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Abstract

Classical facet elements do not provide an optimal rate of convergence of the numerical solution toward the solution
of the exact problem in H (div)-norm for general unstructured meshes containing hexahedra and prisms. We propose
two new families of high-order elements for hexahedra, triangular prisms and pyramids that recover the optimal
convergence. These elements have compatible restrictions with each other, such that they can be used directly on
general hybrid meshes. Moreover the H(div) proposed spaces are completing the De Rham diagram with optimal
elements previously constructed for H' and H (curl) approximation. The obtained pyramidal elements are compared
theoretically and numerically with other elements of the literature. Eventually, numerical results demonstrate the
efficiency of the finite elements constructed.
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1. Introduction

The aim of this article is to build optimal H (div)-conforming elements in the same spirit as done in (Bergot et al.,
2010) and (Bergot and Duruflé, 2012) for H' and H(curl) conforming formulations. Finite elements for H (div)
formulations can be used for example to solve Stokes problem like in (Cockburn and Gopalakrishnan, 2005) or Darcy
flow equation (see (Sboui et al., 2009)).

The other goal of this article is to complete the De Rham diagram for optimal elements introduced in (Bergot
et al., 2010) and (Bergot and Duruflé, 2012) of an hybrid mesh (including hexahedra, tetrahedra, triangular prisms and
pyramids).

A first family of finite elements for H(div) formulations has been introduced by Nédélec for hexahedra and
tetrahedra in (Nédélec, 1980), a second one being introduced in (Nédélec, 1986) for hexahedra, tetrahedra and trian-
gular prisms. Nédélec’s first family for H (div) approximation is also known as Raviart-Thomas elements (Raviart
and Thomas, 1977). However, when these elements are used on general unstructured meshes (especially hexahedral
meshes), the interpolation error is not optimal:

Interpolation error = ||u — 7u|| g (giv) = O(hma=(0.r=2)y

where the H (div) norm is defined as
ullfr(aivy = Ilull3 + lldiv ulf3,

7 being a projector from H (div) on the discrete Raviart-Thomas space, r the order of approximation and 4 the mesh
size. This sub-optimal convergence may be very problematic for lowest-order elements and unstructured meshes
including highly distorted elements. The sub-optimal convergence is obtained when the elements of the mesh are not
tending to affine elements when & tends to 0. Affine elements are elements such that the transformation F' linking
reference elements (unit cube, unit prism, unit tetrahedron and symmetric pyramid) to elements of the mesh is affine.
This case occurs if the element is only made of triangular faces (i.e. for tetrahedra), or when the quadrilateral faces are
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parallelograms. In (Naff et al., 2002), some numerical experiments illustrate the lack of consistency of lowest-order
elements. The authors propose non-linear functions in order to obtain a convergent method. An another approach
based on the splitting of an hexahedron in tetrahedra is proposed in (Sboui et al., 2009). These two contributions
seem difficult to extend to higher orders and the expression of basis functions on the reference element depend on the
geometry.

The aim of this paper is to construct high order elements for hexahedra, tetrahedra, prisms and pyramids ensuring
an optimal estimate O(h") in H (div) norm. Such elements will be based on Piola transform, i.e. a basis function u
on the real element will be obtained as:

1
uo F(Z,4,%) = mDF w(z,9,%)

where (&, ¢, £) are the coordinates defined on the reference element K, DF is the jacobian matrix of transformation
F' (which transforms K to the real element K ), |DF)| its determinant. Moreover, these elements will be constructed
such that basis functions on the reference element 4 will belong to finite element spaces P, that do not depend on
the geometry, that is to say they do not depend on the real element K. Such finite elements have been obtained for
general quadrilateral elements in (Arnold et al., 2005), and for lowest-order hexahedral elements in (Falk et al., 2011).
In the theorem 3, these super-optimal spaces are detailed at any order for the four types of elements, the lowest order
hexahedral space is the same as in (Falk et al., 2011). However, these spaces are not unique and not very practical to
implement, optimal spaces will be detailed in the theorem 2 with more attractive properties. The dimensions of these
spaces are very close to super-optimal ones.

To make the transition between triangular and quadrangular faces in a conformal hybrid mesh, the introduction of
pyramids is needed (see (Owen and Saigal, 2001)). Some pyramidal elements has been build by Nigam and Phillips,
a first family in (Nigam and Phillips, 2010a), a second one in (Nigam and Phillips, 2010b). The optimal pyramidal
space detailed in this paper will be compared to Nigam and Phillips spaces, and also to basis functions proposed in
(Graglia et al., 1999). Numerical experiments show that the optimal space is requiring less degrees of freedom to
reach a given accuracy.

We consider the following wave equation:

2
1
Y u v —v(Sdiva) = f, inQ
p p
(H

u-n =0, onI

divu = —iwu-n, on X

with w the pulsation, p, ;x physical coefficients related to the considered media. This simple equation enables us to
study H (div) finite elements in hybrid meshes. A Dirichlet condition is set on the inner boundary I" and an absorbing
boundary condition is set on the outer boundary ¥. As a result, this boundary value problem is well-posed for any
w € R. The variational formulation of the problem is equal to:

Find u € H(div,) such that

1 1 @
Vv e H(div,Q), -w? [ —u-vdxr + f —divu divodr - iw f u-nv-ndr = f frvdx.
Q Qp b Q

The outline of the paper is as follows:
* In Section 2 are given the polynomial and rational spaces used in the following.

 Section 3 is devoted to the construction of “optimal” spaces for the four types of elements (hexahedron, tetra-
hedron, triangular prism and pyramid) as done in (Bergot et al., 2010) and (Bergot and Duruflé, 2012).

* To satisfy sharper conditions, we construct a set of ”super-optimal” spaces in Section 4.



* The trace of the optimal and super-optimal spaces is precised in Section 5 to verify the conformity at the
interfaces.

* In Section 6, hierarchical basis function are given for the optimal space for any type of element, and for the
super-optimal space and the hexahedron.

e The stablity of the elements is treated in Section 7 where we prove that the sequence of the De Rham dia-
gram is exact with the spaces of (Bergot et al., 2010; Bergot and Duruflé, 2012) and the super-optimal spaces
constructed.

* Quadrature formula used to get exact integrals whenever it is possible for the basis functions are presented in
Section 8

* We present in Section 9 a space for pyramids compatible with the classical first family.

* Section 10 is devoted to the comparison of pyramidal elements found in the litterature. A dispersion analysis is
performed in Section 10.1 and the convergence is numerically obtained in Section 10.2.

* The same study is done for hexahedra in Section 11. The dispersion analysis is performed in Section 11.1 and
the convergence study is performed in Section 11.2.
2. Definition of Some Spaces

Let us first introduce the following classical polynomial spaces:

Definition 1. e In2-D:

Po(z,y) = Span{a'y’,i,j20,i+j<r}
P.(z,y) = Span {xiyj, 1,j20,i+7= r}
Qumn(z,y) = Span{xiyj, 0<i<m, OSjﬁn}
~ x
Dr(2,9) :ammmwawwh]
« In3-D: o
P, (z,y,2) = Span{z'y’z", i,jk>0,i+j+k<r}
f”r(x,%z) = Span{xiyjzk, 1,5,k >0, i+j+k:r}

Qumnp(z,y,2) = Span {xiyjzk, 0<i<m,0<j<n, 0<k< p}

Won(z,y,2) = Span {xiyjzk, 1,5,k>0,i+j5<m, k< n}
Sr(z,y,2) = {ueIPﬁ’f), u1x+u2y+u3z:0}
R.(x,y,2) = P eS,

T
QT(xayvz) = Pi—l ®@T*1(xayvz) Yy

z

where R and ©,. are Nédélec’s first family spaces for tetrahedra introduced by Nédélec (Nédélec, 1980), for H (curl)
and H (div)-formulation respectively, ©,. being also known as Raviart-Thomas finite elements (Raviart and Thomas,
1977). The space W,. ,. is the finite element space used for continuous triangular prisms.

We also introduce the approximation space for continuous pyramidal elements (see (Bergot et al., 2010))

r—1 Ty r—k
Br(2.y.2) = Pr(.9,2) @ Y Pi(e.y) (1)
k=0 -

which can be written on the cube [-1,1] x [0,1] as:
Cp(x,y,2) = Span{z'y’(1-2)F, 0<i,j<k<r)
3



using the transformation 7" from the pyramid K (&, 9, 2) to the cube [~1,1]? x [0, 1] of coordinates (7, 7, Z):

i=7(1-7)
g=7(1-7)

The approximation space for H (curl) pyramidal elements (see (Bergot and Duruflé, 2012)) is

1-2)
2PyP y(
B.(z,y,2) = B (z,y,2)@® W #(1-2) |, o<p<r-1
ry
m, n (1_2) n+2, m 0
My t? "y
® W 0 ,W (1—2’) s 0O<m<n<r-21
Z Y
2Pyl (162) xyP 10 0O<p<r-1
O\ A= pyprarir A2y (1=2) |, gcgerst
€ Yy
3. Optimal Finite Element Spaces
K K

F;

S5 =(0,0,1) /_\

>

Sy =(~1,-1,0) Sy =(-1,1,0)

S5 = (1,-1,0) / 85 =(1,1,0) 5
T

Figure 1: transformation F for a pyramid

54

S3

/

The finite element approximation is constructed by considering a transformation F' from a reference element K
(unit tetrahedron, symmetric pyramid, unit prism and unit cube) to a real element K on the mesh (see Fig. 1). This

transformation is written as
A1

1<i<n;

where n; is the number of vertices of the element, S; = (x;,y;, 2;) are the vertices and 4,511 are mapping functions
depending on the considered type of the element. The mapping functions are classical for tetrahedra, hexahedra and

triangular prisms and can be found in (Bergot et al., 2010) for pyramids.

By introducing some constants Ag, A1, As, Az, C,C1,Cs, C3, D depending on the vertices (.9;), the transforma-

tions [ writes as follows
Definition 2. The transformation F for any element is written as:

e Tetrahedron: F' = Ay + A2 + Asy + A3Z



e Hexahedron: F = Ay + A1Z + Aoy + A3Z2 + C129 + Coz 2+ C3yz + DIgZz

e Triangular prism: F' = Ag + A& + Asy + A3Z2 + C122 + Cog 2
( - 2)

There is a bijection between these constants and the vertices, that is the real element K is uniquely determined by
these constants (e.g. Ag, A1, Ao, A3 and C for the pyramid).

e Pyramid: F' = Ag + A1 + Ay + A32 + C

Let us denote )
H(div,Q) = {ue (L*(Q))? such that divu € L*(Q)}.

The unknown w and test function v of the variational formulation (2) belongs to the following finite element space:
Vi = {u e H(div,Q) so that u|x € P}

where PF (K) denotes the finite element space on the element K of the mesh. This space is built with the reference
finite element space space P, (K) thanks to Piola H (div)-conforming transform

PF(K) = {usothat | DF|DF Yuo FeP,(K)}

where DF the jacobian matrix of transformation F', and | DF| its determinant. The space If’,«(f( ) depends only on the
reference element K and on the order of approximation 7, and is thus independent of the element K. The approximate
solution wuy, is the solution to the discrete variational formulation:

Find uy, € V}, such that

1 1 4)
YoeVy,, -w? f —up v dx + f —divuy, dive, dr — iw [ up N vy -ndr = / fropde.
Qu Qp ) Q

To obtain a convergence of u, towards the exact solution u of the problem (1) in O(h"), where h denotes the
mesh size, a first necessary condition is to have the following inclusion (see (Monk, 2002)):

PFSP,_i(z,y,2)>%
Definition 3. The space E, of order r is the space of minimal dimension on K such that
P(K)>E, & PFoP._i(2,y,2)®
for any element K.

Theorem 1. The spaces E, are equal to:

e Tetrahedron:

¢ Hexahedron:

& &3 0
Ey = Pi(&,9,2)% e 0 |e| -9z |e| -iy
BE 0 i3
[ 323 2 0
ol 0 || -2¢® |o| -9*2
| -22? 0 )2
[ 32 ] -32
o| -2y |eo| #* |eo| -92
| -3z L 2?




Forr>1

E,. =
KA |
® 0 e Tg'z2" |o
- O e b O e -
K U |
® 0 | 179'2 |o
- 0 e - 0 e -
[ i,’r'*—lgjz/;’l' 4 0
® 0 | algrttzr
—.’ifTAjZA'T+1 _jjjg'('zf;?"-%-l

* Triangular prism:

Qr+1,r—1,r—1 (‘%, ga 72) X QT*I,T“Fl,T*l (ia Q, ZA') X Qr—l,r—l,rJrl (i'a ?9, 2)

0 0<i
<1 T
Ar?.% 0<j<r-1
2Ty
0 - 0
S T
A.g,% 0<j<r-1
Pyt |
j}’!‘+1g7‘2j
o —irgtia 0<j<r-1
0

By o= (Wooan(2,9,2) 0B (2, 0)P,o1(9) ® (Wrmzpr (£.9.2) @ Broa (2, 9)B,(2))

< R

@ IP)T—I (i'a

N>

e Pyramid:
£n+1 gm
(1 _ 2)m+1
0
0

sm+1l ~sn+l

r v
(1 _ 2)m+2
0

sm an+l

Ty

E, = B,_1(2,9,2)° e

®

0
m gnJrl

(1 _ 2)m+1
0

0

sn+l sm+1

r v
(1 _ 2)m+2

sn+lsm

S
(1 _ 2)m+1

®

0<m<n<r-1

Proof. The proof will be completed for the pyramid and the hexahedron. Let us begin with the pyramid, for which

the transformation F' is equal to

F:AQ+A1£2'+A2Q+A37:’+C

Ly

(1-2)

where (Z,4, %) are the coordinates on the symmetric pyramid. We will express each function either in (Z, 4, %)
coordinates, or either in (7, 7, Z) coordinates of the cube [~1,1]* x [0, 1] defined by the relations

(1
(1

W D
1= 8

W

)
-7)



The derivatives of F' with respect to coordinates of K are equal to:

OF 7
=A +C =A +Cy
T (I B
oF T
= A 07 = A C~
R () B
oF zy
= A - = = A M.
55 3+C(1_2)2 3+ CTy
The columns of the comatrix of DF are equal to:
F OF
comat(DF), = 8A xa—A = Ao x A3+ C x A3T+ Ay x CTY
oy 0z
comat(DF), = 81? x 3lf‘ = A3 x A1+ Asx Cy+C x A1 T7
02 0%
comat(DF), = 3}? x 3}? = A x A+ A1 xCT+C x Aa 7.
ar Oy

Let us take a polynomial p in Pf’,_l. Piola transform writes:
p = |DF|DF 'po F
where |DF| is the determinant of the jacobian matrix. By using comatrix, the relation is simpler:
p = comat(DF)*po F.

Because of optimality of C,. (see (Bergot et al., 2010)), considering a polynomial of IP’i’_l on the pyramid K is
equivalent to consider a polynomial of C>_, on the unit cube [~1,1]? x [0, 1], that is:

poF =29 (1-2)U, i,j<k<r-1

with U a constant vector in R*. Therefore p is equal to:

L. . (A27A37U)
p= comat(DF)'FF (1-2)U = 797 (1-2)"| (43,4,,0)
(A17A2aU)

» T 7y 0

+3 P (1-2)F|(C, A3, U)| -F | + (A42,C,U)| 0 |+ (C,ALU)| 77

0 -7 -7

where (A, B, C') denotes the determinant of the 3x3 matrix whose columns are A, B and C. By varying values of
Ay, As, Az and U, the first term generates all monomials of (Cf_l. For the other terms, we distinguish four cases

1. If i, j < k, all the terms belongs to C>_, .
2. If i = k, j < k, by removing components in (Cf_l, it remains

g1 -3)k . 0
0 , PPA-2| W |, m<k i<k
0 -T

3. If j = k,i < k, by removing components in (Cf’._l, it remains

0 4 g
A=k |, #FFa-F o |, m<k j<k
0 -7



4. If ¢ = k, j = k, we have the following terms

T (1-2)k 0 Ty 0
0 -l #FFa-nt |, FPra-F o | #Fa-9)t|
0 0 -7 -7

The two first terms are already treated in the second and third case and the last two terms can be added to the
second and third case by extending j until k (instead of j < k).

Finally, by taking polynomials p in IPE_I, the following space is generated:

(1 -7)" 0
C, e 0 ;| Tt -2k |, 0O<sm<k<r-1
0 0
ffj+1§4c+l(1 - k 0
® 0 | FPTa-F |, 0<ji<k<r-1
_»fjfzjk+1(1 _ %—)k —f’ﬁlfl]ﬂl(l _ »Zv)k

When we write this space in coordinates (i, ¢, 2) we recover the claimed space E, for the pyramid.

We now consider the following transformation for a general hexahedron:

N>

F=A)+ A2+ Ayj + A32 + C12g + Cox 2+ C3452 + DIy

The derivatives of F are equal to:
oF

oz
oF
9y
oF
0z
The columns of the comatrix of DF are equal to:

OF OF
oy~ 0z
+&7(Ag x D+ Cy x C) + 22(D x Az + C3 x Ca) + #2(C x Cy)

+&2G(Cy x D) + 222(D x Cy)

= A3 + Cg.i' + Cg:l) + D.i‘:l)

comat(DF),

= A2 XA3+£‘(01 XA3+A2 X02)+Q(A2 X03)+2(C3 ><A3)

OF y OF
8: = 9%
+&(D x A+ Cy x C1) + §2(As x D + Cy x Cy) + 2 (Cs x C1)
+22(D x Cy) + §22(Cs x D)

comat(DF), = A3 x A1 +2(Cox A1) + (A3 x C1 + C3 x Ay) + 2(As x Cs)

oF  OF
oi 0y
+i)2(02 X Cl + A1 X D) + gj/?i’(cl X Cg + D x AQ) + ,"2’2(02 X Cg)
+#2%(Cy x D) + 3%(D x C3).

comat(DF)z = = Al X A2 +£i'(A1 X Cl) +g}(C1 X AQ) +2(A1 X Cg +CQ X Ag)

Let us begin with a polynomial p in ]P’i’_l. Because of optimality of Q,. (see (Bergot et al., 2010)), it is equivalent to
consider a polynomial of Qf’._lz

poF = &' ¢l 28U, i j<k<r-1
8



with U a constant vector in R*. Therefore j is equal to:

o - (A2, 45,U) z
b= comat(DF)"a' i 28U = &' 5 { | (A, A1,U) | + (C1,45,0)| =
(AlaAQaU) 0
+(A2,C2,U) 0 +(A2,C3,U) 0 +(C3,A3,U) 0 +(A2,D,U) 0
= 0 0 T
-39 | [ @2 i’
+(Ca,CLLU) | 5 [+ (D, A3, U)| =52 | +(C1,Co,U) | ~d
-9z | | 0 T
%9 [ %2 0 0
+(01,D,U) —JZ‘AQ +(D,CQ,U) 0 +(CQ,A1,U) T +(03,A1,U) :l)
0 | -32? 0 -2
0 0 iz
+(A37027U) z +(D7A17U) jg +(CS7027U) g'g
0 ~&2 -z?
0 0 0
HC3, D,U) | 572 | +(Cr Az, U)| 0 |+ (4,00 | 0 |}
—2? 1 z

The coefficients (Ag, A3,U), (43, A1,U), (A1, A2,U), (C1, A3,U), (A2,C2,U), (A2,C3,U), (Cs, A3,U), (A2, D, U),
(C3,C1,U), (D, A3,U), (C1,Co,U), (C1, D,U), (D,Cs,U), (Co, A1, U), (C3, A1, U), (A3, C2,U), (D, Ay, U),
(C3,C5,U), (C3,D,U), (Cy,A2,U), (Ay,C4,U) viewed as functions of variables U, Ag, A1, As, A3, C1,Co,C3, D

are linearly independent, therefore all the associated monomials are needed to obtain ]P’f_l. By a simple recombination

of these monomials, they can be enumerated as follows:

1] [o] Jo]l [34 0 0 | ¥ 0 0
01, 1, 0|, 0 |, & 0 |, 01, 7 |, 0
o o] 1] |o 0 & 0 0 i
21 [o] [o] [ #p i3 [0
0 ’ Z ) 0 ) 0 ) —:l)ZA’ ) jg
o] [of 2] | -9 0 | -@2
[ 2 -2y iz %y i’z 0
—i?) ) 272 ) _gé ) _*%Az 3 0 ) g22
| -3 L 52 0 S ~§52

JUIN

These monomials have to be multiplied by &7 2k with 4, J,k <r—1 to obtain the needed functions to generate Pi_l.
When r = 1, all these monomials are needed, and no further manipulation is necessary. When r > 1, we will make
manipulations in order to obtain a suitable expression of E,.

Because of the presence of (,0,0), it is immediate that the following functions:

2]

jj'l@?
0 |, O<ij<r-1
0

belong to E,. Let us now consider the following combination between functions of E,:

QA,/_Z+2 g] 2]@ 0 0 SAC’L'JrQ ,gjék
. . - -1 4
_xz+1y]+lzkr +| 4¢ +1:g] 2]6 + 0 - 0
—i’z+1:l)],€’k+1 0 ij‘*’lymén 0



All the functions of this equality belong to E, if
0<i, 4, ki, 5 k', {,mn<r-1
This equality becomes true if we have

z=i, ji=+1, kK =k
{= m=j, n=k+1

This choice of indices is possible if j,k < r — 2. As a result, the monomials (33”2 20, 0) belong to E,ifi<
r—1, j,k <r—2. The following combination is now considered:

~ 2 g - ~ -/ ~ -/ ~ ’ i N
’L+ y Z o +2 y_] Zk +1 0 1_24—2 y] Zk
Al+lyj+l sk +9 0 _ i,€+1gm+1zf;n _ 0
" N ~ -/ ~ 4 ~ ’ A~ A A
_$2+1yg Zk+1 | _pt +1y‘7 Zk +2 _m€+1ymzn+1 0

This identity is true as soon as:
i’ =1, i'=1J K=k-1
{=1, m=j, n==Fk

This choice of indices is possible if k£ > 1. Therefor¢ (x”Q ' ,p, 0) belongs to E.if1<k<r-1and 1,7 <r—1.
With a similar combination we can also find (22 §7£",0,0) i inEifl<j<r-landik<r-1
As aresult, if r > 1, the following monomials belongs to E,.:

T+1g7,2j
0 , 0<i,5<r-1

0

Let us now consider the following combination:

A‘lA'lAk A ~3 41 oK A ~ 2 A
i+ y]+ J)7 +1 y] +1Zk x€+2ym+1zn 2+1 yj+1 sk
_ !%Zy'\]+2 sk + O _ _£€+1gm+22n — O
-/ -7 ’
.’L'Zyj+1 sk+1 4t g] +12A:k +1 0 0

This identity becomes true when
./ . -/ . !
=i, J=j K=k
{=1-1, m=j, n==k

This choice of indices is possible if i > 1. If 7 > 1 and by takmg i = r — 1, we obtain the function (Z"§"2%,0,0) in
E, with k <7 —1. Similarly, we can obtain the function (2" y 27,0,0). Because of the presence of the monomials
(9,0,0) and (%,0,0), the functions (A“T £k.0,0) and (2'9" 2,0, 0) with i,k < r — 1 belong to E,.. As a result, the
following monomials are included in E,:

By regrouping the different results, and exploiting symmetries, we have proved that E, contains the following func-
tions:

[ 27z 1T o 1[ 0 ]
0 ) L%ngék ) 0 ’ i§r+17 j7k§r—1
| o | [ o | [ &g
[ i‘igrék 1T jjigkér 1T 0 h 0 0
0 , 0 | oamgiak || #Rgtam |, 0 , 0 , di<r, k<r-1
| o | [ o ][ o ] 0 T ihgrs




Let us now consider the monomials

iﬂ,+2g]+12k§ iﬁ-?g] 2k+l 0
i+l AG+2 A i aj+2 sk
_ml+1yj+2zk , 0 , xzyj 3
0 _£z+1g32k+2 _£z§3+12k+1

These functions can be written as combination of the previous functions that are included in E,, except when

1 =j =r — 1 for the first monomial
i =k =r — 1 for the second monomial
j =k =r—1 for the third monomial
With this choice of indices, we have found the last monomials of Er. O

Following the principles used to construct H (curl) optimal spaces defined in (Bergot and Duruflé, 2012), the
optimal space on K is defined as

Definition 4. The optimal space of order r is the space Pﬁpt(K’ ) of minimal dimension on such that
P.(K)> P’ (K) & PF>®,(z,y,2)

for any element K.

Theorem 2. The optimal spaces pr t are equal to:

¢ Tetrahedron:

PPt = D,(2,9,2)

¢ Hexahedron:

P:pt = Qr(ﬁagaé) = QT+2,T,T’(§37yAa 2) X Qr,r+2,r(i'7g72) X Q'I’,T,’I"-FQ(‘%ay?é)

* Triangular prism:

PP = ,(2,9,2) = (Drs1(8,9) ® Pr(2)) x W,y rya(2, 7, 2)

e Pyramid:

Pt = B,(8,9,2)°
= Br—l('ia:&vé)g
£7L+1:g7n 0
71 _ 2\m+1l sm sn+l
® (1_'(2)) +l ) % 0<m<n<r-1
— 3)m
0 0
z 0
Zm :Qn+1 ré) i,n+1 gm y
@ 7(1 A) 1 0 (1 A) ) (1 A) 0O<m<n<r-1
—3)m —_3ym -2
- -1
z
VA gy | At | O
- (1-2)
-1
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The optimal space for the pyramid is polynomial when expressed in the cube [-1, 1]2 x [0,1]:

) g (1-2)" 0
PP oT = C, @ 0 .| #mrtta -2 |, 0<ms<n<r-1
0 0
f’i+1il+l(1 _ Z)n 0
® 0 , FHTt A - |, 0<m<n<r-1
g (1-7)" g (1-2)"
- T
o TP(1-2)"| ¥ |, 0<i,j<r
-1

Proof. For any type of element, by construction, we obviously have

E, c pr t
_ x
The remaining polynomials to consider are the polynomials p of P,_; | y | This part of the proof will be conducted
z

for the pyramid and the hexahedron.
Let us begin with the pyramid. We consider a polynomial p such that

x . .
y =77 @1-2)""
z

p = alyl " ,j<r—1

N ey

by using the optimality of B,.. The first component of p is equal to:
pe= TP(1-%)""' comat(DF), - F =
TP(1-2)" (A x A3 + Cx AsT + Ay x CF) - (Ao +As + A1 T(1-%2) + A5(1-2)
- A3 (1-7) + CTH(1-7)).
If we note Ay = Ay + A3, we obtain:
bo= TP -7 (A2 Ag, Ap) + (Az, A3, AN T(1-2) + (C. Ay, A) T
+(C, A3, A T2(1-%) + (Ag,C, Ag)TF + (As,C, A1) F2G(1 - %) - (AQ,C,Ag)’fﬂ(l—’z“)].
Similar computations give the following values for the second and third component of p
by= TP 12" [(As, A1, o) + (A, A1, A2) T(1-2) + (A5, C, Ag) T

+(43,C, A)TP(1-7) + (C, A1, A)TT + (C, A1, A2) TR(1-7) = (C, A, A3) 75(1 - )

p.= FPQA-2) [(Al,Az,[lo) - (A1, A3, A3) (1-2) + (A1,C, Ag) T - (A1,C, A3) Z(1-72)

+(C, A2, A) T + (C, Az, A\ TY(1 - %) - (C,A27A3)’y“(1—’5)].

12



The terms involving A, can be removed since they have already been treated when considering p in ]P’f_l. It remains
the following monomials:

. 7(1-%) 72(1-%)
FPA-2"( (A, A2, 45) | T(1-2) | + (C, A5, A1) | F(1-7)
-(1-%) -7(1-7%)
7y(1-72) Ty(1-7)
+ (CvAlaA2) @2(1 —’Z\") + (C7A2aA3) gz(l _z) ’ Za] <r-1.
-Ty(1-72) -y(1-72)

We notice that the coefficients (A1, As, A3), (C, As, A1), (As,C, A1), (C, Az, As) viewed as functions of the ver-
tices of the pyramid Sy, S1, 52, S3, S4 are linearly independent, then all the monomials are needed. These monomials
can be regrouped in a single family:

@ 8]

TP(1-7) . QL j<r

-1
We recognize here the last family of the optimal space of the pyramid, the other families coming directly from E,.
Let us consider a general hexahedron, and the polynomial p:
x
p=1Y
z

Because of Piola transform, the first component will be equal to

be = (A2xA3 + @ (CixAs + AsxCy) + §AsxCy + 5C3x Ay + 2§ (Ag x D+ Cy x Cy)
+32(Dx Az +CyxCy) + 20y xCy + #2GCy x D + £22D><C2)-(A0+§CA1+QAQ+2A3
+gegcl+gz202+ggcg+:zggp).

13



By expanding this expression, and computing the two other components of p, we find the following result

0 72 7 by
p =(A1,42,C1)| O + (A1, A0, Co) | 29 | + (A1, A2,C3) | 9% | + (A1, A2, D)| @92
—&y 0 0 -39z
[ 32 0 -&3 222
+(A1,45,C1) O + (A1, A3,Cy) | 22 | + (A1,A43,C3) O + (A,A3,D)| -292
| -4z 0 -2 $2*
[ 0 ] [ 0 j% I
+ (A9, A3, C) | 92 | + (A, 43,C9) | 92 | + (A, 43,C3)| 0 | + (A, A3, D)| -9%2
| 92 ] | 22 0 -§2°
[ 27 ] [ &%) -3%2 0
+ (AlaclacQ) 0 + (AlaclacS) 0 + (Al,CQ,Cg) AT + (A2701702) —i'ZJQ
| 0 ] | 292 0 —292
[ 0 T 0 Yz
+ (A2, C1,C3) | —3° | + (A2,C5,C3)| —5°2 | + (43,C1,C2)| 292 | + (A3,C1,C3)| 0
e 0 -32* §2°
[ 0 o -3%% 0
+(A43,C2,C3)| 0 | + (A1,C1,D)| O + (A1,Cy, D) 0 + (A1,C3,D)| 29°2
| 2° 0 0 -&72*
[0 -3%92 0 %92
+(A,C1,D)| -2§® | + (42,0, D) 0 + (A2,C3,D)| §°2 | + (43,C1,D)| -a3°%
| o i92? 0 0
[0 0 &%y -z
+ (Ag,CQ,D) O + (Ag,Cg,D) 0 ) + (Cl,CQ,Cg) SAUA22A: + (Cl,CQ,D) 0
&23 —gz? iys? 0

0
+(C1,Cs5,D)| 2y + (Cy,Cs,D) 0 + other terms in P3.
0 —7y53

are linearly independent, all the monomials written above are

Since the coefficients (Aq, As, A3), (A1, A2, Ch),. ..
needed to generate ©,.. When we combine these monomials with monomials of E;, we can observe that we obtain

exactly
Q3,1,1 x Q1,31 x Q1,13

For any r, since we have to multiply by the polynomials 73’ 2% with 0 <, j, k < — 1, we obtain that:

popt _
Pr = Qr+2,r,r X Qr,r+2,r X Qr,r,r+2-

Remark 1. The dimension of the optimal spaces is equal to
 Triangular prisms:

o Tetrahedron:
’I’(T+1)(T+3) dim POPt: (T+1)(T+3)(37’+2)
S T 2

dim P°P' =

e Pyramids:

e Hexahedron:
(r+1)(2r% +7r+2)

dim PP = 3(r +3)(r +1)? dim PP" = 5

14



4. Super-Optimal Finite Element Spaces

The needed and sufficient conditions in order to obtain optimal error estimates for H (div) are the following ones

(see (Falk et al., 2011)):
PrF > ]Pr_l(l', Y, 2)3
divP¥ 5P,y (z,y,2)

The optimal spaces previously constructed verify these properties since div ®, = P,._;, but spaces of lower dimension
satisfying to these conditions can be constructed for each type of element.
We first define the following space:

Definition 5. The space F, of order r is the space of minimal dimension on K such that
div P.(K) > F, < div PY 5P,y (2,y,2)

for any element K.

Theorem 3. The spaces F,. are equal to:

o Tetrahedron:

e Hexahedron:

[ PPN s+l amoan  smar+lan amangr+l
Fr _ Qr,r,r(x»yaz) ® {$7+ ymzn7 xmy7+ Zn,xmyn27+ , 0< m,n < ,r,}

 Triangular prism:

F,. = Wr,r(jja ?37 2) @ Pr—l(j:’ Z)) 2T+1
* Pyramid:

P &'y 0<i,j<k+1
T (1-3)its-k’  O<k<r-1

Proof. We complete the proof for the pyramid and the hexahedron. Let us consider a function p ¢ PTF , such that
divp = xiyjzk, i+j+k<r-1.
For the pyramid, because of optimality of C,._1, it is equivalent to consider a function such that
divp = TP (1-2)F, i,j<k<r-1.
We use again coordinates (%, 7, %) of the symmetric cube [~1,1]? x [0, 1]. We have the relationship
divp = [DF|p.
The jacobian |DF| is equal to:
|DF| = (A1 + CY)x (A2 + O%)-(As + CTY) = (A1, Az, A3) + (A1,C, A3)T + (C, Ay, A3)T + (A1, Ay, C)T7.

Since the constants (Aj, As, As), (A1, C, A3),(C, Aa, A3), (A1, As, C) viewed as functions of Aj, Ay, Az, C are
linearly independent, the following monomials are necessarily included in F.:
P2 BP0 FE -9 B (-9
For instance, the last monomial gives:
i+l ~7+1
~itlog+l1 =k _ Ty
Tyt (1-2)" = (1 z)ilwisik

15



By naming i’ = i +1,j" = j + 1, we obtain:

-/ -7

I
i i ~ x . .
A-/L+1A-ﬂ+1(1 )k Y i <]l

REECER k+1

IA

which corresponds to a function of F,.. Tt is immediate that these monomials will generate all the functions of E,.
For the hexahedron, we consider a function p such that

divp = 2'972%, i,j,k<r—1.
Similarly to the pyramid, the jacobian |DF'| of the hexahedron can be expressed as
IDF| = bo + bid + bofj + b3’ + byiefj + bsiz + bz + bydz + bg @2 + boi®y + bio@?2 + b1 222 +
biof? + bis@y? + biaf®2 + bis@9?2 + bigs? + bir@z? + bigE? + brodys?

with linearly independent functions by, by, -, b19. Therefore all the functions of Q41 + Qp 1,7 + Qo ri1 are

necessary and sufficient to generate any p such that divp € P,_1(z,y,2). We obtain the claimed space E,. for the
hexahedron. O

Proposition 1. The divergence of the spaces E, is equal to

o Tetrahedron: * Triangular prism:

divEy =0 divE, = 0
Forr > 1, Forr>1,
divE, = P_o(2,9,2) div By = W, 5, (&, 7, 2) 0P, 1 (&, §)Pr1(%)
o Hexahedron: * Pyramid:
: A 1
divE, = Span{l} divE,=F,_, & { - A}
-2

Forr>1, with the convention

diVEr = Fr—l FO =g

Proof. The proof is immediate by computing the divergence of all monomials of E,. Tt should be noticed that 1

-z
for the pyramid is obtained as the divergence of the function

sn+lrsm

X ¥
(1-z)m+1

O =

for the special case m = n = 0. Other values of m,n give a divergence in F,._1. The divergence of the functions of
the last family appearing in the expression of E,. is null. U
Now we have all the ingredients needed to find the super-optimal finite element spaces.
Definition 6. A super-optimal space of order r is a space P*~°P'(K) of minimal dimension on such that
~ ~ ~ PfDPr—l(xay7Z)3
B(R) > Pt = .
divP. oP._4(x,y,2)

for any element K.

16



Theorem 4. A set of super-optimal spaces Pf‘om is equal to:

¢ Tetrahedron:

Prort = ©,(#,9,2)

¢ Hexahedron:

R 0 0
psovt - 0 | oaigiEk |, 0 |, 0<i<r+1,0<5k<r-1
0 0 #gks
[ 27z 1 o 1[ o ]
o 0 | aigick |, 0 . i=r+2,0<k<r
o | [ o | [ &gt
B4 I O B VA
® 0 UL 0 |, O<i<r+1l, 0<k<r-1
o [ | o || @9k
A I O I U
o 0 N L 0 |, 0<i<r+1, 0<ks<r-1
o || o || k]
[ ;IA:T+1QTAT
@ JA,‘TZQT+12A5T
| ﬁT@TﬁTJrl
e Triangular prism:
A A N N i
Prrort = per\ {(By(a,9) 27) % {0} } o Bpa (2,9) 27| 9
0

e Pyramid:

ps—opt _ popt
psort = pr

Proof. We make the proof only for the hexahedron. For r = 1, it suffices to examine the 21 monomials of Fy and the
19 monomials of F;\{1} to check that P, " * satisfies the appropriate conditions, and is minimal since its dimension
is equal to 40. For r > 1, since div E,, = Ar_l, the condition

div PSPt 5 F,

is equivalent to o o
div P5P' 5 F\F,_y.
This last condition is much more interesting, since it will not overlap with the condition
P.oE,.
Therefore, a minimal space will have the following form:
N e
17



with o o

div GT = Fr\Fr—l-
We see here that G,. cannot be uniquely determined by this relation, an infinite number of spaces will satisfy this
relation. That’s why the optimal space P°~°"" is not unique. In order to choose a space, we have applied the following
rule:

- il ik ]
.’ITH— y]Zk

p= 0 L ifi> gk
|, if >k
,ifk>i,j
divp = adiyl, 2P ={ p=| @'¢/TEF |, ifi=j>k
p = 0 , ifi=k>j

G =k

p=| &gtk |, ifi=j=k.

By selecting this rule, the obtained optimal space keeps all the symmetries in X, y, z. We have:
ENEF_y = {@7g78", #7g's", #'g72", i<r-1}
@ {jjf‘y?"é'r‘} @ {£T+1:gi2j’ af})i@f‘+12j7 i,i:ng@T‘+17 Z,j S 7,} .

With our rule, we obtain:

£T+1Qr2i :/C\’rJrly\iéT 0
i,’l“g’l”rléi , [ 0 , ;/U\iyA’l‘+12T i<r— 1
AT A1 aT+] AT AT aT+]
G - 0 'Yz 'y z
i.?"+1y7“2?“ A7‘+2g121 0 0
of| &g 12" }@ 0 ], TR 0 , G,j<T
af:/,’r‘,g’r‘ér+l 0 0 ;i'igjjér+2
Since we have
j“’l Qril i,r+1@r2i
jTgT+12i c Gr and _.,i,rgr+12i c ET,
0 0

we obtain by summation (#""1§"2%,0,0) € P°P', and symmetric monomials in §, 2. By merging all the other mono-
mials of G, and E,., we obtain the claimed expression of P5~", O

18



Remark 2. Since the divergence of two different spaces can be the same, the super-optimal spaces are not unique, an
infinity of super optimal spaces with a minimal dimension do exist. We have given here a set of super-optimal spaces.
In the numerical experiments the basis functions chosen for the hexahedron (detailed in proposition 3) will not span
the proposed space, but an equivalent one of the same dimension.

Remark 3. The dimension of the super-optimal spaces is equal to

o Tetrahedron:  Triangular prisms:
dim P*~°P* = dim PPt dim P~°P* = dim P%P' — (2 +7)
* Hexahedron: * Pyramids:
dim PPt = dim PP — (5 + 3r) dim P3Pt = dim PP

We see that the dimension of optimal finite element spaces is very close to the dimension of super-optimal finite
element spaces. Therefore, since the optimal spaces do not include any linked function and has an attractive tensorized
structure, these spaces seem more suitable for the numerical computations.

5. Restriction of Normal Traces on the Faces

To ensure the compatibility between elements, it is essential that the restriction of normal components of the
functions span the same space on triangular and quadrilateral faces. A simple computation provides the following
theorem:

Theorem 5. The normal traces of optimal finite element spaces prt are equal to:
Qv (x,y) for quadrilateral faces

P,._1(x,y) for triangular faces

The normal traces of super-optimal finite element spaces I:’f ~°Pt are equal to:
Qrr(z,y) \ {z"y"} for quadrilateral faces

P,_1(z,y) for triangular faces
Proof. The proof is completed by computing for each monomial p of P,f’pt the quantity p - n on each face of the
element, where n is the normale. O
6. Hierarchical Functions

We present here a simple hierarchical basis for optimal finite element spaces P:pt by using Jacobi polynomials

Pf‘jﬁ , but other choices could be considered.

Proposition 2. The following basis functions are an hierarchical basis H(div) conforming of prt

e Hexahedron:
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HIERARCHICAL H(DIV) FUNCTIONS FOR THE CUBE

For the faces :

[ 2P0 (25-1) P22 -1) 1 [ (1-2)P)0(2g-1) P22 -1) ]
0 , 0

| 0 1 L 0

I 0 17T 0

gP°@e-1)P)02z-1) |, | (1-9) P28 -1) P)0(22-1)

i 0 I 1 0

[ 0 1 71 0
0 ) 0

| 2P?0e-1) P (25-1) | | (1-2)PPPQe-1)P0(25-1) |

For the interior functions : ) )
#(1-2) P (28 -1) P29 -1) PYO(22 - 1)

0

0

[ 0
§(1-9) PP y-1) P22 -1) PP0(22 - 1)
0

[ 0
0
| 2(1-2) PP 2z-1) PP (28 -1) PYO(29 - 1) ]

0<i,j,k<r

20




e Triangular prism:

HIERARCHICAL H(DIV) FUNCTIONS FOR THE PRISM

For the faces

R 0
2 s
pl.O’O(LAJ)(1—;;)1Pj2’+1’0(2y—1) 0 |, 0<i+ji<r-1
1-9 1-2
PO 22 1) (1—g) PEO(25 -1 g O<itj<r—1
i \1og (1-9)"P; (29-1) 0 |, 0<i+j<r-
z
0,0 0,0 [ &
P28 -1) P)0(22-1) gal , 0<ij<r

z
0,0 /05 0,055 . .
P; (2y71)Pj (22-1) g(/):|, 0<i,j<r

0,0 /05 0,055 . .
P; (2y71)Pj (22-1) - ], 0<i,j<r

For the interior functions :

&g 2@ -1) 0
P il 9(-1) |, Pijx 29 , Pk 0 )
0 2(1-2)

2% .
with P ; = P™° (—m - 1) (1-9) P210(29 1) PPO(22 - 1)
g

1-

4,5, k>0, i+5<r-1, k<r

21



e Pyramid:

HIERARCHICAL H(DIV) FUNCTIONS FOR THE PYRAMID

For the faces :
L oo & 00( 9 (6.9) 2
_p> ( )P’ ( ) 1 — z)ymaz(s,J -1 4 , 0<Z’,4§T
471 1-2 j 1-2 ( ) 1_yA J
r -32
1-2
1 T ’ . A o
SR () - POy | 20295~ 62 |, iejer-1
80 -2 ’ — 12z
L z
r -TZ
1-2
1 T ; ; PN IS
SR (1) -a P02 | 2004522 <95 | iegere
8 ° 1-2 J T2
L 2
- —2(1-d-2) - &2
1-2
1 { ) . .
SR () a-aipoee- 32 L iwjer-1
8 ° 1-2 J -3
L z
r 2(1+&- %) - &5
1-2
1 0 o o
7P.0’°(—yA)(1—2)1P21+1’0(22—1) L L itj<r—1
8 ° 1-2 J T-3
L 2
For the interior functions :
&Yz 1-2-22
ey 1-2 o
Pije| 92 |, Pije| 1-2-9> |, Pijk 1Yz
(1-2)2 1-2
-9z -&2
WithPijk=Pi0’O( IA)PQ,O( yA)(l_2)maz(i,j)—1P}?maz(i,j)+2,0(22_1)
o 1-2/) 7 1-2%
4,5,k>0,4,j<r-1, k <r—1-max(i,j)
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e Tetrahedron:

HIERARCHICAL H(DIV) FUNCTIONS FOR THE TETRAHEDRON

For the faces :

i ~

24 Y %
P-O*O(l_“’ —1) (1@>1Pf”1’°(2gl>[ —yA]

0,0 2& 2\i p2it1,0 105 .
P! (571)(17,2)113].2 2:-1)| §-1

A 1-
2 .
Pf*o(% —1) (-2 P002z-1) -9 ]

24 o z
P;’ao(%-l) (1-2) P02z -1) | g ]
E

i,j20,i+j<r—1

For the interior functions :

23 2§ 2(3-1)
P; ;& 9z , Pkl 9@-1) |, Pijx g ,
2(:-1) 92 &3

2% S 29 ) o
with Py 5, = P° (ﬁ _ 1) (1_g_2)zpj27,+1,0 (% _1) (1-z2) P:(7,+]+1)+1,0(22_ 1)

i,J,k>0,1+j+k<r—-2
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Proposition 3. The following basis functions are an hierarchical basis H(div) conforming of a space similar to Pﬁ —opt

HIERARCHICAL H(DIV) FUNCTIONS FOR THE CUBE AND Pﬁf"pt

For the faces :

[ 2P0 (25-1)P02:-1) 1 [ -2)P)P(29-1) P0(22-1) ]
0 ) 0 , 0<id,j<r i+j+2r
0 1 1 0
0 0
QPZQ’O(%:—I)PJQ’O(%—I) , (1-@)131970(2@—1)P]970(22—1) . 0<i,j<r i+j%2r
0 | L 0
0 1 7 0
0.0 0 0.0 ) 00 0 0.0 , 0<i,g<r, i+5%2r
| 2P?0e-1) P (25-1) | | 1-2)PP°Qe-1)P(25-1) |

For the interior functions :
[ 2 (1-2) P22 -1) P)O(25-1) P02z -1) ]
0
0

0
G -9) PP 2g-1) P28 -1) P22 - 1)
0

0
0

| 2(1-2) PP (22— 1) P22 - 1) P25 - 1) |

0<i,j,k<r;i=rorj+rork#r
A linked function
&(1-2) P (22 -1) PPO(25-1) P00 (22 - 1)
§(1-9) P2t (29 -1) P20(22 - 1) P20(22 - 1)

2(1-2) PR (22-1) PY0 (28 - 1) PX(25 - 1)

7. De Rham Diagram

The stability for H(curl) and H(div) conforming elements comes from the exact sequence of De Rham diagram
(see Monk (Monk, 2002)) which is directly linked to Helmholtz decomposition

grad curl div

H' = H(cuwrl) =5 H(div) — L?

U U U U ©)

grad div
—

1 curl
W, — Wy

l
cur W2

T

div
W

where W1, Wt W and W2 are the spaces of order r discretizing respectively H* (), H (curl,Q), H(div,Q)
and L? (2) (see Demkowicz Demkowicz et al. (2007)). The approximation spaces must then verify

Im grad W},, = Ker W = {ue weer | curlu = 0}
Imcurl Wt = Ker W = {ue W |divu =0} (©6)
Im div W3 = Ker W? = W2
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for the four types of elements. (Dular et al., 1994) proposed a formalism to construct tetrahedra, hexahedra ans
triangular prisms respecting the De Rham diagram. For the pyramids, (Nigam and Phillips, 2010a,b) and Zaglamayr
cited in (Demkowicz et al., 2007) have constructed approximation spaces or ordre r respecting the exact sequence.

We now check that the approximation spaces constructed in this paper and in (Bergot et al., 2010; Bergot and
Durufié, 2012) respect the sequence (6).

Theorem 6. For any order r, the following sequence is exact

Im grad Pfll = Ker pH(curl) _ {ue PHCD |yl = 0} @)
Im curl PR = gop pH(div) _ {ue PHER) ) iy = 0} (8)
Im div PH) _ gop pL* = pL* 9)

with the following spaces
P.(&,9, 2) for the tetrahedron
Qv (2,9, 2) for the hexahedron

pH' =
" W, (2,9, 2) for the prism
B, (&,9, 2) for the pyramid
R, (&,7, 2) for the tetrahedron
priteurt) Qro1 41,041 (2,9, 2) X Quat po1,041 (2,95 2) X Qpit pr1,-1(Z, G, 2) for the hexahedron
r ] (Re(2,9) ®Pri1(2)) x (Pry1 (£,9) @ Pr1(2)) for the triangular prism
B.(Z, 9, 2) for the pyramid
pH) . ps-opt
P,._1(%, 9, 2) for the tetrahedron
Qrrr(2,9,2) @2 Qr (9, 2) @ 9" Qr (2, 2) @ 271 Q,.(2,9) ® for the hexahedron
PTLZ =\ W, (&,9,2) ®@P._1(&,9) 2™ for the prism
{(1—932%“’ ?fé’]z ;]f } for the pyramid

Proof. The proof is completed for the hexahedron. Let us take a function u in Q,.,.,., obviously its gradient will
belong t0 Q_1r X Qp r_1,r X Q. _1, Which is the space PT,H (curl) Therefore we have the inclusion

Im grad PTHl c Ker pH(curd),

Let us now take a function v in Pfl (curl) such that curl u = 0. Because of polynomial identification, it is equivalent
to consider a function of the following form:

a yj sk
u = lei A Ak: ) OSi?j,7k,,ST_17 0Si,7i,,7j7j,,7k,kllsr+1’ a7ﬁ77ER'
A'i” /\’4,’/\ ”
vty oz

The curl of this function is equal to:

-/ -/ ’

’Yj”-'lfl g] -1 k _ Bk’i’z ~ ﬁk -1

. ”
qu — Oé]ffi'ly 7:,]{: 1 _ ’YZ”(%Z —ly sk
BZ .’i'l ly sk’ _ ajﬁlgjflék
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Let us consider the case where i',i", j, j" k, k" > 1, then c, 3,7 # 0 otherwise © would be identically null. We obtain
the following conditions in order to satisfy curl u = 0:

-1 -/ .
a=1 =1 =1+1

b= == +1
c=kK =k =K'+1

with 1 < a,b,c <rsince 0 <4,j', k" <r-1. a, 3,7 are solution of the linear system:

yb-pBc =0
ac—va =0
Ba-ab =0

The rank of this system is equal to 2, a non-trivial solution is equal to
(a7 187 ’Y) = (a” b7 C)

Hence, we have obtained:

a‘,i_afl gb sC
na ~b-1 4 .
u = bzy z _ V(J?a b C)
~a ~b sc—1

1
Since 1 < a,b,c < r, 2°4°2¢ € PM . Other conditions on i,i”, j, 5", k, k' lead to the same kind of result, with

0 < a,b,c<r. Therefore we have proved that
Ker P c Im grad PfIl.

Since we have the two inclusions, these two spaces are equal