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In modern technical applications various multiphase mixtures are used to meet demanding
mechanical, chemical and electrical requirements. To understand their structural properties
as continuous macroscopic materials, it is important to capture the microstructure of these
mixtures. Due to their vast range of applications multicomponent systems are subjected to mi-
crostructural changes as phase separation and coarsening. Therefore the ultimate microstruc-
tural arrangement depends on the system’s configuration and on exterior driving forces. In
addition to this, random physical imperfections within the material and random noises in
the exterior thermodynamic fields influence in essence the microstructural evolution. Since
all physical processes are subjected to a certain degree of random inhomogeneity under real-
istic conditions, the influence of random phenomena cannot be neglected in modern physical
models. An advanced mathematical description and an implementation of these stochastic pro-
cesses are required to adapt simulation results basing on deterministic mathematical models to
experimental observations. In our contribution we will present an operator-scaling anisotropic
random field embedded in the Cahn-Hilliard phase-field model to describe the phase evolution
in a binary mixture. The arising non-linear diffusion equation will be solved numerically in the
innovative framework of isogeometric finite element method. To illustrate the flexibility and
versatility of our approach, numerical and experimental results for an eutectic Sn-Pb alloy
are contraposed. It is the first time that the microstructural evolution in a multicomponent
system is associated with operator-scaling anisotropic random fields. Due to its enormous
potential as an essential ingredient in stochastic mathematical and physical modeling it is
only a matter of time until these processes will become prevalent in engineering applications.

Keywords: binary alloys, solder, spinodal decomposition, phase-field, random fields

1. Introduction

Until recently, material modeling and studies on microstructure have mainly been
subjects to empirical sciences. Systematic experimental observations provided the
key to derive constitutive and structural properties of the considered materials.
However, in the last decades mathematical modeling of materials on different
length- and timescales have become a matter of great scientific interest. Now the
main objective is to develop a model and to perform numerical simulations in order
to gain understanding of physical processes within the material. Furthermore, such
models should yield indications to predict the material behavior for future applica-
tions. At this, experimental data are still an essential source for the validation and
parametrization of the educed material model. Any modeler aspires to implement a
minimal set of parameters to match the model with experiments. Here it is crucial
to figure out dominant effects, driving quantities of secondary order and variables,
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which are negligible. The goal is always to derive a rather simple model but to
approximate adequately complex processes in reality.
The fast development in the area of scientific computing gives rise to embedding
the mathematical material models into the framework of a numerical approxima-
tion scheme, such as e.g. spectral methods [11, 31] or finite element analysis [51].
However, many of the numerical results clearly reflect the simplifications of the
underlying model. In particular, in the field of diffusion induced phase separation
and coarsening the computed processes do correctly map the separation of the
mixture into different phases and also, e.g., the rate of phase growth, [32, 47].
However, the computed microstructure of circular phase islands or ideally smooth
lamellae is not realistic. A typical microstructure observed during experimental
investigations of phase evolution in an eutectic Sn-Pb solder is shown in Figure 1.
The micrograph shows areas of different microstructural arrangements at the same
instance of time. There are some domains where oriented lamellae-like structures
evolve and, in neighboring regions, contorted bubble-like particles emerge. In gen-

Figure 1.: Optical micrograph of a 100µm × 50µm eutectic Sn-Pb solder after
10h of aging at an operating temperature of 420K. The bluish images denote the
corresponding simulated microstructure.

eral, it is extremely cumbersome to derive a theory that is able to capture the great
variety of real life observations in experimental studies of microstructure. The rea-
sons for deviations between experiments and idealized theories may be found in
the general imperfection of nature where always perturbations, e.g. temperature
fluctuations and inhomogeneities during solidification, occur. However, the specific
microstructure is directly affected by physical imperfections within the material
and by random deviations in the exterior thermodynamic fields, such as thermal
and mechanical loads. In our opinion, the influence of such random phenomena
cannot be neglected in modern physical models.
With the aim to account for such perturbations we present here a new approach
to describe microstructural phase evolution. To this end we introduce a coherent
diffusion model for spinodal decomposition and continuous ordering subjected to
fluctuating driving forces. In order to map random fluctuations we make use of
an operator-scaling anisotropic random field and embed it in the Cahn-Hilliard
phase-field model to describe the phase evolution in a binary mixture. Although
a similar technique has been employed, e.g. for superdiffusive spreading of passive
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scalars in turbulent and chaotic flow and for flow through porous media [9, 50], it
is the first time that the microstructural evolution in a multicomponent system is
associated with operator-scaling anisotropic random fields. By now this new class
of random fields has been receipted only among mathematicians. However, due to
its enormous potential as an essential ingredient in stochastic physical modeling, it
is only a matter of time until operator-scaling random fields will become prevalent
in engineering applications.
The interest in randomly forced diffusion phenomena goes back to the very early
works of Cahn, Cook and Hilliard [19]. Since all subsequent models base on this
theory, we provide in Section 2 of this paper a concise synopsis of the Cahn-
Hilliard-Cook diffusion model. A critical review of the stochastic model concludes
this section. Section 3 is entirely devoted to a short overview of operator-scaling
anisotropic random fields and the functionality of the control variables employed
in our specific random field. In Section 4 we include a fluctuating driving force in
the deterministic diffusion equation and deduce the variational formulation of the
considered problem. Numerical experiments in Section 5 demonstrate the versatil-
ity and flexibility of our approach. A contrasting comparison of our results and a
concise summary in Section 6 will conclude this manuscript.

2. Stochastic diffusion models

In this section we elaborate on the state of the art of stochastic diffusion models for
spinodal decomposition and phase coarsening. The deterministic model for spinodal
decomposition in alloys goes back to the early research work of Cahn and Hilliard
in the 1960s [12–16]. Although this model is able to depict the predominant driving
quantities such as minimization of thermodynamic free energy and surface energy,
it still lacks a complete description of the diffusion process. Discrepancies between
the deterministic Cahn-Hilliard theory and experimental results especially during
the very early stages of spinodal decomposition motivated Cook to incorporate an
additional random variable into the diffusion model at hand, [19]. His objective
was to embed a random flux resulting from thermal fluctuations, i.e., Brownian
movement, in the Cahn-Hilliard model according to a mathematically consistent
fluctuation theory. At that time Brownian motion was a well understood stochastic
process [10, 26, 27, 48], described by the commonly known Langevin equation [41].
Therefore Cook included in his model a random field analogously to the fluctuating
force in the Langevin equation. To this end, he had to bring the stochastically
extended Cahn-Hilliard equation into a formulation equivalent to a Langevin-type
model. Let us now briefly outline the main steps of Cook’s derivation in order to
point out our criticism on his theory. We start with a formulation of the mass
current j for a binary system

j = −M∇δcΨ, (1)

where M denotes the constant Onsager coefficient (mobility) for an isotropic solu-
tion and Ψ is the total free energy density of the system namely

Ψ (c) = Ψcon (c) +
λ

2
‖∇c‖2 . (2)

Here Ψcon comprises the configurational energy density and the second term in-
volves the surface energy contribution. The δc (•) operator is in the context of
Eq. (1) the variational derivative with respect to the concentration field c. Assum-
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ing homogeneous Neumann boundary conditions ∇c · n = 0 as natural boundary
conditions it holds δc (•) = ∂c (•) − ∇ · ∂∇c (•). The vector field n denotes the
unit outward normal to the considered domain. Now Cook extends the continuity
equation by a quasi-random flux contribution j̃, that fulfills the mass-conserving

boundary condition
(

j+ j̃
)

· n = 0. The entire diffusion equation then reads

∂c (x, t)

∂t
= −∇ ·

(

−M∇δcΨ(x, t) + j̃ (x, t)
)

, with (x, t) ∈ Ω× [0, T ] . (3)

Since Cook was not able to precisely specify j̃, he introduces a fluctuating scalar
field g (x, t) which is related to j̃ by

j̃ = −∇g (x, t) . (4)

In this manner Cook is able to characterize the average properties of the Fourier
transform of g (x, t). Taking Eq. (4) into account and accomplishing a Fourier trans-
form of the continuity equation (3) delivers the desired Langevin-type equation in
Fourier space

∂ĉ (k, t)

∂t
= α (k) ĉ (k, t)− ‖k‖2 ĝ (k, t) , (5)

where ˆ(•) symbolizes the Fourier transform of the corresponding field, k is the wave
vector and α (k) is an amplification factor given by

α (k) = −‖k‖2M
(

∂2cΨ
con + λ ‖k‖2

)

. (6)

A detailed derivation of the amplification factor may be found in the Appendix. The
field ‖k‖2 ĝ (k, t) in Eq. (5) is the counterpart to the random force in the Langevin
equation. In the style of Uhlenbeck and Ohrnstein [48] Cook analyzes the intensity
expression

I (k, t) = ĉ (k, t) ĉ (k, t) (7)

to obtain the average properties of ĝ (k, t). Cook focusses here on the intensity
expression (7) because it is impossible to measure the Fourier amplitudes ĉ di-
rectly. Instead, the kinetics of spinodal decomposition and continuous ordering can
be studied experimentally by the so-called diffraction techniques where an X-ray
intensity is measured in the sample, cf. [18, 46].
Since Eq. (5) can be solved analytically by

ĉ (k, t) = ĉ (k, 0) eα(k)t − ‖k‖2 eα(k)t
∫ t

0
e−α(k)ζ ĝ (k, ζ) dζ, (8)

the intensity expression becomes

I (k, t) = e2α(k)t
(

ĉ (k, 0) ĉ (k, 0)− ‖k‖4
∫ t

0

∫ t

0
e−α(k)(ζ+ζ′)

〈

ĝ (k, ζ) ĝ (k, ζ ′)
〉

dζdζ ′
)

.

(9)

The cross terms in ĉ (k, t) and ĝ (k, t) do not appear here, because the average value
of ĝ (k, t) is set to zero. Additionally, Cook assumes that the spectral resolution

Page 4 of 27

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

May 9, 2011 12:51 Philosophical Magazine PhilMag˙revision

Philosophical Magazine 5

of the correlation function
〈

ĝ (k, ζ) ĝ (k, ζ ′)
〉

can be separated into a spatial and a

temporal term according to

〈

ĝ (k, ζ) ĝ (k, ζ ′)
〉

= Q (k) δ
(

ζ − ζ ′
)

. (10)

The spatial term is then determined from the equilibrium intensity distribution
I (k, t = ∞) of a stable single-phase solid solution (with α (k) < 0 for all k).
Following arguments based on fluctuation theory [39], one obtains the relation

‖k‖4Q (k)

α (k)
=

kBT

c0 (1− c0) v
(

∂2cΨ
con + λ ‖k‖2

) , (11)

with mean composition c0, volume per atom v and thermal energy kBT . For a
more detailed derivation of the presented expressions the authors refer to Cook’s
original work [19, 20]. In recent papers the authors often use a random force ξ with
ξ (x, t) = ∆g (x, t) instead of a noisy flux contribution [5, 28, 34, 35]. Analogously,

one obtains for
〈

ξ̂ (k, ζ) ξ̂ (k, ζ ′)
〉

= Q (k) δ (ζ − ζ ′) a similar result

Q (k)

α (k)
=

kBT

c0 (1− c0) v
(

∂2cΨ
con + λ ‖k‖2

) (12)

⇔ Q (k) = −
‖k‖2MkBT

c0 (1− c0) v
= −2 ‖k‖2M∗kBT (13)

with a generalized mobility M∗. Remark that Eq. (13) is the spectral resolution
of the correlation of ξ according to [42]. Taking the inverse Fourier transform of

Eq. (13) and exploiting (̂δ (x)) = 1 leads to the usual correlation expression

〈

ξ (x, t) ξ
(

x′, t′
)〉

= −2M∗kBT∆δ
(

x− x′
)

δ
(

t− t′
)

. (14)

In the context of Eq. (14) the laplacian is meant in the distributional sense. Eq. (14)
expresses that the fluctuating force ξ is uncorrelated in time and partly correlated
in space showing a short-range behavior. So far, all research work on the stochastic
Cahn-Hilliard model bases on Gaussian noises with the short-range correlation in
Eq. (14). Although Barros et al. proposed in [5]

〈

ξ (x, t) ξ
(

x′, t′
)〉

=M∗kBTδ
(

x− x′
)

δ
(

t− t′
)

(15)

as a novel form of the noise correlation for a non-conserved order parameter, it still
does not exceed the short-range regime.
Numerical studies of the microstructural evolution described by the Cahn-Hilliard-
Cook model showed no significant difference compared to the results performed
by the deterministic diffusion model. In addition to it, Eq. (4) must be critically
reviewed. It is not possible to define a reasonable fluctuating scalar field, which
is differentiable. The authors regard the limitation to isotropic short-range corre-
lations as an intrinsic shortcoming of the Cahn-Hilliard-Cook theory. Therefore,
we suggest to introduce a novel approach to include an anisotropic and long-range
stochastic process into the Cahn-Hilliard diffusion model.
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3. Operator-scaling anisotropic random fields

In this section we briefly describe time varying operator-scaling random fields and
their simulation. These fields are generalizations of the random fields introduced
in [9]. For more details and a rigorous mathematical treatment of time varying
operator-scaling random fields we refer to [9, 50].
Brownian motion of particles is a simple, non-correlated random motion seen, e.g.,
in swirling gas molecules. More organized systems, however, tend to continuous-
time random walks or Lévy-walks. Figuratively speaking, Lévy walks are a mix of
long trajectories and short random movements found, e.g., in turbulent fluids but
also in the motion of fish schools, human travel behavior and financial risk theory.
A stable Lévy motion is a self-similar process. Recall that a stochastic process
{X(r)}r∈Rd taking values in Rd is self-similar if

{X(cr)}r∈Rd

d
= {cHX(r)}r∈Rd at every scale c > 0. (16)

Symbol
d
= indicates equality of finite dimensional distributions; and we assume X

to be stochastically continuous. The scaling parameter H > 0 is commonly called
the Hurst index. Operator-scaling self-similar processes allow the Hurst index to
vary with the coordinates. For the specific fields we have in mind here, the operator
scales with the x-, y- and t-directions. Following the approach of [9, 22] we define
a scalar valued random field {X(cr)}r∈Rd to be operator-scaling if for some d × d
matrix Ē with positive real parts of the eigenvalues and some H > 0 we have

{X(cĒr)}r∈Rd

d
= {cHX(r)}r∈Rd for all c > 0. (17)

Here cĒ is given by cĒ = exp(Ē log c) where exp(A) =
∑

∞

k=0
Ak

k! is the matrix
exponential. Note that if Ē = I , the identity matrix, condition (17) is just the
self-similarity property (16).
Now, letW (dy×ds) be a complex-valued independently scattered isotropic random
Gaussian measure on R2 × R. Roughly speaking, this means that for disjoint sets
A1,A2 ⊂ R3,W (A1) andW (A2) are independent isotropic complex-valued normal
random variables with mean zero and variance comparable to the volume of A1

and A2, respectively. Such random fields can be simulated easily.
Now for (x, t) ∈ Ω × [0, tmax] , tmax ≤ T and parameters 0 < H1, H2, H3 < 1 we
define a random field by

ξ̄(x, t) = Re

∫

R2×R

(

eix·y − 1
)

(

ei(tmax−t)s − 1
)

· ψ1(y) · ψ2(s)W (dy × ds), (18)

where

ψ1(y) =
(

|y · θ1|
2H1 + |y · θ2|

2H2

)−
H1+H2

4
−

1

2

(19)

ψ2(s) =
1

|s|
1+2H3

2

. (20)

Here θ1, θ2 are normalized eigenvectors of a matrix E with given eigenvalues
H−1

1 , H−1
2 , respectively. Hence the spatial scaling matrix E is fully determined

by 4 parameters. The field (18) is anisotropic if the spatial scaling relation has dif-
ferent Hurst indices in the – not necessarily orthogonal – directions of eigenvectors

Page 6 of 27

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

May 9, 2011 12:51 Philosophical Magazine PhilMag˙revision

Philosophical Magazine 7

θ1, θ2. The intensity of the field in the course of time is scaled by H3.
With respect to mass conservation in a representative domain Ω we need to claim
for an appropriate random field

∫

Ω
ξ(x, t) dx = 0 ∀t ∈ [0, tmax], (21)

which we easily get by the transformation

ξ(x, t) = ξ̄(x, t)−
1

|Ω|

∫

Ω
ξ̄(y, t) dy ∀t ∈ [0, tmax], (22)

which is well-defined since the random field ξ̄ exists for the given parameters and
has continuous sample path. The term |Ω| denotes the corresponding Lebesgue
measure of Ω.
Compared to Gaussian white noise or the Gaussian random fields with covariance
structure given by (14) or (15), respectively, our fields are much more flexible. In
contrast to the short range dependence of the fields defined by (14) and (15), our
random field defined by (18) allows to model long range dependencies in the spatial
and temporal coordinates separately. Moreover it can have anisotropic behavior in
space. See section 3.1 below. Observe further, that the random field defined by (18)
is always decoupled in space and time by construction (see (23) and (24) below).
There are other types of random fields as in [9] which allow dependencies between
space and time scaling. However, from our point of view this seems unrealistic and
hence, we restrict our attention to fields defined by (18).

3.1. Parameter handling and scaling properties

With our model we are capable of exerting control on the range of dependence
in space and time as well as on the anisotropic behavior, according to Eq. (18).
In the following we want to show how to control the random field by the given
parameters. One can show the following scaling properties:

ξ(aEx, t)
d
= aξ(x, t), (23)

ξ(x, aH
−1

3 t)
d
= aξ(x, t), (24)

where d means again equality of all finite-dimensional marginal distributions for
the random fields. Hence, by setting the global scaling matrix

Ē :=

(

E2×2 01×2

02×1 0

)

+

(

02×2 01×2

02×1 H
−1
3

)

(25)

the random field has two independent scaling properties, one for the spatial and
one for the temporal component. In this context the notation Ai×j denotes that
A is an (i× j)-matrix.
The presented fundamental property implies a rather flexible simulation model. In
space we want to control the degree of anisotropy, its orientation and the range of
spatial dependence as shown below. Independent from that feature we would like
to control the temporal dependence by the parameter H3 from short to long range
dependence.
The parameters H1 respectively H2 can be interpreted as Hurst indices in direction
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θ1 and θ2 in the following way: For a fixed time t ∈ [0, tmax] we define for both
directions θ1, θ2 the subprocess

ξθi(r) := ξ(rθi, t), i = 1, 2, r ∈ {l ∈ R : lθi ∈ Ω}. (26)

Because of the identity aE(rθi) = a1/Hi(rθi) for all a > 0 we get

ξθi(ar)
d
= aHiξθi(r), (27)

so ξθi(r) is self-similar with Hurst index Hi. The anisotropy in space of our random
field is determined by the direction of θ1, θ2 as well as the ratio between H1 and
H2 as shown in Figs. 2 and 3. The special case of isotropy is only given when
θ1 · θ2 = 0, H1 = H2, see Figs. 4 and 5. In both combinations of eigenvectors the
spatial range dependence raises with values of H1 and H2.

H
1
θ 1

H2
θ2

36◦

Figure 2.: Anisotropic behavior of ξ given by θ1 = ei·0.3π, θ2 = ei·0.2π, H1 = H2 =
0.5. The colors describe the intensity/magnitude of ξ (at a fixed time).

H
1
θ 1

H2
θ2

36◦

Figure 3.: Anisotropic behavior of ξ given by θ1 = ei·0.3π, θ2 = ei·0.2π, H1 = H2 =
0.35. The colors describe the intensity/magnitude of ξ (at a fixed time).
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H
1
θ 1

H2θ2

Figure 4.: Isotropic behavior of ξ given by θ1 = ei
π

2 , θ2 = ei·0, H1 = H2 = 0.5. The
colors describe the intensity/magnitude of ξ (at a fixed time).

H
1
θ 1

H2θ2

Figure 5.: Isotropic behavior of ξ given by θ1 = ei
π

2 , θ2 = ei·0, H1 = H2 = 0.35.
The colors describe the intensity/magnitude of ξ (at a fixed time).

3.2. Examples

Let us present two simulations of random fields which will be used in a similar
form in section 5. The first example is a realization of an isotropic random field
with parameters

H1 = H2 = 0.6, H3 = 1.0, θ1 = (1, 0), θ2 = ei
π

2 . (28)

This field, shown in Fig. 6, has no orientation and because of the term (ei(tmax−t)s−1)
in (18) the intensity of the field is decreasing until zero at time tmax.
Finally, we want to present an anisotropic field with an orientation of 135◦ and
long range dependence in space. We use the following parameter set

H1 = 0.55, H2 = 0.4, H3 = 0.75, θ1 = ei
3π

4 , θ2 = ei(
3π

4
+0.1π

4
) (29)

and get the desired field as shown in Fig. 7. In both simulations the activity period
of the random field is set by tmax = 0.002.

3.3. Operator-scaling anisotropic random fields in material science

Operator-scaling anisotropic random fields may look very academic at the first
glance as they are extremely sophisticated with regard to their formal structure.
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t = 0 t = 0.00145 t = 0.0017
Figure 6.: Simulation of a fully isotropic random field with a smoothly decreasing
intensity over a short period of time (tmax = 0.002).

t = 0 t = 0.00145 t = 0.0017
Figure 7.: Simulation of an anisotropic random field with an orientation of 135◦

and a smoothly decreasing intensity over a short period of time (tmax = 0.002).

However, their general scaling properties in time and space correspond to obser-
vations of physical phenomena in technically relevant production processes (e.g.
within the area of material science). In many technical applications of materials
it is vital to capture the microstructural evolution during the production process,
which is determined by random nucleation and subsequent growth mechanisms
such as spinodal decomposition and Ostwald ripening. As the evolving microstruc-
tures usually exhibit non-equilibrium features, their current arrangement is not
exclusively determined by current process parameters and material properties, but
also by preceding processes in microstructural formation. Therefore, random fields
which are uncorrelated in time as classical Brownian motion and Gaussian white
noise cannot reproduce this temporal correlation of microstructural evolution. A
physical process which has a clear random character is heterogeneous nucleation.
Actually, it is not practicable to capture both nucleation and growth processes at
the same time, because nucleation events require an extremely small resolution in
time and space increasing dramatically the computational cost to describe meso-
scopic growth. For this reason diffuse-interface models as we will employ in this
context, describe nucleation events as local fluctuations or inhomogeneities in prop-
erties like composition/density or the material response to external forcing. In the
scope of our manuscript we will employ operator-scaling anisotropic random fields
to address local fluctuations with physically reasonable properties in terms of long-
range spatial and temporal dependence. A comprehensive overview on techniques
to incorporate nucleation into phase-field simulation may be found in [44].
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4. Formulation of the extended diffusion model

In this part of our contribution we present the considered diffusion model, which
is now extended by an external random driving force ξ, and derive the variational
formulation of the problem. Similar to Eq. (3) one obtains

∂c

∂t
= −∇ · j+ ξ (x, t) = ∇ · (M∇µ) + ξ (x, t)

= ∇ · (M∇ (∂cΨ
con − λ∆c)) + ξ (x, t) with (x, t) ∈ Ω× [0, T ] ,

(30)

where ξ (x, t) is given in (22). Remark that in our formulation ξ is no longer re-
lated to a noisy mass current. The chemical potential µ is defined as µ = δcΨ. In
contrast to Cook’s model we use here a mobility, which depends on the mixture’s
composition according to thermodynamical considerations [15, 24, 25, 38]. Unlike
the experimental data on diffusion coefficients, mobilities are usually not directly
available in literature. Therefore, we follow an approach outlined by Küpper and
Masbaum [40], which was also employed by Dreyer and Müller in their compu-
tational studies of Sn-Pb alloys [25], to address mobility by values from diffusion
coefficients. It is a rather heuristic approach to Fickian type diffusion phenomena.
We assume that the chemical potential µ is proportional to the first derivative of
the configurational free energy density Ψcon with respect to the composition c. This
assumption is physically motivated by the fact that the early stages of phase sep-
aration are driven by a minimization of configurational energy. Then there follows
a proportionality to the mass current j according to

j = −M∇µ ≈ −M∇ (∂cΨ
con) = −M∂2cΨ

con∇c. (31)

Since we assume Fickian type diffusion it holds

−M∂2cΨ
con∇c = −D∇c. (32)

A juxtaposition of coefficients gives the required relation between the mobility and
diffusion tensor

M =
(

∂2cΨ
con

)−1
D. (33)

This result considers also anisotropic diffusion due to the tensorial character of M
and D. In the scope of this manuscript we choose the following isotropic mobility
representation

M = M (c) =
D

∂2cΨ
con

I, (34)

where D is the averaged tracer diffusivity of the mixture in units of
[

m2/s
]

. The
second derivative of the configurational free energy density ∂2cΨ

con has a unit of
[

J/m3
]

. Consequently the mobility expression has always a unit of
[

m5/ (J s)
]

. Such
a definition of the mobility focuses/drives the diffusion process to the interfacial
areas, where the second derivative of the configurational free energy density has its
minimum. To complete the description of the extended diffusion equation (30) we
need to specify the representation of the configurational energy density Ψcon. For
a thermodynamically consistent formulation of Ψcon we follow the common Flory-
Huggins theory of mixing [29, 36]. For a system where only binary interactions take
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place Ψcon can be formulated as

Ψcon (c) = g1c+ g2 (1− c) + g3RT [c ln c+ (1− c) ln (1− c)] + χc (1− c) . (35)

The first two terms of the configurational energy (35) express the free energy of the
individual components. The third term g3RT [c ln c+ (1− c) ln (1− c)] represents
the entropy of mixing with system’s absolute temperature T and gas constant
R = 8.314472 J/ (molK). Since we regard the mixture to be non-ideal, the last
term χc (1− c) accounts for the excess energy. The material specific parameters g1,
g2, g3 and χ are calculated from a curve fitting algorithm to match experimentally
measured energy values.
The initial concentration profile is assumed to be known as c (x, t) = c0 (x). In our
model the initial concentration will be randomly generated such that

c0 (x) = c̄eut + r with |r| ≤ 0.01, (36)

where c̄eut is the constant eutectic concentration and r is a random variable with
uniform distribution. To guarantee the conservation of mass in the deterministic
part of Eq. (30) and the natural boundary conditions from the variation of Ψ, we
prescribe homogeneous Neumann boundary conditions

j · n = M∇µ · n = M∇ (∂cΨ
con − λ∆c) · n = 0 in ∂Ω× [0, T ] (37)

∇c · n = 0 in ∂Ω× [0, T ] . (38)

For the numerical approximation of the extended diffusion model by means of a fi-
nite element scheme Eq. (30) has to be transferred into a variational formalism. For
this purpose Eq. (30) is multiplied by a variation δc ∈ H2 (Ω). H2 (Ω) denotes here
the Sobolev space of square integrable functions with square integrable derivatives
of first and second order. Applying Green’s first identity (integration by parts) and
making use of the homogeneous boundary conditions (37,38) provides the weak
form of the problem: Find c ∈ H2 (Ω) such that

∫

Ω

∂c

∂t
δc dΩ = −

(
∫

Ω
M∂2cΨ

con∇c∇δc dΩ + λ

∫

Ω
∂cM∆c∇c∇ϕ dΩ

+λ

∫

Ω
M∆c∆δc dΩ

)

+

∫

Ω
ξδc dΩ ∀ δc ∈ H2 (Ω) .

(39)

Since this primal variational formulation mandates the discrete solution space Vh

to be at least H2-conforming with Vh ⊂ H2 (Ω), the finite element basis functions
need to be piecewise smooth and globally at least C1-continuous.
To meet the higher requirement in continuity non-standard basis functions have

to be employed. For this reason we follow here the spirit of isogeometric finite
element analysis [1, 21, 32] and employ non-uniform rational B-spline functions
(NURBS). Similar to isoparameteric finite elements, where the function spaces of
the geometry approximation and the solution space for the physical problem co-
incide, the isogeometric finite element formulation makes use of shape functions
which are primarily used in computer aided design. In this way the shape func-
tions precisely represent the geometry of the problem even in a coarse model. This
sophisticated geometry approximation is not needed in our model, in opposite, for
rectangular domains NURBS reduce to simple B-splines in the usual tensor-product
form. However, the continuity and smoothness properties of spline functions result
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in superior convergence properties of our analysis.
Another attribute that makes this analysis attractive for the application to phase-
field methods [6, 47] is the so-called k-refinement process. During k-refinement the
order of the approximation functions is increased, comparable to the p-method
in the standard finite element methodology. But in contrast to the p-method the
continuity/smoothness is increased as well. Therefore spline based finite element
techniques can be exploited for an accurate and robust approximation of problems
involving higher-order differential operators.
Facing these benefits, we use a NURBS-based Galerkin-type scheme for the spatial
approximation of Eq. (39). For the temporal discretization we employ an implicit
Crank-Nicholson scheme, which is known to perform a second-order accuracy. For
a detailed mathematical description of the approximation procedure and its ad-
vantages over other numerical schemes we refer to earlier work, cf. [1–4].

5. Numerical experiments

In this section we investigate the performance of our numerical approximation
scheme for the diffusion within a binary mixture driven by a perturbing random
field. We restrict our studies to a rather simple rectangular domain Ω in order
to focus our attention on the physical and numerical aspects of the problem. To
demonstrate the applicability of our stochastic diffusion model, we present numer-
ical results which qualitatively reproduce the scenario observed during thermal
aging experiments of an Sn-Pb solder in eutectic composition, cf. Fig. 8. In the
micrographs the light (gray) areas denote the tin-rich matrix phase and the dark
(black) areas characterize the lead-rich particle phase.

t = 2h t = 16h t = 60h

5µm5µm5µm

Figure 8.: Micrographs from aging experiments of eutectic Sn-Pb at an operating
temperature of 150 ◦C. Here t denotes the time after solidification.

The solder under consideration contains on average 63% Sn and 37% Pb. The oper-
ating temperature during experiments was kept constant at 150 ◦C (T = 423.16K).
The specific material properties enter the diffusion equation by the following set of
material parameters

g1
[

GJ
m3

]

g2
[

GJ
m3

]

g3
[

mol
m3

]

χ
[

GJ
m3

]

λ [N] cα cβ c̄eut

−1.5248 −1.3429 7.2711 · 104 0.8565 2.57 · 10−7 0.0455 0.9545 0.37

Table 1.: Material specific parameters for an eutectic Sn-Pb alloy.
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The parameters g1, g2, g3 and χ are chosen in such a way that the resultant free
energy density Ψcon achieves an optimal fit to the experimentally measured en-
ergy data. The shape of the configurational energy density Ψcon and the common
tangent characterizing the equilibrium phases is illustrated in Fig. 9. During our
simulations the concentration field is identified with the mass fraction of lead (Pb),
i.e. a material volume with c = 0 consists of pure (100%) tin (Sn) and a material
volume with c = 1 of 100% lead. For this system, islands of the Pb-rich β-phase cβ
evolve within a Sn-rich α-phase (cα) matrix.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.54

−1.52

−1.5

−1.48

−1.46

−1.44

−1.42
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−1.34
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fi
gu
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ti
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en
er
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d
en
si
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in
G
J
/m

3

lead mass concentration

Figure 9.: Shape of configurational energy density Ψcon (blue curve) and the cor-
responding common tangent (black line).

The kinetic properties of the system are determined by the temperature dependent
diffusion coefficient D, which is given by an Arrhenius equation

D = D0e
−Ea

RT , (40)

whereD0 is an extrapolated (academic) diffusion coefficient at infinite temperature,
Ea denotes the activation energy of the diffusion process, R is the universal gas
constant and T is the system’s temperature. In order to obtain the required data
for the Arrhenius relation, we refer to studies of Gupta et al. [33] and Decker et al.
[23]. In their contributions the activation energy is measured as Ea = 100 kJ/mol
and the pre-exponential diffusivityD0 varies from 2.5−6.7·10−5m2/s. In our model
we take D0 = 6.5 · 10−5m2/s. Please keep in mind that the presented parameters
are measured on a slightly higher temperature level than it is assumed in our
investigation. According to the model of a degenerate mobility (34) in combination
with the representation for Ψcon used in our manuscript (35) we obtain

M (c) =
D

∂2cΨ
con

I =
c (1− c)

g3RT − 2χc (1− c)
I. (41)

To avoid unphysical singularities of mobility in the spinodal points where ∂2cΨ
con

vanishes, the mobility expression is regularized in such a way that the term
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2χc (1− c) is omitted. This regularization yields

M (c) =
D

∂2cΨ
con

I =
Dc (1− c)

g3RT
I =Mc (1− c) I. (42)

Consequently, the isotropic mobility coefficient M is e.g., given by M = 1.03 ·
10−25m5/ (J s). This value corresponds to the mobility coefficient employed by
Ubachs et al. [47] during the numerical investigation of an eutectic tin-lead solder
in a similar configuration as it is assumed in this manuscript. Please note that the
constant part of ∂2cΨ

con was omitted in (42) for convenience.

At first, we present simulation results for the deterministic diffusion model, which
will illustrate the limitations of this model. Hereafter simulation results obtained
for the stochastic diffusion model will demonstrate the decisive advantages of this
model. All numerical studies employ the characteristic reference length L = 5µm
for the spatial coordinates and T = 67.4 h for the temporal scale. By means of
these length-scales we can introduce dimensionless coordinates

x∗ =
x

L
, t∗ =

t

T
(43)

and reformulate the considered diffusion equation into a dimensionless representa-
tion.

5.1. Simulations of the deterministic diffusion model

For the simulation of the microstructural evolution within the deterministic regime
we employ the presented material parameters and assume ξ = 0. In this situation
one observes the typical scenario of isotropic spinodal decomposition followed by
Ostwald ripening. Starting from an approximately homogeneous mixture, the sys-
tem is quenched into a thermodynamically unstable state. To leave this unfavorable
configuration the mixture commences to separate into phases that minimize the
configurational energy with respect to a common tangent (Maxwell tangent rule).
After the separation of phases into the equilibrium Pb-rich β-phase (reddish par-
ticles) and Sn-rich α-phase (blue matrix) is finished, the evolved particles begin
to coalesce driven by a tendency to minimize the interfacial/surface energy. This
process where the bigger particles grow at the cost of smaller particles is referred
to as Ostwald ripening.
Simulation results for the early stages of spinodal decomposition are illustrated in
Fig. 10. We observe a decomposition with round β-phase particles which will coa-
lesce and grow. The process of phase coarsening and Ostwald ripening is presented
in Fig. 11. The rectangular shape of the phase islands in the late stages results
from a minimization of surface energy. The squared form of the bigger particles
constitutes an intermediate configuration before a circular shape is adopted in the
very late stationary equilibrium. This effect may look unphysical but is inherent
in the idealized Cahn-Hilliard-theory. Rectangular particles which are present in
states near stationary equilibrium usually stem from anisotropy and mechanical
effects, cf. [30].
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t∗ = 0 t∗ = 0.005 t∗ = 0.0125
Figure 10.: Simulation results for spinodal decomposition within the deterministic
diffusion model.

t∗ = 0.025 t∗ = 0.05 t∗ = 0.15

t∗ = 0.35 t∗ = 3.0 t∗ = 12.55
Figure 11.: Simulation results for the early and late stages of Ostwald ripening
within the deterministic diffusion scenario.

5.2. Simulations of the stochastic diffusion model

In order to include anisotropic random fluctuations into the diffusion model the
noise contribution ξ as given by Eq. (22) is no longer equal to zero. The random
noise is written in units of s−1. During all our numerical simulations the imposed
random fields are only present during spinodal decomposition and the very early
stages of phase coarsening, where the mixture is most susceptible to external fluc-
tuations.
In the first example we intend to depict the evolution of randomly contorted par-
ticles during spinodal decomposition. This objective can be accomplished by an
almost isotropic random field with long-range dependence in temporal and spatial
coordinates. The corresponding parameter set for this random field reads

H1 = H2 = 0.35, H3 = 1.0, θ1 = (1, 0), θ2 = eiπ/2. (44)
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Again the simulation initiates from a homogeneous state which is cooled into the
unstable spinodal regime. The influence of the imposed random field during spin-
odal decomposition is apparent. From the very first time step the concentration
field follows the random driving with a slight temporal shift, cf. Fig. 12. Due to
the noise contribution a morphology evolves that conforms with the irregular ex-
perimental microstructure in Fig. 8 in contrast to the regular spherical and elliptic
phase islands in the deterministic simulation. The simulated microstructure shows
after the separation of phases a typical coarsening behavior, see Fig. 13.

t∗ = 0.0015 t∗ = 0.0035 t∗ = 0.0055
Figure 12.: Evolution of contorted particles during the early stages of spinodal
decomposition within the stochastic diffusion scenario (tmax = 0.00375).

t∗ = 0.0455 t∗ = 0.1805 t∗ = 2.0
Figure 13.: Evolution of contorted particles during the early stages of Ostwald
ripening within the stochastic diffusion regime (tmax = 0.00375).

To provide a sound and meaningful comparison between the stochastic and de-
terministic diffusion model, we investigate the coarsening rate by means of the
temporal evolution of the average particle radius and the decrease of interfacial
area. It is very complicated to find a reasonable measure to qualify microstruc-
tural evolution and coarsening. As reference solution we therefore have recourse to
the Lifshitz-Slyozov-Wagner (LSW) theory [43, 49] which provides for the average

radius r̄ of the evolving particles the well-known proportionality r̄ ∝ t
1

3 . Here, one
must be aware that the LSW theory is only valid in supersaturated (dilute) solu-
tions within a low volume fraction regime. The LSW theory describes in general
an isotropic coarsening without any driving forces such as mechanical and thermal
fields. We assume that coarsening processes in our systems can be partly captured
by this theory. Another measure to quantify the rate of coarsening is the decrease
of interfacial area which is proportional to the surface/gradient energy because the
surface/gradient energy is entirely stored within the interfaces. It is a rather intu-
itive and heuristic approach to characterize coarsening rates in multiphase systems
but this idea serves as basis for the derivation of upper and lower bounds for the
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decrease in surface energy during Ostwald ripening, cf. [17, 45].
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Figure 14.: Comparison of the temporal evolution of average particle radius and
interfacial area in the deterministic and stochastic diffusion model.

The comparison of coarsening rates in the deterministic Cahn-Hilliard equation and
the isotropic stochastic diffusion model shows that both models reproduce quite
well the physics of Ostwald ripening in the very late stages of microstructural
evolution (t > 50 h). Nevertheless, the discrepancies of the deterministic model
become obvious during spinodal decomposition and in the early stages of Ostwald
ripening (t < 5 h), where the average particle radius increases much faster than the
growth law c1t

1/3. Due to the incorporation of random effects from solidification for
the very early stages of phase separation the stochastic diffusion system complies
from the beginning of our simulation with the growth law. The randomly induced
formation of irregular clusters of particles leads to an improved behavior in the
decrease of interfacial area, which is for t > 3 h slightly faster than the decrease of
interfacial area within the deterministic framework.

In the second example we present a fully anisotropic random field with an average
orientation of −45◦. In this configuration it is possible to reproduce the oriented
lamellae structure as it is locally observed during the aging experiments of eutectic
Sn-Pb, cf. Fig. 15. The lamellar microstructure evolves predominantly during the
early stages of spinodal decomposition. In the later coarsening stages these struc-
tures coalesce and a clear orientation cannot be recognized anymore.

t = 2h t = 6h t = 12h

5µm5µm5µm

Figure 15.: Micrographs of lamellar structures observed during aging experiments
of an eutectic Sn-Pb solder.

The required parameters for the underlying random field are

H1 = 0.35, H2 = 0.4, H3 = 0.75, θ1 = e−i 1
4
π, θ2 = e−i 1.02

4
π. (45)

Page 18 of 27

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

May 9, 2011 12:51 Philosophical Magazine PhilMag˙revision

Philosophical Magazine 19

The recorded simulation results for the microstructural evolution driven by a lamel-
lar random field are convincing at the first glance. Right from the start of the
unmixing process the concentration field is forced into lamellar structures with an
average orientation of −45◦ as anticipated, see Fig. 16. After the influence of the
random field vanishes at t∗ = 0.00375 the process of phase separation is finished at
t∗ = 0.0075 and a minimization of the interfacial energy is initiated as usual. This
can be seen in a growing thickness of each lamella. We remark that the application
of an external random field accelerates the initial separation dynamics compared
to the deterministic model, cf. Fig. 10.

t∗ = 0.0025 t∗ = 0.00375 t∗ = 0.0075
Figure 16.: Evolution of lamellar microstructure during the early stages of spinodal
decomposition within the stochastic diffusion model (tmax = 0.00375).

t∗ = 0.08 t∗ = 0.2 t∗ = 0.62

t∗ = 1.2 t∗ = 2.2 t∗ = 7.02
Figure 17.: Different stages of phase coarsening in a lamellar microstructure induced
by an anisotropic random field.
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Figure 18.: Temporal evolution of average particle/lamellae area and interfacial
area versus several growth laws.

Since the classical LSW theory with the t1/3-power law considers coarsening of iso-
lated, widely spaced particles of one phase embedded within a large matrix phase
by the so-called condensation-evaporation mechanism, it directly cannot be applied
to the coarsening of highly interconnected, interpenetrating lamellar morphologies.
For the quantification of coarsening of lamellar structures it is not meaningful to de-
fine an average radius as characteristic length scales. Finite difference and spectral
approximation techniques usually employ the autocorrelation of the concentration
field in Fourier space which defines a reasonable structure measure. We follow here
a different strategy and employ the average lamella/particle size which we regard
to be proportional to the product of a dominating length scale and a considerably
smaller reference length. As second measure for coarsening we employ again the
decrease in interfacial area.
After spinodal decomposition is completed, the early and intermediate stages of
phase coarsening (1 h < t < 40 h) are dominated by a faster growth processes than
the classical condensation-evaporation mechanism. This effect was studied by Huse
in [37], where he formulated a generalized version of the LSW 1/3-growth law for
early simulation times of tortuous microstructures. In these lamellar microstruc-
tures the coarsening process is enhanced by an additional conductivity of matter
via the interfaces. For the later stages of ripening process (40 h ≪ t) the structure
asymptotically approaches the 1/3-growth law. Due to the initially anisotropic
random forcing the interfacial area decreases with a slightly slower growth law of
c2t

−1/4.
At this point it should be stated that lamellar and irregularly clustered structures
are inherent in the physics of solidification processes. Especially alloys in eutectic
composition show a variety of microstructural morphologies. For binary systems
one usually distinguishes between four different stereotypes of eutectic morpholo-
gies, see Fig. 19.
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(a) (b)

(c) (d)

Figure 19.: Schematic illustration of typical eutectic structures: (a) regular, globu-
lar or fibrous arrangement, (b) regular lamellar arrangement, (c) irregular faceted
fibrous arrangement and (d) irregular lamellar arrangement. Regular microstruc-
tural arrangements are preferred when both phases have a low entropy of fusion
and isotropic surface energies; in case of a high entropy of fusion the eutectics
tend to form irregular structures. A small volume fraction of one phase favors the
formation of fibers and globular particles, whereas higher volume fractions of both
phases provoke a formation of lamellar structures.

The lamellar microstructure considered in our computational studies results from
the (coupled) eutectic growth during solidification. Eutectics are known to arrange
in lamellar microstructures – resulting from an interplay of different mechanisms
of diffusion and capillary effects during solidification. Further sources of irregular
microstructural formation can be found in slight deviations from the ideal eutec-
tic composition. In such cases precipitates of primary α or β-phase evolve in the
melt, when the system is cooled until it reaches the liquidus line. Further cooling
increases the content of tin in the precipitated α -phase (for c < ceut ) or lead is en-
riched in the precipitated β-phase (for c > ceut). If eutectic temperature is reached,
the irregularly precipitated solid phases serve as nuclei for eutectic solidification
of the remaining melt. A purely lamellar microstructure can only be achieved if
the eutectic composition is kept in the entire system. An illustration of different
solidification scenarios for the Sn-Pb system is given in Fig. 20.
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Figure 20.: Phase diagram of a binary Sn-Pb solder alloy. The insets illustrate
different solidification scenarios around the eutectic concentration. Here, light gray
marks the melt, white the tin-rich α-phase and dark gray the lead-rich β-phase.

Since we have seen that solidification initiates from irregular nucleation and growth,
it is an extremely inhomogeneous process involving the occurrence of locally differ-
ing crystalline orientation. Therefore the resulting microstructure will be inhomo-
geneous as well. During experiments it can be seen that the unmixed microstructure
exhibits preferentially oriented lamellae. This phenomenon can mathematically be
captured by an anisotropic diffusion coefficient. In such models the mobility be-
comes a tensor

M =
1

∂2cΨ
con

(

DisoI+Dania⊗ a
)

, (46)

where Diso is the isotropic diffusivity and Dani denotes the anisotropic diffusion
coefficient. a ⊗ a represents the anisotropic structural tensor with characteristic
direction a. The drawback of this approach is that the experimental determination
of Dani and a is cumbersome.
In our approach the local crystalline orientation can be included straight-forward
by an appropriate random field. Consequently, our last example incorporates
different crystalline orientations into the microstructural evolution. The cor-
responding random field is arranged in an alveolate crystalline pattern, where
each hexagon is subject to a randomly generated set of parameters for the noise
contribution. Fig. 21 illustrates a 4×3 hexagonal lattice used during our numerical
simulations.
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Figure 21.: Illustration of an alveolate crystalline random field with heterogeneous
noise contributions within each hexagon at t∗ = 0.0001. The black lines are for
purpose of illustration only.

The induced microstructure clearly mirrors the locally differing random forcing
during the very first stages of spinodal decomposition. Since the noise contribution
only affects the diffusion process in the initial time steps from t∗ = 0 up to
t∗ = 0.00375, the emerged phase orientation can be observed at best in this time
interval, cf. Fig. 22. After the random field vanished, the phases arbitrarily start
to rearrange into clusters of bigger particles and the ordinary coarsening of phases
initiates. For this reason further illustrations of the simulated coarsening scenario
have been omitted since they do not provide new information.

t∗ = 0.00015 t∗ = 0.001 t∗ = 0.0075
Figure 22.: Simulation of anisotropic diffusion subjected to alternating alveolate
crystalline orientation.

6. Summary

By now it has become evident that Brownian motion is a too simple description of
diffusion processes in complex systems like the rearrangement of particles in the de-
composition of mixtures. For this reason, the authors suggest to replace the classical
stochastic diffusion model of Cook and Hilliard by a new approach corresponding
to a random motion with short-range and long-range interactions and anisotropic
scaling. We have shown that this operator-scaling random field extension of the
Cahn-Hilliard phase-field model is fully able to map the microstructural evolution
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as observed in the experiments. Implemented in the context of isogeometric finite-
element analysis our model simulates isotropic as well as locally anisotropic phase
arrangements in a realistic way.
We would like to emphasize at this point, that the application of an operator-

scaling anisotropic random field does not affect the physics of the model. Of course,
lamellae like phases and oriented shapes can easily be enforced by an anisotropic
material model. For example, the diffusion coefficient and the resulting mobility
of the phases may depend on the direction as outlined in Section 5. However,
in order to demonstrate the effect of the proposed random fields we restrict our
simulations to a purely isotropic phase field evolution. Beyond that, anisotropy of
the microstructure may also result from superposed stresses and it can be enforced
in a simulation by considering elastic stress or strain fields in the the diffusion
model. We have done such simulations but refrain from presenting these in order to
point out that all anisotropy we show here is due to a randomly fluctuating driving
force working within the first few hundredth of the aging period considered.
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Appendix A. Fourier transform

In this appendix, we elaborate on the mathematical details concerning the Fourier
transform to obtain the amplification factor α (k). First of all we formally define

the Fourier transform f̂ of a function f ∈ L1 (Rn,C) (space of integrable functions)
by

f̂ (k) :=
1

(2π)
n

2

∫

Rn

e−ikxf (x) dx ∀k ∈ R
n. (A1)

For the derivation of the amplification factor we take the Fourier transform of the
deterministic Cahn-Hilliard equation with Ω ⊂ R2 and make use of Green’s integral
formula:

∂ĉ

∂t
=

1

2π

∫

R2

∇ · (M∇ (∂cΨ
con − λ∆c)) e−ikx dx (A2)

= −
1

2π

∫

R2

M∇ (∂cΨ
con − λ∆c) (−ik) e−ikx dx (A3)

=
1

2π

∫

R2

M∂2cΨ
con∇c (ik) e−ikx dx−

Mλ

2π

∫

R2

∇∆c (−ik) e−ikx dx (A4)

∗
= −‖k‖2M∂2cΨ

con 1

2π

∫

R2

ce−ikx dx+ ‖k‖2Mλ
1

2π

∫

R2

∆ce−ikx dx (A5)

= −‖k‖2M∂2cΨ
con 1

2π

∫

R2

ce−ikx dx− ‖k‖4Mλ
1

2π

∫

R2

ce−ikx dx (A6)

= −‖k‖2M∂2cΨ
conĉ− ‖k‖4Mλĉ = −‖k‖2M

(

∂2cΨ
con + λ ‖k‖2

)

ĉ (A7)

= α (k) ĉ (k, t) (A8)

During the transformation (∗) the second partial derivative of the configurational
energy ∂2cΨ

con is evaluated in the mean concentration c0. Therefore we assume it
as constant in this very case. Please note that the boundary expressions which are
present in Green’s first identity vanish because of an application of the Cauchy
integral theorem for these line integrals.
Remark that the inverse Fourier transform used for the derivation of Eq. (14) is
given in our model by

f (x) :=
1

(2π)
n

2

∫

Rn

eikxf̂ (k) dk ∀x ∈ R
n. (A9)
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