength of a given fiber is less than 
the applied load, the fiber fails and the load is redistributed on the remaining fibers 
belonging to the same bundle/branch.  After all the fibers in the branch fail, the higher 
level element is considered as failed, and the load is distributed among all the remaining 
elements belonging to the same higher level branch (“bundle of bundles”), and so on.  
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The program 1  calculates the damage (fraction of failed lowest level fibers) versus the 
applied load curves. Special cases included into the program code are mixed fibers (carbon 
and glass fibers, randomly mixed), particle reinforced composites (implemented on the 
basis of the model described in the section 5.1), mixed fiber and particle reinforcement. 
For the case of fiber, matrix and particle reinforced composites as well as mixed 
carbon/glass fibers, the program output includes the damage parameters separately for 
matrix, carbon fibers and glass fibers, particles as well as overall damage.  

As a parameter of strength/damage resistance of the composites, we used the “critical 
load”, i.e. an applied stress at which the damage parameter (fraction of failed elements, 
either in the composite, or in separate phases) exceeds 90%. This value was determined 
from the damage-stress curves. Since the damage versus strain curves are monotonous, the 
choice of the critical damage level does not influence the qualitative relationships between 
arrangement of fibers and the damage resistance of the composite. The 90% level was 
chosen as a almost full failure value. 

It is of interest that the “hierarchical distribution” of deformation and damage (i.e., when 
some subregions of the material deform as a whole and the total deformation of the 
material is controlled by interplay of these subregions or clusters of the subregions in a 
self-similar manner) has been reported not only for classical hierarchical materials, but 
also common “homogeneous” materials [22]. In the framework of physical mesomechanics 
of solids [22], Panin and colleagues described several “structural levels of deformation”, 
related to different rotational modes and the self-organization of local translational and 
rotational local modes of deformation. At each structural level, the deformation is 
controlled by the interplay of rotation and shear of lower level regions.  

 

3. Numerical experiments: Damage evolution  in “hierarchical trees”  (bundle of bundles 
systems) 

In this paper, we analyze two groups of hierarchical materials: “hierarchical tree” 
(“bundle-of-bundles” system) and multiple level self-similar composites.  A self-similar 
composite (similar to “fractal bone” model by Gao [2]) consists of both strong and weak 
elements at each level. The strong elements at the different levels are self-similar: they 
consist of some amount of stronger lower level elements and weak lower level element 
(matrix). Physically, the “bundle of bundles” system can be represented as clustered (or 
clustered at several scale levels) fiber reinforced composites with weak matrix. The 
multiscale self similar composites correspond physically to the case when reinforcing 
elements in the composite are replaced by the cluster/bundle of lower level elements (or 
again clusters at even lower scale level). An example of such material is the tool steel with 
“double dispersion structure” and extraordinary properties, developed by Berns et al. [22]. 
Thus, these two groups of hierarchical materials represent physically different 
microstructures.  

In this section, we consider a “hierarchical tree” (bundle of bundles system), in which the 
load is shared only between fibers (the matrix is assumed to be too week, and do not bear 
any loading).   

                                                
1 The program is available from the author on request free of charge 
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3.1. Effect of the amount of hierarchical levels on damage in hierarchical tree system 

Let us consider the influence of the amount of the hierarchy levels on the damage 
resistance of the composite consisting of bundles (or bundles of bundles) of fibers. The 
total amount of the glass fibers at the lowest level of hierarchy is kept constant. We 
consider the following cases:  (a) total amount of glass fibers N= 15625, branching 
number (i.e., the amount of lower level bundles in an upper level bundle, or the amount of 
fibers in the 2nd level bundle) z=5, and the number of hierarchy levels M varied from 1 to 
6,  (b) N=16807(=75), z=7 and M=1…5, and (c) N=1000, z=10 and M=1…3. In this case, 
we keep N (the amount of lowest level fibers/actual fibers) constant, but just vary the 
amount of hierarchy levels, thus, seeking to analyze the effect of amount of hierarchy 
levels on the damage resistance.  

Figure 3 shows the damage (fraction of failed fibers in lowest level) versus applied stress 
for these cases. One can see that the damage resistance of the material decreases with 
increasing the amount of hierarchy levels. The data on Figure 3 were averaged over 5 
realizations. 

Figure 4 shows the critical force plotted versus the amount of hierarchy levels, for the case 
N= 15625 and z=5. 

The conclusion that the increase in the amount of hierarchy levels leads to the lower 
strength of material corresponds to the results of Gomez and Pacheco [24] and Newman 
and Gabrielov [25]. Further, this conclusion corresponds also to the observations of the 
effect of clustering of reinforcing elements on the damage resistance of composites: 
clustering of reinforcement (which is the main mechanisms of realization of the 
hierarchical load transfer) has a negative effect on the damage resistance of composites [4, 
28, 29]. However, it is in contrast with the observations that many natural materials, built 
as hierarchical fibrous composites, have extra-ordinary high strength.  

Apparently, with increasing the hierarchy levels M the variability of the strengths 
increases as well, and that influences the strength [17, 18]. 

3.2 Effect of the mixed fibers on damage in hierarchical tree system 

Let us consider the effect of mixed fibers on the damage resistance of hierarchical tree 
system. We seek to explore what will be the effect of hierarchy if we mix the relatively 
weak (glass) fibers with strong carbon fibers. The tensile strength of carbon fibers follows 
the Weibull distribution as well, with the parameters �0=2322 MPa and m=4.4 [26, 27]. 
The Young modulus is 276 GPa.  The total volume content of fibers is 30%. N=16807.M 
was varied from 1 to 4, z=7. 

Figure 5 shows the ratio of critical stresses (at which the damage reaches 0.9) for the 
model materials with different carbon/glass mixes (5% carbon fibers+25% glass, 15%/15%, 
25% carbon+5% glass) to the critical stress for the material with 100% carbon fibers 
plotted versus the number of hierarchy levels.  

As expected, the addition of stronger fibers leads to the lower damage at all the stages of 
damage evolution. It is of interest that effect of the addition of weaker glass fibers 
(leading to the reducing of the critical load) is higher for the hierarchical composites, than 
for non-hierarchical composites. Thus, the hierarchical tree microstructures lead to the 
higher sensitivity to the heterogeneity of the material.  
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3.3 Branching and its variations at different hierarchy levels 

Let us consider the effect of the branching number (i.e., the amount of lower level 
elements in each higher level element) on the damage resistance of the material. The 
simulations were carried for the N(M) (total number of fibers at the lowest level) 16384 
(=4*84), M (amount of hierarchy levels)= 4, branching was constant at all the levels and 
varied from 1 to 16 for different cases (1, 2, 4, 8, 16). Figure 6 shows the critical stress 
(i.e., the stress at which the damage in the composite exceeds 0.9) as a function of the 
branching number in the model. 

One can see that the critical stress decreases when going from the case of the composite 
without clustering to the cases with clustering (z>2). Again, we can see that the increasing 
the degree of fiber clustering (amount of elements per cluster) leads to the lower damage 
resistance. This was observed also in analytical and computational (finite element) studies 
presented in [4, 28]: the more elements are in a cluster, the higher the likelihood of 
reinforcement failure.  Above, we considered hierarchical systems with constant branching 
over several scale levels. It means that upper bundle at i-th hierarchy level contained 
constant amount of lower bundles at i-1-th level, for i=1…M.  Now, let us study the effect 
of varied branching at the different scale levels.  

Figure 7 shows a schema of hierarchical bundle systems with varied branching: the cases 
of “few roots, many branches”, and “many roots, few branches”. 

The systems with  4096 lowest level fibers (all glass fibers), 4 hierarchy levels and varied 
branching from 8 to 2, from 2 to 8 and constant (8) constant, decreasing and increasing 
branching numbers, and N(M)=4000, (the variation is from 5 via 10 to 20) were 
considered. Figure 8 shows some typical curves of damage parameter (fraction of failed 
lowest level fibers) plotted versus applied stress, for the system with varied branching. 
The amount of elements (bundles) on each hierarchical level for the considered cases is 
shown on the Figure 8.  

Here, we denote the microstructure “C” as those with lower level, close to fibers branches, 
and less higher level, close to roots branches. The microstructure “B” is that with small 
amount of lower level, close to fibers branches, but with bigger amount of higher level, 
close to roots branches. In the simulations, it could be observed that while the 
microstructure “C” gives sometimes more and sometimes less damage resistance, than the 
constant branching number case, the microstructure “B” gives always higher damage 
resistance. Apparently, the maximum branching at the lowest level (and the minimum 
amount of elements at the lowest+1 level) allows localizing the damage propagation and 
slowing down the damage growth.ied branching (over several scale levels), however, has a 
positive effect on the damage resistance of the composite.   

4. Numerical experiments:  Damage evolution in glass fiber/epoxy matrix hierarchical 
system  

In this section, we consider a case of a self-similar composite, consisting of reinforcement (fiber, 
particles or mixed) and matrix.  As differed from the case of the “hierarchical tree”, considered 
above, the self-similar composite consists of both strong and weak elements at each level. The 
strong elements at the different levels are self-similar: they consist of some amount of stronger 
lower level elements and weak lower level element (matrix).  
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As noted above, the “bundle of bundles” system corresponds to clustered (or clustered at several 
scale levels) fiber reinforced composites with weak matrix, while the self-similar composites 
correspond physically to the case when reinforcing elements in the composite are replaced by the 
clusters of lower level elements (or again clusters at even lower scale level), of somewhat bigger 
size and with correspondingly lower stiffness. 

4.1. Hierarchical self-similar fiber/matrix microstructures 

In this part, we consider the case of hierarchical self-similar fiber/matrix composites. The 
microstructure consists of elements which are either pure matrix or reinforcement at each 
level. The reinforcing elements, in turn, consist of pure matrix and the lower level 
reinforcing elements. Figure 9 shows a schema of the hierarchical self-similar fiber/matrix 
composites. If the volume content of the reinforcing elements at each level is constant and 
designated as vc, the global volume content of lowest level fibers in the material is given 
by 

M
glob vcvc =  

where M – the amount of hierarchy levels. Thus, if we define the total volume content of 
glass in the composite, the volume content of stronger phase at each scale level is 
calculated as an M-degree root from this number.  It should be noted here that while it 
looks like when the number of hierarchy levels M becomes large enough, the global 
volume fraction of the strong elements will approach almost zero, it is not realistic 
situation: hierarchical material with M larger than 5 is a theoretical idealization.  

If we determine the Young modulus of the material at each level using the rule of mixture, 
and, again, assuming that volume content is constant at all the levels, we have the Young 
module at the j-th level as: 
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where Ef, Em are the Young moduli of (lowest level) fibers and pure matrix respectively.  

The load distribution between the fiber (or strong elements at the given hierarchy level, which 
represent composites, in turn consisting of fibers and matrix) and matrix take place in the following 
way. At each hierarchy level, the load is distributed among all the elements, including the fibers and 
the matrix. The strain on the fibers and matrix in each element is constant, while stresses are 
different. Thus, we determine the stress on each element (either matrix or stronger reinforcement) 
by the following formula:  

 

where 1, 2 – two phases, E and vc – Young modules and volume contents of the corresponding 
phases.   

While the load distribution between matrix and fibers follows the displacement/strain controlled 
boundary condition, the load distribution between fibers (main bearers of load) is the same as in the 
case of “dry” hierarchical tree - “global” load distribution inside each cluster at the cluster level. 
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The properties of the epoxy matrix are: Young modulus 3790 GPa, failure stress smatr=88 MPa [30]. 
The properties of fibers are the same as in the previous section.  Only “full failure” of the matrix or 
“full failure” of a fiber are possible. If an element (fiber or matrix) inside a bundle fails, the load is 
redistributed only to other elements inside the bundle.  

The properties of lowest level fibers were kept constant, at the level, corresponding to the properties 
of glass fibers in polymer/epoxy glass composites (the experimentally determined properties, see 
subsection ). The global volume fraction was, again, kept constant in all the compared cases. 

Let us look at the damage behavior of a non-hierarchical system. Figure 10 shows the fiber, matrix 
and overall damage plotted versus stress for the non-hierarchical material (M=z=1). It can be seen 
that the fiber cracking begins rather early and follows smooth curve, while the matrix cracking 
starts much later and goes very quickly.  For comparison, it is of interest to look at the damage-
strain curves obtained with the use of 3D finite-element micromechanical models [20] (see Figure 
10b). One can see that the more exact finite element simulations lead to the qualitatively similar 
results: early and slow fiber damage accumulation, and late and quick damage growth in the matrix.  

Now, we consider the effect of hierarchization of the self-similar materials on the damage 
resistance. Figure 11 shows the critical stress (at which the damage exceeds 0.9) plotted versus the 
amount of hierarchy levels for the total damage, and separately for fibers and matrix, for glass (a) 
and carbon (b) fiber reinforced composites.  

The important observation is that the damage resistance of the multiscale self-similar fiber 
reinforced composites increases with increasing the amount of hierarchy levels in the material. This 
is clearly different from the case of “hierarchical tree” considered in the Section 3.  While the 
strength of hierarchical structures, built via grouping/clustering/bundling of strong elements, 
reduces with increased clustering/hierarchization, the strength of fractal, self-similar composites 
increases with increasing the amount of hierarchical levels.  

Apparently, the reason for such a strong difference is the availability of matrix. With increasing the 
amount of hierarchy levels, Young modules of the reinforcing elements at higher levels become 
lower, and, thus, bigger part of the load is born by the matrix (since the load is distributed 
proportionally to the stiffness of a given element). This effect, combined with the localized damage 
evolution (the damage in one bundle begins to be felt in other bundles only after this first bundle 
fails completely) leads to the situation when increasing the number of hierarchy levels increases the 
damage resistance. Similar conclusions about the positive effect of the amount of the hierarchy 
levels on the damage resistance of multiple level self-similar composite structure (“fractal bone”) 
model has been obtained by Gao [2]. 

4.2. Hierarchical self-similar fiber reinforced composites with mixed fibers 

In this part, we consider the case of self-similar fiber reinforced composites with mixed (weak/glass 
and strong/carbon) fibers. The properties of fibers are given in sections 2 and 3.2.  

The simulations for the self-similar fiber reinforced composites with different amounts of hierarchy 
levels, different fractions of carbon and glass fibers (20/80, 80/20, 50/50, 0/100, 100/0 of totally 
30% reinforcement volume content) and 16807 lowest level elements were carried out. z=7. 

Figure 12 shows the critical stress (at which the damage exceeds 0.9) plotted versus the amount of 
hierarchy levels for the cases of 100% glass reinforcement, 100% carbon reinforcement, 50/50% 
carbon/glass reinforcement and 80/20% carbon glass reinforcement.  
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Looking at the relative numbers (ratio of the critical stress for a material with a given M to that with 
M=1) ne can see that the positive effect of the material hierarchization is observed most clearly in 
the material with strong or mainly strong reinforcement (pure carbon or 80% carbon).  For pure 
carbon, the ratio of the critical stress for a material with M=4 to that with M=1 is more than 2, while 
for pure glass reinforcement, it is 1.4.  

Figure 13 shows the ratio of the critical stress for different mixed reinforcement materials divided 
by that for 10% carbon and plotted versus the fraction of carbon fibers in the reinforcement.   It is of 
interest that even relatively small addition of carbon fibers (20%) in a non-hierarchical composite 
leads to the drastic increase in the material strength, even making it close to maximal one (at 100% 
carbon fibers). For hierarchical composites, the strength is increasing roughly proportional to the 
volume content of strong carbon fibers.  

Further, we sought to investigate the effect of pre-damage on the strength of the composite [31]. In 
the following simulations, we assumed that 20% of all lowest level fibers are failed before we 
started the loading. We assume the glass fibers, 16807 lowest level fibers, z=7.  The fixed fraction 
(20%) of pre-damaged fibers was randomly chosen. Figure 14 shows the ratio of critical stresses for 
composites with 20% pre-damaged lowest level element to that of composites with all intact 
elements, plotted versus the amount of hierarchy levels. One can see that the composites with 
amount of hierarchy levels more than 2 have almost the same strength independently whether the 
composite is pre-damaged or not. Thus, the effect of pre-damage is important in the case of non-
hierarchical material, but becomes almost negligible for the hierarchical material.  This corresponds 
to the results by Gao and colleagues who observed that hierarchical materials are insensitive to 
damage in some cases [2]. 

 

5. Modeling hierarchical particle reinforced and mixed fiber/particle reinforced composites  

In this section, we develop a model of particle reinforced continuum to be introduced into the 
hierarchical fiber bundle model, and use this approach to analyze the effect of hierarchization of 
particle reinforced composites and combining fiber and particle reinforcement on the damage 
evolution in the material. 

5.1. “Embedded equivalent fiber” model of particle reinforced composites 

Here, we consider the case of self-similar particle/matrix composites. There are a lot of very 
efficient analytical and computational models of strength of particle reinforced composites (see the 
reviews in [4, Chapter 4]). However, in order to remain in the framework of the assumptions of 
fiber bundle model (and not to compare apples and oranges), we opted to adapt/generalize the fiber 
bundle model to the case of the particle reinforced composites.  

Figure 15 shows the schema of the model: from an intricate, real shape of a particle embedded into 
a cubic matrix, to an equivalent model with a vertical fiber with quadratic section and equivalent 
properties, embedded into a series of fibers with the pure matrix properties.  

In this model, the particle is represented as a cube embedded into the polymer matrix. This system 
(glass cube in a polymer cube or a parallelepiped) is in turn divided into vertical elements, one of 
them containing the particle and the others, consisting of pure matrix material (following the logics 
of the Voigt/Reuss model of composites presented in [32]).  The cubic particle sandwiched between 
two parallelepipeds with matrix properties is represented as an element of the hierarchical system 
(“equivalent fiber”) which properties are averaged out (following the Reuss rule). The Young 
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modulus of the “equivalent fiber” containing the particle lie between the those of fiber and matrix 
materials, and is calculated by the Reuss formula [4], as  

[ ] 1
,, /)1(/ −−+ matrixlinearparticleparticlelinearparticle EvcEvc . Here vcparticle,linear (“vertical volume content”) 

means the height of the cube representing the particle, divided by the total height of the element. 
The vertical volume content of the particle material in this element is calculated as  

3/1
, )( particlelinearparticle vcvc ≈  

The “equivalent fibers” are embedded into the matrix. The volume content of the vertical elements 
containing the particles as a cubic layer (“equivalent fibers”) in all the material is calculated as 

3/22
, )()( particlelinearparticle vcvc ≈ .  

The load is transferred as discussed in the subsection 4.1, with the “equivalent” fiber subject to the 
stress proportional to its Young modulus, and the global load distribution inside each cluster. This 
model of the particle reinforced composite was implemented into the program code of the section 2, 
and the computational studies of the damage behavior of the self-similar, hierarchical, particle 
reinforced systems (similar to the system studied in the previous section, but with particle 
reinforcement) were carried out. 

5.2. Hierarchical particle reinforced composites 

Here, we consider the effect of the hierarchization (replacement of the reinforcing particles by 
clusters or even multilevel clusters of even smaller particles) on the damage resistance of the 
material. The simulations were carried out for the case of 16807 particles) lowest level element), the 
global volume content of the glass particle 30%.   

Figure  16  shows the critical stress (at which the damage exceeds 0.9 either in each phase or totally 
in the material) plotted versus the amount of the levels in the material. One can see that the particle 
reinforced composites are much more sensitive to the clustering effect than the fiber reinforced 
composites: when the system goes over from non-hierarchical (M=1) to hierarchical structure, its 
damage resistance reduces considerably. Still, for M>1, the damage resistance increases with 
increasing the amount of hierarchy levels.  

It is of interest that the damage resistance of the matrix monotonically increases with increasing the 
amount of the hierarchy levels, beginning from M=1 (non-hierarchical material). Since the damage 
resistance of the reinforcement is most relevant for the stiffness, and that of the matrix for the 
toughness and lifetime of the composite, we can conclude that increasing the amount of the 
hierarchy levels might lead to the improvement of the fracture toughness and lifetime of the 
composite, while the stiffness (after the begin of the damage evolution) might suffer.  

Let us compare these results with the observations of Ye et al. [5] on the tri-modal Al-based 
composite, and the results of the modeling by Joshi and Ramesh [10]. We did not observe the 
monotonous increase in the strength when comparing non-hierarchical, bimodal and trimodal 
composites. Apparently, the effects observed in [5, 10] are caused not only by the hierarchization of 
the material, but also by the small scale effects and different properties of low level and high level 
reinforcements. However, the hierarchization of a material as such do contribute to the 
improvement of damage resistance of the composite as long as the stronger elements bear most of 
the load (as fibers do), or when we compare hierarchical materials with low amount of hierarchical 
levels with a material with higher amount of hierarchical levels.  
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Comparing the non-hierarchical system (M=1) of fiber and particle reinforcement, one can observe 
that the matrix in particle reinforced composites (PRC) fails at much lower load than that in the 
fiber reinforced composites (900 MPA versus 1300 MPa). The reason for this is that the main load 
in PRC is not born by fibers, but rather by matrix, and, thus, the load at the matrix in PRC is much 
higher than in FRC. The particle failure (again, taking 90% damage in all the reinforcement) takes 
place at somewhat higher load than the fibers failure (2000 MPa versus 1800 MPa), again, due to 
the higher load born by fibers.  When we go over to the hierarchical systems (i.e., clustering the 
particles), the damage resistance of the particles goes down significantly. This observation 
corresponds to the results from [28, 29] and Chapter 8 of [4]: while the clustering of particles leads 
to the 3…6 times higher likelihood of particle failure, the fiber clustering causes much more limited 
increase of the likelihood of fiber failure, of the order of 30% (compare [27]). That is why the 
transition from non-hierarchical to hierarchical composites leads to much stronger negative effect 
for the particle, than for the fiber reinforced composites.  

We can conclude that the homogeneous distribution of reinforcing particles (no clustering, M=1) 
ensures the highest damage resistance. However, if some particle clustering is unavoidable (as is the 
case in real world), more hierarchy means more damage resistance.  

5.3. Composites with mixed reinforcement (fibers + particles) 

Now, let us consider the composite with mixed reinforcement: fibers and particles (Figure 18a). 
Figure 17 shows the damage in fibers, particles, matrix and overall composite plotted versus stress 
for the non-hierarchical self-similar particle reinforced material (M=z=1). The volume contents of 
the particles and fibers are both 15% (totally 30% reinforcement content).  The reinforcement (both 
fibers and particles) have the properties and strength of glass. One can see that the damage in 
particles develops much more slowly than in fibers.  While 40% fibers fail at around 1100 MPa, 
40% of particles fail at 1400 MPa (27% higher).  

Let us consider now the self-similar structure consisting of matrix reinforced by both fibers and 
particles, with equal volume content. The total volume content of reinforcement is still 30%.  

Figure 18 shows the critical stress (at which the damage exceeds 0.9) plotted versus the amount of 
the hierarchy levels in the material. One can see, again, that the damage in particles, and to a lesser 
degree, in fibers increases when the material become hierarchical, but decreases with the increasing 
the amount of the hierarchy levels. Again, damage resistance of the matrix monotonically increases 
with increasing the amount of the hierarchy levels, beginning from the transition from non-
hierarchical (M=1) to the hierarchical (M>1) micro. 

Figure 19 shows the critical stress (at which the damage exceeds 0.9) plotted versus versus the 
fraction of particles in the total (30%) reinforcement (fiber+particles). It is of interest that the 
dependency of the strength of composite with mixed fiber/particle reinforcement of the fraction of 
particle reinforcement is very different for hierarchical and non-hierarchical materials. 

For non-hierarchical composites, the strength of the composite with mixed reinforcement is higher 
than the strength of purely fiber or purely particle reinforced composites. The dependency of the 
strength of the composite on the fraction of particles has the shape of � curve. For hierarchical 
composites with mixed reinforcements, the strength decreases monotonically with increasing the 
fraction of the particles and reducing the fraction of fibers. One should notice that we consider here 
the particles and fibers having the same radius, and made of the same material (glass).  
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It is of interest to look how the addition of particles to the matrix influences the strength and 
damage resistance of the composite. In this case, we keep the volume content of fibers constant, at 
the level of 30%. N=16807, z=7, M=3. The volume content of particles in the matrix increases, from 
0% (pure, non-reinforced matrix) to 70% (thus, making the total volume content of reinforcement 
30%+70%*(100-30)=79%). Figure 20 shows the critical force (at which 90% of fibers fail) plotted 
versus the volume content of particles in the matrix. One can see that the higher the volume content 
of particles in the matrix, the higher the damage resistance of fibers. Apparently, the stronger and 
stiffer matrix bears bigger load and thus slows down the damage evolution in the fibers.  

5. Conclusions 

The computational model of multiscale composites is developed on the basis of the fiber bundle 
model with hierarchical load sharing rule, and used to study the effect of the microstructures of 
hierarchical composites on their damage resistance. Two types of hierarchical materials were 
considered: “hierarchical tree” (bundles-of-bundles of fibers) and self-similar composite (in which 
each reinforcement at each scale level represents a composite consisting in turn of reinforcements 
and matrix). For the case of the hierarchical tree (“bundle-of-bundles” material), it was observed 
that the increase in the amount of hierarchy levels leads to the lower strength of material.  

In the self-similar fiber reinforced matrix materials, as differed from hierarchical trees, the damage 
resistance increases with increasing the amount of hierarchy levels. Apparently, the strength of 
hierarchical structures, built via grouping/clustering/bundling of strong elements, reduces with 
increased clustering/hierarchization, while the strength of fractal, self-similar composites increases 
with increasing the amount of hierarchical levels. 

The particle reinforced composites are much more sensitive to the clustering effect than the fiber 
reinforced composites: when the system goes over from non-hierarchical (M=1) to hierarchical 
structure, its damage resistance reduces considerably. Still, for M>1, the damage resistance 
increases with increasing the amount of hierarchy levels. One can conclude that the homogeneous 
distribution of reinforcing particles (no clustering, M=1) ensures the highest damage resistance. 
However, if some particle clustering is unavoidable (as is the case in real world), more hierarchy 
means more damage resistance. The damage resistance of the matrix monotonically increases with 
increasing the amount of the hierarchy levels, beginning from M=1.  

Assuming that the damage resistance of the reinforcement is most relevant for the stiffness, and that 
of the matrix for the toughness and lifetime of the composite, one can speculate that increasing the 
amount of the hierarchy levels (in self-similar materials) might lead to the improvement of the 
fracture toughness and lifetime of the composite, while the stiffness (after the begin of the damage 
evolution) might suffer. The strength of the composite with mixed reinforcement is higher than the 
strength of purely fiber or purely particle reinforced composites for non-hierarchical composites. 
For hierarchical composites with mixed reinforcements, the strength decreases monotonically with 
increasing the fraction of the particles and reducing the fraction of fibers. 

It should be noted that the properties of reinforcing elements depend on their sizes (“small is 
strong”), and the truly correct model of nanoreinforced materials should take this factor into 
account. However, at this stage, we sought to analyze only the effect of structure/ architecture/ 
hierarchization of the material, separately from other effects, and left out the important size effects.  
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Figure  

1. Schema: M ultiscale fiber bundle model 

 
Figure  

2. Hierarchi cal tree s ubject  to the tensile l oadi ng 

 

 

 
Figure  

3. Damage (frac tion of  fail ed fi bers) vers us applied s tress , for different  br anc hing numbers and hi erarc hy levels numbers.  (a)  (a) N= 15625, z=5, and M=1… 5,  ( b) N=16807, z=7 and M=1… 5, and (c)N=1000,  z=10 and M=1…3. 

 
Figure  

4. Critical force pl otted versus the amount of hier archy levels,  for N= 15625,  z=5, 
 
 
 
 

Figure  

5. Ratio of damage for  car bon/g lass mi x to 100% e c arbon  fibers pl otted versus the number of  hierarchy levels 

 

Figure  

6. Effect  of branching number on the damage evolution (M=4)  

 

Figure  

7. Schema: Hi erarchical bundl e sys tem with varied br anchi ng: left,  branchi ng is highest at the l ower  level of hier archy (few roots , many branches), and right,   br anching is highest at  the l ower level of hi erarchy ( many r oots,  few branches).   

 
Figure  

8. Damage versus  applied str ess:  c ons tant , decr easing and i ncreasi ng br anc hing numbers considered,  M=4.  (a) T he aver age branc hing z= 4  (the variati on is from 2 vi a 4 to 8) ( b)  T he averag e branc hing 10, the variati on is from 5 via 10 to 20 

 

Figure  

9. Schema: Hi erarchical self-si mil ar fiber/matrix c omposi tes 

 

 

Figure  

10. Damage evol uti on:  over all damage, fibers and matri x.  M=z=1 (non-hierarc hic al materi al) (a). Rig ht ( b), for comparison:  fi nite  el ement  res ults from [] (damage-s train c urves  and damaged elements distributi on) 

 

 
Figure  

11. Critical str ess ( at which the damage parameter in a g iven phase reaches  0.9) plotted versus the amount of  hi erarc hy l evels in  a s ystem ( for s elf-si milar fiber rei nforced c omposites) . (a) Glas s fi ber composites, ( b) Car bon fiber composites 
 

Figure  

12. Critical load for hierarc hical c omposites r einforc ed by mi xed fibers (total volume c ontent  of fi bers  30% , of them 0/100,  20/80, 50/50,  80/20 and 100/1 percents of  car bon/g l ass fibers) o f these composites plotted vers us the amount of  hi erarc hy l evels 
 

Figure  

13. Ratio of critical str esses for non- hier archic al (M=1) and hierarchical (M=2 and 3) c omposites wi th  mi xed (c arbon+glass) rei nforcement di vided by the critical  str ess for pure c arbon composites  pl otted versus  the frac tion of  the car bon fibers in the rei nforc ement 
 

Figure  

14. Ratio of critical str esses for composites with 20% pre-damaged lowest  level element to that  with  all i ntact  elements, plo tted vers us the amount of  hi erarc hy l evels 
 
 

Figure  

15. Schema: modeling of the particle  rei nforced c omposites 
 

Figure  

16. Critical str ess plotted versus  the amount  of  hi erarc hy l evels i n a s ystem ( for s elf-si milar particle rei nforced composites). 
 

Figure  

17. Damage growth c ur ves for matri x, particles  and fi bers in the non- hier archic al materi al rei nforced by 15% gl ass fibers and 15% glass particl es 
 

Figure  

18. Schema of the non-hierarchical  material  rei nforced by 15% glas s fibers and 15% glass  particles (a) and the damag e growth cur ves for matri x,  particles and fi bers for the material (b) 
 

Figure  

19. Critical str ess plotted versus  the frac tion of particles  in the to tal ( 30%) rei nforcement (fi ber+ parti cles),  N=16807,. z=7. 
 

Figure  

20. Critical force of the fi ber fail ure i n fiber rei nforced c omposite plotted vers us  the vol ume content of  particles in the matri x. 
 



  

 15 

 
Figure  21. Schema: Multiscale (5 level) fiber bundle model. For the sake of easier presentation, the branching number in the 

hierarchical tree shown is two (and not eight as the depicted amount of fibers in the cluster) 

 
Figure  22. Hierarchical tree subject to the tensile loading. The branching number is 2, and the schema contains 5 levels of 

hierarchy 
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Figure  23. Damage (fraction of failed fibers) versus applied stress, for different branching numbers and hierarchy levels 
numbers. (a)  (a) Amount of lowest level fibers N= 15625 (=56), branching number z=5, and amount of 
hierarchy levels M is varied from 1 to 4,  (b) N=16807(=74), z=7 and M=1…4, and (c)N=1000, z=10 and 
M=1…3. N (the amount of lowest level fibers/actual fibers) is kept constant in each case 

 
Figure  24. Critical force plotted versus the amount of hierarchy levels, for N= 15625, z=5, M varied from 1 to 6 

 
 
 

 
Figure  25. Ratio of damage for carbon/glass mix to 100%e carbon  fibers plotted versus the number of hierarchy levels. 

N=16807.M was varied from 1 to 4, z=7. 
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Figure  26. Effect of branching number on the damage evolution (M=4). N=4096. Z=1…8 

 

 
Figure  27. Schema: Hierarchical bundle system with varied branching: left, branching is highest at the lower level of hierarchy 

(few roots, many branches), and right,  branching is highest at the lower level of hierarchy (many roots, few 
branches).  
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Figure  28. Damage versus applied stress: constant, decreasing and increasing branching numbers considered, M=4. (a) The 

average branching z=4  (the variation is from 2 via 4 to 8) (b)  The average branching 10, the variation is from 5 
via 10 to 20 

 

 
(a) 

 
Figure  29. Damage evolution: overall damage, fibers and matrix. M=z=1 (non-hierarchical material) (a). Right (b), for 
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comparison: finite element results from [14] (damage-strain curves and damaged elements distribution) 
 

 

 

 

 

 

 

 

 

 

 
Figure  30. Schema: Hierarchical self-similar fiber/matrix composites 

 
Figure  31. Critical stress (at which the damage parameter in a given phase reaches 0.9) plotted versus the amount of hierarchy 

levels in a system (for self-similar fiber reinforced composites) (a) Glass fiber composites, (b) Carbon fiber 
composites. N=16807, z=7, M=1…5 

 

 
Figure  32. Critical load for hierarchical composites reinforced by mixed fibers (total volume content of fibers 30%, of them 

0/100, 20/80, 50/50, 80/20 and 100/1 percents of carbon/glass fibers) of these composites plotted versus the 
amount of hierarchy levels. N=16807, z=7, M=1…5 
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Figure  33. Ratio of critical stresses for non-hierarchical (M=1) and hierarchical (M=2 and 3) composites with mixed 

(carbon+glass) reinforcement divided by the critical stress for pure carbon composites plotted versus the fraction 
of the carbon fibers in the reinforcement. N=16807, z=7, M=1…5 

 

 
Figure  34. Ratio of critical stresses for composites with 20% pre-damaged lowest level element to that with all intact elements, 

plotted versus the amount of hierarchy levels. N=16807, z=7, M=1…5 
 

 
Figure  35. Schema: modeling of the particle reinforced composites 
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Figure  36. Critical stress plotted versus the amount of hierarchy levels in a system (for self-similar particle reinforced 

composites). N=16807, z=7, M=1…5 

 

 
 
Figure  37. Schema of the non-hierarchical material reinforced by 15% glass fibers and 15% glass particles (a) and the damage 

growth curves for matrix, particles and fibers for the material (b). N=16807, z=7, M=1. 

 
Figure  38. Critical stress plotted versus the amount of hierarchy levels in a system (for self-similar fiber + particle reinforced 

composites). N=16807, z=7, M=1…5 
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Figure  39. Critical stress plotted versus the fraction of particles in the total (30%) reinforcement (fiber+particles), N=16807,. 

z=7. N=16807, z=7, M=1…5 
 

 
Figure  40. Critical force of the fiber failure in fiber reinforced composite plotted versus the volume content of particles in the 

matrix. N=16807, z=7, M=3 
 
 


