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Abstract

Classical facet elements do not provide an optimal rate of convergence of the numerical solution toward the solution

of the exact problem in H(div)-norm for general unstructured meshes containing hexahedra and prisms. We propose

two new families of high-order elements for hexahedra, triangular prisms and pyramids that recover the optimal

convergence. These elements have compatible restrictions with each other, such that they can be used directly on

general hybrid meshes. Moreover the H(div) proposed spaces are completing the De Rham diagram with optimal

elements previously constructed for H1 and H(curl) approximation. The obtained pyramidal elements are compared

theoretically and numerically with other elements of the literature. Eventually, numerical results demonstrate the

efficiency of the finite elements constructed.

Keywords: Facet Elements, High-order finite element, Pyramids, H(div) approximation, De Rham diagram

1. Introduction

The aim of this article is to build optimal H(div)-conforming elements in the same spirit as done in (Bergot et al.,

2010) and (Bergot and Duruflé, 2012) for H1 and H(curl) conforming formulations. Finite elements for H(div)
formulations can be used for example to solve Stokes problem like in (Cockburn and Gopalakrishnan, 2005) or Darcy

flow equation (see (Sboui et al., 2009)).

The other goal of this article is to complete the De Rham diagram for optimal elements introduced in (Bergot

et al., 2010) and (Bergot and Duruflé, 2012) of an hybrid mesh (including hexahedra, tetrahedra, triangular prisms and

pyramids).

A first family of finite elements for H(div) formulations has been introduced by Nédélec for hexahedra and

tetrahedra in (Nédélec, 1980), a second one being introduced in (Nédélec, 1986) for hexahedra, tetrahedra and trian-

gular prisms. Nédélec’s first family for H(div) approximation is also known as Raviart-Thomas elements (Raviart

and Thomas, 1977). However, when these elements are used on general unstructured meshes (especially hexahedral

meshes), the interpolation error is not optimal:

Interpolation error = ∣∣u − πu∣∣H(div) = O(hmax(0,r−2))
where the H(div) norm is defined as ∣∣u∣∣2H(div) = ∣∣u∣∣22 + ∣∣div u∣∣22,
π being a projector from H(div) on the discrete Raviart-Thomas space, r the order of approximation and h the mesh

size. This sub-optimal convergence may be very problematic for lowest-order elements and unstructured meshes

including highly distorted elements. The sub-optimal convergence is obtained when the elements of the mesh are not

tending to affine elements when h tends to 0. Affine elements are elements such that the transformation F linking

reference elements (unit cube, unit prism, unit tetrahedron and symmetric pyramid) to elements of the mesh is affine.

This case occurs if the element is only made of triangular faces (i.e. for tetrahedra), or when the quadrilateral faces are
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parallelograms. In (Naff et al., 2002), some numerical experiments illustrate the lack of consistency of lowest-order

elements. The authors propose non-linear functions in order to obtain a convergent method. An another approach

based on the splitting of an hexahedron in tetrahedra is proposed in (Sboui et al., 2009). These two contributions

seem difficult to extend to higher orders and the expression of basis functions on the reference element depend on the

geometry.

The aim of this paper is to construct high order elements for hexahedra, tetrahedra, prisms and pyramids ensuring

an optimal estimate O(hr) in H(div) norm. Such elements will be based on Piola transform, i.e. a basis function u

on the real element will be obtained as:

u ○ F (x̂, ŷ, ẑ) = 1

∣DF ∣DF û(x̂, ŷ, ẑ)
where (x̂, ŷ, ẑ) are the coordinates defined on the reference element K̂, DF is the jacobian matrix of transformation

F (which transforms K̂ to the real element K), ∣DF ∣ its determinant. Moreover, these elements will be constructed

such that basis functions on the reference element û will belong to finite element spaces P̂r that do not depend on

the geometry, that is to say they do not depend on the real element K. Such finite elements have been obtained for

general quadrilateral elements in (Arnold et al., 2005), and for lowest-order hexahedral elements in (Falk et al., 2011).

In the theorem 3, these super-optimal spaces are detailed at any order for the four types of elements, the lowest order

hexahedral space is the same as in (Falk et al., 2011). However, these spaces are not unique and not very practical to

implement, optimal spaces will be detailed in the theorem 2 with more attractive properties. The dimensions of these

spaces are very close to super-optimal ones.

To make the transition between triangular and quadrangular faces in a conformal hybrid mesh, the introduction of

pyramids is needed (see (Owen and Saigal, 2001)). Some pyramidal elements has been build by Nigam and Phillips,

a first family in (Nigam and Phillips, 2010a), a second one in (Nigam and Phillips, 2010b). The optimal pyramidal

space detailed in this paper will be compared to Nigam and Phillips spaces, and also to basis functions proposed in

(Graglia et al., 1999). Numerical experiments show that the optimal space is requiring less degrees of freedom to

reach a given accuracy.

We consider the following wave equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−ω2

µ
u + −∇(1

ρ
divu) = f, in Ω

u ⋅ n = 0, on Γ

divu = −iω u ⋅ n, on Σ

(1)

with ω the pulsation, ρ,µ physical coefficients related to the considered media. This simple equation enables us to

study H(div) finite elements in hybrid meshes. A Dirichlet condition is set on the inner boundary Γ and an absorbing

boundary condition is set on the outer boundary Σ. As a result, this boundary value problem is well-posed for any

ω ∈ R. The variational formulation of the problem is equal to:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Find u ∈H(div,Ω) such that

∀v ∈H(div,Ω), −ω2 ∫
Ω

1

µ
u ⋅ v dx + ∫

Ω

1

ρ
divu div v dx − iω ∫

Σ

u ⋅ n v ⋅ ndx = ∫
Ω

f ⋅ v dx. (2)

The outline of the paper is as follows:

• In Section 2 are given the polynomial and rational spaces used in the following.

• Section 3 is devoted to the construction of ”optimal” spaces for the four types of elements (hexahedron, tetra-

hedron, triangular prism and pyramid) as done in (Bergot et al., 2010) and (Bergot and Duruflé, 2012).

• To satisfy sharper conditions, we construct a set of ”super-optimal” spaces in Section 4.
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• The trace of the optimal and super-optimal spaces is precised in Section 5 to verify the conformity at the

interfaces.

• In Section 6, hierarchical basis function are given for the optimal space for any type of element, and for the

super-optimal space and the hexahedron.

• The stablity of the elements is treated in Section 7 where we prove that the sequence of the De Rham dia-

gram is exact with the spaces of (Bergot et al., 2010; Bergot and Duruflé, 2012) and the super-optimal spaces

constructed.

• Quadrature formula used to get exact integrals whenever it is possible for the basis functions are presented in

Section 8

• We present in Section 9 a space for pyramids compatible with the classical first family.

• Section 10 is devoted to the comparison of pyramidal elements found in the litterature. A dispersion analysis is

performed in Section 10.1 and the convergence is numerically obtained in Section 10.2.

• The same study is done for hexahedra in Section 11. The dispersion analysis is performed in Section 11.1 and

the convergence study is performed in Section 11.2.

2. Definition of Some Spaces

Let us first introduce the following classical polynomial spaces:

Definition 1. • In 2-D:
Pr(x, y) = Span{xiyj , i, j ≥ 0, i + j ≤ r}
P̃r(x, y) = Span{xiyj , i, j ≥ 0, i + j = r}
Qm,n(x, y) = Span{xiyj , 0 ≤ i ≤m, 0 ≤ j ≤ n}
Dr(x, y) = (Pr−1(x, y))2 ⊕ P̃r−1(x, y) [ x

y
]

• In 3-D:
Pr(x, y, z) = Span{xiyjzk, i, j, k ≥ 0, i + j + k ≤ r}
P̃r(x, y, z) = Span{xiyjzk, i, j, k ≥ 0, i + j + k = r}
Qm,n,p(x, y, z) = Span{xiyjzk, 0 ≤ i ≤m, 0 ≤ j ≤ n, 0 ≤ k ≤ p}
Wm,n(x, y, z) = Span{xiyjzk, i, j, k ≥ 0, i + j ≤m, k ≤ n}
Sr(x, y, z) = {u ∈ P̃r

3

, u1 x + u2 y + u3 z = 0}
Rr(x, y, z) = P3

r−1 ⊕ Sr
Dr(x, y, z) = P3

r−1 ⊕ P̃r−1(x, y, z)
⎡⎢⎢⎢⎢⎢⎣
x

y

z

⎤⎥⎥⎥⎥⎥⎦
whereR and Dr are Nédélec’s first family spaces for tetrahedra introduced by Nédélec (Nédélec, 1980), for H(curl)
and H(div)-formulation respectively, Dr being also known as Raviart-Thomas finite elements (Raviart and Thomas,

1977). The space Wr,r is the finite element space used for continuous triangular prisms.

We also introduce the approximation space for continuous pyramidal elements (see (Bergot et al., 2010))

Br(x, y, z) = Pr(x, y, z) ⊕ r−1

∑
k=0

Pk(x, y) ( xy

1 − z )
r−k

which can be written on the cube [−1,1] × [0,1] as:

Cr(x, y, z) = Span{xiyj(1 − z)k, 0 ≤ i, j ≤ k ≤ r}
3



using the transformation T from the pyramid K̂(x̂, ŷ, ẑ) to the cube [−1,1]2 × [0,1] of coordinates (x̃, ỹ, z̃):
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x̂ = x̃ (1 − z̃)
ŷ = ỹ (1 − z̃)
ẑ = z̃.

The approximation space for H(curl) pyramidal elements (see (Bergot and Duruflé, 2012)) is

Br(x, y, z) = B3

r−1(x, y, z) ⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩

xpyp

(1 − z)p+2
⎡⎢⎢⎢⎢⎢⎣

y(1 − z)
x̂(1 − z)

xy

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ p ≤ r − 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩

xmyn+2

(1 − z)m+2
⎡⎢⎢⎢⎢⎢⎣

(1 − z)
0
x

⎤⎥⎥⎥⎥⎥⎦
,

xn+2ym

(1 − z)m+2
⎡⎢⎢⎢⎢⎢⎣

0
(1 − z)

y

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤m ≤ n ≤ r − 2 l

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩

xpyq

(1 − z)p+q+1−r
⎡⎢⎢⎢⎢⎢⎣

(1 − z)
0
x

⎤⎥⎥⎥⎥⎥⎦
,

xqyp

(1 − z)p+q+1−r
⎡⎢⎢⎢⎢⎢⎣

0
(1 − z)

y

⎤⎥⎥⎥⎥⎥⎦
,

0 ≤ p ≤ r − 1
0 ≤ q ≤ r + 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

3. Optimal Finite Element Spaces

K̂

Ŝ1 = (−1,−1, 0)

Ŝ2 = (1,−1, 0)

Ŝ5 = (0, 0, 1)

Ŝ4 = (−1, 1, 0)

Ŝ3 = (1, 1, 0)

Fiẑ

x̂

ŷ

K

S5

S1

S2

S3

S4

Figure 1: transformation F for a pyramid

The finite element approximation is constructed by considering a transformation F from a reference element K̂

(unit tetrahedron, symmetric pyramid, unit prism and unit cube) to a real element K on the mesh (see Fig. 1). This

transformation is written as

F = ∑
1≤i≤ni

Si ϕ̂
1

i (3)

where ni is the number of vertices of the element, Si = (xi, yi, zi) are the vertices and ϕ̂1

i are mapping functions

depending on the considered type of the element. The mapping functions are classical for tetrahedra, hexahedra and

triangular prisms and can be found in (Bergot et al., 2010) for pyramids.

By introducing some constants A0,A1,A2,A3, C,C1, C2, C3,D depending on the vertices (Si), the transforma-

tions F writes as follows

Definition 2. The transformation F for any element is written as:

• Tetrahedron: F = A0 + A1x̂ + A2ŷ + A3ẑ
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• Hexahedron: F = A0 + A1x̂ + A2ŷ + A3ẑ + C1 x̂ ŷ + C2 x̂ ẑ + C3 ŷ ẑ + D x̂ ŷ ẑ

• Triangular prism: F = A0 + A1x̂ + A2ŷ + A3ẑ + C1 x̂ ẑ + C2 ŷ ẑ

• Pyramid: F = A0 + A1x̂ + A2ŷ + A3ẑ + C
x̂ŷ

(1 − ẑ)
There is a bijection between these constants and the vertices, that is the real element K is uniquely determined by

these constants (e.g. A0,A1,A2,A3 and C for the pyramid).

Let us denote

H(div,Ω) = {u ∈ (L2(Ω))3 such that divu ∈ L2(Ω)}.
The unknown u and test function v of the variational formulation (2) belongs to the following finite element space:

Vh = {u ∈H(div,Ω) so that u∣K ∈ PF
r }

where PF
r (K) denotes the finite element space on the element K of the mesh. This space is built with the reference

finite element space space P̂r(K̂) thanks to Piola H(div)-conforming transform

PF
r (K) = {u so that ∣DF ∣DF −1 u ○ F ∈ P̂r(K̂)}

where DF the jacobian matrix of transformation F , and ∣DF ∣ its determinant. The space P̂r(K̂) depends only on the

reference element K̂ and on the order of approximation r, and is thus independent of the element K. The approximate

solution uh is the solution to the discrete variational formulation:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Find uh ∈ Vh such that

∀v ∈ Vh, −ω2 ∫
Ω

1

µ
uh ⋅ vh dx + ∫

Ω

1

ρ
divuh div vh dx − iω ∫

Σ

uh ⋅ n vh ⋅ ndx = ∫
Ω

f ⋅ vh dx.
(4)

To obtain a convergence of uh towards the exact solution u of the problem (1) in O(hr), where h denotes the

mesh size, a first necessary condition is to have the following inclusion (see (Monk, 2002)):

PF
r ⊃ Pr−1(x, y, z)3.

Definition 3. The space Êr of order r is the space of minimal dimension on K̂ such that

P̂r(K̂) ⊃ Êr ⇔ PF
r ⊃ Pr−1(x, y, z)3

for any element K.

Theorem 1. The spaces Êr are equal to:

• Tetrahedron:

Êr = Pr−1(x̂, ŷ, ẑ)3
• Hexahedron:

Ê1 = P1(x̂, ŷ, ẑ)3 ⊕
⎡⎢⎢⎢⎢⎢⎣

x̂ŷ

0
−ŷẑ

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

x̂ẑ

−ŷẑ
0

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

0
−x̂ŷ
x̂ẑ

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

x̂2ẑ

0
−x̂ẑ2

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

x̂2ŷ

−x̂ŷ2
0

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

0
−ŷ2ẑ
ŷẑ2

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

x̂2

−x̂ŷ
−x̂ẑ

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣
−x̂ŷ
ŷ2

−ŷẑ

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣
−x̂ẑ
−ŷẑ
ẑ2

⎤⎥⎥⎥⎥⎥⎦
5



For r > 1
Êr = Qr+1,r−1,r−1(x̂, ŷ, ẑ) ×Qr−1,r+1,r−1(x̂, ŷ, ẑ) ×Qr−1,r−1,r+1(x̂, ŷ, ẑ)

⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
x̂iŷr ẑj

0
0

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

0

x̂j ŷiẑr

0

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

0
0

x̂rŷj ẑi

⎤⎥⎥⎥⎥⎥⎦
0 ≤ i ≤ r

0 ≤ j ≤ r − 1
⎫⎪⎪⎪⎬⎪⎪⎪⎭

⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
x̂iŷj ẑr

0
0

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

0

x̂rŷiẑj

0

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

0
0

x̂j ŷr ẑi

⎤⎥⎥⎥⎥⎥⎦
0 ≤ i ≤ r

0 ≤ j ≤ r − 1
⎫⎪⎪⎪⎬⎪⎪⎪⎭

⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

x̂r+1ŷj ẑr

0−x̂rŷj ẑr+1

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

0

x̂j ŷr+1ẑr−x̂j ŷr ẑr+1

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

x̂r+1ŷr ẑj−x̂rŷr+1ẑj

0

⎤⎥⎥⎥⎥⎥⎦
0 ≤ j ≤ r − 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
• Triangular prism:

Êr = (Wr−1,r(x̂, ŷ, ẑ) ⊕ P̃r(x̂, ŷ)Pr−1(ẑ))2 ⊗ (Wr−2,r+1(x̂, ŷ, ẑ) ⊕ P̃r−1(x̂, ŷ)Pr(ẑ))

⊕ P̃r−1(x̂, ŷ) ẑr
⎡⎢⎢⎢⎢⎢⎣
−x̂−ŷ
ẑ

⎤⎥⎥⎥⎥⎥⎦
• Pyramid:

Êr = Br−1(x̂, ŷ, ẑ)3 ⊕
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x̂n+1 ŷm

(1 − ẑ)m+1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
x̂m ŷn+1

(1 − ẑ)m+1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
0 ≤m ≤ n ≤ r − 1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⊕
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂m+1 ŷn+1

(1 − ẑ)m+2
0

− x̂mŷn+1

(1 − ẑ)m+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

x̂n+1 ŷm+1

(1 − ẑ)m+2
− x̂n+1ŷm

(1 − ẑ)m+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 ≤m ≤ n ≤ r − 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Proof. The proof will be completed for the pyramid and the hexahedron. Let us begin with the pyramid, for which

the transformation F is equal to

F = A0 + A1x̂ + A2ŷ + A3ẑ + C
x̂ŷ

(1 − ẑ)
where (x̂, ŷ, ẑ) are the coordinates on the symmetric pyramid. We will express each function either in (x̂, ŷ, ẑ)
coordinates, or either in (x̃, ỹ, z̃) coordinates of the cube [−1,1]2 × [0,1] defined by the relations

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x̂ = x̃ (1 − z̃)
ŷ = ỹ (1 − z̃)
ẑ = z̃.
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The derivatives of F with respect to coordinates of K̂ are equal to:

∂F

∂x̂
= A1 + C

ŷ

(1 − ẑ) = A1 + Cỹ

∂F

∂ŷ
= A2 + C

x̂

(1 − ẑ) = A2 + Cx̃

∂F

∂ẑ
= A3 + C

x̂ŷ

(1 − ẑ)2 = A3 + Cx̃ỹ.

The columns of the comatrix of DF are equal to:

comat(DF )x = ∂F

∂ŷ
× ∂F

∂ẑ
= A2 ×A3 +C ×A3 x̃ +A2 ×C x̃ỹ

comat(DF )y = ∂F

∂ẑ
× ∂F

∂x̂
= A3 ×A1 +A3 ×C ỹ +C ×A1 x̃ỹ

comat(DF )z = ∂F

∂x̂
× ∂F

∂ŷ
= A1 ×A2 +A1 ×C x̃ +C ×A2 ỹ.

Let us take a polynomial p in P3

r−1. Piola transform writes:

p̂ = ∣DF ∣DF −1p ○ F
where ∣DF ∣ is the determinant of the jacobian matrix. By using comatrix, the relation is simpler:

p̂ = comat(DF )∗p ○ F.
Because of optimality of Cr (see (Bergot et al., 2010)), considering a polynomial of P3

r−1 on the pyramid K̂ is

equivalent to consider a polynomial of C3

r−1 on the unit cube [−1,1]2 × [0,1], that is:

p ○ F = x̃i ỹj (1 − z̃)kU, i, j ≤ k ≤ r − 1
with U a constant vector in R3. Therefore p̂ is equal to:

p̂ = comat(DF )∗x̃i ỹj (1 − z̃)k U = x̃i ỹj (1 − z̃)k
⎡⎢⎢⎢⎢⎢⎣
(A2,A3, U)(A3,A1, U)(A1,A2, U)

⎤⎥⎥⎥⎥⎥⎦
+ x̃i ỹj (1 − z̃)k ⎛⎜⎝(C,A3, U)

⎡⎢⎢⎢⎢⎢⎣
x̃

−ỹ
0

⎤⎥⎥⎥⎥⎥⎦
+ (A2, C,U)

⎡⎢⎢⎢⎢⎢⎣
x̃ỹ

0
−ỹ

⎤⎥⎥⎥⎥⎥⎦
+ (C,A1, U)

⎡⎢⎢⎢⎢⎢⎣
0
x̃ỹ

−x̃

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎠

where (A,B,C) denotes the determinant of the 3x3 matrix whose columns are A, B and C. By varying values of

A1,A2,A3 and U , the first term generates all monomials of C3

r−1. For the other terms, we distinguish four cases

1. If i, j < k, all the terms belongs to C3

r−1.

2. If i = k, j < k, by removing components in C3

r−1, it remains

⎡⎢⎢⎢⎢⎢⎣
x̃k+1ỹm(1 − z̃)k

0
0

⎤⎥⎥⎥⎥⎥⎦
, x̃kỹj(1 − z̃)k

⎡⎢⎢⎢⎢⎢⎣
0
x̃ỹ

−x̃

⎤⎥⎥⎥⎥⎥⎦
, m ≤ k, j < k.

3. If j = k, i < k, by removing components in C3

r−1, it remains

⎡⎢⎢⎢⎢⎢⎣
0

x̃mỹk+1(1 − z̃)k
0

⎤⎥⎥⎥⎥⎥⎦
, x̃j ỹk(1 − z̃)k

⎡⎢⎢⎢⎢⎢⎣
x̃ỹ

0
−ỹ

⎤⎥⎥⎥⎥⎥⎦
, m ≤ k, j < k.
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4. If i = k, j = k, we have the following terms

⎡⎢⎢⎢⎢⎢⎣
x̃k+1ỹk(1 − z̃)k

0
0

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

0

x̃kỹk+1(1 − z̃)k
0

⎤⎥⎥⎥⎥⎥⎦
, x̃kỹk(1 − z̃)k

⎡⎢⎢⎢⎢⎢⎣
x̃ỹ

0−ỹ
⎤⎥⎥⎥⎥⎥⎦
, x̃kỹk(1 − z̃)k

⎡⎢⎢⎢⎢⎢⎣
0
x̃ỹ−x̃
⎤⎥⎥⎥⎥⎥⎦
.

The two first terms are already treated in the second and third case and the last two terms can be added to the

second and third case by extending j until k (instead of j < k).

Finally, by taking polynomials p in P3

r−1, the following space is generated:

C3

r−1 ⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
x̃k+1ỹm(1 − z̃)k

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̃mỹk+1(1 − z̃)k
0

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤m ≤ k ≤ r − 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
x̃j+1ỹk+1(1 − z̃)k

0

−x̃j ỹk+1(1 − z̃)k
⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̃k+1ỹj+1(1 − z̃)k
−x̃k+1ỹj(1 − z̃)k

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ j ≤ k ≤ r − 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

When we write this space in coordinates (x̂, ŷ, ẑ) we recover the claimed space Êr for the pyramid.

We now consider the following transformation for a general hexahedron:

F = A0 + A1x̂ + A2ŷ + A3ẑ + C1 x̂ ŷ + C2 x̂ ẑ + C3 ŷ ẑ + D x̂ ŷ ẑ.

The derivatives of F are equal to:
∂F

∂x̂
= A1 + C1ŷ + C2 ẑ + D ŷ ẑ

∂F

∂ŷ
= A2 + C1x̂ + C3 ẑ + D x̂ ẑ

∂F

∂ẑ
= A3 + C2x̂ + C3 ŷ + D x̂ ŷ.

The columns of the comatrix of DF are equal to:

comat(DF )x = ∂F

∂ŷ
× ∂F

∂ẑ
= A2 ×A3 + x̂(C1 ×A3 +A2 ×C2) + ŷ(A2 ×C3) + ẑ(C3 ×A3)

+x̂ŷ(A2 ×D +C1 ×C3) + x̂ẑ(D ×A3 +C3 ×C2) + x̂2(C1 ×C2)
+x̂2ŷ(C1 ×D) + x̂2ẑ(D ×C2)

comat(DF )y = ∂F

∂ẑ
× ∂F

∂x̂
= A3 ×A1 + x̂(C2 ×A1) + ŷ(A3 ×C1 +C3 ×A1) + ẑ(A3 ×C2)

+x̂ŷ(D ×A1 +C2 ×C1) + ŷẑ(A3 ×D +C3 ×C2) + ŷ2(C3 ×C1)
+ŷ2x̂(D ×C1) + ŷ2ẑ(C3 ×D)

comat(DF )z = ∂F

∂x̂
× ∂F

∂ŷ
= A1 ×A2 + x̂(A1 ×C1) + ŷ(C1 ×A2) + ẑ(A1 ×C3 +C2 ×A2)

+x̂ẑ(C2 ×C1 +A1 ×D) + ŷẑ(C1 ×C3 +D ×A2) + ẑ2(C2 ×C3)
+x̂ẑ2(C2 ×D) + ŷẑ2(D ×C3).

Let us begin with a polynomial p in P3

r−1. Because of optimality of Qr (see (Bergot et al., 2010)), it is equivalent to

consider a polynomial of Q3

r−1:

p ○ F = x̂i ŷj ẑkU, i, j ≤ k ≤ r − 1
8



with U a constant vector in R3. Therefore p̂ is equal to:

p̂ = comat(DF )∗x̂i ŷj ẑk U = x̂iŷj ẑk{
⎡⎢⎢⎢⎢⎢⎣
(A2,A3, U)(A3,A1, U)(A1,A2, U)

⎤⎥⎥⎥⎥⎥⎦
+ (C1,A3, U)

⎡⎢⎢⎢⎢⎢⎣
x̂

−ŷ
0

⎤⎥⎥⎥⎥⎥⎦
+ (A2, C2, U)

⎡⎢⎢⎢⎢⎢⎣
x̂

0
−ẑ

⎤⎥⎥⎥⎥⎥⎦
+ (A2, C3, U)

⎡⎢⎢⎢⎢⎢⎣
ŷ

0
0

⎤⎥⎥⎥⎥⎥⎦
+ (C3,A3, U)

⎡⎢⎢⎢⎢⎢⎣
ẑ

0
0

⎤⎥⎥⎥⎥⎥⎦
+ (A2,D,U)

⎡⎢⎢⎢⎢⎢⎣
x̂ŷ

0
−ŷẑ

⎤⎥⎥⎥⎥⎥⎦
+(C3, C1, U)

⎡⎢⎢⎢⎢⎢⎣
−x̂ŷ
ŷ2

−ŷẑ

⎤⎥⎥⎥⎥⎥⎦
+ (D,A3, U)

⎡⎢⎢⎢⎢⎢⎣
x̂ẑ

−ŷẑ
0

⎤⎥⎥⎥⎥⎥⎦
+ (C1, C2, U)

⎡⎢⎢⎢⎢⎢⎣
x̂2

−x̂ŷ
−x̂ẑ

⎤⎥⎥⎥⎥⎥⎦
+(C1,D,U)

⎡⎢⎢⎢⎢⎢⎣
x̂2ŷ

−x̂ŷ2
0

⎤⎥⎥⎥⎥⎥⎦
+ (D,C2, U)

⎡⎢⎢⎢⎢⎢⎣
x̂2ẑ

0
−x̂ẑ2

⎤⎥⎥⎥⎥⎥⎦
+ (C2,A1, U)

⎡⎢⎢⎢⎢⎢⎣
0
x̂

0

⎤⎥⎥⎥⎥⎥⎦
+ (C3,A1, U)

⎡⎢⎢⎢⎢⎢⎣
0
ŷ

−ẑ

⎤⎥⎥⎥⎥⎥⎦
+(A3, C2, U)

⎡⎢⎢⎢⎢⎢⎣
0
ẑ

0

⎤⎥⎥⎥⎥⎥⎦
+ (D,A1, U)

⎡⎢⎢⎢⎢⎢⎣
0
x̂ŷ

−x̂ẑ

⎤⎥⎥⎥⎥⎥⎦
+ (C3, C2, U)

⎡⎢⎢⎢⎢⎢⎣
x̂ẑ

ŷẑ

−ẑ2

⎤⎥⎥⎥⎥⎥⎦
+(C3,D,U)

⎡⎢⎢⎢⎢⎢⎣
0
ŷ2ẑ

−ŷẑ2

⎤⎥⎥⎥⎥⎥⎦
+ (C1,A2, U)

⎡⎢⎢⎢⎢⎢⎣
0
0
ŷ

⎤⎥⎥⎥⎥⎥⎦
+ (A1, C1, U)

⎡⎢⎢⎢⎢⎢⎣
0
0
x̂

⎤⎥⎥⎥⎥⎥⎦
}.

The coefficients (A2,A3, U), (A3,A1, U), (A1,A2, U), (C1,A3, U), (A2, C2, U), (A2, C3, U), (C3,A3, U), (A2,D,U),(C3, C1, U), (D,A3, U), (C1, C2, U), (C1,D,U), (D,C2, U), (C2,A1, U), (C3,A1, U), (A3, C2, U), (D,A1, U),(C3, C2, U), (C3,D,U), (C1,A2, U), (A1, C1, U) viewed as functions of variables U,A0,A1,A2,A3, C1, C2, C3,D

are linearly independent, therefore all the associated monomials are needed to obtain P3

r−1. By a simple recombination

of these monomials, they can be enumerated as follows:

⎡⎢⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
x̂

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
x̂

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0
x̂

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
ŷ

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
ŷ

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0
ŷ

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣
ẑ

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
ẑ

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0
ẑ

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
x̂ŷ

0
−ŷẑ

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
x̂ẑ

−ŷẑ
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
x̂ŷ

−x̂ẑ

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣
x̂2

−x̂ŷ
−x̂ẑ

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
−x̂ŷ
ŷ2

−ŷẑ

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
−x̂ẑ
−ŷẑ
ẑ2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
x̂2ŷ

−x̂ŷ2
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
x̂2ẑ

0
−x̂ẑ2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
ŷ2ẑ

−ŷẑ2

⎤⎥⎥⎥⎥⎥⎦
.

These monomials have to be multiplied by x̂iŷj ẑk with i, j, k ≤ r − 1 to obtain the needed functions to generate P3

r−1.

When r = 1, all these monomials are needed, and no further manipulation is necessary. When r > 1, we will make

manipulations in order to obtain a suitable expression of Êr.

Because of the presence of (x̂,0,0), it is immediate that the following functions:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
x̂rŷiẑj

0
0

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ i, j ≤ r − 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
belong to Êr. Let us now consider the following combination between functions of Êr:

⎡⎢⎢⎢⎢⎢⎣
x̂i+2 ŷj ẑk

−x̂i+1ŷj+1ẑk

−x̂i+1ŷj ẑk+1

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

0

x̂i′+1ŷj
′

ẑk
′

0

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

0
0

x̂ℓ+1ŷmẑn

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
x̂i+2 ŷj ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
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All the functions of this equality belong to Êr if

0 ≤ i, j, k, i′, j′, k′, ℓ,m,n ≤ r − 1
This equality becomes true if we have

∣ i′ = i, j′ = j + 1, k′ = k
ℓ = i, m = j, n = k + 1

This choice of indices is possible if j, k ≤ r − 2. As a result, the monomials (x̂i+2 ŷj ẑk,0,0) belong to Êr if i ≤
r − 1, j, k ≤ r − 2. The following combination is now considered:

−
⎡⎢⎢⎢⎢⎢⎣

x̂i+2 ŷj ẑk

−x̂i+1ŷj+1ẑk

−x̂i+1ŷj ẑk+1

⎤⎥⎥⎥⎥⎥⎦
+ 2
⎡⎢⎢⎢⎢⎢⎣

x̂i′+2 ŷj
′

ẑk
′+1

0

−x̂i′+1ŷj
′

ẑk
′+2

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

0

x̂ℓ+1ŷm+1ẑn

−x̂ℓ+1ŷmẑn+1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
x̂i+2 ŷj ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
This identity is true as soon as:

∣ i′ = i, j′ = j, k′ = k − 1
ℓ = i, m = j, n = k

This choice of indices is possible if k ≥ 1. Therefore (x̂i+2 ŷj ẑk,0,0) belongs to Êr if 1 ≤ k ≤ r − 1 and i, j ≤ r − 1.

With a similar combination we can also find (x̂i+2 ŷj ẑk,0,0) in Êr if 1 ≤ j ≤ r − 1 and i, k ≤ r − 1.

As a result, if r > 1, the following monomials belongs to Êr:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
x̂r+1ŷiẑj

0
0

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ i, j ≤ r − 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Let us now consider the following combination:

−
⎡⎢⎢⎢⎢⎢⎣
−x̂i+1 ŷj+1ẑk

x̂iŷj+2ẑk

−x̂iŷj+1ẑk+1

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

x̂i′+1 ŷj
′+1ẑk

′

0

−x̂i′ ŷj
′+1ẑk

′+1

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

x̂ℓ+2ŷm+1ẑn

−x̂ℓ+1ŷm+2ẑn

0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
x̂i+1 ŷj+1ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
This identity becomes true when

∣ i′ = i, j′ = j, k′ = k
ℓ = i − 1, m = j, n = k

This choice of indices is possible if i ≥ 1. If r > 1 and by taking i = r − 1, we obtain the function (x̂rŷr ẑk,0,0) in

Êr with k ≤ r − 1. Similarly, we can obtain the function (x̂rŷkẑr,0,0). Because of the presence of the monomials(ŷ,0,0) and (ẑ,0,0), the functions (x̂iŷr ẑk,0,0) and (x̂iŷr ẑk,0,0) with i, k ≤ r − 1 belong to Êr. As a result, the

following monomials are included in Êr:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
x̂iŷr ẑj

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
x̂iŷj ẑr

0
0

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ i ≤ r, 0 ≤ j ≤ r − 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
By regrouping the different results, and exploiting symmetries, we have proved that Êr contains the following func-

tions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
x̂iŷj ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂j ŷiẑk

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂j ŷkẑi

⎤⎥⎥⎥⎥⎥⎦
, i ≤ r + 1, j, k ≤ r − 1

⎡⎢⎢⎢⎢⎢⎣
x̂iŷr ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
x̂iŷkẑr

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂rŷiẑk

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂kŷiẑr

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂rŷkẑi

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂kŷr ẑi

⎤⎥⎥⎥⎥⎥⎦
, i ≤ r, k ≤ r − 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Let us now consider the monomials

⎡⎢⎢⎢⎢⎢⎣
x̂i+2ŷj+1ẑk

−x̂i+1ŷj+2ẑk

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
x̂i+2ŷj ẑk+1

0

−x̂i+1ŷj ẑk+2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂iŷj+2ẑk

−x̂iŷj+1ẑk+1

⎤⎥⎥⎥⎥⎥⎦
.

These functions can be written as combination of the previous functions that are included in Êr, except when

i = j = r − 1 for the first monomial

i = k = r − 1 for the second monomial

j = k = r − 1 for the third monomial

With this choice of indices, we have found the last monomials of Êr.

Following the principles used to construct H(curl) optimal spaces defined in (Bergot and Duruflé, 2012), the

optimal space on K̂ is defined as

Definition 4. The optimal space of order r is the space P̂ opt
r (K̂) of minimal dimension on such that

P̂r(K̂) ⊃ P̂ opt
r (K̂) ⇔ PF

r ⊃Dr(x, y, z)
for any element K.

Theorem 2. The optimal spaces P̂ opt
r are equal to:

• Tetrahedron:

P̂ opt
r = Dr(x̂, ŷ, ẑ)

• Hexahedron:

P̂ opt
r = Qr(x̂, ŷ, ẑ) = Qr+2,r,r(x̂, ŷ, ẑ) ×Qr,r+2,r(x̂, ŷ, ẑ) ×Qr,r,r+2(x̂, ŷ, ẑ)

• Triangular prism:

P̂ opt
r = Wr(x̂, ŷ, ẑ) = (Dr+1(x̂, ŷ) ⊗ Pr(ẑ)) ×Wr−1,r+2(x̂, ŷ, ẑ)

• Pyramid:

P̂ opt
r = Br(x̂, ŷ, ẑ)3

= Br−1(x̂, ŷ, ẑ)3

⊕
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x̂n+1 ŷm

(1 − ẑ)m+1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
x̂m ŷn+1

(1 − ẑ)m+1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
0 ≤m ≤ n ≤ r − 1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x̂m ŷn+1

(1 − ẑ)m+1
⎡⎢⎢⎢⎢⎢⎢⎢⎣

x̂

(1 − ẑ)
0−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⊕ x̂n+1 ŷm

(1 − ẑ)m+1
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
ŷ

(1 − ẑ)−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
0 ≤m ≤ n ≤ r − 1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⊕
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x̂iŷj

(1 − ẑ)i+j−r
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂

(1 − ẑ)
ŷ

(1 − ẑ)−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 0 ≤ i, j ≤ r

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.
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The optimal space for the pyramid is polynomial when expressed in the cube [−1,1]2 × [0,1]:

P̂ opt
r ○ T = C3

r−1 ⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
x̃n+1ỹm(1 − z̃)n

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̃mỹn+1(1 − z̃)n
0

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤m ≤ n ≤ r − 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
x̃m+1ỹn+1(1 − z̃)n

0−x̃mỹn+1(1 − z̃)n
⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̃n+1ỹm+1(1 − z̃)n−x̃n+1ỹm(1 − z̃)n
⎤⎥⎥⎥⎥⎥⎦
, 0 ≤m ≤ n ≤ r − 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
x̃iỹj(1 − z̃)r

⎡⎢⎢⎢⎢⎢⎣
x̃

ỹ−1
⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ i, j ≤ r

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Proof. For any type of element, by construction, we obviously have

Êr ⊂ P̂ opt
r .

The remaining polynomials to consider are the polynomials p of P̃r−1

⎡⎢⎢⎢⎢⎢⎣
x

y

z

⎤⎥⎥⎥⎥⎥⎦
This part of the proof will be conducted

for the pyramid and the hexahedron.

Let us begin with the pyramid. We consider a polynomial p such that

p = xiyjzr−1−i−j
⎡⎢⎢⎢⎢⎢⎣
x

y

z

⎤⎥⎥⎥⎥⎥⎦
= x̃i ỹj(1 − z̃)r−1

⎡⎢⎢⎢⎢⎢⎣
x

y

z

⎤⎥⎥⎥⎥⎥⎦
, i, j ≤ r − 1

by using the optimality of Br. The first component of p̂ is equal to:

p̂x = x̃i ỹj(1 − z̃)r−1 comat(DF )x ⋅ F =
x̃i ỹj(1 − z̃)r−1 (A2 ×A3 + C ×A3 x̃ + A2 ×C x̃ỹ) ⋅ (A0 +A3 + A1 x̃(1 − z̃) + A2 ỹ(1 − z̃)

−A3 (1 − z̃) + C x̃ỹ(1 − z̃)).
If we note Ā0 = A0 +A3, we obtain:

p̂x = x̃i ỹj(1 − z̃)r−1[(A2,A3, Ā0) + (A2,A3,A1) x̃(1 − z̃) + (C,A3, Ā0) x̃
+ (C,A3,A1) x̃2(1 − z̃) + (A2, C, Ā0) x̃ỹ + (A2, C,A1) x̃2ỹ(1 − z̃) − (A2, C,A3) x̃ỹ(1 − z̃)].

Similar computations give the following values for the second and third component of p̂

p̂y = x̃i ỹj(1 − z̃)r−1 [(A3,A1, Ā0) + (A3,A1,A2) ỹ(1 − z̃) + (A3, C, Ā0) ỹ
+ (A3, C,A2)ỹ2(1 − z̃) + (C,A1, Ā0) x̃ỹ + (C,A1,A2) x̃ỹ2(1 − z̃) − (C,A1,A3) x̃ỹ(1 − z̃)]

p̂z = x̃i ỹj(1 − z̃)r−1 [(A1,A2, Ā0) − (A1,A2,A3) (1 − z̃) + (A1, C, Ā0) x̃ − (A1, C,A3) x̃(1 − z̃)
+ (C,A2, Ā0) ỹ + (C,A2,A1) x̃ỹ(1 − z̃) − (C,A2,A3) ỹ(1 − z̃)].
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The terms involving Ā0 can be removed since they have already been treated when considering p in P3

r−1. It remains

the following monomials:

x̃i ỹj(1 − z̃)r−1 ( (A1,A2,A3)
⎡⎢⎢⎢⎢⎢⎣

x̃(1 − z̃)
ỹ(1 − z̃)−(1 − z̃)

⎤⎥⎥⎥⎥⎥⎦
+ (C,A3,A1)

⎡⎢⎢⎢⎢⎢⎣
x̃2(1 − z̃)
x̃ỹ(1 − z̃)
−x̃(1 − z̃)

⎤⎥⎥⎥⎥⎥⎦
+ (C,A1,A2)

⎡⎢⎢⎢⎢⎢⎣
x̃2ỹ(1 − z̃)
x̃ỹ2(1 − z̃)
−x̃ỹ(1 − z̃)

⎤⎥⎥⎥⎥⎥⎦
+ (C,A2,A3)

⎡⎢⎢⎢⎢⎢⎣
x̃ỹ(1 − z̃)
ỹ2(1 − z̃)
−ỹ(1 − z̃)

⎤⎥⎥⎥⎥⎥⎦
), i, j ≤ r − 1.

We notice that the coefficients (A1,A2,A3), (C,A3,A1), (A2, C,A1), (C,A2,A3) viewed as functions of the ver-

tices of the pyramid S0, S1, S2, S3, S4 are linearly independent, then all the monomials are needed. These monomials

can be regrouped in a single family:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x̃i ỹj(1 − z̃)r

⎡⎢⎢⎢⎢⎢⎣
x̃

ỹ

−1

⎤⎥⎥⎥⎥⎥⎦
, i, j ≤ r

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

We recognize here the last family of the optimal space of the pyramid, the other families coming directly from Êr.

Let us consider a general hexahedron, and the polynomial p:

p =
⎡⎢⎢⎢⎢⎢⎣
x

y

z

⎤⎥⎥⎥⎥⎥⎦
.

Because of Piola transform, the first component will be equal to

p̂x = (A2 ×A3 + x̂ (C1 ×A3 + A2 ×C2) + ŷ A2 ×C3 + ẑ C3 ×A3 + x̂ŷ (A2 ×D +C1 ×C3)
+ x̂ẑ (D ×A3 +C3 ×C2) + x̂2C1 ×C2 + x̂2ŷ C1 ×D + x̂2ẑ D ×C2) ⋅ (A0 + x̂A1 + ŷ A2 + ẑ A3

+ x̂ŷ C1 + x̂ẑ C2 + ŷẑ C3 + x̂ŷẑ D).
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By expanding this expression, and computing the two other components of p̂, we find the following result

p̂ = (A1,A2, C1)
⎡⎢⎢⎢⎢⎢⎣

0
0−x̂ŷ
⎤⎥⎥⎥⎥⎥⎦
+ (A1,A2, C2)

⎡⎢⎢⎢⎢⎢⎣
x̂2

x̂ŷ

0

⎤⎥⎥⎥⎥⎥⎦
+ (A1,A2, C3)

⎡⎢⎢⎢⎢⎢⎣
x̂ŷ

ŷ2

0

⎤⎥⎥⎥⎥⎥⎦
+ (A1,A2,D)

⎡⎢⎢⎢⎢⎢⎣
x̂2ŷ

x̂ŷ2

−x̂ŷẑ

⎤⎥⎥⎥⎥⎥⎦
+ (A1,A3, C1)

⎡⎢⎢⎢⎢⎢⎣
−x̂2

0
−x̂ẑ

⎤⎥⎥⎥⎥⎥⎦
+ (A1,A3, C2)

⎡⎢⎢⎢⎢⎢⎣
0
x̂ẑ

0

⎤⎥⎥⎥⎥⎥⎦
+ (A1,A3, C3)

⎡⎢⎢⎢⎢⎢⎣
−x̂ẑ
0
−ẑ2

⎤⎥⎥⎥⎥⎥⎦
+ (A1,A3,D)

⎡⎢⎢⎢⎢⎢⎣
x̂2ẑ

−x̂ŷẑ
x̂ẑ2

⎤⎥⎥⎥⎥⎥⎦
+ (A2,A3, C1)

⎡⎢⎢⎢⎢⎢⎣
0
ŷ2

ŷẑ

⎤⎥⎥⎥⎥⎥⎦
+ (A2,A3, C2)

⎡⎢⎢⎢⎢⎢⎣
0
ŷẑ

ẑ2

⎤⎥⎥⎥⎥⎥⎦
+ (A2,A3, C3)

⎡⎢⎢⎢⎢⎢⎣
ŷẑ

0
0

⎤⎥⎥⎥⎥⎥⎦
+ (A2,A3,D)

⎡⎢⎢⎢⎢⎢⎣
x̂ŷẑ

−ŷ2ẑ
−ŷẑ2

⎤⎥⎥⎥⎥⎥⎦
+ (A1, C1, C2)

⎡⎢⎢⎢⎢⎢⎣
x̂3

0
0

⎤⎥⎥⎥⎥⎥⎦
+ (A1, C1, C3)

⎡⎢⎢⎢⎢⎢⎣
x̂2ŷ

0
x̂ŷẑ

⎤⎥⎥⎥⎥⎥⎦
+ (A1, C2, C3)

⎡⎢⎢⎢⎢⎢⎣
−x̂2ẑ

−x̂ŷẑ
0

⎤⎥⎥⎥⎥⎥⎦
+ (A2, C1, C2)

⎡⎢⎢⎢⎢⎢⎣
0
−x̂ŷ2
−x̂ŷẑ

⎤⎥⎥⎥⎥⎥⎦
+ (A2, C1, C3)

⎡⎢⎢⎢⎢⎢⎣
0
−ŷ3
0

⎤⎥⎥⎥⎥⎥⎦
+ (A2, C2, C3)

⎡⎢⎢⎢⎢⎢⎣
−x̂ŷẑ
−ŷ2ẑ
0

⎤⎥⎥⎥⎥⎥⎦
+ (A3, C1, C2)

⎡⎢⎢⎢⎢⎢⎣
0
−x̂ŷẑ
−x̂ẑ2

⎤⎥⎥⎥⎥⎥⎦
+ (A3, C1, C3)

⎡⎢⎢⎢⎢⎢⎣
x̂ŷẑ

0
ŷẑ2

⎤⎥⎥⎥⎥⎥⎦
+ (A3, C2, C3)

⎡⎢⎢⎢⎢⎢⎣
0
0
ẑ3

⎤⎥⎥⎥⎥⎥⎦
+ (A1, C1,D)

⎡⎢⎢⎢⎢⎢⎣
x̂3ŷ

0
0

⎤⎥⎥⎥⎥⎥⎦
+ (A1, C2,D)

⎡⎢⎢⎢⎢⎢⎣
−x̂3ẑ

0
0

⎤⎥⎥⎥⎥⎥⎦
+ (A1, C3,D)

⎡⎢⎢⎢⎢⎢⎣
0

x̂ŷ2ẑ

−x̂ŷẑ2

⎤⎥⎥⎥⎥⎥⎦
+ (A2, C1,D)

⎡⎢⎢⎢⎢⎢⎣
0
−x̂ŷ3
0

⎤⎥⎥⎥⎥⎥⎦
+ (A2, C2,D)

⎡⎢⎢⎢⎢⎢⎣
−x̂2ŷẑ

0
x̂ŷẑ2

⎤⎥⎥⎥⎥⎥⎦
+ (A2, C3,D)

⎡⎢⎢⎢⎢⎢⎣
0
ŷ3ẑ

0

⎤⎥⎥⎥⎥⎥⎦
+ (A3, C1,D)

⎡⎢⎢⎢⎢⎢⎣
x̂2ŷẑ

−x̂ŷ2ẑ
0

⎤⎥⎥⎥⎥⎥⎦
+ (A3, C2,D)

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂ẑ3

⎤⎥⎥⎥⎥⎥⎦
+ (A3, C3,D)

⎡⎢⎢⎢⎢⎢⎣
0
0
−ŷẑ3

⎤⎥⎥⎥⎥⎥⎦
+ (C1, C2, C3)

⎡⎢⎢⎢⎢⎢⎣
x̂2ŷẑ

x̂ŷ2ẑ

x̂ŷẑ2

⎤⎥⎥⎥⎥⎥⎦
+ (C1, C2,D)

⎡⎢⎢⎢⎢⎢⎣
−x̂3ŷẑ

0
0

⎤⎥⎥⎥⎥⎥⎦
+ (C1, C3,D)

⎡⎢⎢⎢⎢⎢⎣
0

x̂ŷ3ẑ

0

⎤⎥⎥⎥⎥⎥⎦
+ (C2, C3,D)

⎡⎢⎢⎢⎢⎢⎣
0
0

−x̂ŷẑ3

⎤⎥⎥⎥⎥⎥⎦
+ other terms in P3

1.

Since the coefficients (A1,A2,A3), (A1,A2, C1), . . . are linearly independent, all the monomials written above are

needed to generate Dr. When we combine these monomials with monomials of Ê1, we can observe that we obtain

exactly

Q3,1,1 ×Q1,3,1 ×Q1,1,3.

For any r, since we have to multiply by the polynomials x̂iŷj ẑk with 0 ≤ i, j, k ≤ r − 1, we obtain that:

P̂ opt
r = Qr+2,r,r ×Qr,r+2,r ×Qr,r,r+2.

Remark 1. The dimension of the optimal spaces is equal to

• Tetrahedron:

dim P̂ opt
r = r(r + 1)(r + 3)

2

• Hexahedron:

dim P̂ opt
r = 3(r + 3)(r + 1)2

• Triangular prisms:

dim P̂ opt
r = (r + 1)(r + 3)(3r + 2)

2

• Pyramids:

dim P̂ opt
r = (r + 1)(2r2 + 7r + 2)

2
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4. Super-Optimal Finite Element Spaces

The needed and sufficient conditions in order to obtain optimal error estimates for H(div) are the following ones

(see (Falk et al., 2011)):

{ PF
r ⊃ Pr−1(x, y, z)3

divPF
r ⊃ Pr−1(x, y, z) .

The optimal spaces previously constructed verify these properties since div Dr = Pr−1, but spaces of lower dimension

satisfying to these conditions can be constructed for each type of element.

We first define the following space:

Definition 5. The space F̂r of order r is the space of minimal dimension on K̂ such that

ˆdiv P̂r(K̂) ⊃ F̂r ⇔ div PF
r ⊃ Pr−1(x, y, z)

for any element K.

Theorem 3. The spaces F̂r are equal to:

• Tetrahedron:

F̂r = Pr−1(x̂, ŷ, ẑ)
• Hexahedron:

F̂r = Qr,r,r(x̂, ŷ, ẑ) ⊕ {x̂r+1ŷmẑn, x̂mŷr+1ẑn, x̂mŷnẑr+1, 0 ≤m,n ≤ r}
• Triangular prism:

F̂r = Wr,r(x̂, ŷ, ẑ) ⊕ Pr−1(x̂, ŷ) ẑr+1
• Pyramid:

F̂r = { x̂iŷj

(1 − ẑ)i+j−k , 0 ≤ i, j ≤ k + 1
0 ≤ k ≤ r − 1 }

Proof. We complete the proof for the pyramid and the hexahedron. Let us consider a function p ∈ PF
r , such that

divp = xiyjzk, i + j + k ≤ r − 1.
For the pyramid, because of optimality of Cr−1, it is equivalent to consider a function such that

divp = x̃iỹj(1 − z̃)k, i, j ≤ k ≤ r − 1.
We use again coordinates (x̃, ỹ, z̃) of the symmetric cube [−1,1]2 × [0,1]. We have the relationship

d̂iv p̂ = ∣DF ∣p.
The jacobian ∣DF ∣ is equal to:

∣DF ∣ = (A1 + Cỹ)×(A2 + Cx̃) ⋅(A3 + Cx̃ỹ) = (A1,A2,A3) + (A1, C,A3)x̃ + (C,A2,A3)ỹ + (A1,A2, C)x̃ỹ.
Since the constants (A1,A2,A3), (A1, C,A3), (C,A2,A3), (A1,A2, C) viewed as functions of A1,A2,A3, C are

linearly independent, the following monomials are necessarily included in Fr:

x̃iỹj(1 − z̃)k, x̃i+1ỹj(1 − z̃)k, x̃iỹj+1(1 − z̃)k, x̃i+1ỹj+1(1 − z̃)k.
For instance, the last monomial gives:

x̃i+1ỹj+1(1 − z̃)k = x̂i+1ŷj+1

(1 − ẑ)i+1+j+1−k .
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By naming i′ = i + 1, j′ = j + 1, we obtain:

x̃i+1ỹj+1(1 − z̃)k = x̂i′ ŷj
′

(1 − ẑ)i′+j′−k , i′ ≤ j′ ≤ k + 1
which corresponds to a function of F̂r. It is immediate that these monomials will generate all the functions of F̂r.

For the hexahedron, we consider a function p such that

divp = x̂iŷj ẑk, i, j, k ≤ r − 1.
Similarly to the pyramid, the jacobian ∣DF ∣ of the hexahedron can be expressed as

∣DF ∣ = b0 + b1x̂ + b2ŷ + b3ẑ + b4x̂ŷ + b5x̂ẑ + b6ŷẑ + b7x̂ŷẑ + b8 x̂
2 + b9x̂

2ŷ + b10x̂
2ẑ + b11x̂

2ŷẑ +
b12ŷ

2 + b13x̂ŷ
2 + b14ŷ

2ẑ + b15x̂ŷ
2ẑ + b16ẑ

2 + b17x̂ẑ
2 + b18ŷẑ

2 + b19x̂ŷẑ
2

with linearly independent functions b0, b1,⋯, b19. Therefore all the functions of Qr+1,r,r + Qr,r+1,r + Qr,r,r+1 are

necessary and sufficient to generate any p such that divp ∈ Pr−1(x, y, z). We obtain the claimed space F̂r for the

hexahedron.

Proposition 1. The divergence of the spaces Êr is equal to

• Tetrahedron:

div Ê1 = 0

For r > 1,

div Êr = Pr−2(x̂, ŷ, ẑ)
• Hexahedron:

div Ê1 = Span{1}
For r > 1,

div Êr = F̂r−1

• Triangular prism:

div Ê1 = 0

For r > 1,

div Êr = Wr−2,r(x̂, ŷ, ẑ)⊕P̃r−1(x̂, ŷ)Pr−1(ẑ)
• Pyramid:

div Êr = F̂r−1 ⊕ { 1

1 − ẑ}
with the convention

F0 = ∅
Proof. The proof is immediate by computing the divergence of all monomials of Êr. It should be noticed that

1

1 − ẑ
for the pyramid is obtained as the divergence of the function

x̂n+1ŷm

(1 − ẑ)m+1
⎡⎢⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎥⎦
for the special case m = n = 0. Other values of m,n give a divergence in F̂r−1. The divergence of the functions of

the last family appearing in the expression of Êr is null.

Now we have all the ingredients needed to find the super-optimal finite element spaces.

Definition 6. A super-optimal space of order r is a space P̂ s−opt
r (K̂) of minimal dimension on such that

P̂r(K̂) ⊃ P̂ s−opt
r ⇒ ⎧⎪⎪⎨⎪⎪⎩

PF
r ⊃ Pr−1(x, y, z)3

divPF
r ⊃ Pr−1(x, y, z)

for any element K.
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Theorem 4. A set of super-optimal spaces P̂ s−opt
r is equal to:

• Tetrahedron:

P̂ s−opt
r = Dr(x̂, ŷ, ẑ)

• Hexahedron:

P̂ s−opt
r =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
x̂iŷj ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂j ŷiẑk

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂j ŷkẑi

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ i ≤ r + 1, 0 ≤ j, k ≤ r − 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
x̂iŷj ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂j ŷiẑk

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂j ŷkẑi

⎤⎥⎥⎥⎥⎥⎦
, i = r + 2, 0 ≤ j, k ≤ r

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
x̂iŷr ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂rŷiẑk

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂rŷkẑi

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ i ≤ r + 1, 0 ≤ k ≤ r − 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
x̂iŷkẑr

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂kŷiẑr

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂kŷr ẑi

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ i ≤ r + 1, 0 ≤ k ≤ r − 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
x̂r+1ŷr ẑr

x̂rŷr+1ẑr

x̂rŷr ẑr+1

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

• Triangular prism:

P̂ s−opt
r = P̂ opt

r / {(P̃r(x̂, ŷ) ẑr)2 × {0} }⊕ P̃r−1(x̂, ŷ) ẑr
⎡⎢⎢⎢⎢⎢⎣
x̂

ŷ

0

⎤⎥⎥⎥⎥⎥⎦
• Pyramid:

P̂ s−opt
r = P̂ opt

r

Proof. We make the proof only for the hexahedron. For r = 1, it suffices to examine the 21 monomials of Ê1 and the

19 monomials of F̂1/{1} to check that P̂
s−opt
1

satisfies the appropriate conditions, and is minimal since its dimension

is equal to 40. For r > 1, since d̂iv Êr = F̂r−1, the condition

d̂iv P̂ s−opt
r ⊃ F̂r

is equivalent to

d̂iv P̂ s−opt
r ⊃ F̂r/F̂r−1.

This last condition is much more interesting, since it will not overlap with the condition

P̂r ⊃ Êr.

Therefore, a minimal space will have the following form:

P̂ s−opt
r = Êr ⊕ Ĝr
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with

d̂iv Ĝr = F̂r/F̂r−1.

We see here that Ĝr cannot be uniquely determined by this relation, an infinite number of spaces will satisfy this

relation. That’s why the optimal space P̂ s−opt
r is not unique. In order to choose a space, we have applied the following

rule:

d̂ivp = α x̂iŷj , ẑk ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p =
⎡⎢⎢⎢⎢⎢⎣
x̂i+1ŷj ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
, if i > j, k

p =
⎡⎢⎢⎢⎢⎢⎣

0

x̂iŷj+1ẑk

0

⎤⎥⎥⎥⎥⎥⎦
, if j > i, k

p =
⎡⎢⎢⎢⎢⎢⎣

0
0

x̂iŷj ẑk+1

⎤⎥⎥⎥⎥⎥⎦
, if k > i, j

p =
⎡⎢⎢⎢⎢⎢⎣
x̂i+1ŷj ẑk

x̂iŷj+1ẑk

0

⎤⎥⎥⎥⎥⎥⎦
, if i = j > k

p =
⎡⎢⎢⎢⎢⎢⎣
x̂i+1ŷj ẑk

0

x̂iŷj ẑk+1

⎤⎥⎥⎥⎥⎥⎦
, if i = k > j

p =
⎡⎢⎢⎢⎢⎢⎣

0

x̂iŷj+1ẑk

x̂iŷj ẑk+1

⎤⎥⎥⎥⎥⎥⎦
, if j = k > i

p =
⎡⎢⎢⎢⎢⎢⎣
x̂i+1ŷj ẑk

x̂iŷj+1ẑk

x̂iŷj ẑk+1

⎤⎥⎥⎥⎥⎥⎦
, if i = j = k.

By selecting this rule, the obtained optimal space keeps all the symmetries in x, y, z. We have:

F̂r/F̂r−1 = {x̂rŷr ẑi, x̂rŷiẑr, x̂iŷr ẑr, i ≤ r − 1}
⊕{x̂rŷr ẑr} ⊕ {x̂r+1ŷiẑj , x̂iŷr+1ẑj , x̂iŷj ẑr+1, i, j ≤ r} .

With our rule, we obtain:

Ĝr =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
x̂r+1ŷr ẑi

x̂rŷr+1ẑi

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
x̂r+1ŷiẑr

0

x̂rŷiẑr+1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂iŷr+1ẑr

x̂iŷr ẑr+1

⎤⎥⎥⎥⎥⎥⎦
, i ≤ r − 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
x̂r+1ŷr ẑr

x̂rŷr+1ẑr

x̂rŷr ẑr+1

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
x̂r+2ŷiẑj

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂iŷr+2ẑj

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂iŷj ẑr+2

⎤⎥⎥⎥⎥⎥⎦
, i, j ≤ r

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Since we have ⎡⎢⎢⎢⎢⎢⎣
x̂r+1ŷr ẑi

x̂rŷr+1ẑi

0

⎤⎥⎥⎥⎥⎥⎦
∈ Ĝr and

⎡⎢⎢⎢⎢⎢⎣
x̂r+1ŷr ẑi−x̂rŷr+1ẑi

0

⎤⎥⎥⎥⎥⎥⎦
∈ Êr,

we obtain by summation (x̂r+1ŷr ẑi,0,0) ∈ P opt
r , and symmetric monomials in ŷ, ẑ. By merging all the other mono-

mials of Ĝr and Êr, we obtain the claimed expression of P̂ s−opt
r .
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Remark 2. Since the divergence of two different spaces can be the same, the super-optimal spaces are not unique, an

infinity of super optimal spaces with a minimal dimension do exist. We have given here a set of super-optimal spaces.

In the numerical experiments the basis functions chosen for the hexahedron (detailed in proposition 3) will not span

the proposed space, but an equivalent one of the same dimension.

Remark 3. The dimension of the super-optimal spaces is equal to

• Tetrahedron:

dim P̂ s−opt
r = dim P̂ opt

r

• Hexahedron:

dim P̂ s−opt
r = dim P̂ opt

r − (5 + 3r)

• Triangular prisms:

dim P̂ s−opt
r = dim P̂ opt

r − (2 + r)
• Pyramids:

dim P̂ s−opt
r = dim P̂ opt

r

We see that the dimension of optimal finite element spaces is very close to the dimension of super-optimal finite

element spaces. Therefore, since the optimal spaces do not include any linked function and has an attractive tensorized

structure, these spaces seem more suitable for the numerical computations.

5. Restriction of Normal Traces on the Faces

To ensure the compatibility between elements, it is essential that the restriction of normal components of the

functions span the same space on triangular and quadrilateral faces. A simple computation provides the following

theorem:

Theorem 5. The normal traces of optimal finite element spaces P̂ opt
r are equal to:

Qr,r(x, y) for quadrilateral faces

Pr−1(x, y) for triangular faces

The normal traces of super-optimal finite element spaces P̂ s−opt
r are equal to:

Qr,r(x, y) / {xr yr} for quadrilateral faces

Pr−1(x, y) for triangular faces

Proof. The proof is completed by computing for each monomial p of P̂ opt
r the quantity p ⋅ n on each face of the

element, where n is the normale.

6. Hierarchical Functions

We present here a simple hierarchical basis for optimal finite element spaces P̂ opt
r by using Jacobi polynomials

P
α,β
i,j , but other choices could be considered.

Proposition 2. The following basis functions are an hierarchical basis H(div) conforming of P̂ opt
r

• Hexahedron:
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HIERARCHICAL H(DIV) FUNCTIONS FOR THE CUBE

For the faces :

⎡⎢⎢⎢⎢⎢⎣
x̂ P

0,0
i
(2ŷ − 1)P 0,0

j
(2ẑ − 1)

0

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
(1 − x̂)P 0,0

i
(2ŷ − 1)P 0,0

j
(2ẑ − 1)

0

0

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ i, j ≤ r

⎡⎢⎢⎢⎢⎢⎣
0

ŷ P
0,0
i
(2x̂ − 1)P 0,0

j
(2ẑ − 1)

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

(1 − ŷ)P 0,0
i
(2x̂ − 1)P 0,0

j
(2ẑ − 1)

0

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ i, j ≤ r

⎡⎢⎢⎢⎢⎢⎣
0

0

ẑ P
0,0
i
(2x̂ − 1)P 0,0

j
(2ŷ − 1)

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

0

(1 − ẑ)P 0,0
i
(2x̂ − 1)P 0,0

j
(2ŷ − 1)

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ i, j ≤ r

For the interior functions : ⎡⎢⎢⎢⎢⎢⎣
x̂ (1 − x̂)P 1,1

i
(2x̂ − 1)P 0,0

j
(2ŷ − 1)P 0,0

k
(2ẑ − 1)

0

0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

0

ŷ (1 − ŷ)P 1,1
i
(2ŷ − 1)P 0,0

j
(2x̂ − 1)P 0,0

k
(2ẑ − 1)

0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

0

0

ẑ (1 − ẑ)P 1,1
i
(2ẑ − 1)P 0,0

j
(2x̂ − 1)P 0,0

k
(2ŷ − 1)

⎤⎥⎥⎥⎥⎥⎦
0 ≤ i, j, k ≤ r
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• Triangular prism:

HIERARCHICAL H(DIV) FUNCTIONS FOR THE PRISM

For the faces :

P
0,0
i
( 2x̂

1 − ŷ − 1) (1 − ŷ)i P 2i+1,0
j

(2ŷ − 1)
⎡⎢⎢⎢⎢⎢⎣

0

0

1 − ẑ
⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ i + j ≤ r − 1

P
0,0
i
( 2x̂

1 − ŷ − 1) (1 − ŷ)i P 2i+1,0
j

(2ŷ − 1)
⎡⎢⎢⎢⎢⎢⎣

0

0

ẑ

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ i + j ≤ r − 1

P
0,0
i
(2x̂ − 1)P 0,0

j
(2ẑ − 1)

⎡⎢⎢⎢⎢⎢⎣
x̂

ŷ − 1
0

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ i, j ≤ r

P
0,0
i
(2ŷ − 1)P 0,0

j
(2ẑ − 1)

⎡⎢⎢⎢⎢⎢⎣
x̂

ŷ

0

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ i, j ≤ r

P
0,0
i
(2ŷ − 1)P 0,0

j
(2ẑ − 1)

⎡⎢⎢⎢⎢⎢⎣
−(x̂ − 1)−ŷ

0

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ i, j ≤ r

For the interior functions :

Pi,j,k

⎡⎢⎢⎢⎢⎢⎣
x̂ŷ

ŷ(ŷ − 1)
0

⎤⎥⎥⎥⎥⎥⎦
, Pi,j,k

⎡⎢⎢⎢⎢⎢⎣
x̂(x̂ − 1)

x̂ŷ

0

⎤⎥⎥⎥⎥⎥⎦
, Pi,j,k

⎡⎢⎢⎢⎢⎢⎣
0

0

ẑ (1 − ẑ)
⎤⎥⎥⎥⎥⎥⎦
,

with Pi,j,k = P
0,0
i
( 2x̂

1 − ŷ − 1) (1 − ŷ)i P 2i+1,0
j

(2ŷ − 1)P 0,0

k
(2ẑ − 1)

i, j, k ≥ 0, i + j ≤ r − 1, k ≤ r

21



• Pyramid:

HIERARCHICAL H(DIV) FUNCTIONS FOR THE PYRAMID

For the faces :

1

4
P

0,0
i
( x̂

1 − ẑ ) P 0,0
j
( ŷ

1 − ẑ ) (1 − ẑ)max(i,j)−1

⎡⎢⎢⎢⎢⎢⎣
−x̂−ŷ
1 − ẑ

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ i, j ≤ r

1

8
P

0,0
i
( x̂

1 − ẑ ) (1 − ẑ)i P 2i+1,0
j

(2ẑ − 1)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x̂ẑ
1 − ẑ

−2 (1 − ŷ − ẑ) − ŷẑ

1 − ẑ
ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i + j ≤ r − 1

1

8
P

0,0
i
( x̂

1 − ẑ ) (1 − ẑ)i P 2i+1,0
j

(2ẑ − 1)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x̂ẑ
1 − ẑ

2 (1 + ŷ − ẑ) − ŷẑ

1 − ẑ
ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i + j ≤ r − 1

1

8
P

0,0
i
( ŷ

1 − ẑ ) (1 − ẑ)i P 2i+1,0
j

(2ẑ − 1)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 (1 − x̂ − ẑ) − x̂ẑ

1 − ẑ
−ŷẑ
1 − ẑ
ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i + j ≤ r − 1

1

8
P

0,0
i
( ŷ

1 − ẑ ) (1 − ẑ)i P 2i+1,0
j

(2ẑ − 1)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 (1 + x̂ − ẑ) − x̂ẑ

1 − ẑ
−ŷẑ
1 − ẑ
ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i + j ≤ r − 1

For the interior functions :

Pi,j,k

⎡⎢⎢⎢⎢⎢⎣
−x̂ẑ−ŷẑ(1 − ẑ)ẑ

⎤⎥⎥⎥⎥⎥⎦
, Pi,j,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂ŷẑ

1 − ẑ
1 − ẑ − ŷ2
−ŷẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Pi,j,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ẑ − x̂2

x̂ŷẑ

1 − ẑ
−x̂ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with Pi,j,k = P

0,0
i
( x̂

1 − ẑ ) P 0,0
j
( ŷ

1 − ẑ ) (1 − ẑ)max(i,j)−1 P
2max(i,j)+2,0
k

(2ẑ − 1)
i, j, k ≥ 0, i, j ≤ r − 1, k ≤ r − 1 −max(i, j)
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• Tetrahedron:

HIERARCHICAL H(DIV) FUNCTIONS FOR THE TETRAHEDRON

For the faces :

P
0,0
i
( 2x̂

1 − ŷ − 1) (1 − ŷ)i P 2i+1,0
j

(2ŷ − 1)
⎡⎢⎢⎢⎢⎢⎣
−x̂−ŷ
1 − ẑ

⎤⎥⎥⎥⎥⎥⎦

P
0,0
i
( 2x̂

1 − ẑ − 1) (1 − ẑ)i P 2i+1,0
j

(2ẑ − 1)
⎡⎢⎢⎢⎢⎢⎣

x̂

ŷ − 1
ẑ

⎤⎥⎥⎥⎥⎥⎦

P
0,0
i
( 2ŷ

1 − ẑ − 1) (1 − ẑ)i P 2i+1,0
j

(2ẑ − 1)
⎡⎢⎢⎢⎢⎢⎣

1 − x̂−ŷ−ẑ
⎤⎥⎥⎥⎥⎥⎦

P
0,0
i
( 2ŷ

1 − ẑ − 1) (1 − ẑ)i P 2i+1,0
j

(2ẑ − 1)
⎡⎢⎢⎢⎢⎢⎣

x̂

ŷ

ẑ

⎤⎥⎥⎥⎥⎥⎦
i, j ≥ 0, i + j ≤ r − 1

For the interior functions :

Pi,j,k

⎡⎢⎢⎢⎢⎢⎣
x̂ẑ

ŷẑ

ẑ(ẑ − 1)
⎤⎥⎥⎥⎥⎥⎦
, Pi,j,k

⎡⎢⎢⎢⎢⎢⎣
x̂ŷ

ŷ(ŷ − 1)
ŷẑ

⎤⎥⎥⎥⎥⎥⎦
, Pi,j,k

⎡⎢⎢⎢⎢⎢⎣
x(x̂ − 1)

x̂ŷ

x̂ẑ

⎤⎥⎥⎥⎥⎥⎦
,

with Pi,j,k = P
0,0
i
( 2x̂

1 − ŷ − ẑ − 1) (1 − ŷ − ẑ)i P 2i+1,0
j

( 2ŷ

1 − ẑ − 1) (1 − ẑ)j P
2(i+j+1)+1,0
k

(2ẑ − 1)

i, j, k ≥ 0, i + j + k ≤ r − 2
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Proposition 3. The following basis functions are an hierarchical basis H(div) conforming of a space similar to P̂ s−opt
r

HIERARCHICAL H(DIV) FUNCTIONS FOR THE CUBE AND P̂ s−opt
r

For the faces :

⎡⎢⎢⎢⎢⎢⎣
x̂ P

0,0
i
(2ŷ − 1)P 0,0

j
(2ẑ − 1)

0

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
(1 − x̂)P 0,0

i
(2ŷ − 1)P 0,0

j
(2ẑ − 1)

0

0

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ i, j ≤ r, i + j ≠ 2r

⎡⎢⎢⎢⎢⎢⎣
0

ŷ P
0,0
i
(2x̂ − 1)P 0,0

j
(2ẑ − 1)

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

(1 − ŷ)P 0,0
i
(2x̂ − 1)P 0,0

j
(2ẑ − 1)

0

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ i, j ≤ r, i + j ≠ 2r

⎡⎢⎢⎢⎢⎢⎣
0

0

ẑ P
0,0
i
(2x̂ − 1)P 0,0

j
(2ŷ − 1)

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

0

(1 − ẑ)P 0,0
i
(2x̂ − 1)P 0,0

j
(2ŷ − 1)

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ i, j ≤ r, i + j ≠ 2r

For the interior functions : ⎡⎢⎢⎢⎢⎢⎣
x̂ (1 − x̂)P 1,1

i
(2x̂ − 1)P 0,0

j
(2ŷ − 1)P 0,0

k
(2ẑ − 1)

0

0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

0

ŷ (1 − ŷ)P 1,1
i
(2ŷ − 1)P 0,0

j
(2x̂ − 1)P 0,0

k
(2ẑ − 1)

0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

0

0

ẑ (1 − ẑ)P 1,1
i
(2ẑ − 1)P 0,0

j
(2x̂ − 1)P 0,0

k
(2ŷ − 1)

⎤⎥⎥⎥⎥⎥⎦
0 ≤ i, j, k ≤ r; i = r or j ≠ r or k ≠ r

A linked function ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂ (1 − x̂)P 1,1
r−1(2x̂ − 1)P 0,0

r (2ŷ − 1)P 0,0
r (2ẑ − 1)

ŷ (1 − ŷ)P 1,1
r−1(2ŷ − 1)P 0,0

r (2x̂ − 1)P 0,0
r (2ẑ − 1)

ẑ (1 − ẑ)P 1,1
r−1(2ẑ − 1)P 0,0

r (2x̂ − 1)P 0,0
r (2ŷ − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

7. De Rham Diagram

The stability for H(curl) and H(div) conforming elements comes from the exact sequence of De Rham diagram

(see Monk (Monk, 2002)) which is directly linked to Helmholtz decomposition

H1 gradÐ→ H(curl) curl
Ð→ H(div) div

Ð→ L2

⋃ ⋃ ⋃ ⋃
W 1

r

grad
Ð→ W curl

r

curl
Ð→ W div

r

div
Ð→ W 2

r

(5)

where WH1

r , W curl
r , W div

r and W 2

r are the spaces of order r discretizing respectively H1(Ω), H(curl,Ω), H(div,Ω)
and L2(Ω) (see Demkowicz Demkowicz et al. (2007)). The approximation spaces must then verify

Im grad W 1

r+1 = Ker W curl
r = {u ∈W curl

r ∣ curl u = 0}
Im curl W curl

r = Ker W div
r = {u ∈W div

r ∣div u = 0}
Im div W div

r = Ker W 2

r = W 2

r

(6)

24



for the four types of elements. (Dular et al., 1994) proposed a formalism to construct tetrahedra, hexahedra ans

triangular prisms respecting the De Rham diagram. For the pyramids, (Nigam and Phillips, 2010a,b) and Zaglamayr

cited in (Demkowicz et al., 2007) have constructed approximation spaces or ordre r respecting the exact sequence.

We now check that the approximation spaces constructed in this paper and in (Bergot et al., 2010; Bergot and

Duruflé, 2012) respect the sequence (6).

Theorem 6. For any order r, the following sequence is exact

Im grad PH1

r = Ker PH(curl)
r = {u ∈ PH(curl)

r ∣ curl u = 0} (7)

Im curl PH(curl)
r = Ker PH(div)

r = {u ∈ PH(div)
r ∣div u = 0} (8)

Im div PH(div)
r = Ker PL2

r = PL2

r (9)

with the following spaces

P̂H1

r =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr(x̂, ŷ, ẑ) for the tetrahedron

Qr,r,r(x̂, ŷ, ẑ) for the hexahedron

Wr,r(x̂, ŷ, ẑ) for the prism

Br(x̂, ŷ, ẑ) for the pyramid

P̂H(curl)
r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rr(x̂, ŷ, ẑ) for the tetrahedron

Qr−1,r+1,r+1(x̂, ŷ, ẑ) ×Qr+1,r−1,r+1(x̂, ŷ, ẑ) ×Qr+1,r+1,r−1(x̂, ŷ, ẑ) for the hexahedron

(Rr(x̂, ŷ) ⊗ Pr+1(ẑ)) × (Pr+1(x̂, ŷ) ⊗ Pr−1(ẑ)) for the triangular prism

Br(x̂, ŷ, ẑ) for the pyramid

P̂H(div)
r = P̂ s−opt

r

P̂L2

r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr−1(x̂, ŷ, ẑ) for the tetrahedron

Qr,r,r(x̂, ŷ, ẑ) ⊕ x̂r+1Qr,r(ŷ, ẑ) ⊕ ŷr+1Qr,r(x̂, ẑ) ⊕ ẑr+1Qr,r(x̂, ŷ) ⊕ for the hexahedron

Wr,r(x̂, ŷ, ẑ) ⊕ Pr−1(x̂, ŷ) ẑr+1 for the prism

{ x̂iŷj

(1 − ẑ)i+j−k , 0 ≤ i, j ≤ k + 1−1 ≤ k ≤ r − 1 } for the pyramid

Proof. The proof is completed for the hexahedron. Let us take a function u in Qr,r,r, obviously its gradient will

belong to Qr−1,r,r ×Qr,r−1,r ×Qr,r,r−1, which is the space PH(curl)
r . Therefore we have the inclusion

Im grad PH1

r ⊂ Ker PH(curl)
r .

Let us now take a function u in PH(curl)
r such that curl u = 0. Because of polynomial identification, it is equivalent

to consider a function of the following form:

u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

αx̂i ŷj ẑk

βx̂i′ ŷj
′

ẑk
′

γx̂i′′ ŷj
′′

ẑk
′′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 0 ≤ i, j′, k′′ ≤ r − 1, 0 ≤ i′, i′′, j, j′′, k, k′ ≤ r + 1, α, β, γ ∈ R.

The curl of this function is equal to:

∇̂ × u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ j′′ x̂i′′ ŷj
′′−1ẑk

′′ − β k′ x̂i′ ŷj
′

ẑk
′−1

αk x̂iŷj ẑk−1 − γ i′′ x̂i′′−1ŷj
′′

ẑk
′′

β i′ x̂i′−1ŷj
′

ẑk
′ − αj x̂iŷj−1ẑk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Let us consider the case where i′, i′′, j, j′′, k, k′ ≥ 1, then α,β, γ ≠ 0 otherwise u would be identically null. We obtain

the following conditions in order to satisfy curl u = 0:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a = i′′ = i′ = i + 1
b = j′′ = j = j′ + 1
c = k′ = k = k′′ + 1

with 1 ≤ a, b, c ≤ r since 0 ≤ i, j′, k′′ ≤ r − 1. α,β, γ are solution of the linear system:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

γ b − β c = 0

αc − γ a = 0

β a − αb = 0

.

The rank of this system is equal to 2, a non-trivial solution is equal to

(α,β, γ) = (a, b, c).
Hence, we have obtained:

u =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a x̂a−1 ŷb ẑc

b x̂a ŷb−1 ẑc

c x̂a ŷb ẑc−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ∇̂(x̂aŷbẑc).

Since 1 ≤ a, b, c ≤ r, x̂aŷbẑc ∈ PH1

r . Other conditions on i, i′′, j, j′′, k, k′ lead to the same kind of result, with

0 ≤ a, b, c ≤ r. Therefore we have proved that

Ker PH(curl)
r ⊂ Im grad PH1

r .

Since we have the two inclusions, these two spaces are equal. Let us now study the H(div) space, another way to

write the space for the hexahedron is the following one:

PH(div)
r =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
x̂iŷj ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂j ŷiẑk

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂j ŷkẑi

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ i ≤ r + 1, 0 ≤ j, k ≤ r, j + k ≠ 2r

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
x̂r+2ŷj ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂j ŷr+2ẑk

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂j ŷkẑr+2

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ j, k ≤ r

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
x̂r+1ŷr ẑr

x̂rŷr+1ẑr

x̂rŷr ẑr+1

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

.

The two last groups have clearly no intersection with Ker div, it is not possible to construct a function u as a combi-

nation of the basis functions of the two last groups and ensure div u = 0. Therefore, we will restrict our interest to

the first group. For this first group, the condition is that j, k are lower than r but cannot be both equal to r. Let us

consider u in PH(curl)
r , we have already computed the curl of such a representative function.The x-component of the

curl is equal to

γ j′′ x̂i′′ ŷj
′′−1ẑk

′′ − β k′ x̂i′ ŷj
′

ẑk
′−1.

The first polynomial is such that:

deg x̂ = i′′ ≤ r + 1, deg ŷ = j′′ − 1 ≤ r, deg ŷ = k′′ ≤ r − 1
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and the second polynomial

deg x̂ = i′ ≤ r + 1, deg ŷ = j′ ≤ r − 1, deg ẑ = k′ − 1 ≤ r.
These polynomial are indeed belonging to PH(div)

r , since the degrees in y and z cannot be both equal to r. Similar

observations on y and z-components of the curl lead us to the following inclusion

Im curl PH(curl)
r ⊂ Ker PH(div)

r .

As for H(curl), we take a function u of the form:

u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

αx̂i ŷj ẑk

βx̂i′ ŷj
′

ẑk
′

γx̂i′′ ŷj
′′

ẑk
′′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 0 ≤ i, j′, k′′ ≤ r + 1, 0 ≤ (j, k), (i′, k′), (i′′, j′′) ≤ r, but not both equal to r, α, β, γ ∈ R.

The divergence of u is equal to:

div u = α i x̂i−1ŷj ẑk + β j′ x̂i′ ŷj
′−1ẑk

′ + γ k′′ x̂i′′ ŷj
′′

ẑk
′′−1.

Let us consider that i, j′, k′′ ≥ 1, then we obtain

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a − 1 = i′ = i′′ = i − 1
b − 1 = j = j′′ = j′ − 1
c − 1 = k = k′ = k′ − 1

.

u is equal to

u =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

αx̂a ŷb−1 ẑc−1

βx̂a−1 ŷb ẑc−1

γx̂a−1 ŷb−1 ẑc

⎤⎥⎥⎥⎥⎥⎥⎥⎦
with the condition

αa + β b + γ c = 0

A set of non-trivial solutions is equal to

⎡⎢⎢⎢⎢⎢⎣
α

β

γ

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

b

−a
0

⎤⎥⎥⎥⎥⎥⎦
, or

⎡⎢⎢⎢⎢⎢⎣
c

0
−a

⎤⎥⎥⎥⎥⎥⎦
, or

⎡⎢⎢⎢⎢⎢⎣
0
c

−b

⎤⎥⎥⎥⎥⎥⎦
.

Only two functions among these three are needed to generate all the solutions. Let us consider the first non-trivial

solution, u is then equal to:

u =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

bx̂a ŷb−1 ẑc−1

−ax̂a−1 ŷb ẑc−1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= curl

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂aŷbẑc−1

⎤⎥⎥⎥⎥⎥⎦
.

If u belongs to the first group of PH(div)
r , we have the following conditions

a, b, c ≤ r + 1.
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However if c = r + 1, we have a, b ≤ r, since a − 1, c − 1 or a − 1, b − 1 can not be both equal to r. But in that case,

we are writing u as the curl of the following function

⎡⎢⎢⎢⎢⎢⎢⎢⎣

bx̂a ŷb−1 ẑc−1

−ax̂a−1 ŷb ẑc−1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= curl

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−ax̂a−1ŷbẑc−1

−bx̂aŷb−1ẑc−1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

This last function belongs to PH(curl)
r since a, b ≤ r. The two other sets of (α,β, γ) can be treated in a symmetric

manner.

Eventually, we have proved the inclusion

Ker PH(div)
r ⊂ Im curl PH(curl)

r

Since we have the two inclusions, these two spaces are equal.

Remark 4. It should be noticed that the sequence is exact for super-optimal spaces P̂H(div)
r = P̂ s−opt

r . This

exactness does not hold if we use optimal spaces P̂H(div)
r = P̂ opt

r . In that last case, we have only inclusions and not

equalities. We have observed that:

• Hexahedron:

dim Ker P̂ opt
r = dim Im curl PH(curl)

r + (3r + 5)
• Triangular prism:

dim Ker P̂ opt
r = dim Im curl PH(curl)

r + (r + 2)
Therefore the additional functions of the optimal spaces (compared to super-optimal spaces) are only contributing to

the kernel of the divergence.

8. Numerical Integration

The stiffness matrix of the variational formulation (2) reads (when ρ = 1)

Kij = ∫
Ω

divϕi divϕj dx = ∑
K
∫
K

divϕi divϕj dx

where

∫
K

divϕi divϕj dx = ∫
K̂

1

∣DF ∣ d̂iv ϕ̂i d̂ivϕ̂j dx̂.

Because of the presence of
1

∣DF ∣ , this integral can not be computed exactly by using numerical integration based on

Gauss points. This issue is also present for the mass matrix, since

∫
K
ϕi ⋅ ϕj dx = ∫

K̂

1

∣DF ∣DF ∗DFϕ̂i ⋅ ϕ̂j dx.

However, one can expect as for continuous elements (see (Bergot et al., 2010)) that the use of numerical integration

does not deteriorate the order of convergence.

The main ingredients of the numerical integration consists of Gauss and Gauss-Jacobi rules, which are quadrature

formulas exact for respectively P2r+1(x) and (1−x)α (1+x)β P2r+1(x), where we take α = 1, β = 0. In the sequel,

we will not specify if the Gauss formulas are adapted to the interval [0,1] or to the interval [−1,1], the interval for

each coordinate will depend on the reference element K̂. We also use symmetric rules adapted for the integration over

the unit triangle and unit tetrahedron (see (Šolı́n and Segeth, 2005) for a brief review of these formulas).
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Conjecture 1. The error of convergence ∣∣u − uh∣∣H(div,Ω) of the exact solution u of (1) toward the solution uh of the

discrete variational formulation (4) with optimal finite element spaces P̂ opt
r (K̂) is in O(hr) when the integrals are

computed numerically on each element K̂ with the following rules:

• Tetrahedron: A quadrature rule (ωtet
k , ξtetk ) exact for the integration of P2r(K̂)

• Hexahedron: A quadrature rule (ωk1,k2,k3
, ξk1,k2,k3

) exact for the integration of Q2r+5(K̂), with Gauss points:

ωk1,k2,k3
= ωG

k1
ωG
k2

ωG
k3
, ξk1,k2,k3

= (ξGk1
, ξGk2

, ξGk3
), 0 ≤ k1, k2, k3 ≤ r + 2

with r + 3 Gauss points (ωG
k1
, ξGk1
)

• Prism: A quadrature rule (ωk1,k3
, ξk1,k3

) exact for the integration of P2r+2(x̂, ŷ)×P2r+5(ẑ), with the following

tensor structure:

ωk1,k3
= ωtri

k1
ωG
k3
, ξk1,k3

= (ξtrik1
, ξGk3
)

with r + 3 Gauss points (ωG
k3
, ξGk3
) and a quadrature rule adapted to triangles (ωtri

k1
, ξtrik1
)

• Pyramid: A quadrature rule (ωk1,k2,k3
, ξk1,k2,k3

) exact for the integration of (1 − z̃)Q2r+3(x̃, ỹ, z̃) with the

following tensor structure:

ωk1,k2,k3
= (1 − ξGk3

)ωG
k1

ωG
k2

ωGJ
k3

, ξk1,k2,k3
= ((1 − ξGk3

) ξGk1
, (1 − ξGk3

) ξGk2
, ξGJ

k3
)

with r + 2 Gauss points (ωG
k1
, ξGk1
) and Gauss-Jacobi points (ωGJ

k3
, ξGJ

k3
) exact for the integration of (1 −

z)P2r+3(z).
Remark 5. Unlike the other elements, the quadrature rule used for the pyramid is actually not exact when the element

is affine (DF being constant) because the divergence of P̂ opt
r contains the singular function

1

1 − z . To get an exact

integration for affine pyramids, Gauss quadrature rules should be preferred to Gauss-Jacobi rules:

ωk1,k2,k3
= (1 − ξGk3

)2 ωG
k1

ωG
k2

ωG
k3
, ξk1,k2,k3

= ((1 − ξGk3
) ξGk1

, (1 − ξGk3
) ξGk2

, ξGk3
) .

However with the quadrature rules using Gauss-Jacobi, we obtain numerically the expected order of convergence

whereas we obtain a non-consistent method for any order of approximation when using Gauss-Jacobi rules (ωGJ,2

k3
, ξ

GJ,2

k3
)

exact for the integration of (1 − z)2P2r+3(z), that is the following quadrature rules:

ωk1,k2,k3
= ωG

k1
ωG
k2

ω
GJ,2

k3
, ξk1,k2,k3

= ((1 − ξGk3
) ξGk1

, (1 − ξGk3
) ξGk2

, ξ
GJ,2

k3

)
This is a specificity of H(div) space, since such a rule works very well for H1(Ω) (see (Bergot et al., 2010)) and

H(curl,Ω) (quadrature formula used to obtain the results in (Bergot and Duruflé, 2012)).

9. First Family

Finite element spaces of Nedelec’s first family are denoted P̂ 1

r and equal (see (Monk, 2002)) to

• Tetrahedron:

P̂ 1

r = Dr(x̂, ŷ, ẑ)
• Hexahedron:

P̂ 1

r = Qr,r−1,r−1(x̂, ŷ, ẑ) ×Qr−1,r,r−1(x̂, ŷ, ẑ) ×Qr−1,r−1,r(x̂, ŷ, ẑ)
• Triangular prism:

P̂ 1

r = Dr(x̂, ŷ)Pr−1(ẑ) × Pr−1(x̂, ŷ)Pr(ẑ)
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• Pyramid:

P̂ 1

r = Br−1(x̂, ŷ, ẑ)3

⊕
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x̂n+1 ŷm

(1 − ẑ)m+1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
x̂m ŷn+1

(1 − ẑ)m+1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
0 ≤m ≤ n ≤ r − 1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x̂m ŷn+1

(1 − ẑ)m+1
⎡⎢⎢⎢⎢⎢⎢⎢⎣

x̂

(1 − ẑ)
0−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⊕ x̂n+1 ŷm

(1 − ẑ)m+1
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
ŷ

(1 − ẑ)−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
0 ≤m ≤ n ≤ r − 2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⊕
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x̂iŷj

(1 − ẑ)i+j−r
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂

(1 − ẑ)
ŷ

(1 − ẑ)−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 0 ≤ i, j ≤ r − 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
There is no agreement about the finite element space for pyramids, the proposed space is a slight modification of the

optimal space such that the degrees of functions involved in P̂ 1

r are lower or equal to r.

Remark 6. The normal traces of classical finite element spaces P̂ 1

r are equal to

Qr−1,r−1(x, y) for quadrilateral faces ,

Pr−1(x, y) for triangular faces .

We remark that the spaces P̂ 1

r+1 and P̂ opt
r have the same number of degrees of freedom on quadrilateral faces, therefore

these two spaces will be often compared in the numerical results.

The hierarchic base for the first family for pyramids is constructed by changing the bounds for the indices:

Proposition 4. The following basis functions are an hierarchical basis H(div) conforming of P̂ 1

r for the pyramid
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HIERARCHICAL H(DIV) FUNCTIONS FOR THE PYRAMID AND P̂ 1
r

For the faces :

1

4
P

0,0
i
( x̂

1 − ẑ ) P 0,0
j
( ŷ

1 − ẑ ) (1 − ẑ)max(i,j)−1

⎡⎢⎢⎢⎢⎢⎣
−x̂−ŷ
1 − ẑ

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ i, j ≤ r − 1

1

8
P

0,0
i
( x̂

1 − ẑ ) (1 − ẑ)i P 2i+1,0
j

(2ẑ − 1)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x̂ẑ
1 − ẑ

−2 (1 − ŷ − ẑ) − ŷẑ

1 − ẑ
ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i + j ≤ r − 1

1

8
P

0,0
i
( x̂

1 − ẑ ) (1 − ẑ)i P 2i+1,0
j

(2ẑ − 1)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x̂ẑ
1 − ẑ

2 (1 + ŷ − ẑ) − ŷẑ

1 − ẑ
ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i + j ≤ r − 1

1

8
P

0,0
i
( ŷ

1 − ẑ ) (1 − ẑ)i P 2i+1,0
j

(2ẑ − 1)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 (1 − x̂ − ẑ) − x̂ẑ

1 − ẑ
−ŷẑ
1 − ẑ
ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i + j ≤ r − 1

1

8
P

0,0
i
( ŷ

1 − ẑ ) (1 − ẑ)i P 2i+1,0
j

(2ẑ − 1)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 (1 + x̂ − ẑ) − x̂ẑ

1 − ẑ
−ŷẑ
1 − ẑ
ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i + j ≤ r − 1

For the interior functions :

Pi,j,k

⎡⎢⎢⎢⎢⎢⎣
−x̂ẑ−ŷẑ(1 − ẑ)ẑ

⎤⎥⎥⎥⎥⎥⎦
, i, j, k ≥ 0, i, j ≤ r − 1, k ≤ r − 1 −max(i, j)

Pi,j,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂ŷẑ

1 − ẑ
1 − ẑ − ŷ2
−ŷẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i, j, k ≥ 0, i ≤ r − 1, j ≤ r − 2, k ≤ r − 1 −max(i, j)

Pi,j,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ẑ − x̂2

x̂ŷẑ

1 − ẑ
−x̂ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i, j, k ≥ 0, i ≤ r − 2, j ≤ r − 1, k ≤ r − 1 −max(i, j)

with Pi,j,k = P
0,0
i
( x̂

1 − ẑ ) P 0,0
j
( ŷ

1 − ẑ ) (1 − ẑ)max(i,j)−1 P
2max(i,j)+2,0
k

(2ẑ − 1)
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10. Comparison between Pyramidal Elements

We have compared our finite element spaces with the following spaces found in the literature. Below the remarks

about this comparison on a theoretical point of view:

1. For r = 1, the spaces proposed in (Gradinaru and Hiptmair, 1999), (Graglia et al., 1999), (Nigam and Phillips,

2010b) are the same, and almost coincide with the space P̂ 1

r . P̂ 1

r contains six degrees of freedom: if the interior

degree of freedom is removed, and the basis function associated with the quadrilateral face replaced by

⎡⎢⎢⎢⎢⎢⎣
x̂

ŷ−(1 − ẑ)
⎤⎥⎥⎥⎥⎥⎦
,

we obtain the coincidence with the “classical” space of the literature.

2. The proposed space P̂ 1

r satisfies the following conditions:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P̂ 1

r ⊃ Dr ⇒ optimal estimate for affine pyramids

P̂ 1

r ⊃ P̂ opt
r−1 ⇒ convergence in O(hr−1)) for non-affine pyramids

Degrees of basis functions in x̃, ỹ, z̃ is lower or equal to r⇒ less expensive quadrature rules than for P̂ opt
r

.

Therefore, we think that this space is quite attractive to use in conjunction with finite element space of the first

kind for the other elements.

3. Basis functions proposed in (Graglia et al., 1999) for r ≥ 2 rely on the multiplication of first-order basis functions

with polynomials in x̂, ŷ, ẑ, but as we know, polynomials are not suitable for the pyramid. As a result, Graglia’s

space G2 of second-order have the following properties:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

G2 ⊂ P̂ opt
3

, but G2 ⊄ P̂ opt
2

G2 ⊃ D2

G2 ⊅ P̂ opt
1

.

Therefore, these functions should lead to a convergence in O(h2) for affine pyramids, and be non-consistent for

non-affine pyramids. Furthermore, as for H(curl) approximation, we have also found the presence of spurious

modes, mainly concentrated on the lower part of the spectrum.

4. Finite element space proposed in (Nigam and Phillips, 2010a) NPr has the following properties:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

NPr ⊄ P̂ opt
r

NPr ⊃ Dr

NPr ⊅ P̂ opt
1

.

This space should give an optimal convergence in O(hr) for affine pyramids, but should be non-consistent for

non-affine pyramids. Furthermore the number of degrees of freedom becomes very large when r is high. In the

numerical comparisons, this space will be called the first Nigam Phillips space. The basis functions proposed in

the paper seem to be miswritten. The proposed representative function of a triangular function does not belong

to the space, a correct expression of this function (with the notations of the paper) is equal to

1

(1 + z)k+2
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

2(1 − y)xa zb

−xa zb+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, a + b ≤ k − 1.
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5. Finite element space proposed in (Nigam and Phillips, 2010b) NPr is a nice attempt to reduce the number of

degrees of freedom of the first space. This second space has the following properties

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

NPr ⊂ P̂ 1

r

NPr ⊃ Dr

NPr ⊅ P̂ opt
1

.

Hence, we think that this space should give an optimal convergence in O(hr) for affine pyramids, but should

be non-consistent for non-affine pyramids. It should be noticed that the dimension of this space is smaller than

the dimension of P̂ 1

r . This space seems attractive in the case where the mesh contains only affine pyramids.

10.1. Dispersion Analysis

A dispersion analysis (see (Bergot et al., 2010) for more details) is performed, it consists of computing the nu-

merical pulsation ωh for a given wave vector k. The value ωh found should be close to the continuous dispersion

relation:

ω = ∣∣k∣∣.
We call dispersion error the following ratio:

dispersion error = ωh − ∣∣k∣∣∣∣k∣∣ .

The wave vector k is a 3-D vector, the dispersion error depends on its orientation. For the sake of simplicity, we will

always take this vector in the direction of x-coordinates:

k =
⎡⎢⎢⎢⎢⎢⎣
k

0
0

⎤⎥⎥⎥⎥⎥⎦
.

The dispersion analysis is performed on a periodic pattern, it is therefore equivalent to decrease k and take a mesh

size h = 1 or decrease h and take a wave vector k = 1. This is the last case that will be chosen, and the dispersion error

will be displayed versus the mesh size.

The dispersion analysis is performed for affine pyramids, by using a regular pattern (see Fig. 6) where each cube

is split into six pyramids. The dispersion error found for the different finite elements is represented in Fig. 2. It

is observed that Graglia’s basis functions provide a dispersion error in O(h2) (for r = 2), whereas other spaces are

providing a dispersion error in O(h2r). Nigam & Phillips spaces and P̂ 1

r have almost the same dispersion error,

whereas the optimal finite space seems less dispersive.

The same analysis is conducted with a deformed pattern (see Fig. 6) containing both affine and non-affine pyra-

mids, in Fig. 3. It is observed that the classical first order functions, Graglia’s basis functions (for r = 2) and second

Nigam & Phillips space are providing a dispersion error in O(1) (non-consistent), whereas first Nigam & Phillips

space and P̂ 1

r give almost the same dispersion error in O(h2r−2), and optimal elements are the less dispersive ele-

ments with a convergence in O(h2r). These assumptions have also been numerically checked for r = 3. It should be

noticed that the consistency error of second Nigam & Phillips space is much smaller when r = 2 than when r = 1,

and it decreases furthermore for high orders. Therefore, we think that this space is not h-convergent but probably

p-convergent for non-affine pyramids.

10.2. Convergence for the Source Problem

Next, the convergence in H(div) norm is studied for the source problem (1) with f a gaussian source (see solution

in Fig. 10). The H(div) error is computed versus the inverse of the cubic root of number of degrees of freedom (this

quantity is equivalent to the mesh size) for affine pyramids (Fig. 4) and non-affine pyramids (Fig. 5). Because of the

presence of spurious modes, the use of Graglia’s functions lead to a scheme which converge slowly and erratically. It

can be seen that optimal elements require less degrees of freedom to reach a given accuracy than other elements (for

r = 2).
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Figure 2: Dispersion error for different pyramidal spaces on a pattern containing only affine pyramids.

Figure 3: Dispersion error for different pyramidal spaces on a pattern containing non-affine pyramids.
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Figure 4: Relative H(div) error for different pyramidal spaces for the source problem with affine pyramids.

Figure 5: Relative H(div) error for different pyramidal spaces for the source problem with non-affine pyramids.
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11. Comparison between Hexahedral Elements

11.1. Dispersion Analysis

A dispersion analysis will be performed for three kind of hexahedral patterns

1. A regular pattern made of a single cube

2. A deformed pattern made of 8 cubes, but the middle point has been moved. As a result the eight hexahedra are

non-affine.

3. A split pattern made of 24 hexahedra, obtained by considering a cube containing 6 tetrahedra, and by splitting

each tetrahedra into four hexahedra

These three patterns are displayed in the figure 6

Figure 6: Patterns used to study the dispersion for hexahedral meshes. From left to right, the regular pattern, deformed pattern and split pattern.

The dispersion errors obtained for the regular pattern are displayed in Fig. 7. We observe that the dispersion error

Figure 7: Dispersion error versus h/r for regular patterns (hexahedral mesh).

is in O(h2r) for Nedelec’s first family, in O(h2r+4) for optimal and super-optimal finite elements. The dispersion for
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optimal and super-optimal spaces is exactly the same in this case, that’s why we didn’t display the dispersion error for

super-optimal elements in the figure. The extra-power of convergence obtained for optimal elements (the dispersion

error was expected to be in O(h2r+2)) is quite attractive, it should be noted that first-order optimal elements are less

dispersive than third-order elements of the first kind.

The dispersion errors obtained for the deformed pattern are plotted in Fig. 8. The observed dispersion error is in

Figure 8: Dispersion error versus h/r for deformed patterns (hexahedral mesh).

O(h2r−2) for elements of the first kind, in O(h2r) for optimal and super-optimal finite elements. It should be noted

that optimal elements are much less dispersive than super-optimal elements for r = 1, whereas the difference is quite

small for r = 2.

The dispersion errors obtained for the split pattern are plotted in Fig. 9. The observed dispersion error is in

O(h2r−4) for elements of the first kind, in O(h2r) for optimal and super-optimal finite elements. In that last case,

optimal elements are less dispersive than super-optimal elements for r = 1, and provide the same dispersion error

for r = 2. It is interesting to see that the loss of two orders by elements of the first kind does not appear for every

non-affine mesh, since the deformed meshes exhibit a loss of one order only.

11.2. Convergence for the source problem

The wave equation (1) is considered with f a gaussian source oriented along ex. The computation is performed

on the cube [−1,1] with homogeneous Dirichlet condition u ⋅ n = 0 on the boundary and ω = 1.96π. The solution

of this source problem is plotted in Fig. 10. The convergence in H(div) norm is displayed in Fig. 11 for a deformed

pattern and in Fig. 12 for a split pattern. It is interesting to notice that for the split pattern, the first-order elements are

not converging at all, the error is greater than 90% and second-order elements seem to slowly converge, we think that

the convergence curve would probably stagnate for smaller values of h. In x-coordinates of those figures, the inverse

of the cubic root of dofs is considered (so that it is equivalent to a mesh size h), we can compare the results for a

same number of degrees of freedom. In both kinds of meshes, it appears that optimal elements require less degrees

of freedom than elements of the first kind. The number of needed degrees of freedom for third-order elements of the

first kind is more important than for first-order optimal elements. The difference between optimal and super-optimal

elements is of relative importance for first-order approximation, and negligible for higher orders.

The wave equation is then solved for an incident wave field, and with a dielectric sphere of radius 2:

ρ = 1, µ = { 2 inside the sphere

1 outside the sphere
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Figure 9: Dispersion error versus h/r for split patterns (hexahedral mesh).

Figure 10: Divergence of u for the source problem in a cube (the source being a gaussian).
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Figure 11: Numerical error in H(div) norm versus the cubic root of number of degrees of freedom for the gaussian source in the cube. Meshes

obtained with a deformed pattern.

Figure 12: Numerical error in H(div) norm versus the cubic root of number of degrees of freedom for the gaussian source in the cube. Meshes

obtained with a split pattern.

39



The boundary Σ is the border of the cube [−3,3]. The solution of this problem is plotted in Fig. 13. The meshes

Figure 13: Divergence of u of diffracted field (real part) for the sphere.

considered here are fully hybrid, and contain mostly hexahedra, and a small part of tetrahedra, pyramids and prisms,

an example of mesh is represented in figure 14. On this test case, we have searched the needed mesh in order to

Figure 14: Hybrid mesh used for the sphere

obtain a H(div) relative error equal to 1%. Curved elements are used in order to obtain a good approximation of

the geometry. The results are summarized in Tab. 1. The tables are set such that we can directly compare the spaces

P̂ opt
r and P̂ 1

r+1. It can be observed that optimal elements are requiring less degrees of freedom than classical elements,

especially for low orders.
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