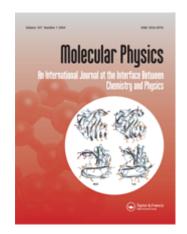


High-resolution infrared spectroscopy of diacetylene below 1000 cm-1

Luca Bizzocchi, Filippo Tamassia, Claudio Degli Esposti, Luciano Fusina,

Elisabetta Canè, Luca Dore

► To cite this version:


Luca Bizzocchi, Filippo Tamassia, Claudio Degli Esposti, Luciano Fusina, Elisabetta Canè, et al.. High-resolution infrared spectroscopy of diacetylene below 1000 cm-1. Molecular Physics, 2011, pp.1. 10.1080/00268976.2011.604646. hal-00723631

HAL Id: hal-00723631 https://hal.science/hal-00723631

Submitted on 12 Aug 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Molecular Physics

High-resolution infrared spectroscopy of diacetylene below 1000 cm-1

Journal:	Molecular Physics			
Manuscript ID:	TMPH-2011-0139.R1			
Manuscript Type:	Special Issue Paper - Dijon HRMS			
Date Submitted by the Author:	25-Jun-2011			
Complete List of Authors:	Bizzocchi, Luca; CAAUL, Observatório Astronómico de Lisboa Tamassia, Filippo; Università di Bologna, Dipartimento di Chimica Fisica e Inorganica Degli Esposti, Claudio; University of Bologna, Dipartimento di Chimica "G. Ciamician" fusina, luciano; Università di Bologna, Dipartimento di Chimica Fisica e Inorganica Canè, Elisabetta; Facoltà di Chimica Industriale, Università di Bologna, Dipartimento di Chimica Fisica e Inorganica Dore, Luca; University of Bologna, Dipartimento di Chimica "G. Ciamician"			
Keywords:	Vibration-rotation bands, Diacetylene, Hot bands, Anharmonicity constants, Resonances			
Note: The following files were to PDF. You must view these	e submitted by the author for peer review, but cannot be converted e files (e.g. movies) online.			
source files.zip				

8 9

10 11

12 13

14

15 16

17

18

19

20 21

22 23

24

25

26

27

28

29

30

31

32 33

34

39 40

41

42

43

44 45

46

47

48

49

50

51

52

53

54 55

56 57 58

59 60 Molecular Physics Vol. 00, No. 00, Month 200x, 1–19

RESEARCH ARTICLE

High-resolution infrared spectroscopy of diacetylene below $1000\,{\rm cm^{-1,\dagger}}$

Luca Bizzocchi^{a,*}, Filippo Tamassia^b, Claudio Degli Esposti^c, Luciano Fusina^b, Elisabetta Canè^b, and Luca Dore^c

^aCAAUL, Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018, Lisboa

(Portugal); ^bDipartimento di Chimica-Fisica ed Inorganica, Università di Bologna,

Viale del Risorgimento 4, 40136 Bologna (Italy); ^cDipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna (Italy)

(15 May 2011)

The infrared spectrum of diacetylene has been recorded at high resolution between 500 and 1000 cm⁻¹ by Fourier transform spectroscopy. More than 1200 transitions were assigned to 5 bands: the ν_8 fundamental, the $\nu_7 + \nu_9$ combination, and the $\nu_3 - \nu_9$ difference bands as well as the most intense $\nu_8 + \nu_9 - \nu_9$ and $\nu_7 + 2\nu_9 - \nu_9$ hot bands. The data were analysed together with the previously recorded millimetre-wave lines for the $\nu_8 - \nu_6$ and $\nu_8 + \nu_9 - (\nu_6 + \nu_9)$ difference bands. Rotational and vibrational *l*-type resonances, together with the cubic anharmonic interactions which couple the $\nu_3 = 1$ stretching state with the $\nu_8 = \nu_9 = 1$ combination and $\nu_7 = 2$ overtone states have been considered in the least-squares fits to the observed wavenumbers in order to derive reliable spectroscopic parameters. The spectral analyses deliver very precise B_0 and D_0 parameters and experimental values of the anharmonicity constants for the bending-bending combination states of diacetylene below 1000 cm⁻¹.

Keywords: Vibration-rotation bands; Diacetylene; Hot bands; Anharmonicity constants; Resonances

1. Introduction

Diacetylene (C₄H₂) is the simplest member of the family of poly-acetylene compounds and is a molecule of relevant astrophysical interest. It plays an important role in the stratospheres of the giant planets and their moons (see e.g., Ref. [1, 2]) acting as a UV shield analogously to O₃ in the Earth's atmosphere [3]. Like ozone, C₄H₂ is photochemically reactive and it is thought to be a major source of the larger hydrocarbons, which then form the organic aerosols (tholines) characteristic of the reducing atmospheres of these solar system bodies [4]. Diacetylene has also been detected in the dusty envelopes of the C-rich proto-planetary nebula CRL 618 [5], and even outside the galaxy in a similar object embedded in the Large Magellanic Cloud [6]. Being centrosymmetric, C₄H₂ has no permanent dipole moment, thus searches for this species in astrophysical environments rely on its mid infrared spectrum, in particular the strong ν_8 perpendicular band at 16 µm, even if detection of the weaker bending fundamental ν_9 [1] and of the combination $\nu_6 + \nu_8$ [5] was also reported.

ISSN: 0040-5167 print/ISSN 1754-2278 online © 200x Taylor & Francis DOI: 10.1080/0040516YYxxxxxx http://www.informaworld.com

[†]Dedicated to Prof. Gianfranco Di Lonardo.

^{*}Corresponding author. Email: bizzocchi@oal.ul.pt

Molecular Physics diac'v8'rev

Molecular Physics

Bizzocchi et al.

The vibrational spectrum of diacetylene was the subject of extensive infrared and Raman investigations (see Ref. [7] and references therein). Several high-resolution studies of the infrared active bands have been performed. The ν_4 and ν_5 band systems were investigated by Guelachvili et al. [8], whereas the unusually strong $\nu_6 + \nu_8$ combination band at ca. 1250 cm^{-1} has been investigated by Matsumura et al. [9] by Stark modulation infrared diode laser spectroscopy and, later, by McNaughton et al. [10] with a Fourier transform infrared (FTIR) spectrometer. Below 1000 cm⁻¹ the infrared spectrum of diacetylene is characterised by the strong ν_9 and ν_8 bands, which were the subject of the high resolution study by Arié and Johns [11]. They reported band constants for the ν_9 and ν_8 fundamentals, and for several hot bands originating from the low lying v_9 bending mode and its overtones. However, they were unable to obtain a satisfactory analysis for the $\nu_8 + \nu_9 - \nu_9$ hot band due to an anharmonic interaction coupling the $v_8 = v_9 = 1$ bending combination state and the $v_3 = 1$ stretching state.

In diacetylene, the dipole moment second derivatives with respect to the C=C-H bending curvilinear coordinates are large, and this produces enhanced transition moments for the overtone, combination, and difference bands involving the v_6 and v_8 quanta [12, 13]. For instance, the intensity of the $\nu_8 - \nu_6$ band is substantially enhanced and, since its origin is located below 100 GHz, it provides a mean of detecting diacetylene through millimetre-wave (mm-wave) spectroscopy [14, 15]. Very recently, we have extended to the submillimetre-wave (submm-wave) region the study of this band and of its $\nu_8 + \nu_9 - (\nu_6 + \nu_9)$ hot band, performing a complete analysis of the *l*-type resonance effects and of the above mentioned anharmonic interaction affecting the $v_8 = v_9 = 1$ state [16]. However, no direct information on the $v_3 = 1$ state could be obtained from mm-wave spectra, thus the spectroscopic constants of this level had to be estimated from recent theoretical calculations [17, 18].

In this paper we present the results obtained from the analysis of the infrared spectrum of diacetylene in the 500–1000 cm⁻¹ range, recorded using an FTIR spectrometer. Besides the reinvestigation of the ν_8 band system, we could identify the previously unreported $\nu_7 + \nu_9$ combination band at ca. 700 cm⁻¹, together with the strong ν_9 -associated hot bands $\nu_8 + \nu_9 - \nu_9$ and $\nu_7 + 2\nu_9 - \nu_9$. In addition, the very weak and previously unreported $\nu_3 - \nu_9$ difference band — which provides direct information on the $\nu_3 = 1$ state — was also identified and analysed, leading to a comprehensive analysis of the lowest diacetylene resonance system.

The model adopted for the analysis includes the rotational and vibrational *l*-type resonances active between the various *l*-sublevels of the multiple bending excited states, and also considers the two anharmonic interactions which couple $v_3 = 1$ with the $v_8 = v_9 = 1$ combination and the $v_7 = 2$ overtone states through the normal coordinates cubic potential constants ϕ_{389} and ϕ_{377} . The previously recorded mmwave transition frequencies [16] were also taken into account in order to obtain the best set of spectroscopic parameters for the ground state and for the $v_6 = 1$ and $v_8 = 1$ bending states.

The results of the spectral analyses also provide a comprehensive set of anharmonicity constants for the three bending-bending combination states of diacetylene located below 1000 cm^{-1} , namely $v_8 = v_9 = 1$, $v_6 = v_9 = 1$, and $v_7 = v_9 = 1$. The accurate treatment of the anharmonic resonances has enabled the determination of de-perturbed molecular parameters, whose values can be compared with the results of the recent high-level *ab initio* calculations [17, 18].

2 3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19 20

21

22 23 24

25 26 27

28

29

30

31

32

33

34

35

36 37

38

39

40

41

42

43

44

45

46 47

48

49

50 51

<

Infrared spectrum of diacetylene

2. Experimental details

Diacetylene was prepared by reacting commercially available 1,4-dichloro-2butyne with acqueous NaOH using the procedure described by Armitage et al. [19]. High resolution IR spectra were recorded in the $500-1000 \,\mathrm{cm}^{-1}$ range using a BOMEM DA3.002 Fourier transform spectrometer at the University of Bologna. The interferometer was equipped with a KBr beam splitter, a Globar source, and a HgCdTe detector. An optical path length of 0.18 m was adopted with sample pressures of 270 Pa and 27 Pa. The attained unapodised resolution was $0.004 \,\mathrm{cm}^{-1}$. A large number of scans were co-added in order to improve the signal-to-noise ratio: in total, 780 scans were recorded for the low pressure spectrum whereas 880 scans were co-added for the high pressure spectrum. An overview of the recorded IR spectrum of diacetylene between 590 and $730 \,\mathrm{cm}^{-1}$ is shown in Figure 1 together with the assignments of the most prominent spectral features. Ro-vibrational transitions of H_2O [20] and CO_2 were used for calibration. The most accurate determination of the CO₂ transitions used as reference (ν_2 fundamental band) was performed by J.W.C. Johns, M. Noël and T.L. Tan. The line list was received as a private communication but, to our knowledge, the paper has not been published yet. The average precision of our measurements was estimated to be around $0.004 \,\mathrm{cm}^{-1}$.

3. Observed spectra and analysis

In the present work, we have investigated the ro-vibrational bands ν_8 , $\nu_7 + \nu_9$, $\nu_8 + \nu_9 - \nu_9$, $\nu_7 + 2\nu_9 - \nu_9$, and $\nu_3 - \nu_9$. The IR data have been analysed together with the previous mm-wave measurements of the $\nu_8 - \nu_6$ and $\nu_8 + \nu_9 - (\nu_6 + \nu_9)$ bands [16], so that our analyses deal with a manifold of states involving excitation of the ν_3 stretch (Σ_g^+) and all the four bending quanta (ν_6 , ν_7 , ν_8 , ν_9). A list of the normal mode fundamentals is reported in Ref. [8]. The reader is also referred to Ref. [18] for a comprehensive description of the internal symmetry coordinates of diacetylene.

Diacetylene has two equivalent hydrogen nuclei and two pairs of equivalent carbon nuclei which are interchanged by the C_2 symmetry operation. As a result, the ro-vibrational lines show a 3:1 intensity alternation due to the spin statistical weights. Table 1 summarises the spin multiplicity rules which apply for the vibrational states involved in the investigated bands.

The spectra were analysed by expressing each ro-vibrational energy term using the formalism originally developed by Yamada and co-workers [21, 22], and employed previously to fit the excited state rotational spectra of several carbon chains (see for example Ref. [23]). Briefly, the ro-vibrational Hamiltonian is first represented using the symmetric top basis functions $|v_3, v_6^{l_6}, v_7^{l_7}, v_8^{l_8}, v_9^{l_9}; J, k\rangle$, with $k = l_6 + l_7 + l_8 + l_9$. Employing the simplified notation $|l_6, l_7, l_8, l_9; k\rangle$ the elements of the Hamiltonian matrix which are diagonal in the quantum numbers v_t and l_t are:

$$\begin{aligned} \langle l_{6}, l_{7}, l_{8}, l_{9}; k | \hat{H} | l_{6}, l_{7}, l_{8}, l_{9}; k \rangle &= G_{v} + \sum_{t=6,9} x_{L(tt)} l_{t}^{2} + \sum_{t' > t=6,9} x_{L(tt')} l_{t} l_{t'} \\ &+ \left\{ B_{v} + \sum_{t=6,9} d_{JL(tt)} l_{t}^{2} + \sum_{t' > t=6,9} d_{JL(tt')} l_{t} l_{t'} \right\} \{ J(J+1) - k^{2} \} \\ &- D_{v} \{ J(J+1) - k^{2} \}^{2} + H_{v} \{ J(J+1) - k^{2} \}^{3} \,, \end{aligned}$$
(1)

Molecular Physics

Bizzocchi et al.

where G_v is the "pure" vibrational energy of the $|v_6, v_7, v_8, v_9\rangle$ state and includes the appropriate anharmonic corrections. The origin of a ro-vibrational band, ν_0 , is then given as $G'_v - G''_v$. The off-diagonal rotational *l*-type doubling terms ($\Delta l_t \pm 2$, $|\Delta k| = 2$) have the general form:

$$\langle l_t \pm 2, l_{t'}; k \pm 2 |\hat{H}| l_t, l_{t'}; k \rangle = \frac{1}{4} \{ q_t + q_{tJ} J (J+1) \}$$

 $\times \sqrt{(v_t \mp l_t)(v_t \pm l_t + 2)}$
 $\times \sqrt{[J(J+1) - k(k \pm 1)][J(J+1) - (k \pm 1)(k \pm 2)]};$ (2)

whereas the off-diagonal vibrational *l*-type doubling terms $(\Delta l_t \pm 2, \Delta l'_t \mp 2, \Delta k = 0)$ are given by the expression:

$$\langle l_t \pm 2, l_{t'} \mp 2; k | \hat{H} | l_t, l_{t'}; k \rangle = \frac{1}{4} \{ r_{tt'} + r_{tt'J} J (J+1) \} \\ \times \sqrt{(v_t \mp l_t)(v_t \pm l_t + 2)(v_{t'} \mp l_{t'} + 2)(v_{t'} \pm l_{t'})} .$$
(3)

The resulting energy matrix is factorised into symmetric and antisymmetric blocks adopting the following Wang-type linear combinations of wavefunctions [21].

$$|v_{3},v_{6}^{l_{6}},v_{7}^{l_{7}},v_{8}^{l_{8}},v_{9}^{l_{9}};k\rangle_{\pm} = \frac{1}{\sqrt{2}}\{|v_{3},v_{6}^{l_{6}},v_{7}^{l_{7}},v_{8}^{l_{8}},v_{9}^{l_{9}};k\rangle \pm |v_{3},v_{6}^{-l_{6}},v_{7}^{-l_{7}},v_{8}^{-l_{8}},v_{9}^{-l_{9}};-k\rangle\}$$
(4a)

$$|v_3, v_6^0, v_7^0, v_8^0, v_9^0; 0\rangle_+ = |v_3, v_6^0, v_7^0, v_8^0, v_9^0; 0\rangle$$
(4b)

Any sublevel belonging to a given vibrational state can thus be labelled through its k value and by the '+' or '-' subscripts which designate the sign of the symmetrised linear combination or, alternatively, with the e, f parity labels [24] using the correspondence $+ \leftrightarrow e, - \leftrightarrow f$ for even k and vice versa for odd k.

As mentioned in the Introduction, the three-state resonance system $v_3 = 1 \sim v_8 = v_9 = 1 \sim v_7 = 2$ has been considered in the present work, and thus two Fermitype ($\Delta k = 0$) anharmonic interaction terms were included in the Hamiltonian. The corresponding off-diagonal matrix elements in the symmetrised basis are expressed by [25]:

$${}_{e}\langle 1, 0^{0}, 0^{0}, 0^{0}, 0^{0}; J, 0 | \hat{H}_{30} | 0, 0^{0}, 0^{0}, 1^{1}, 1^{-1}; J, 0 \rangle_{e}$$

$$= W_{389} + W_{389J}J(J+1) = \frac{1}{2}\phi_{389} + W_{389J}J(J+1).$$

$${}_{e}\langle 1, 0^{0}, 0^{0}, 0^{0}, 0^{0}; J, 0 | \hat{H}_{30} | 0, 0^{0}, 2^{0}, 0^{0}, 0^{0}; J, 0 \rangle_{e}$$

$$(5)$$

$$= W_{377} + W_{377J}J(J+1) = \frac{\sqrt{2}}{4}\phi_{377} + W_{377J}J(J+1). \quad (6)$$

Over 1200 ro-vibrational transitions have been measured, and the complete list of analysed data is available as electronic supplementary material. Some details dealing with the analyses performed for the various bands are given in the following subsections.

2

3 4

5

6

7

8

9

10

11 12

13

14

15

16

17

18

19

20

21 22

23

24

25

30

31 32

33

34

35

36

37

38

39

40 41

42

43

44

45

46

47

48

49

50 51

52

53

54

55

56

57

58

59 60 Infrared spectrum of diacetylene

3.1. The ν_8 fundamental band

The $v_8 = 1$ (Π_u) state has two |k| = 1 ro-vibrational sublevels, thus ν_8 is a perpendicular band whose transitions connect $\Pi_u^e \leftarrow \Sigma_g^{+, e}$ levels in the P, R branches and $\Pi_u^f \leftarrow \Sigma_g^{+, e}$ levels in the Q branch. Making use of the spectroscopic constants of Ref. [11], the assignment of the IR lines was straightforward: we measured a total of 261 transitions, up to P(105), R(109), and Q(81). These data were analysed together with our previous mm-wave ro-vibrational frequencies of the $\nu_8 - \nu_6$ difference band, allowing to simultaneously determine of the spectroscopic parameters of the ground and of the $\nu_6 = 1$ and $\nu_8 = 1$ states.

The analysis was performed by expressing the ro-vibrational energy levels through Eqs. (1) and (2). A proper weighting factor ($w = 1/\sigma^2$) was assigned to each datum, in order to take into account the different measurement precisions. The mm-wave lines were included in the data sets retaining the same weighting scheme already used in the previous work [16], whereas $\sigma = 5 \times 10^{-4} \text{ cm}^{-1}$ was adopted for the present IR wavenumbers. The results of the least-squares fit are reported in Table 2

The inclusion in the data set of the very precise mm-wave data was beneficial to reduce significantly the correlations between the lower and upper state parameters of the ν_8 band. Improved values of the ground state rotational and quartic centrifugal distortion constants of diacetylene were obtained. Compared with the previous best literature values of Ref. [11], i.e. $B_0 = 4389.3019(38)$ MHz and $D_0 = 0.47004(54)$ kHz, our precision is five and ten times better, respectively.

3.2. The $\nu_8 + \nu_9 - \nu_9$ hot band and $\nu_3 - \nu_9$ difference band

The $v_8 = v_9 = 1$ state consists of three sub-states: Σ_g^+ and Σ_g^- having k = 0 (species e and f, respectively) and the doubly degenerate Π_g with |k| = 2, split by ro-vibrational *l*-type resonances into e, f doublets. The $\nu_8 + \nu_9 - \nu_9$ hot band has a perpendicular structure with $\Delta k = \pm 1$, and selection rules $e \leftarrow e$, $f \leftarrow f$ for P-and R-type transitions, and $e \leftrightarrow f$ for Q branch lines.

This band was first studied by Arié and Johns [11]. However, they could not attain a satisfactory fit of the experimental wavenumbers and, even using a limited data set $(J \leq 50)$, the root mean square of the residuals remained substantially larger than the experimental precision $(rms_{\rm IR} \sim 0.007 \,{\rm cm}^{-1})$. According to Matsumura and Tanaka [15] the anomaly was attributed to an anharmonic resonance between the 0^e (Σ_g^+) sublevel of the $v_8 = v_9 = 1$ state and the nearby $v_3 = 1$ (Σ_g^+) C–C stretching state. This interaction was actually considered in our recent mmwave investigation [16] where, with the help of the recent theoretical results [17, 18], we achieved a satisfactory analysis of the $\nu_8 + \nu_9 - (\nu_6 + \nu_9)$ band.

In the present work we have also identified the weak spectrum of the $\nu_3 - \nu_9$ difference band thus gaining direct information on the $v_3 = 1$ state. Using the values of the ν_3 and ν_9 fundamentals reported in Ref. [8], $\nu_3 - \nu_9$ is calculated at ca. 652 cm^{-1} . Fortunately, in that region the intensity of the ν_8 band system is rapidly decreasing. Its transitions vanish almost completely at wavenumbers higher than 660 cm^{-1} , where the $\nu_3 - \nu_9 R$ -branch lines should have their maximum intensity. A regular sequence of lines showing the characteristic intensity alternation was readily found. The assignment of the *R*-branch allowed to locate the *Q* branch, whose lines are widely spaced toward lower wavenumbers, due to the large negative value of the $B_v(v_3 = 1) - B_v(v_9 = 1)$ difference. A portion of the *Q* branch of the $\nu_3 - \nu_9$ band spectrum is shown in Figure 2. Despite the spectral congestion we could assign 60 transitions up to R(60), Q(57), and P(32). They were analysed simultaneously

diac'v8'rev

Molecular Physics

Bizzocchi et al.

with 567 lines assigned to the $\nu_8 + \nu_9 - \nu_9$ hot band (spanning J interval 5–80) and with 158 mm-wave transitions of the $\nu_8 + \nu_9 - (\nu_6 + \nu_9)$ difference band [16]. The weighting scheme was similar to that adopted for the simultaneous fit of ν_8 and $\nu_8 - \nu_6$ described in the previous subsection: experimental uncertainties (σ) for mm-wave lines were as in the original paper [16], while $\sigma = 1 \times 10^{-3} \,\mathrm{cm}^{-1}$ was assigned to each infrared line belonging to the $\nu_8 + \nu_9 - \nu_9$ and $\nu_3 - \nu_9$ bands.

The ro-vibrational level energies were expressed using Eqs. (1)-(3), where the *l*-type resonance term of Eq. (3) applies for the $v_8 = v_9 = 1$ and $v_6 = v_9 = 1$ combination states only. Initially, the analysis of the resonance followed the same scheme adopted for the $\nu_8 + \nu_9 - (\nu_6 + \nu_9)$ band [16], i.e. we included in the calculations the matrix elements of Eq. (5) coupling the $v_3 = 1$ state and the $(v_8 = v_9 = 1)^{0e}$ sublevel. The interaction constant of W_{389} was fixed at the value derived from the <u>ab</u> initio ϕ_{389} normal coordinate cubic force constant (13.49 cm⁻¹, Ref. [26]), while the $G_v(v_3 = 1)$ vibrational energy was adjusted in the least-squares fit in order to reproduce the observed $\nu_3 - \nu_9$ line positions.

The fit was very satisfactory, but the value of the B_v rotational constant of the $v_3 = 1$ state was anomalously large. The corresponding α_3 was ca. 3.1 MHz, much smaller than the *ab initio* computed value of 9.4 MHz [18]. This suggested that the de-perturbation of the $v_3 = 1$ state energy was incomplete and that it was still affected by a mixing with a vibrational state characterised by a larger rotational constant. The only state which can be coupled to $v_3 = 1$ through a first-order (cubic) anharmonic resonance is $v_7 = 2, k = 0^e$ (Σ_a^+), which is at ca. $75 \,\mathrm{cm}^{-1}$ higher energy and interacts through the normal coordinate force constant ϕ_{377} , whose theoretical value is 113.87 cm⁻¹ [26]. The same scheme of interactions has previously been found for other similar carbon chains, such as HCCCN [27], HCCNC [28] and HCCCP [29], where the lowest-energy stretching state is coupled, through cubic interactions, with nearby bending overtone and combination states.

The analysis was thus performed considering the $v_3 = 1$, $v_8 = v_9 = 1$, and $v_7 = 2$ states simultaneously in order to take into account the resonance effects as completely as possible. The energy level diagram for the three interacting states is illustrated in Figure 3. We adjusted the upper state parameters, keeping the constants of the lower $v_9 = 1$ state fixed at the values derived from the analysis of the ν_9 band [11]. The rotational parameters B_v , D_v , and q_7 of the unobserved $v_7 = 2$ state were evaluated from the experimental results for the ν_7 fundamental [8]; whereas a suitable assumption for the anharmonicity constant $x_{L(77)}$ was obtained by removing from the theoretical value [18] the relevant near-singular term (see Discussion).

The main off-diagonal resonance parameters W_{389} and W_{377} were constrained to the values derived from the corresponding cubic force constants [17, 26], whereas the unperturbed energy difference between the $v_3 = 1$ and the $v_7 = 2$ states was assumed equal to the quantity $2\omega_7 - \omega_3$ [18]. Both the centrifugal corrections $W_{389,J}$ and $W_{377,I}$ (see Eqs. (5) and (6)) were found to be important in reproducing the rotational mixing caused by the $v_3 \sim v_8 + v_9$ and $v_3 \sim 2v_7$ resonances. While W_{389J} could be determined, W_{377J} had to be constrained to a suitable value. As already pointed out, the energy level structure of the lowest resonance system of diacetylene is analogue to that of the isoelectronic molecule HCCCN, so it is likely that their molecular parameters show some similarities. From Ref. [30] we derived a scaled W_{377J} value of -1.41 MHz (see Discussion for the details), which was constrained in the final analysis. The spectroscopic constants determined by the least-squares fit are collected in Table 3. The overall fit quality $(rms_{\rm IR} =$ $1.4 \times 10^{-3} \,\mathrm{cm}^{-1}$) is satisfactory considering that the data set includes the very weak $\nu_3 - \nu_9$ band transitions, whose positions are clearly affected by

Page 7 of 18

2

3

4

5

6 7 8

9 10

11

12

13

14 15

16 17

18

19

20

21

22

23

24

25 26

27

28

29

30

31

32

33

34

35 36

37

38

39

40 41 42

43 44

45

46

47

48

49

50

51

52 53

54

55

56

57

58

59 60 Molecular Physics diac'v8'rev

Molecular Physics

7

larger measurements errors. The derived unperturbed value of the $B_v(v_3 = 1)$ rotational constant yields $\alpha_3 = 9.325$ MHz which compares very well with the *ab initio* computed value of 9.395 MHz [18]. A similar agreement (within 1%) is observed for the α_9 vibration-rotation interaction constants, which in turn derives from the analysis of unperturbed vibrational levels [11].

3.3. The $\nu_7 + \nu_9$ combination band

The spectral survey carried out in the present investigation allowed us to identify the $\nu_7 + \nu_9$, $\Sigma_u^+ \leftarrow \Sigma_g^+$ parallel band, which appears as a weak but nevertheless clear feature in the high pressure spectra (see Figure 1). Making use of the values of B_0 and $\Delta B = -(\alpha_7 + \alpha_9)$ (from this work and Refs. [8, 11]), we assigned 137 transitions with J' up to 75 for both P- and R-branches.

A rather high root mean square deviation, $rms_{\rm IR} \sim 0.008 \,{\rm cm}^{-1}$, and an anomaloulsy large value for the upper state D_v constant was obtained from the fit of these data. This unsatisfactory result was due to the neglect of the *l*-type resonance between the $k = 0^e$ and $k = 2^e$ sublevels of the $v_7 = v_9 = 1$ state. A correct treatment of this resonance requires the knowledge of the $x_{L(79)}$ and r_{79} anharmonicity constants, as the observed $\Delta k = 0$ transitions of the $\nu_7 + \nu_9$ band cannot provide information on the upper state manifold. These parameters were obtained from the analysis of the associated $\nu_7 + 2\nu_9 - \nu_9$ hot band (see next subsection), thus allowing to characterise the ro-vibrational levels of the $v_7 = v_9 = 1$ state as described in the following.

The energy terms were expressed using Eqs. (1)–(3), and the fit was carried out with the ground state constants fixed at the values derived in the present work (see subsection 3.1). As for the *l*-type doubling constants q_7 , q_9 and q_{9J} the literature values of the $v_7 = 1$ [8] and $v_9 = 1$ [11] states were adopted. The $x_{L(79)}$ and r_{79} parameters were from the fit of the $v_7 + 2v_9 - v_9$ hot band. A new fit, carried out adjusting the band origin, B_v , and D_v yielded a significantly smaller root mean square deviation ($rms_{\rm IR} \sim 0.001 \,{\rm cm}^{-1}$). We then refined also $x_{L(79)}$ in the final analysis to reproduce accurately the magnitude of the *l*-type resonance effects. The results of the final least-squares fit are gathered in Table 4. Besides the mere improvement of the fit quality ($rms_{\rm IR} = 4 \times 10^{-4} \,{\rm cm}^{-1}$), the effectiveness of the treatment is supported by the value of D_v for the $v_7 = v_9 = 1$ state, 0.5035 kHz, in good agreeement with that extrapolated from the singly excited bending states.

3.4. The $\nu_7 + 2\nu_9 - \nu_9$ hot band

The $\nu_7 + 2\nu_9 - \nu_9$ hot band appears as a feature superimposed to the $\nu_7 + \nu_9$ band. The intensity of its lines is ca. one third of that of the corresponding cold band transitions, owing to the low energy of the $v_9 = 1$ state (~ 220 cm⁻¹ [11]). The $(v_7 = 1, v_9 = 2)$ state is composed of three pairs of ro-vibrational sublevels, which can be labelled as $k = 3^{e,f}$ (Φ_g), $k = 1^{e,f}$ (Π_g), and $k = -1^{e,f}$ (Π_g). The $k = 3^{e,f}$ and $k = -1^{e,f}$ sublevels have $|l_9| = 2$ and are separated from the $k = 1^{e,f}$ sublevels by the anharmonic contribution $x_{L(99)}l_9^2$. On the other hand, the $k = 3^{e,f}$ and $k = -1^{e,f}$ sublevels are split symmetrically by the term $x_{L(79)}l_7l_9$, and finally the degeneracy between each pair of e, f levels is lifted by vibrational and rotational l-type resonance effects. Allowed $\Delta k = 0$ transitions are observed between $v_9 = 1$, $k = 1^{e,f}$ and $(v_7 = 1, v_9 = 2)$, $k = 1^{e,f}$ sub-states. The spectrum consists of two sequences of e and f lines rather than close doublets, owing to the large separation of e and f components. We identified a total of 218 lines up to P(57) and R(67).

The analysis was carried out by expressing the energies of the ro-vibrational

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

diac'v8'rev

Molecular Physics

Bizzocchi et al.

levels through Eqs. (1)–(3), keeping the spectroscopic constants of the $v_9 = 1$ state fixed at the literature values [11]. The excited-state constants q_7 and $x_{L(99)}$ were also assumed from the results of previous analyses [8, 11], whereas both the anharmonicity constants $x_{L(79)}$ and r_{79} were adjusted. In fact, our experimental data are sensitive to both these parameters, since $x_{L(79)}$ contributes to the energy difference between the various k sub-states, and r_{79} is responsible for the vibrational *l*-type resonance between the k = 1 and k = -1 sub-states. The results of the leastsquares fit are reported in Table 5.

Discussion 4.

In the present study we have determined several spectroscopic constants for a number of states involved in vibrational and ro-vibrational resonances, due both to the *l*-sublevel structure of the bending excited state and to accidental neardegeneracies. In our spectral analyses, we succeeded in retrieving molecular parameters with unambiguous physical meaning. This is particularly relevant if one aims at a meaningful comparison with the results of theoretical calculations. Due to correlations between the model Hamiltonian parameters, not all the quantities involved in the two anharmonic interactions analysed, i.e. $v_3 \sim v_8 + v_9$ and $v_3 \sim 2v_7$, could be determined from the least-squares fits, so that a number of assumptions had to be made. Whenever possible, the values of the parameters have been derived from the experimental results for vibrational states at a lower level of excitation (e.g. B_v and D_v for the unobserved $v_7 = 2$ state) or from the most recent *ab initio* anharmonic force field calculations [17, 18]. The only exception was the centrifugal correction parameters W_{377J} , whose value was estimated empirically from the results of a global ro-vibrational analysis performed for the isoelectronic carbon chain HCCC¹⁵N [30]. The resonance between $v_4 = 1$ and $v_6 = 2$, present in HCCC¹⁵N, is analogous to that between $v_3 = 1$ and $v_7 = 2$ which has been considered for diacetylene: Ref. [30] gives $W_{466} = 43.03 \,\mathrm{cm}^{-1}$ and $W_{466J} = -1.84 \,\mathrm{MHz}$. According to Aliev and Watson [31], it is possible to estimate the order of magnitude of an Hamiltonian coefficient C_{mn} using

$$C_{mn} \approx \kappa^{m+2n-2} \omega_{\rm vib} \,, \tag{7}$$

where an approximate value of the Born–Oppenheimer expansion parameter $\kappa \approx$ 0.1 can be adopted for most vibrational problems. The ratio between W_{stt} and W_{sttJ} is of the order κ^{-4} , thus it is appropriate to derive an estimate for an unknown W_{377J} of diacetylene using the scaling equality:

$$\left[\frac{W_{377}(\text{HC}_{4}\text{H})}{W_{466}(\text{HC}_{3}\text{N})}\right]^{4} = \frac{W_{377J}(\text{HC}_{4}\text{H})}{W_{466J}(\text{HC}_{3}\text{N})}.$$
(8)

Inserting in this relation the above mentioned HCCC¹⁵N values and W_{377} = $40.255 \,\mathrm{cm}^{-1}$ of diacetylene derived from the force field, one obtains W_{377J} = -1.41 MHz used in the present analysis. It is to be noted that we could have omitted W_{377J} without degrading significantly the quality of the fit, but then we would have been unable to model the correct rotational mixing produced by the strongest anharmonic interaction $v_3 = 1 \sim v_7 = 2$, as already pointed out in a number of previous studies (e.g. Ref. [32]). On the other hand, the effectiveness of such a treatment can be assessed by the inspection of the converged values of the rotational and quartic centrifugal distortion constants for the $v_8 = v_9 = 1$ and

Page 10 of 18

Infrared spectrum of diacetylene

 $v_6 = v_9 = 1$ states, which compare nicely with those obtained from the ground and singly excited state parameters. The derived α_3 exhibits a remarkable agreement with the *ab initio* value [18] (within 1%), and also D_v of the $v_3 = 1$ state converges to a value slightly smaller than the ground state one, as expected for a stretching excited state of a well-behaved semi-rigid linear molecule.

We have also determined the $x_{L(tt')}$ anharmonicity constants and the $r_{tt'}$ vibrational *l*-type constants for the three bending-bending combination states of diacetylene below $1000 \,\mathrm{cm}^{-1}$, i.e. $v_8 = v_9 = 1$, $v_6 = v_9 = 1$, and $v_7 = v_9 = 1$. These parameters can be compared to the theoretically computed ones in Ref. [18] if one removes the near-singular terms entering in the second-order perturbation expressions in cases where $2\omega_t \approx \omega_s$ or $\omega_t + \omega_{t'} \approx \omega_s$ [33]. The relevant terms can be factored as follows:

$$x_{L(tt)} = x_{L(tt)}^* - \frac{1}{32}\phi_{stt}^2(2\omega_t - \omega_s)^{-1}, \qquad (9)$$

$$x_{L(tt')} = x_{L(tt')}^* - \frac{1}{16}\phi_{stt'}^2(\omega_t + \omega_{t'} - \omega_s)^{-1}, \qquad (10)$$

$$r_{tt'} = r_{tt'}^* + \frac{1}{8}\phi_{stt'}^2(\omega_t + \omega_{t'} - \omega_s)^{-1}, \qquad (11)$$

where the asterisk at the superscript labels "de-perturbed" anharmonicity constants. Eq. (9) was used to compute the de-perturbed $x_{L(77)}^*$ parameter from the theoretical $x_{L(77)}$ prediction [18]. $x_{L(77)}^*$ was then fixed in the analysis of the polyad involving the $v_7 = 2$ state (see subsection 3.2 and Table 3). The comparison between the experimentally derived and *ab initio* computed values of these constants is presented in Table 6. As can be seen, the agreement is satisfactory for $x_{L(tt')}$, but rather poor for the vibrational *l*-type parameters. This different behaviour was somewhat expected since the expression of $r_{tt'}$ contains a semi-diagonal quartic potential constant of the type $\phi_{ttt't'}$, whereas the $x_{L(tt')}$ are defined in terms of the quadratic and cubic potential constants only. It is likely that high-order potential constants are affected by larger uncertainties, (usually not estimated in theoretical works), which then lead to less accurate predictions of the derived spectroscopic parameters.

This hypotesis seems to be supported by the energy difference between the $k = 0^{f}$ and $k = 2^{f}$ sublevels of the $v_{8} = v_{9} = 1$ state, which are both unaffected by the anharmonic resonance. A spectral analysis limited to $(v_{8} = v_{9} = 1)^{0f,2f}$ data gives $E_{2f} - E_{0f} = 0.62 \text{ cm}^{-1}$. This difference equals, to a very good approximation, the sum $2x_{L(89)} + r_{89} - 4B_{v}$, in which the two near-singular terms included in $x_{L(89)}$ and r_{89} cancel each other out. Using the *ab initio* calculated constants of [18] it results $E_{2f} - E_{0f} = -0.09 \text{ cm}^{-1}$, which differs from the experimental value by 0.71 cm^{-1} (i.e. 21.3 GHz), an amount close to the discrepancy between experimental and theoretical r_{89} values.

5. Conclusions

The present paper reports on the results of the accurate analysis of the rovibrational spectrum of diacetylene in the 500–1000 cm⁻¹ region. New infrared measurements allowed for the identification of the previously unreported $\nu_7 + \nu_9$, $\nu_7 + 2\nu_9 - \nu_9$, and $\nu_3 - \nu_9$ bands. Also, we reinvestigated the ν_8 fundamental and its associated $\nu_8 + \nu_9 - \nu_9$ hot band, analysing these infrared data with the mm-vawe transitions of the $\nu_8 - \nu_6$ and $\nu_8 + \nu_9 - (\nu_6 + \nu_9)$ difference bands [16].

1

2

3

4

5

6

7

8 9

10

11

12

13 14 15

16 17

18

19 20

21

22

23 24 25

26 27

28

29

30

31

32

33

34

35

36

37

38

39

Molecular Physics

Taylor & Francis and I.T. Consultant

diac'v8'rev

The ro-vibrational treatment of this enlarged data set was performed using the linear molecule Hamiltonian developed by Yamada et al. [21], resulting in a single set of spectroscopic constants for each of the vibrational state involved in the investigated bands. The anharmonic resonances which couples the $v_3 = 1$ (C–C stretch, Σ_g^+) state with the Σ_g^+ $(k = 0^e)$ sublevel of the $v_8 = v_9 = 1$ and $v_7 = 2$ states have been explicitly taken into account in the least-squares fit in order to obtain de-perturbed spectroscopic parameters having clear physical meaning.

This work also achieves the complete characterisation of the lowest bend-bend combination states $v_8 = v_9 = 1$, $v_6 = v_9 = 1$, and $v_7 = v_9 = 1$, through the determination of their anharmonicity and vibrational *l*-type doubling constants $x_{L(89)}^*, x_{L(69)}, x_{L(79)}, r_{89}^*, r_{79}, \text{ and } r_{69}.$

Acknowledgements

The authors wish to thank M. Di Lauro for the preparation of the sample. Financial support from MIUR (PRIN 2007 funds, project "Trasferimenti di energia, carica e molecole in sistemi complessi") and from the University of Bologna (RFO funds) is gratefully acknowledged. LB acknowledges support from the Science and Technology Foundation (FCT, Portugal) through the grant SFRH/BPD/62966/2009.

References

- [1]V.G. Kunde, A.C. Aikin, R.A. Hanel, D.E. Jennings, W.C. Maguire and R.E. Samuelson, Nature 292, 686 (1981).
- [2] Th. de Graauw, H. Feuchtgruber, B. Bézard, P. Drossart, Th. Encrenaz, D. A. Beintema, M. Griffin, A. Heras, M. Kessler, K. Leech, E. Lellouch, P. Morris, P. R. Roelfsema, M. Roos-Serote, A. Salama, B. Vandenbussche, E. A. Valentijn, G. R. Davis and D. A. Naylor, Astron. Astrophys. 321, L13 (1997).
- [3] R.E. Bandy, C. Lakshminarayan, R.K. Frost and T.S. Zwier, Science 258, 1630 (1992)
- [4]J.H. Waite Jr., D.T. Young, T.E. Cravens, A.J. Coates, F.J. Crary, B. Magee and J. Westlake, Nature **316**, 870 (2007)
- [5] J. Cernicharo, A.M. Heras, A.G.G.M. Tielens, J.R. Pardo, F. Herpin, M. Guélin and L.B.F.M. Waters, Astrophys. J. 546, L123 (2001)
- [6] J. Bernard-Salas, E. Peeters, G.C. Sloan, J. Cami, S. Guiles and J.R. Houck, Astrophys. J. 652, L29 (2006).
- [7]N.L. Owen, C.H. Smith and G.A. Williams, J. Mol. Struct. 161, 33 (1987).
- [8]G. Guelachvili, A.M. Craig and D.A. Ramsay, J. Mol. Spectrosc. 105, 156 (1984).
- 9K. Matsumura, K. Kawaguchi, E. Hirota and T. Tanaka, J. Mol. Spectrosc. 118, 530 (1986).
- [10] D. McNaughton and D.N. Bruget, J. Mol. Struct. 273, 11 (1992).
- [11] E. Arié and J.W.C. Johns, J. Mol. Spectrosc. 155, 195 (1992).
- 12 K. Matsumura and T. Tanaka, J. Mol. Spectrosc. 116, 320 (1986).
- 13 K. Matsumura and T. Tanaka, J. Mol. Spectrosc. 116, 334 (1986).
- [14] K. Matsumura, T. Etoh and T. Tanaka, J. Mol. Spectrosc. 90, 106 (1981).
 [15] K. Matsumura and T. Tanaka, J. Mol. Spectrosc. 96, 219 (1982).
- [16] L. Bizzocchi, C. Degli Esposti and L. Dore, Mol. Phys. 108, 2315 (2010).
- 17 S. Thorwirth, M.E. Harding, D. Muders and J. Gauss, J. Mol. Spectrosc. 251, 220 (2008).
- 18 A.C. Simmonett, H.F. Schaefer III and W.D. Allen, J. Chem. Phys. 130, 044301 (2009).
- 19 J.B. Armitage, R.H. Jones and M.C. Whiting, J. Chem. Soc. p. 55 (1951).
- [20] R.A. Toth, J. Opt. Soc. Am. B 8, 2236 (1991).
 [21] K.M.T. Yamada, F.W. Birss and M.R. Aliev, J. Mol. Spectrosc. 112, 347 (1985)
- 22]M. Niederhoff and K.M.T. Yamada, J. Mol. Spectrosc. 157, 182 (1993).
- [23] C. Degli Esposti, L. Bizzocchi, P. Botschwina, K.M.T. Yamada, G. Winnewisser, S. Thorwirth and P. Förster, J. Mol. Spectrosc. 230, 185 (2005).
- [24] J.M. Brown, J.T. Hougen, K.P. Huber, J.W.C. Johns, I. Kopp, H. Lefebvre-Brion, A.J. Merer, D.A. Ramsay, J. Rostas and R.N. Zare, J. Mol. Spectrosc. **55**, 500 (1975). [25] T. Okabayashi, K. Tanaka and T. Tanaka, J. Mol. Spectrosc. **195**, 22 (1999).
- [26]S. Thorwirth, Private communication.
- [27] K.M.T. Yamada and R.A. Creswell, J. Mol. Spectrosc. 116, 384 (1986).
- [28]C. Vigouroux, A. Fayt, A. Guarnieri, A. Huckauf, H. Bürger, D. Lentz and D. Preugschat, J. Mol. Spectrosc. **202**, 1 (2000). [29]L. Bizzocchi, C. Degli Esposti, L. Dore and G. Cazzoli, J. Mol. Spectrosc. **205**, 164 (2001)
- [30] A. Fayt, F. Willaert, J. Demaison, T. Starck, H. Mäder, G. Pawelke, E. B. Mkadmi and H. Bürger, Chem. Phys. 346, 115 (2008).
- [31]M.R. Aliev and J.K.G. Watson, in Molecular Spectroscopy: Modern Research, edited by K. Narahari Rao, Vol. III (1985), pp. 1–67.

Molecular Physics diac'v8'rev

Molecular Physics

Molecular Physics

Page 12 of 18

[32]L. Bizzocchi, C. Degli Esposti and C. Puzzarini, Mol. Phys. 104, 2627 (2006).
 [33]D. Papoušek and M.R. Aliev, *Molecular vibrational-rotational spectra* (Elsevier, 1982).

URL: http://mc.manuscriptcentral.com/tandf/tmph

Page 13 of 18

diac'v8'rev **Molecular Physics**

Taylor & Francis and I.T. Consultant

Table 1. Spin statistical weights of the ro-vibrational levels of diacetylene.

Inversion parity	parity label	even ${\cal J}$	odd ${\cal J}$
g	$\left\{\begin{array}{c} e\\ f\end{array}\right.$	$\frac{1}{3}$	$\frac{3}{1}$
u	$\left\{ \begin{array}{c} e \\ f \end{array} \right.$	$\frac{3}{1}$	$\frac{1}{3}$

Table 2. Spectroscopic parameters determined by the analysis of the ν_8 fundamental and of the $\nu_8 - \nu_6$ difference bands of diacetylene^a.

Parameter		ground state	$v_8 = 1$	$v_{6} = 1$
G_v	$/ {\rm cm}^{-1}$	0.0^b	628.040776(36)	625.643507(36)
B_v	/ MHz	4389.29687(60)	4391.201952(52)	4391.327830(53)
D_v	/ kHz	0.470150(61)	0.472111(19)	0.472085(20)
H_v	/ mHz		$0.0326(24)^c$	$0.0326(24)^c$
q_t	/ MHz		2.409552(64)	2.485126(64)
q_{tJ}	/ Hz		-1.309(11)	-1.187(11)
$rms_{\rm IR}$	$/ \mathrm{cm}^{-1}$		2.5×10^{-4}	
$rms_{ m mmw}$	/ kHz		22.5	

^a The quantity in parentheses is one standard deviation in units of the last quoted digit. Ь

Constrained. Fitted as a mean value for both states.

23:27
Molecular
Physics

Paramete	er	$v_9 = 1$	$v_8 = v_9 = 1$	$v_6 = v_9 = 1$	$v_3 = 1$	$v_7 = 2$
G_v	$/ \mathrm{cm}^{-1}$	219.974^{b}	848.365918(53)	845.655513(54)	888.36279(30)	962.96^{d}
$x_{L(77)}^{*}$	$/\mathrm{GHz}$					$-50.33^{c,d}$
$x_{L(99)}$	$/ \mathrm{GHz}$	17.702^{b}	17.702^{b}	17.702^{b}		

Table 3. Spectroscopic parameters determined by the analysis of the $\nu_8 + \nu_9 - \nu_9$ hot band and of the $\nu_3 - \nu_9$, $\nu_8 + \nu_9 - (\nu_6 + \nu_9)$ difference bands of diacetylene^a.

15.87245(71)

4379.9715(59)

0.46159(41)

 4405.205^d

 0.47^{d}

 3.131^d

うしょ

4403.86433(20)

-4.96(13)

 -1.187^{d}

 6.155^{b}

0.2970(16)

-5.61(11)

 -12.86^{b}

 6.746^{d}

-1.1569(11)

 40.255^{d}

 -1.41^{d}

 1.4×10^{-3}

33.4

0.490189(74)

2.50544(21)

 -17.1^{b}

^a The quantity in parentheses is one standard deviation in units of the last quoted digit.

 $12.19037(72)^c$

0.490137(80)

2.50214(33)

6.21994(19)

 $11.8226(16)^c$

-27.98(27)

4403.70993(22)

 -17.1^{b}

 0.0^d

 -1.309^{d}

 -12.86^{b}

 b Fixed at the value of Ref. [11]

^c Deperturbed constant, see text.

^d Constrained, see text.

/ GHz

/ MHz

/ kHz

/ kHz

/ kHz

/ MHz

/ MHz

/ MHz

/ GHz

/ kHz

 $/ \mathrm{cm}^{-1}$

/ MHz

 $/ \mathrm{cm}^{-1}$

/ MHz

 $/ {\rm cm}^{-1}$

/ kHz

/ Hz

/ Hz

 4401.8473^{b}

 0.4883^{b}

 6.155^{b}

 -12.86^{b}

 -17.1^{b}

 $x_{L(t9)}$

 $d_{JL(99)}$

 $d_{JL(t9)}$

 B_v

 D_v

 q_7

 q_t

 q_{tJ}

 q_9

 q_{9J}

 r_{t9}

 r_{t9J}

 W_{389}

 W_{389J}

 W_{377}

 W_{377J}

 $rms_{\rm IR}$

 rms_{mmw}

1 2

3 4

11

3:27 Molecular Physics

Molecular Physics

Taylor & Francis and I.T. Consultant

Table 4. Spectroscopic parameters determined by the analysis of the $\nu_7 + \nu_9$ combination band of diacetylene^a.

Paramet	er	ground state	$v_7 = v_9 = 1$
G_v	$/ \mathrm{cm}^{-1}$	0.0^b	701.8939(20)
$x_{L(77)}$	$/ \mathrm{GHz}$		0.0^b
$x_{L(99)}$	$/ \mathrm{GHz}$		17.702^{c}
$x_{L(79)}$	$/ \mathrm{GHz}$		13.457(57)
B_v	$/ \mathrm{MHz}$	4389.2969^{b}	4409.9697(85)
$d_{JL(99)}$	/ kHz		-17.1^{c}
D_v	$/ \rm kHz$	0.4702^{b}	0.50351(49)
q_7	/ MHz		3.131^{d}
q_9	$/ \mathrm{MHz}$		6.155^{c}
q_{9J}	/ Hz		-12.86^{c}
r_{79}	$/ \mathrm{GHz}$		-13.193^{b}
$rms_{ m IR}$	$/ \mathrm{~cm^{-1}}$	4.0	$\times 10^{-4}$

^a The quantity in parentheses is one standard deviation in units of the last quoted digit.

^b Constrained, see text.

 c Fixed at the value of Ref. [11].

^d Fixed at the value of the $v_7 = 1$ state, Ref. [8].

diac'v8'rev

Table 5. Spectroscopic parameters determined by the analysis of the $\nu_7 + 2\nu_9 - \nu_9$ hot band of diacetylene^a.

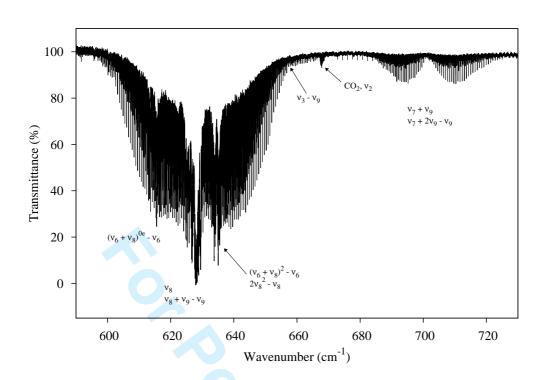
Molecular Physics

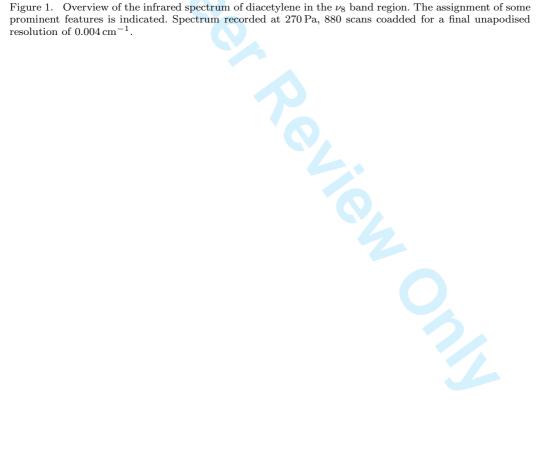
Paramet	er	$v_9 = 1$	$v_7 = 1, v_9 = 2$
G_v	$/ \mathrm{cm}^{-1}$	219.974^{b}	920.9939(11)
$x_{L(77)}$	$/ \mathrm{GHz}$	0.0^c	0.0^c
$x_{L(99)}$	$/ \mathrm{GHz}$	17.702^{b}	17.702^{b}
$x_{L(79)}$	$/ \mathrm{GHz}$		15.71(11)
B_v	/ MHz	4401.8473^{b}	4422.5999(34)
$d_{JL(99)}$	$/ \rm kHz$	-17.1^{b}	-17.1^{b}
D_v	/ kHz	0.4883^{b}	0.54224(94)
q_7	/ MHz		3.131^{d}
q_9	/ MHz	6.155^{b}	6.155^{b}
q_{9J}	/ Hz	-12.86^{b}	-12.86^{b}
r_{79}	/ GHz		-13.193(63)
$rms_{ m IR}$	$/ \mathrm{cm}^{-1}$	5.5	$\times 10^{-4}$

 a The quantity in parentheses is one standard deviation in units of the last quoted digit.

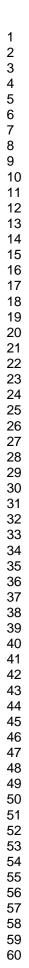
- ^b Fixed at the value of Ref. [11].
- $^{c}\,$ Constrained.
- ^d Fixed at the value of the $v_7 = 1$ state, Ref. [8].

Table 6. Comparison between experimental and computed anharmonicity constants for diacetylene a .


Parame	ter	experimental	$ab \ initio$
$x^{*}_{L(89)}$	/ GHz	12.19	14.4
$x_{L(79)}$	$/ \mathrm{GHz}$	13.46	15.0
$x_{L(69)}$	$/ \mathrm{GHz}$	15.87	14.7
r_{89}^{*}	$/ \mathrm{GHz}$	11.82	-13.8
r_{69}	$/ \mathrm{GHz}$	0.297	3.9
r_{79}	$/ \mathrm{GHz}$	-13.19	-32.8


 $^{a}\,$ Asterisks at the superscript label deperturbed constants (see text).

Molecular Physics


diac'v8'rev Molecular Physics

Taylor & Francis and I.T. Consultant

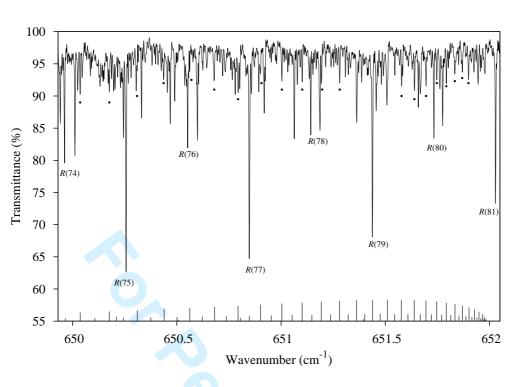
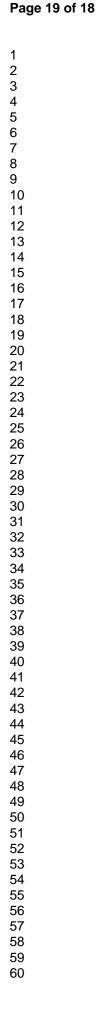



Figure 2. Infrared spectrum of diacetylene in the $\nu_3 - \nu_9$ *Q*-branch region. The stick spectrum shows the predicted positions and relative intensities of the $\nu_3 - \nu_9$ lines, whereas the filled dots indicate the assigned *Q*-branch transitions. Some features of the ν_8 *R*-branch are also indicated.

Taylor & Francis and I.T. Consultant

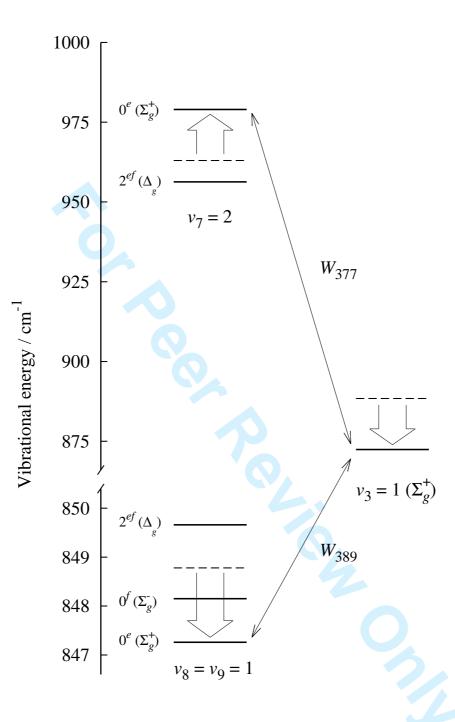


Figure 3. Vibrational energy level diagram of the three-state resonance system analysed for diacetylene. Dashed lines indicate the position of the unperturbed energy levels, the large arrows show the energy displacement produced by the anharmonic interaction. The diagram is not to scale.