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AbstratThis work explores the bene�ts of loud omputing in the development of kriging-based parallel opti-mization algorithms dediated to expensive-to-evaluate funtions. We �rst show how the appliation of amulti-point expeted improvement riterion allows to gain insights into the problem of shape optimizationin a turbulent �uid �ow, whih arises in the automobile industry. Our work then proeeds with a varietyof experiments onduted on the ProAtive PACA Grid loud. Due to a multipliative inrease in searhspae dimensionality, the multi-point riterion annot exploit a large number of omputing nodes. There-fore, we employ the riterion with an asynhronous aess to the simulation resoures, when the availablenodes are immediately updated while aounting for the remaining running simulations. Comparisonsare made with domain deomposition whih is applied here as an alternative parallelization tehnique.Our experiments indiate weaknesses in the use of the multi-point riterion with a synhronous nodeaess, and bene�ts when working in the asynhronous mode. Finally, a relatively fast and auratemethod is developed for the estimation of the expeted improvement at multiple points.
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1 IntrodutionWe shall study optimization of expensive-to-evaluate funtions (budgeted optimization) with a partiularappliation in the design of the shape of an air dut. The latter demands time-onsuming numerial simu-lations of a turbulent �uid �ow. Our aim is to implement and parallelize the algorithms known as Bayesianoptimization [11℄, and in partiular, the expeted improvement (EI) algorithm [27, 28℄. More spei�ally, ourwork relies on a multi-point EI riterion studied in [35, 20, 18℄, and the goal is to test the algorithms withsynhronous and asynhronous node aess.1.1 Expeted ImprovementThe sequential algorithms that we aim to parallelize have �rst been developed independently by J. Mokusand H. Kushner in the early 60s [27, 22℄. Both authors onsidered Gaussian proess models for an expensive-to-evaluate funtion and suggested maximization of the auxiliary quantities for the generation of new andi-date loations. H. Kushner advoated maximization of the probability of an improvement (PI), J. Mokusstudied both, the probability and expetation of an improvement.The third prominent diretion of a budgeted optimization utilizes the upper on�dene bound (UCB)of an improvement [14℄. Reent publiations have abbreviated the algorithm as GP�UCB and suppliedit with a wealth of analyses about Gaussian proesses in the setting of the so alled multi-armed banditproblem [5, 38, 6℄. The key di�erene from the previous algorithms here is that the law between exploitation(sampling at the regions with a low preditive mean) and exploration (sampling where a preditive varianeis high) hanges as the optimization proeeds in time. In addition, the fous here is on sharper bounds ofthe so alled umulative regret funtion whih an be a temporal integral of the absolute di�erenes betweenthe ideal sought ost funtion value and the value obtained at a partiular time. The aim is to minimize orbound the umulative regret by temporally hanging the deviation weight in the UCB expressions.A reent survey of the use of the three riteria an be found in [11℄ where they are also referred to asaquisition funtions. Preferenes over them remain rather subjetive, and we shall fous on the expetation-based algorithms beause they have less parameters to adjust.The authors of [33℄ emphasize the lak of onvergene proofs related to the EI algorithms. This problemhas been investigated more thoroughly only reently [40, 12, 42℄. The exists a proof for two ontinuitylasses of objetive funtions, albeit for algorithms that use Gaussian proesses with �xed ovariane funtionparameters [40℄. In this regard, it ould be worth iting the following text [12℄:"...For pratitioners, however, these results are somewhat misleading. In typial appliations, the prioris not held �xed, but depends on parameters estimated sequentially from the data. This proess ensures thehoie of observations is invariant under translation and saling of f, and is believed to be more e�ient(Jones et al., 1998, �2). It has a profound e�et on onvergene, however: Loatelli (1997, �3.2) shows that,for a Brownian motion prior with estimated parameters, expeted improvement may not onverge at all."It is possible to develop better parameter estimators [12℄, but our algorithms in general do not re-estimatethe ovariane funtion, as they an easily be �xed before eah optimization, lf. Eq. (9). Another exampleof a simple rule of thumb for setting up the ovariane funtion parameters before the optimization an befound in [6℄. The ability to use �xed parameters is hardly a pratial limitation of the EI algorithms.A more relevant problem is that the so alled NEB assumption stated in [40℄ does not provide onvergeneresults for the Gaussian proesses whose ovariane funtion is the Gaussian kernel. Reently, it has beenestablished in [42℄ that there exist a lass of univariate analyti (in�nitely di�erentiable) objetive funtionswhih annot be optimized with the EI algorithm that relies on the Gaussian kernel. One should bearin mind, however, that "realisti optimization budgets may be too low in many problems for the indiatedasymptoti behavior to be relevant" [42℄.The mismath between the theory and pratie is also evident as often the smoothness lass of an objetivefuntion is neither known nor even relevant. In addition, hardly any existing algorithm an be implementedso that the global maximum of an aquisition funtion is always reahed. This displaes the atual programsfurther away from their theoretial ounterparts disussed in [40, 12, 42℄.3



1.2 Early Ideas of ParallelizationOne the loud omputing beame widespread, it has been realized that most of the algorithms are sequential,and their parallelization demands a separate researh. A parallel EI algorithm [37℄ may utilize a gradient-based maximization of the single point EI riterion, applied with multiple starting points. Parallelizationan thus be ahieved by enrihing the standard EI algorithm with loal maxima of an aquisition funtion.Another early pratial attempt to parallelize relevant algorithms is reported in [33℄. Instead of theimprovement-based riteria, the authors utilize a variety of other "aquisition funtions" and ompare theiralgorithms with the one developed in [37℄. Notably, parallelization is ahieved by using multiple refereneost funtion values fmin in the EI-related riteria. The generation is reated by adding one point at a time,and eah point is obtained by maximizing the EI riterion with di�erent referene values. Uniqueness ofandidate points is ahieved by imposing distane onstraints.Considering the parallelization performed in [33, 34℄, one an draw a useful warning that the speed-upsover sequential algorithms an be quite small. For example, with four omputing nodes, the speed-ups aregenerally less than four, and for the modi�ed Rosenbrok and Akley funtions, eah with �ve variables, thereported speed-ups are 1.83, and 1.44. Our results will indiate a problem where speed-ups an be lower.This di�ulty ould be avoided by designing algorithms whih an leverage a larger number of omputingnodes. However, one should note that various stohasti sampling methods have already been studied withlarge generation sizes, and the speed-up values have often turned out to be bounded by O(1) [39℄.1.3 Dynami ParallelizationMany existing parallelization ideas somewhat blindly generate multiple andidate points at a time by apital-izing on the fat that budgeted optimization algorithms have a lot of free parameters. Dynami parallelizationtries to predit the outome of a sequential algorithm without the use of expensive funtion evaluations. Itmay also swith o� parallelization at the times when the predition is not possible, and thus adaptivelyrequest additional evaluations of an expensive funtion.Most of the presently known dynami parallelization algorithms, see e.g. [10, 15℄ rely on a heuristisequential tehnique, �rst introdued by M. Shonlau [35℄. The ore insight utilizes the fat that the varianeof any Gaussian proess onditioned on the observations does not depend on the atual observation value, butonly on its spatial loation. This property an be exploited to reate a bath (generation) of distint andidateloations bypassing their expensive evaluation sequantially, thus, allegedly speeding up the optimization.The andidate points are generated one at a time by maximizing an aquisition funtion and updating thepreditive variane (and possibly, but not neessarily, preditive mean).This tehnique is applied in [6, 8℄, where the generation of new loations is built in a sequential mannerdesribed above, by maximizing one-point EI riterion at a time, and simply replaing the orrespondingexpensive funtion values with the ones sampled from its posterior density onditioned on the urrent designof experiments (DOE). After obtaining a sample of andidate points, lustering is then performed to dereaseredundany and size of the generation. The lustering riterion is simply the sum of weighted Eulideandistanes between the generation points and its luster enters. The weights are probabilities that a ertainluster point provides a better ost funtion value than the rest of the luster enters. There are no knownexpliit expressions for suh probabilities even in the ase of normal variables, and thus the assumptionof independene is made and the standard formulae of the Gaussian order statistis is employed. Theexperiments have been performed with generation sizes �xed to 5 and 10.In their more reent researh [10℄, the authors drop out the lustering-based method entirely, and theybuild the generation diretly (without any postproessing) by maximizing one-point EI riterion in the spiritof their previous method. However, the generation size is made adaptive and it inreases only if the bound onthe deviation of the preditive mean from its true value (that would, in theory, be obtained with a sequentialone-point EI algorithm) does not exeed a spei�ed threshold. A newly added loation in the generationmust be assoiated not with an arbitrary ost funtion value (mean, random sample from posterior), but itsglobally optimal value whih is assumed to be known. Often, this is indeed the ase when only the globallyoptimal argument of an expensive funtion is unknown, but the ost funtion value itself an be determined4



with a satisfatory preision.A very similar in spirit parallelization, albeit of the GP�UCB algorithm, alled GP�BUCB, is presentedin [15℄. One di�erene is that the proess mean funtion is employed to model the expensive-to-evaluatevalues during the onstrution of the generation, but the mean values of the generation points may not evenbe updated. Instead, the UCB deviation weight is adjusted when building the generation whose size alsohanges dynamially. The latter is ontrolled by an available umulative regret bound. The authors of [15℄also suggest replaing the exat variane updates with ertain bounds in order to speed up the reation of anew generation of andidate loations. This trik is also employed in [10℄, but the latter work uses di�erentbounds. An interesting byprodut of both of these methods is that they provide indiators of when anexpensive funtion evaluation should be performed, and when it is good enough to use the regression modelto generate a new andidate loation.However, in addition to the di�ulties of setting up newly introdued threshold parameters, the problemwith these methods is that they annot e�etively explore all the available omputational nodes as the sizeof the generation is determined algorithmially and hanges with time, while parallel resoures are often�xed and limited. Another drawbak is that the sizes an be nonuniform, whih may yield suboptimal totaloptimization times.The latter aspet is addressed in [7, 9℄. The authors assume that there exist a spei� distribution for theduration of an expensive evaluation, and the total optimization time is limited by a �xed known value. Thenumber of total funtion evaluations is also �xed, and so is the maximal size of the generation of andidateloations. Assuming this information exists, the authors develop a general model whih aims to distributegeneration sizes and determine the orresponding durations for their parallel evaluations. They introduethe so alled CPE riterion, whih is a umulative temporal sum of the number of jobs ompleted at a time.Its maximization is shown to prefer uniform shedules (distributions of the generation sizes) and an thusbe used to limit the parallelization so that the algorithm utilizes more expensive funtion values and is stillable to meet a spei�ed time horizon.One di�ulty with this general setting is that parallel exeution times are stohasti (and often the exatdistributions are unknown or hanging), but the model imposes the upper limit on the duration for theevaluation of the generation. Thus, the evaluation may atually fail to omplete, and the authors furtheraddress this di�ulty by introduing the notion of a probabilisti safety of an algorithm. Therefore, the aimis to maximize the probability of a safe ompletion whih is not guaranteed to be unity.1.4 Our PreferenesInstead of applying sequential heuristi tehniques disussed above, we shall diretly maximize the multi-point EI riterion, whih seems to have been introdued by M. Shonlau, see �5.3 in [35℄, and whose pratialrelevane has been justi�ed only reently, see e.g. [18, 20℄. It has been demonstrated that a multi-point EIwill be large where, simultaneously, the orresponding one-point EI values are large, and the generationpoints are not orrelated. Thus, the multi-point EI riterion gives preferene to distint multiple andidatepoints automatially, without any additional parameters, heuristi distane onstraints, or additive penaltyfuntions.The riterion demands fewer adjustable parameters, but its maximization is only possible when thegeneration sizes λ are small, typially O(1). It should be understood that a small value of λ does not limitthe parallelization. In partiular, we shall advoate an asynhronous node aess where one �rst submits alarge number of expensive funtion evaluations to the loud, and then updates only λ nodes at a time (thealgorithm remains parallel even when λ = 1).The multi-point EI riterion has already been applied to selet parameters of various statistial modelsin order to further inrease their performane on some known mahine learning benhmarks [36℄. We shallreport deviations in the optimization evolutions w.r.t. the initial DOE, whih turn out to be higher than theerror bars that an be seen in [36℄. This indiates that ertain parameters, suh as an initial DOE, an a�etthe outome of the optimization results more than a better regression model. High performane variabilityw.r.t. the initial DOE is also reported in [32℄. 5



An attempt to improve maximization of the multi-point EI riterion is presented in [13℄, where it is shownhow to ompute the gradient of this aquisition funtion analytially. This is a researh diretion whih ouldbe very important for the asynhronous node aess where the time it takes to generate and ommuniatenew points (bloking time) should be minimal. Maximization of the multi-point EI riterion is also aomputational bottlenek during the testing of any of the relevant algorithms, and a faster maximizationwould provide an appreiable aid here. However, one should bear in mind that the multi-point EI riterionis multimodal, and there is no easy way to reah its global maximum with loal optimization tehniques.One ould emphasize that the framework introdued in [7, 9℄ is a very general formalization of a budgetedoptimization problem. Our asynhronous optimization study that will be presented in Setion 4 orrespondsto a partiular ase whih the authors all Online Fastest Completion Poliy (OFCP). This poliy is just astrategy to alulate and evaluate new λ andidate loations immediately as λ omputational nodes beomeavailable. Their main ritique, and quite a profound insight, is that "it does not use the full time horizon, evenwhen doing so would allow for muh less onurreny" [7℄. The works in [7, 9℄ introdue a new perspetiveto Bayesian optimization beause they expliitly quantify and minimize the atual optimization time insteadof relying on a prevalent statement that Bayesian optimization is "known to be e�ient".We do not neessarily advoate the use of this poliy over others and our results, provided in Setion 4,ould be seen as a further analysis and numerial evidene that only better haraterizes this poliy. How-ever, the OFCP poliy is a natural hoie when the overall time horizon is not given, or when the exattiming harateristis of the expensive evaluations are not known (but we shall provide analysis when suhinformation is available). The OFCP poliy simply works with an assumption of a �xed number of totalfuntion evaluations, it maximizes the node oupation time, does not need any sophistiated sheduling,and there is obviously no need to onsider a probabilisti safety in this ase. For the sake of simpliity, weshall bypass the deision theoreti voabulary and instead of the OFCP poliy shall frequently employ a lessinformative desription of the asynhronous node aess.1.5 Struture of the ReportThe report �rst provides the results of the appliation of a synhronous four-point EI algorithm to theindustrial problem of shape design, whih are summarized in Setion 2. The optimization operates in suha way that one �rst submits four points for their evaluation, and then waits until all of them are ompleted.The regression model is then updated, the multi-point EI riterion is maximized, and the proess is ontinueduntil the budget of expensive evaluations is exeeded. The evaluation of a ost funtion takes about twentyminutes. We improve a reently reported result in [31℄, and provide insights into physial, and statistialaspets of the problem.Setion 3 states performane results of various parallelization tehniques dediated to a synhronous nodeaess. Our results indiate that a simple strategy suh as the domain deomposition is ompetitive with moreadvaned methods, but there are problems where none of the methods is suitable for parallel optimizationand a single point EI algorithm performs equally well. One should note that the tests are strutured in suha way that parallel algorithms are exeuted on a single mahine, and independent simulations pertaining todi�erent initial DOEs are then sent to the loud to assess how an initial DOE a�ets the results. The reasonfor this partiular way of utilizing the loud is that timing harateristis of the parallel algorithms an berather obvious, and in the testing phase the ost funtions are not expensive to evaluate.Optimization with an asynhronous node aess is disussed in Setion 4. We state a partiular modelfor the exeution time of an expensive-to-evaluate funtion, simulate the asynhronous point generationsenarios based on the proposed timing model, and test the performane of the multi-point algorithms bysubmitting independent optimizations, eah with a di�erent initial DOE, to the loud. Here the fous ison the average time for a new generation to atually be sent to the loud, whih will be referred to as awall lok time. A wall lok time depends not only on the time it takes to maximize the improvementand to ommuniate the results to the remote nodes, but also on when and where a partiular node beomesavailable while other nodes are ative with the evaluation. This is one di�erene with the previous work onbudgeted optimization onsidered in the literature. 6



Setion 5 fouses on the possibilities to further speed-up evaluations of the integral for the multi-pointEI riterion. We have observed in our numerial experiments that the integral has a peuliar property thatits upper bound lies extremely lose to the atual value, espeially (but not neessarily) when the examinedexpeted improvements are further away from the loations where they are maximal. In essene, we hoose towork within the framework of systemati sampling [16℄ (as opposed to importane sampling) and show thatone an onsiderably improve symmetri monomial rules (unsented transforms) by replaing monomialswith integrated one-point improvements. However, one must also mention that a standard Monte Carlosampling proves to be a very reliable integration tehnique, espeially at the loations where the expetedimprovements are maximal.As will be seen in the results provided in this report, a signi�ant bene�t of using a omputing loud is thatit allows large sale testing of the algorithms with di�erent parameter settings. For example, parameters, suhas an initial DOE, greatly a�et the optimization results and are very hard to "integrate out". The ability toutilize loud resoures allows one to atually send replias of the original simulation with parameter hangesand then see the e�ets. This is very hard to ahieve when running things loally on a single omputer (ina serial manner) beause a budgeted optimization of inexpensive-to-evaluate funtions is itself a very time-onsuming proess. In our work, a single ost funtion evaluation in the rank-one matrix approximationproblem may take miroseonds to evaluate, but a single omplete optimization may easily reah ten hours(when the CPU rate is 2.5GHz). Our ability to run the odes on the ProAtive PACA Grid loud [3℄ allowsto obtain about one hundred suh independent optimizations in a day, whih is a remarkable asset in testing.
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2 Shape Optimization2.1 Expensive-to-Evaluate FuntionOur goal is to optimize the geometry of a ooling dut, whih has already been studied in [31℄. The riterionis the normalized pressure di�erene of the �ow at the inlet and outlet of a dut, whih is indiated in Fig. 1a.The optimization parameters are shown in Figs. 1b�d.It will su�e to emphasize that the riterion is a positive quantity whose omputation is a demandingnumerial solution of the k�ǫ model of a �uid �ow. The �ow is linear, visous (ν = 1.6 · 10−4 m2/s.),inompressible, and turbulent (Re = 4000).The k�ǫ model is a mixed system of nonlinear partial di�erential and algebrai equations [17℄:
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νT = Cµk2/ǫ. (5)It desribes the time averages of the pressure �eld p and the �ow veloity �eld u:
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νT is a �eld.The initial and boundary onditions are indiated in Table 1. The implementation uses the open sourelibrary alled OpenFOAM [2℄. The wall funtions "kw", "ǫw", and "νTw" are the OpenFOAM funtions"kqRWallFuntion", "epsilonWallFuntion", and "nutWallFuntion", resp. The latter two override theirdefault parameter values with Cµ = 0.09, κ = 0.41, E = 9.8. The initial values of the quantities omputedby the wall "funtions" orrespond to the initial values of the �elds shown in the last olumn of Table 1.In addition to OpenFOAM, a omplete software stak of this �uid dynamis simulation inludes CA-TIA [1℄ (a 3D model of a dut), STAR�CCM+ [4℄ (omputational mesh generation), and ParaView [19℄(visualization).2.2 AlgorithmIt is not transparent how the pressure di�erene depends on the parameters whih speify the geometryof a dut. Various admissable hanges of the geometry are not visually disernable, and the model is amassive nonlinear dynamial system. This motivates the appliation of a budgeted optimization. This typeoptimization estimates the kriging model of an expensive-to-evaluate funtion, and generates new andidateloations by maximizing the multi-point expeted improvement. In partiular, given µ ative points x1:µand λ free nodes, the algorithm �nds λ new points by solving the following problem:

max
x∈Rdλ

E(max (0, min (fmin, Y (x1:µ)) − min Y (x)) |A
)

, (7)
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Table 1: Initial and boundary onditions for key quantities of the k�ǫ model.Name Field Units Boundary onditions Initial onditionsInlet Outlet Wall
p̃ = p̄/ρ Normalized pressure m2

s2 ∇p̃ = 0 p̃ = 0 ∇p̃ = 0 0
u Flow veloity m

s −n 0 if u · n ≤ 0 0 0

k Turb. kin. energy m2

s2 10−3 ∇k = 0 "kw" 10−3

ǫ Dissipation Rate of k m2

s3 10−1 ∇ǫ = 0 "ǫw" 10−1

νT Turbulent Visosity m2

s3 0 ∇νT = 0 "νTw" 0where fmin is the urrent minimum, Y (x1:µ) = (Y (x1), . . . , Y (xµ)) and Y (x) = (Y (xµ+1), . . . , Y (xµ+λ)) arerandom surrogates (kriging model). A denotes the event when Y values equal to all known expensive-to-evaluate funtions at all the known loations. Methods to ompute the expetation in Eq. (7) are disussedin Setion 5.Considering the use of kriging in the optimization, one may refer to [18, 20℄ for more details. In addition,we have applied a few hanges to what seems to be a standard pratie. They are not oneptually interesting,but are worth mentioning:1. The expeted improvement is maximized by using the CMA-ES algorithm [29, 39℄. Box onstraintsare handled by projeting the oordinates on the bounds and adding the penalty term to an expetedimprovement. The penalty is proportional to the Eulidean distane from the optimization point tothe boundary if the point is out of bounds, and is zero otherwise.2. Conditional expetations are alulated by using the pseudoinverse of the DOE ovariane matrix. Thismethod overestimates the onditional varianes, but it does not demand any additional parameters,and it also redues to the standard inverse in the absene of singularities.3. When the onditional ovariane matrix of the kriging responses is singular, the value of the expetedimprovement is simply set to zero. Here by "singularity" it is meant anything that breaks the Choleskydeomposition. The latter is plaed inside the "try blok" of the "try and ath" exeption handling.4. Multi-point expeted improvements are alulated by using the Monte Carlo sampling with one thou-sand points. This standard method is simple, omputationally inexpensive, and reliable w.r.t. in-reasing dimensions of an integration domain. The seed of the random generator is set to the urrentgeneration number, so that the integration routine uses the same random points when evaluating theexpeted improvement at di�erent spatial loations.5. Kriging is applied with Gaussian kernels whose varianes vary with eah oordinate. The varianes aredetermined by squaring the median of the absolute deviations from the median of a partiular oor-dinate. This is simpler and faster than any iterative estimation and, more importantly, it guaranteesthat the appearane of lose points in DOE does not hange kernel varianes unexpetedly.We shall apply what is known as the synhronous multi-point algorithm [18℄ with λ = 4 points, whih isbrie�y abbreviated as EI0,4. The hoie of generating four points at a time demands the optimization with
8× 4 = 32 variables. Asking for more points at a time, or using DOEs with more points than O(103) wouldintrodue severe numerial di�ulties.2.3 ResultsThe minimization of the pressure di�erene is shown in Fig. 2. The �rst 320 observations are generatedby using the Latin Hyperube Sampling (LHS) algorithm, so that the atual optimization starts at the9



Table 2: Main ResultsLOBS UPBS Worst [31℄ Our result
x1 0.0036 0.0166 0.0036 0.0149 0.0132
x2 0.3 0.8 0.3760 0.4202 0.4756
x3 0.0027 0.0207 0.0207 0.0102 0.0207
x4 0.0405 0.0595 0.0595 0.0479 0.0450
x5 1.25 1.5707 1.2525 1.5582 1.5707
x6 0.21 0.42 0.2254 0.3849 0.3914
x7 0.047 0.055 0.055 0.0541 0.0547
x8 0.0008 0.0088 0.00081 0.0014 0.0016pd nan nan 1.28 0.59 ± 0.01 0.56 ± 0.01observation number 320. The optimization then proeeds via a synhronous generation of four andidatepoints. They are obtained by maximizing the expeted improvement with the CMA-ES algorithm [29℄ whihuses its default parameters, exept that the initial oordinate deviation is hosen to be 0.1, and the numberof iterations is set to 3000.Optimization results are presented in Table 2. One an see the bounds of the variables, the worst observedpoint whih gives the maximal pressure di�erene value 1.28, previously available best result [31℄, along withour improvement. The presene of "nan" values indiates that the pressure values are not available at thepoints whose all oordinates are simultaneously equal to either the lower or upper bound. The geometryannot be meshed in these two extreme ases.2.4 Analysis of ResultsThe optimization results an also be highlighted by omparing the optimal �elds with the worst observedases. The worst observed geometry is shown in Fig. 3. It only serves the purpose of displaying the sliingplane on whih the �eld values will be displayed, and in setting up the range for the pressure values, whihis [0, 4]. The surfae of the dut is olored with the ParaView [19℄ sheme "hsv-blue-to-red" whose range ofolors is also displayed in the olor bar.The values of the pressure �eld on the surfae and its slie are shown in Fig. 4. Both shapes are hard todisern visually, but the di�erenes an still be notied without any speial tools. In the optimized ase, thepressure values are smaller on the walls at the in�etion of the dut.The omponents of the veloity �eld are shown in Fig. 5. For omparison purposes, the ranges of the �eldvalues are kept the same in both the worst and optimal ases, and the olor spae is the one used with thepressure �elds, lf. Fig. 3. The ranges for the x, y, and z-omponents are [−0.3, 1], [−0.4, 1.4], and −1.6, 0.2,resp. One an see that the veloity �eld of a �ow in the optimized ase is generally smoother, and e�etivelyuses a larger volume of a dut.The optimized geometries are very hard to disern visually, and the pressure �elds are nearly optiallyidential, whih is also aompanied by rather small di�erenes in the numerial values of the pressure �elds.However, the results are not idential, and the di�erenes beome most pronouned when looking at veloity�elds shown in Fig. 6. One an see that our result is slightly smoother, whih an be seen in the upper leftareas of the slies in the x and z-omponents (a,d,,f), and at the in�etion point of a dut in the ase ofthe y omponent (b,e).In order to see if our result di�ers from the one in [31℄ statistially, we have performed the prinipalomponent analysis on the data orrelation (not ovariane) matrix. The data is the matrix of size 8 × 788whose olumns are the andidate loations generated during the optimization (the data orrelation matrixis of size 8 × 8). The results are shown in Fig. 7. They indiate the projetions of the data vetors onthe hosen eigenvetors of the orrelation matrix. In addition to the data, several important loations are10



Table 3: Eigenvetors of the orrelation matrix of all the geometries.Coord. v1 v2 v3 v4 v5 v6 v7 v8

1 0.47061 −0.01957 0.00218 −0.34455 −0.09434 −0.65004 −0.26550 −0.39683
2 −0.24119 −0.39696 0.20201 −0.27114 −0.80995 0.01527 0.04344 0.10855
3 −0.50275 −0.03497 0.19678 0.10206 0.19948 −0.48401 −0.50937 0.40419
4 0.04089 0.33272 0.87867 0.14932 −0.04204 0.13262 −0.04856 −0.26749
5 −0.49912 0.22259 −0.30076 −0.06057 −0.11561 0.22181 −0.39944 −0.62056
6 −0.33944 0.20969 0.11621 −0.74648 0.29979 −0.07762 0.41716 0.01265
7 −0.16022 0.56533 −0.18227 0.33491 −0.36915 −0.44528 0.41711 0.02842
8 −0.27554 −0.56302 0.10589 0.31937 0.23239 −0.26807 0.39781 −0.45799indiated with di�erent markers, and they are: the present optimal solution (Opt), lower and upperb bounds(LB, UP, resp.), previous result [31℄ (PrevBest), the average value of the bounds (Midpoint), and the worstobserved point during the optimization (Worst).As the onentration of variane by the �rst prinipal omponents is not very pronouned, one �nds outthat data does not live in a subspae of R8 and all the oordinates are valuable. Therefore, the parameter-ization of the problem is not redundant. However, the dimension of the problem ould have been redueddown to R5 beause the seond, �fth, and eight priipal omponents do not disriminate the optimal loationfrom the middle point or the worst point.When ompared to the previously available result [31℄, our solution is situated further away from theworst ase senario when looking at things along the prinipal diretions 1, 6, and 7, but is loser to it inthe diretion 8. Interestingly, in the four-dimensional subpsae spanned by the eigenvetors 2, 3, 4, and 5,the result in [31℄ is almost idential to ours.The �rst prinipal omponent allows to separate the optimized points from the initial DOE. It turns outthat the third oordinate of the �rst eigenvetor has the largest magnitude, whih, inidentally, is the onlyoordinate whih makes our solution signi�antly di�erent from the previous result (in our ase x3 is roughlydoubled). For the sake of ompleteness, the oordinates of all of the eigenvetors are shown in Table 3.2.5 ConlusionsWhen a vast majority of admissible �uid domains are optially indistinguishable, the optimization of ageometry an be hard to perform manually. Kriging-based optimization proves to be handy when making aprogress with a small budget of the ost funtion evaluations whih is typially less than O(103). We havemade an improvement to the previous solution obtained in [31℄ and have identi�ed its relation to our result.Interestingly, the previous optimization is almost idential to ours in the subspae of R8 spanned by foureigenvetors of the orrelation matrix of all the points gathered during the searh. The prinipal omponentanalysis suggests that x3 is an imporant parameter, and the intrinsi dimension of the problem, i. e. thenumber of independent parameters whih ould di�erentiate the optimal geometry from the suboptimal one,is at least �ve.
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(a) ()

(b) (d)

Figure 1: Optimization riterion is the di�erene between the average (normalized) pressure �eld at the inletand outlet (a). The optimization parameters are x1�x3 (b), x1, x4�x7 (), and x8 (d).
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Figure 2: Normalized pressure di�erene [m2

s2 ℄ w.r.t. inreasing number of observations during the optimiza-tion. The �rst 320 observations are generated via the LHS algorithm.
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Figure 3: The example of a dut geometry, the observation plane, and the hosen olor sheme for thepressure �eld values.
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(a) ()

(b) (d)

Figure 4: Pressure �elds: worst observed ase (a,b), and optimal solution (,d).
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(a) (d)

(b) (e)

() (f)

Figure 5: Veloity �elds: x-omponents (a,d), y-omponents (b,e), and z-omponents (,f). The �rst olumnorresponds to the worst observed senario; the seond olumn shows the optimized �elds.16



(a) (d)

(b) (e)

() (f)

Figure 6: The omponents of the veloity �eld of a �ow: x-diretion (a,d), y-diretion (b,e), and z-diretion(,f). The �rst olumn orresponds to the result in [31℄; the seond olumn is our result whih is the repliaof the seond olumn in Fig. 5. 17
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3 Experiments with Synhronous Node Aess3.1 IntrodutionSetion 2 has foused on the appliation of a partiular kriging-based optimization algorithm to the industrialproblem. On average, it takes twenty minutes to evaluate a ost funtion in suh a problem. A singleoptimization then demands days to omplete. Considering the down-times of the loud, a single optimizationmay demand weeks to omplete.Thus, one may ask whether our results rightfully re�et what an be ahieved with a whole family ofmulti-point improvement-based algorithms desribed in [20℄. One should note that so far we have appliedonly one suh algorithm, whih generates λ = 4 points at a time, synhronously. It was applied one, andonly with a single ost funtion.We shall report our tests with arti�ial funtions, whih will further indiate some limitations and unex-plored possibilities of the kriging-based algorithms. In this setion, we will fous on the asynhronous nodeaess and will try to measure whether multi-point improvements help. The algorithms will be tested alongwith the strategy of the domain deomposition.3.2 Algorithms3.2.1 Multi-Point ImprovementsThe use of multi-point improvements [20, 18℄ is a theoretially appealing diret extension of the krigingalgorithms with one-point improvements. The problem with this approah is that it does not sale well asthe maximization of the expeted λ-point improvements demands the optimization in λ × d dimensions. Inaddition, λ annot be very large in priniple beause the minimum over an inreasing number of randomvariables is pushed down independently of the demands of a problem, and thus the expeted improvementsbeome severely overestimated. They are typially overestimated anyway, but one suspets that when thegeneration sizes are not big, suh as λ = 4, the algorithm an be implemented orretly and one may ahievea faster optimization.How fast an optimization an be? Let us introdue the quantity alled wall lok time (WCT), whih isthe average time between two onseutive updates of the nodes in the loud. It determines the rate at whihthe points are sent to (reeived from) a remote loud. Figure 8 presents timing analysis of the synhronousoptimization with multi-point improvements.Synhronous mode, λ = 1Node 1
tu 3 3 3 3 3 3 3 3 3 3 3 3Synhronous mode, λ = 4Node 1Node 2Node 3Node 4
tu 6 6 6 6 6 6Figure 8: In the synhronous ase, it is the slowest node that determines the node update time. The timeosts of updating λ > 1 points will typially be greater than in the single point ase, unless every one outof λ omputational nodes is faster than the one applied in the optimization with one-point improvements.This example shows the ase when tb is one time unit, independently of an algorithm. The wall lok timeinreases twie when λ hanges from 1 to 4. 19



The high level of the node signal indiates the time when the node is busy while alulating an expensive-to-evaluate funtion, and the low level spans the time when the node is idle. One an see that the use ofmultiple points inreases the wall lok time (WCT), and the latter will be solely determined by the slowestomputational node.Let us introdue the bloking time tb, whih is the time it takes to: (i) reeive λ funtion evaluations, (ii)generate λ andidate points, and (iii) send them to the λ free nodes. One an then perform a more preiseanalysis by assuming that the time it takes to evaluate an expensive funtion is uniformly distributed. Thenode update time will then be a random variable de�ned as
Tu = tb + max{T1, T2, . . . , Tλ}, Ti ∼ U(tmin, tmax). (8)For example, let tmin = 10, tmax = 30 and tb = 2 time units. Then, WCT ≡ E(Tu) = 22 when λ = 1, butit inreases up to WCT = 28 when λ = 4. Therefore, the synhronous multi-point optimization algorithmneeds to approah the optimum at least 28/22 = 1.27 times as fast in order to save time.3.2.2 Domain DeompositionThis is one of the simplest strategies to employ when making any optimization algorithm parallel. The domainis divided into s parts (subdomains) and the optimization is performed in eah subdomain independently,preferrably in parallel. In what follows, we shall perform the optimization in d = 2, 6, and 9 dimensions,and the number of subdomains will be 32. In the ase of two dimensions, we divide the �rst oordinate intoeight equal parts, and the seond into four. In the ase of a larger number dimensions, we simply halve the�rst �ve oordinates and obtain in this way 25 = 32 subdomains.It is important to emphasize that the domain deomposition is a strategy. It an be applied to make anyalgorithm parallel. We shall use it with both, one-point improvements, and multi-point improvements as well.The interesting question is whether the use of the domain deomposition with the one-point improvementsan be as good as the use of multi-point improvements alone. In that ase, one would de�nitely prefer theformer, as it ahieves a perfet isolation between the parallel �ows of the program whereas the multi-pointalgorithm is more demanding regarding its implementation.3.3 Performane CriteriaAll of the optimization algorithms are made to be deterministi in order to remove the unneessary degreesof variane. Firstly, we swith o� the maximum likelihood estimation of the Gaussian kernel varianes inthe kriging. Instead of estimating them, the following simple rule is appliedkernel varianei =

( |upbi − lobi|
21+ 8

d

)2

, i = 1, . . . , d. (9)Here d is the number of dimensions of the optimization spae.The main idea behind this formula is that we shall typially generate 500 points during the entireoptimization (inluding the points of the initial DOE). This is a realisti budget for an expensive-to-evaluatefuntion on one hand, and the limit after whih working with dense matries beomes very ine�ient (atbest). Thus, in all of the simulations, on average, the number of observations used in kriging is 250. Wethen "round" this number up to 28 = 256, and then 28/d beomes the number of "tiks" that an be plaedon eah oordinate axis when assuming that the points are distributed uniformly in spae. The addition ofunity is somewhat arbitrary and not really ruial, but it serves one purpose. When d = 8, the varianebeomes equal to a squared "median of the median of absolute di�erenes oordinate-wise".In addition, the Monte Carlo (MC) integration of the expeted improvement is always initialized to theurrent generation number. Thus, the only "degree of freedom" is the initial DOE, and eah family of thealgorithms an now be tested with a number of optimizations. Eah optimization will then orrespond to adi�erent initial DOE. This number will be set to one hundred, but it may atually beome smaller if somenodes fail to omplete the optimization. 20



The performane of the algorithms is assessed by using three arti�ial funtions as the optimizationriteria. The details are given in Table 4.Table 4: Optimization CriteriaLabel Cost funtion Domain Minimal value Modality"mihalewiz2d" ∑2
i=1 sin(xi) sin2(ix2

i /π) [0, 5]2 −1.841 multimodal"rosenbrok6d" ∑5
i=1 100(xi+1 − x2

i )
2 + (1 − xi)

2 [0, 5]6 0 unimodal"rank1approx9d" ‖A4×5 − x4×1y1×5‖2, aij ∼ U(0, 1)1 [−1, 1]9 0.7119 bimodalThese funtions are simple to state and to implement. They are also fast to evaluate. The latter featurestill does not let to perform testing on a single mahine easily as a kriging-based optimization may takehours even when applied to reate only one hundred generations. However, the use of the ProAtive PACAGrid loud [3℄ provides the possibility to test the algorithms with di�erent initial onditions at one.The optimization quality will be assessed by using the normalized real improvement (NRI) de�ned asNRI(generation) =
f0 − fmin(generation)

f0 − ftrue . (10)Here f0 is the smallest value of the ost funtion ahieved on the initial DOE, whih is reated by using theLatin Hyper-Cube Sampling (LHS), fmin denotes the value ahieved after a partiular generation of pointsis evaluated, and ftrue is the true ideal minimal value, whih is given in Table 4.Also, it is useful to summarize the performane of various algorithms by de�ning their speed-up, suh as
S0(NRI) ≡ time to reah NRI by EI0,1time to reah NRI by EI0,λ

. (11)Here the referene algorithm is kriging with one-point improvements, and the speed-up is de�ned for thekriging-based optimization with λ ≥ 1 points.In order to take into aount the bloking time, one de�nes the real-time speed-up of the multi-pointalgorithm over its single point ounterpart aording to
S1(NRI) =

S0(NRI)RTF = S0 ×
WCT for the algorithm EI0,1WCT for the algorithm EI0,λ

. (12)Here RTF is a real time fator whih is the ratio of the orresponding wall lok times. The orrespondingriteria for the domain deomposition are de�ned similarly. The WCT values of all the algorithms that aretested with the synhronous node aess are given in Table 5.3.4 ResultsThe optimization results are shown in Figs. 9 and 10. One an see that the optimization paths vary a lotw.r.t. the initial DOE, but this e�et is less pronouned in the problem "rank1approx9d". In the spaewith a large number of dimensions it is harder to generate an initial DOE whih ontains points lose tothe global optimum. The problem "rosenbrok6d" seems to be easy and its solution is loser to the problem"mihalewiz2d" than the "rank1approx9d" ase. In the former two ases the approah to the optimum ismuh faster.The values of the speed-up S0 are ompared in Table 5. One an see that parallelization brings notableimprovements when solving the problems "mihalewiz2d" and "rosenbrok6d", but the gain is very smallfor the problem "rank1approx9d". The latter point beomes espeially strong if we onsider the speed-up
S1 whih takes into aount the real time fator.1The atual matrix is generated with the Silab 5.3.3 "grand" funtion. The Mersenne Twister is applied with an initialseed set to the number 29. 21



Table 5: Wall lok times, real time fators, and speed-ups of synhronous optimization, NRI = 0.8. Param-eters: tmin = 10, tmax = 30, tb = 2.WCT RTF "mihalewiz2d" "rosenbrok6d" "rank1approx9d"
S0 S1 S0 S1 S0 S1EI0,1 22 1 1 1 1 1 1 1EI0,4 28 1.3 3.7 2.9 2.7 2.1 1.3 1.0EI0,1+deom 30 1.4 2.4 1.8 2.1 1.5 0.70 0.50EI0,4+deom 30 1.4 4.6 3.4 4.5 3.2 1.2 0.86One �nds out that domain deomposition is about as good as the use of multi-point improvements. Bothparallel optimization methods an also be ombined to yield an even greater performane. However, none ofthe parallelization methods are worth the e�ort onsidering the "rank1approx9d" problem. Considering thedomain deomposition, perhaps this is not very hard to explain. In a high-dimensional spae, i.e., d = 9,halving the �rst �ve oordinates an make the kriging algorithms less explorative (global).A good use of domain deomposition seems to be a quik assessment of multimodality of the ost funtion.Figure 11 indiates one out of one hundred optimizations in full detail. One an see that some of theoptimizations reah very high NRI values indiating that the orresponding subdomain may ontain theglobal optimum.3.5 ConlusionsThe use of multi-point improvements (λ = 4) brings notable speed-ups to the problems "mihalewiz2d" and"rosenbrok6d". However, the algorithm is not as e�ient as the lassial EGO (i.e. EI0,1) method in thease of "rank1approx9d". This is most likely due to the inreased dimensionallity of the problem althoughadditional tests would be neessary to study if this ould also be an e�et of the funtional landsape.The same applies to the domain deomposition. Considering the "mihalewiz2d" and "rosenbrok6d"problems, running the EI0,1 algorithm with 32 subdomains is better than using EI0,4 without any domaindeomposition. Both methods have been ombined to gain an additive e�et on the overall speed-up.However, neither domain deomposition nor multi-point improvements provide an advantage with respetto EGO in the "rank1approx9d" problem.The algorithms with multi-point improvements fundamentally annot sale well beause they internallyinvolve a maximization of the joint improvement in d × λ dimensions.In order to make a further progress, it seems that one ould: (i) either inrease the λ value dramatially (totens and hundreds of points) by making substantial sari�es in the quality of the improvement maximization,or (ii) resort to the asynhronous node aess whih may redue wall lok times. The seond way seems tobe more viable and will further be investigated.
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4 Experiments with Asynhronous Node Aess4.1 Asynhronous ModelLet m be the number of nodes, i.e. the number of virtual mahines (omputers) available on a remote loudto evaluate an expensive funtion. Let the average time of the funtion evaluation be distributed uniformlyin the interval (tmin, tmax), and suppose that the aess to the loud is possible every time λ nodes providea result. Typially, λ ≪ m, suh as λ = 1, 2, 3, 4 while m = 32. Let tb be the bloking time whih the timeit takes to alulate and send λ new arguments to update the free nodes.We will show that the wall lok time an be redued to the bloking time by simply inreasing thenumber of nodes m. Moreover, it turns out that the derease of the WCT value w.r.t. m is hyperboli, andits variane beomes negligible with an inreasing value of m.In order to show that this is possible, let us introdue an asynhronous aess model. Let T be the setof m elements ti whih are the real numbers indiating the time it takes to evaluate an expensive funtion.The node update time an then be omputed by using these steps:1. Find λ smallest elements of T (not neessarily distint), and reate the set S out of them:
S = {ti1 , ti2 , . . . , tiλ

}. (13)2. Find the largest element in S, and all it the omputation time tc:
tc = maxS. (14)3. Compute the update time
tu = tb + tc. (15)4. Form the set M = T \ S, and map every element t of M aording to:

t 7→ max(0, t − tu). (16)5. Update the set T :
T = M ∪ S. (17)The proess of the node update with the asynhronous bu�er model is shown in Fig. 12. The followingthree rules are enfored here:1. The falling front indiates that the node beomes available.2. It takes one time unit to update the node.3. In ase more than one node is available at the aess time, the faster node is preferred.The initial set T models the atual omputational times of expensive evaluations. The simplest adequatemodel so far seems to be the uniform distribution with a �nite support given by tmin and tmax. The motivationbehind this hoie is the analysis of the data whih we have gathered during the simulation of the expensiveto evaluate funtions. The latter have been hosen to be the kriging-based optimization proesses themselves.Figure 13 indiates the distributions of times that nodes demand to evaluate an expensive funtion on theProAtive PACA Grid loud [3℄. Here expensive-to-evaluate funtions are omplete budgeted optimizationsof inexpensive funtions whose evaluation takes only miroseonds to omplete. One an see that theheterogeneous nature of the loud is suh that tmax = O(tmin).26



Synhronous mode, λ = 1Node 1
tu 3 3 3 3 3 3 3 3 3 3 3 3Synhronous mode, λ = 4Node 1Node 2Node 3Node 4
tu 6 6 6 6 6 6Asynhronous mode, λ = 4Node 1Node 2Node 3Node 4
tu 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1Figure 12: Advantages of the asynhronous node aess. In the synhronous ase with λ = 1, WCT = 3.Adding three slower Nodes 2�4 allows to have four simultaneous evaluations, but the wall lok time will bedetermined by the worst node. However, the asynhronous aess redues the tu values to tb for the majorityof expensive funtion evaluations.4.2 Computational Analysis of Wall Clok TimeThe wall lok time ould be omputed by performing the �ve steps indiated above. They need to berepeated as many times as the number of λ-generations demands, and also repeating the runs with di�erentinitial sets T . The Silab ode of a single run is provided in Appendix set:listingwtasyn, where "bu�sz"stands for m, and "lamb" for λ.Fig. 14 indiates how the WCT value dereases w.r.t. an inreasing value of m. One an see that when

m is large enough, the WCT values beome sharply onentrated at the tb value.The WCT values derease roughly as O(m−1). A more preise rule that �ts the data presented in Fig. 14is O(m−1−α), where
α ≈ tb

3tmin (λ − 1). (18)Notie that tmax is not present in the equation.The setting that mathes the ProAtive PACA Grid loud best is the one with tmin = 10, and tmax = 30.When m = 32, this allows to update λ = 4 nodes with the wall lok time approahing tb. The relevantWCT values are shown in Table 6.For omparison, here we have also presented the orresponding statistis with a synhronous simulation.As one an see in Table 6, the redution of the WCT value due to the asynhronous simulation seems tobe impressive. So what exatly is optimization of an expensive-to-evaluate funtion? The pratial funtionevaluation time is a funtion of tmin, m, and tb.
27



Table 6: Mean and deviation of the node update time tu for di�erent algorithms. Parameters: tmin = 10,
tmax = 30, tb = 2. Averaging is performed with 25 · 104 points.Asynhronous m λ Mean (WCT) DeviationTrue 32 1 2.04 0.0024True 32 4 2.77 0.13False 0 1 22.0 5.77False 0 4 28.0 3.27Table 7: Wall lok times, real time fators, and speed-ups of asynhronous optimization ompared to thesynhronous ase, NRI = 0.8. Parameters: tmin = 10, tmax = 30, tb = 2.WCT RTF "rank1approx9d"

S0 S1EI0,4 syn 28 1 1 1EI0,4 asyn 2.77 0.099 0.42 4.2EI28,4 asyn 2.77 0.099 0.56 5.74.3 Testing Asynhronous AlgorithmsAsynhronous algorithms are expeted to redue the speed of the evolution of the optimization path towardsthe optimum w.r.t. the number of generations. The reason is that a diret use of the multi-point improvementriterion does not exlude the possibility of a dupliate point generation. One example of the appearane ofdupliate points is illustrated in Fig. 15.As a onsequene, the evolution paths of optimization might tend to have more jump disontinuities whenthe riterion EI0,λ is employed in the asynhronous settings. A diret remedy is to utilize a full riterionEIµ,λ where µ points orrespond to the andidate loations whose expensive funtion values are being ativelyevaluated, but are not known at the time when a request omes to send a new andidate for the evaluation.Eq. (7) states that inluding ative points x1:µ in the target part of the EI riterion prevents the algorithmfrom resampling there [20℄. It an be seen that if the new λ points form a subset of the µ ative points, thenEIµ,λ will be zero. More generally, EIµ,λ dereases as some of the new λ searh points get loser to ativepoints [20℄.The appliation of the synhrononous algorithm with the EI0,4 riterion, as well as the two orrespondingasynhronous algorithms, to the "rank1approx9d" problem is summarized in Fig. 16.One an see that the asynhronous algorithm with the EI0,4 riterion is inferior to its synhronousounterpart, but the inlusion of µ = 28 ative points improves the algorithm. Still, the EI28,4 algorithmmakes a slower progress w.r.t. the number of generations. While dupliates are not the major issue anymore,one an notie that a synhronous algorithm always uses a omplete information, i.e. both, the loation,and the expensive funtion value, while the asynhronous ase only exludes the appearane of dupliates,but it will often do it "blindly" without an available funtion value.The examples of the speed-up values are provided in Table 7.The S0 values indiate that asynhronous algorithms an make the progress w.r.t. generations slower(2x) than the orresponding synhronous ases, but the real time fator is ruial and may result in anasynhronous algorithm whih runs �ve times faster in a real time.Optimization paths of asynhronous algorithms are ompared with the synhronous ases in Fig. 17.The orresponding means and deviations are shown in Fig. 18. The results indiate that optimization pathsinrease slower w.r.t. the number of generations when the algorithms are asynhronous. However, one mustreally alulate the preise values of the speed-ups and then inorporate the real time fators to see a full28



Table 8: Wall lok times, real time fators, and speed-ups of asynhronous optimization ompared to thoseof the synhronous ase, NRI = 0.75. Parameters: tmin = 10, tmax = 30, tb = 2.WCT RTF "mihalewiz2d" "rosenbrok6d" "rank1approx9d"
S0 S1 S0 S1 S0 S1EI0,1 syn 22 1 1 1 1 1 1 1EI0,4 syn 28 1.3 3.8 3.0 2.9 2.3 1.3 1.0EI0,1 asyn 2.04 0.093 0.86 9.3 0.43 4.6 0.27 2.9EI0,4 asyn 2.77 0.13 2.0 16 1.2 9.4 0.73 5.8Table 9: Wall lok times, real time fators, and speed-ups of asynhronous optimization, NRI = 0.75.Parameters: tmin = 10, tmax = 30, tb = 2.WCT RTF "mihalewiz2d" "rosenbrok6d" "rank1approx9d"
S0 S1 S0 S1 S0 S1EI0,1 asyn 2.04 1 1 1 1 1 1 1EI31,1 asyn 2.04 1 0.89 0.89 0.95 0.95 1.4 1.4EI0,4 asyn 2.77 1.4 2.3 1.7 2.8 2.0 2.7 2.0EI28,4 asyn 2.77 1.4 3.0 2.2 2.8 2.0 2.9 2.2piture. The summary is presented in Table 8. One �nds out that the asynhronous node aess with theEI0,1 riterion may yield 1/S0 ≈ 1/0.27 ≈ 3.7 slower approah to NRI = 0.75 ("rank1approx9d"), but the realtime speed up S1 = 2.9 is notable. With the asynhronous aess to λ = 4 nodes, the slow-down of the NRIvalue inrease w.r.t. the number of generations beomes less pronouned. Considering the "rank1approx9d"problem, 1/S0 ≈ 1/0.73 ≈ 1.4, and the real time speed-up S1 = 5.8 exeeds four.Fig. 19 indiates the optimization evolutions for the asynhronous algorithms with or without the use of

µ points. Fig. 20 provides the orresponding summary with NRI averages and their deviations.Integrating out µ points improves the optimization speed-ups w.r.t. the number of generations, but theatual �gures are not very signi�ant. When λ = 1, the "rank1approx9d" problem yields the value of S0 = 1.4whih is lose to our results obtained with very few optimization runs. In partiular, S0 ≈ 0.56/0.42 ≈ 1.3,lf. Table 7. However, the speed-up an be less than unity in the other two onsidered problems. When
λ = 4, the use of the EI riterion with µ points yields small improvements over the orresponding algorithmswith µ = 0.Fig. 19 reveals that in most ases, the onsideration of µ ative loations improves the results.4.4 ConlusionsIn the synhronous node aess, the wall lok time is given by the slowest node WCT = O(tmax), while theasynhronous mode is paed by the bloking (i.e., optimization and ommuniation) time, WCT ≈ O(tb),
tb ≪ tmax. Asynhrony slows down the optimization progress w.r.t. the number of generations, but it reduesthe WCT values dramatially. The inlusion of ative points may improve the asynhronous algorithms, butone should note that the improvements are small. The use of ative points may inrease the bloking time tbas the multi-point improvement riterion demands evaluating integrals over domains with higher dimensions.In turn, the generation of new andidate points beomes more ostly.We have negleted this aspet of the problem beause one an further parallelize the evaluation ofGaussian onditional expetations [44, 30℄, and even apply better improvement maximization algorithms [13℄.However, one should note that without suh adjustments, onsidering the problem "rank1approx9d", tb may29



inrease 10 times when µ inreases from 0 to 28.In the ase with the "rank1approx9d" problem, the asynhronous algorithms with the riteria EI0,1 andEI0,4 an be 1/0.27 ≈ 3.7 and 1/0.73 ≈ 1.4 times slower than a synhronous EI0,1 algorithm when making theprogress w.r.t. the number of generations. However, the orresponding algorithms will be 2.9 and 5.8 timesfaster in a real time. Therefore, asynhronous algorithms do not typially ahieve best results if the numberof funtion evaluations is a sole performane riterion. Instead, the asynhronous node aess provides afaster optimization in a real time.
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Figure 13: Example times needed to evaluate expensive funtions. Eah histogram indiates node ounts fordi�erent time values spent to evaluate expensive funtions.31
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Figure 19: The e�et of integrating out µ points in the optimization with the asynhronous node aess:Details. 36
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5 Integral of the Expeted Improvement at Multiple Points5.1 IntrodutionOur goal is to approximately evaluate (as fast as possible) the integral for the expeted improvement inEq. (7), whih has also been studied previously in [18℄:
α(m,C) =

∫Rd

g(y)p(y)dy, (19)
g(y) = max

(

0, fbest − miny
)

. (20)Here the shortut y denotes the olletion of d salar values of the kriging responses whih are distributedaording to the normal probability density p(y) with the mean m and ovariane C.The riterion an be applied to sample the andidate points for the funtion to be minimized, theparameter fbest ∈ R is then the minimal presently known value of the funtion.The expeted improvement will be large where the mean of the kriging responses is small and the responsesare unorrelated. When kriging with the Gaussian ovariane funtion, the unorrelatedness implies distantevents, and the riterion helps to sample multiple points with the small expeted ost value and largeinter-distanes.Formally, the problem demands an integration w.r.t. the normal density funtion, and one is tempted toapply fast fully-symmetri rules whih exatly integrate the Gaussian moments of the lower order [16, 23, 41℄.However, the funtion g(y) is not a polynomial. Another key di�ulty here is that the integration tehniqueshould not only approximate the true value of the integral, but it should also ensure that the maximizationof the integral w.r.t. m and C gives preferene to distint loations of the kriging responses. We shall seethat the upper bound of the integral an yield the relative error of the true value as low as 0.3%, but this isuseless. The third di�ulty is that, typially, the integral needs to be evaluated a million times and more,whih exludes a variety of aurate and omplex integration proedures.There have been several attempts to integrate what ould be onsidered as a "typial", or "average ase"integrand, by means of the SVD [43℄, or by applying kriging on the integrand itself, see e.g. [26℄. It isvery lear, and it is also pointed out in [16℄, that these frameworks fail to provide pratial riteria for thedetermination of the integration nodes. One ould also note that when d = 2, the integrand depends on sixparameters already.Our report on integration is organized in the following way. Setion 5.2 disusses the properties ofthe integrands and shows their sample extrated from an optimization proess where m and C are spatialfuntions and the expeted improvement is maximized w.r.t. the spatial loations. The reader is assumedto be familiar with how the expeted improvement riterion is used to sample new loations during theoptimization [18℄. Setion 5.3 introdues a new integration method, Setion 5.4 presents the test of themethod, while Setion 6 onludes our work.5.2 IntegrandWe shall work with the standardized normal density by using the Cholesky deomposition C = LLT :
α(m,C) =

∫Rd

g(m + Lu)p(u)du. (21)Hereafter p(u) is the standard d-variate normal probability density funtion.The bounds for the expeted improvement at multiple points an be expressed as the funtions of theone-point improvements [20, 18℄:
max
1≤i≤d

α(mi, σ
2
ii) ≤ α(m,C) ≤

d
∑

i

α(mi, σ
2
ii), (22)38



where
α(mi, σ

2
ii) = (fbest − mi)Φ

(

fbest − mi

σi

)

+ σi φ

(

fbest − mi

σi

)

. (23)Here the Φ and φ are the distribution and density funtions of the standard normal variable, resp. Theupper bound is often very lose to the true value, but it annot be applied in the atual optimization whenone needs to selet the quantities m and C in order to determine the loations of the kriging responses whihprovide the maximal expeted improvement. The upper bound simply selets the point with the maximalone-point improvement and repliates it d − 1 times.The integrand is not equal to zero only in the region de�ned as
S ≡ {u ∈ Rd : fbest − min (m + Lu) ≥ 0}. (24)The onstant fbest an be subsummed by the minimum operator when introduing the vetor 1 with theunity oordinates. The "less than zero" onstraint imposed on the minimum over the elements implies thatone of the elements is less than zero, whih leads to
S = {u ∈ Rd : ∪ (−fbest1 + m + Lu ≤ 0)}, (25)where the set union ∪ ats on the halfplanes presented as the inequalities (row-wise).It is good to disuss what the integrands look like in the atual optimization problem. For this reason,onsider the problem of approximating a matrix with another one whose rank is one:

(p∗,q∗) = argmin
p,q

‖A− pqT ‖, (26)where A ∈ Rkl, the olumn-vetors p ∈ Rk, and q ∈ Rl, and ‖ · ‖ is the Frobenius norm.In partiular, a 4× 5 matrix A of uniformly distributed elements in [0, 1] is �rst generated, and then weseek its 1-rank approximation by determining the vetors p and q whose elements are further onstrainedto be in [−1, 1]. This is a ontinuous nononvex 9-dimensional box-onstrained optimization problem whosesolution is given by the SVD transform.We have applied the expeted improvement riterion to generate d new points during eah of the 50iterations of the basi algorithm disussed in [18℄. The initial DOE has 100 points and the values of theFrobenius norm lie in [7.22, 18.26]. The SVD produes the optimal 1-rank approximation whose Frobeniusnorm is 0.94. The expeted improvement is maximized by using the CMA-ES method [29℄ with the 10-pointpopulation, 500 iterations, and 0.1 initial oordinate standard deviation.A sample of the integrands extrated from the atual optimization proess is shown in Fig. 21. Therein thedashed lines indiate the line equations (hyperplanes) of Eq. (25), and the dash-dotted line is the symmetryaxis, whih is the set of points where all of the oordinates of the vetor −fbest1 + m + Lu are equal. Thelines interset at the point where all of the oordinates are equal to zero.The irles of the radius √
2 are shown in Fig. 21 in order to emphasize the regions where the normaldensity onentrates its mass. More generally, it is well known that the region of the maximal onentrationis de�ned by the annulus (shell), whose inner and outer radius is

r =
√

d ± 1√
2
. (27)Fig. 21 indiates that the regions where the integrand is substantial depend on the loation of the meanvalues of the kriging responses w.r.t. the fbest value. In the bivariate ase, the region of substane anonly be: either (i) the viinity of the two edges of a semiin�nite nononvex polygon, or (ii) the interior of aropped annulus.One should also emphasize that the most striking feature of the kriging responses is that they are veryweakly orrelated. At the random initial points where the expeted improvement is small, the respones arevirtually unorrelated, and at the loations of the maximal improvement only roughly O(ln(d)) elements of39



the row (olumn) of the ovariane matrix C attain 10% of the value of a diagonal element. The remainingelements are typially either zero, or less than 0.1%. As a onsequene, the Cholesky matrix L is lose tothe identity matrix I, and the peaks of the integrand appear at the loations whose all but one oordinateare zero. The nonzero oordinate equals to the loation of the maximum of the integrand of the one-pointexpeted improvement.5.3 New Methods for Adaptive IntegrationOur main idea is to work with the exat symmetri integration rules [25℄, but to replae the monomialintegrands with d "slies" of the improvement whih an be integrated exatly. This leads to a linear systemof equations for the integration weights, whih depends on the parameters m and L. The system an besolved quikly for eah integrand, and the integration rule beomes adaptive.Let us expand the subintegrand h(u) ≡ g(m + Lu) in Eq. (21):
h(u) = max(0, fbest − min

(

m1 + l11u1,

m2 + l21u1 + l22u2,

. . . ,

md + ld1u1 + ld2u2 + · · · + lddud

)

.

(28)The simplest possible way to get d equations in d unknowns is to apply the following fully-symmetrirule:
∫Rd

h(u)p(u)du ≃
d
∑

i=1

wi

(

h(Piv) + h(−Piv)
)

, (29)where P is the irular shift matrix whose only nonzero elements are pi,i+1 = 1, for i = 1, . . . d − 1, and
pd,1 = 1. The olumn-vetor v = [v, 0, . . . , 0] ∈ Rd, where v is a free parameter.In order to determine the weights wi, we demand that eah "projetion" of h(u) is integrated exatly:

∫Rd

max(0, fbest − mi − l̃iu)p(u)du = m′
iΦ

(

m′
i

σ′
i

)

+ σ′
i φ

(

m′
i

σ′
i

)

, (30)where l̃i is the ith row of the matrix L, m′
i = fbest − mi, and σ′

i = ‖̃li‖.This results in a linear system of equations Sw = s for the unknown vetor of the integration weights
w ∈ Rd. The oordinates of the vetor s are the values of the rhs of Eq. (30). The system matrix S is notsymmetri, and has the elements given by

sij = max(0, m′
i − vlij) + max(0, m′

i + vlij). (31)In order to guarantee that it is not singular, one an hoose the parameter v so that the lower bound for thesmallest singular value is greater than zero. In partiular, the bound derived in [21℄ an be applied:
σsmallest(S) ≥ min

1≤i≤d

(

|sii| −
1

2

d
∑

j=1
j 6=i

|sij | −
1

2

d
∑

j=1
j 6=i

|sji|
)

. (32)If the observed values of the funtion to be optimized are saled to be of the zero mean and of the unityvariane, then, typially, m′
i = O(1). If we further assume that m′

i ≫ vlij for i 6= j, then both of the termswith the o�-diagonal elements in Eq. (32) sum to O(d). This leads to the hoie of v ditated by liiv ≥ O(d).In our problem, the value v = 2d is large enough to guarantee the nonsingularity, but we simply set it to 104.This e�etively erases the information about the mean of the kriging responses in the matrix S, and makesthe latter diagonally-dominant if L is diagonally dominant, whih is typially the ase. The atual value of
v does not a�et the auray of the integration, provided it is large enough to avoid the singularity of S.40



To summarize, the approximation of the integral an be written by emphasizing the di�erene with theupper bound, lf. Eq. (22):
α′(m,C) =

d
∑

i=1

biciα(m′
i, σ

′
i), (33)

bi = g(m + li) + g(m − li), (34)
ci =

d
∑

j=1

rji. (35)Here the vetor li is the ith olumn of the matrix L and rji are the elements of the matrix R ≡ S−1.When vlii ≫ d, the diagonal elements of S beome onsiderably larger than the remaining matrix entries.If we give the latter ones a ertain ommon weight z, then the 0th order Taylor series expansion w.r.t. theparameter z leads to cii ≈ 1/(liiv). If we further assume that L ≈ I, then bi ≈ v, and α(m′
i, σ

′
i) ≈ α(m, σ),whih leads to the expression for the upper bound, lf. Eq. (22). However, generally, neither bici = 1, nor

α(m′
i, σ

′
i) = α(m, σ). At this point, we still do not know whether the approximation will be suitable for theoptimization purposes, but it ontains enough "anisotropy" w.r.t. the index i to warrant a pratial test.The omplexity of the method is bound by the need to solve a linear system of d equations every time anew integrand is presented, whih demands O(d3) multipliations. The basi Monte Carlo sampling, on theother hand, demands O(d2n) multipliations, where n is the number of samples generated aording to thestandard normal distribution. Typially, n ≫ d.There is one way to modify the method by introduing additional d weights into Eq. (29):

∫Rd

h(u)p(u)du ≃
d
∑

i=1

wi

(

h(Piv) +

2d
∑

i=d+1

h(−Pd+iv)
)

, (36)and here one should notie that Pd+i = Pi. The weights an be determined by using d equations for the"mean slies" in Eq. (30), and additional "variane slies" whih an also be integrated exatly, lf. Eq. (63):
∫Rd

(

max(0, fbest − mi − l̃iu) − si

)2
p(u)du = σ′2

i Φ2

(

m′
i

σ′
i

)

+ σ′2
i φ2

(

m′
i

σ′
i

)

− m′
iσiΦ

(

m′
i

σ′
i

)

φ

(

m′
i

σ′
i

)

. (37)Here si denotes the value of the integral in Eq. (30).In pratie, this modi�ation yields a singular S matrix, but the use of its pseudoinverse in the determi-nation of the weights w ∈ R2d turns out to be very aurate in some ases. The hoie of the value of v,however, greatly a�ets the integration auray. We will report the experiments with the hoie v =
√

dwhih plaes the integration nodes at the points of the maximal onentration of the standard normal density.It turns out that this is the best hoie when d = 16. In lower dimensions, this strategy is very suboptimal,whih greatly limits the use of the method ENSEMI2. The details are presented in the next setion.5.4 ResultsThe test is split into two sets of the integrands extrated from the atual optimization. The set I ontains
50 d-variate integrands extrated at the random initial loations generated before the maximization of theexpeted improvement, and the set II ontains the integrands at the optimal loations. The exat values ofthe expeted improvement are not known, but we have applied the Monte Carlo (MC) sampling with 107points to obtain the estimates of the true values. In the atual optimization, this is not possible.For testing purposes, we have implemented the method developed in [24℄. It will simply be referredto as "LDM". This tehnique exatly integrates all the 5th degree monomials w.r.t. the normal density.Instead of using the orbits of a fully symmetri group, the method maps the verties and the midpoints ofthe standard regular simplex onto a sphere. It also inorporates the saling w.r.t. an inreasing dimension,41



Table 10: Median Relative Integration Errors, %Problem Set I Problem Set II
d = 2 d = 8 d = 16 d = 2 d = 8 d = 16MC, n = 103 21 ± 6 14 ± 3 10 ± 2 4 ± 1 3 ± 1 3 ± 1ENSEMI2 100 4.5 11 6.9 10 5.1ENSEMI1 0.32 1.0 2.7 3.0 6.0 10Upper Bound [18℄ 0.37 0.93 1.8 3.0 14 18Improved LDM 18 34 60 3.6 9.1 45LDM [24℄ 100 170 370 10 9.8 68Lower Bound [18℄ 34 68 79 25 64 73whih approximately follows the law of the onentration of the normal measure: One integration node isplaed at the origin, and all of the remaining nodes lie on the sphere of the radius √d + 2).A diret improvement to the LDM method, and pratially to any tehnique in this family, e.g. theunsented transformations [41℄, is to split the approximate integration into two parts. One �rst applies theLDM rule to alulate the mean and variane of the minimum over the kriging responses V = min(Y ).The expeted improvement an then be obtained by "propagating" V through the deterministi funtion

max(0, fbest − V ) under the assumption of the normality of V , lf. Eq. (49) of Appendix B.Table 10 indiates the relative median errors obtained by various methods. The lower (upper) boundis abbreviated as LB (UB). The new methods are referred to as "ENSEMI1" and "ENSEMI2", and thereursive aronyms stand for "ENSEMIx is Not Symmetri Exat Monomial Integration".The results on�rm that the evaluation of the expeted improvements depends on whether their valuesare lose to maximal, or not. The upper bound is very lose to the true value. The standard MC samplingworks very well on the problem set II, and the error does not depend on the dimension of the integrationspae. Considering that the problem set II is more important than the problem set I, an eonomial MCsampling remains a very tough method to improve. Our faster alternative is worse, but ompetitive.The LDM rule is signi�antly improved, but the resulting method is not aurate enough. Notably, theauray of the LDM method and its improvement onsiderably deteriorates as the dimension d inreases.Here one ould also suggest the use of the exat known values of the mean and variane over the minimumof two normal variables, followed by the appliation of Eq. (49). This leads to the median relative error 1.5%on the problem set II, but, surprisingly, it also produes the error of 33% on the problem set I, whih learlyindiates that the normal approximation to the minimum over the normal variables is inadequate. Also, thisapproah does not extend to d > 2 as the exat moments of the minimum over the normal variables are notknown.Interestingly, as d inreases, the di�erene between the upper bound and the true expeted improvementinreases too and it may reah the relative median error of 18% when d = 16 (problem set II). Thus, the powerof the multi-point improvements is likely to be revealed when d is large. However, a large d introdues severedi�ulties in the blak-box optimizer, and the true expeted improvement may beome an overestimatedvalue of the real one.In order to assess how the integration auray a�ets the optimization performane, we have applied thealgorithms to the problem "rank1approx9d" with the EI0,4 riterion in the synhronous node aess. Theaverage NRI paths (thiker lines) along with their orresponding deviations (thinner lines) are displayed inFig. 22. One an see that the ENSEMIx methods outperform the standard MC method with 103 samples,and yield similar optimization results when the number of samples is very large (ns = 104, 105). Notably,the omplexity of the ENSEMIx methods is smaller or equal to that of the MC with ns = 103 samples.Thus, one obtains memory savings, as well as shorter omputational times. The ENSEMIx algorithms runabout 1.5 times faster than the MC method with ns = 103 samples, and they are roughly eight times fasterthan the MC method with ns = 105 samples. Notably, a further inrease of the number of MC samples42



from 104 to 105 does not improve the overall optimization performane, whih indiates that the integrationauray has a limited impat whih is also shadowed by other inadequaies of the model, suh as a possiblyinsu�ient number of the CMA-ES iterations set to maximize the multi-point EI riterion.The algorithms have been implemented in Silab 5.3.3, and the soure ode is provided in Appendix C.
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Figure 21: Examples of the bivariate integrand h(u)p(u) whih our during the optimization.
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Figure 22: Solution of the "rank1approx9d" problem by using the synhronous algorithm with the EI0,4riterion and various integration methods applied to estimate the multi-point EI riterion. The ENSEMIxrules outperform the MC method with ns = 103, and yield similar results when ns = 104, 105.
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6 ConlusionsWe have ompared several numerial integration shemes for alulating the multi-point EI riterion. Ourexperiments indiate that symmetri monomial integration rules are less aurate than a traditional MonteCarlo sampling. The methods an be improved, but they are muh less appliable than stated in the presentliterature on the integration w.r.t. the normal density. The auray of the eonomial MC sampling isonsistently better among the methods tried on the problem set II, but simple symmetri integration rules(ENSEMI1 and 2) beome ompetitive if they are adapted to the problem. When d = 2, the relativedi�erene between the upper bound and the true value of the expeted improvement an be as low as 0.37%.The proposed method (ENSEMI1) an redue this value further down to 0.32%. The introdued methodsdemand O(d3) salar multipliations for eah integration, while the Monte Carlo estimation onsumesO(d2n)salar multipliations, given the number of samples n. Typially, d ≪ n, and the loss of the auraies by theproposed ENSEMI methods is aeptable in our test set (when d ≤ 16). Moreover, the developed ENSEMImethods have been shown to yield better global optimization results than the MC integration with 103samples.A Estimation of Wall Clok TimeListing 1: Silab 5.3.3 ode whih estimates the evarage node update time.1 function [wct] = estimatewct(lamb, buffsz)
tmin = 10;3 tmax = 30;
tb = 2;5 ngenerations = 250;
grand("setsd", sum((getdate())^2));7 tbuff0 = grand(1, buffsz, "unf", tmin, tmax);
tbuff = tbuff0;9 tcvec = [];
for i=1:ngenerations11 [vals, inds] = gsort(tbuff, "g", "i");

tc = max(vals(1:lamb));13 tbuff = tbuff - tc - tb;
tbuff(inds(1:lamb)) = tbuff0(inds(1:lamb));15 tbuff(find(tbuff<=0)) = 0;
tcvec($+1) = tc;17 end

wct = mean(tcvec)+tb;19 endfunctionB Moments of the Censored Normal VariableThe lower-order moments of the ensored normal variable should not be onfused with those that orrespondto the normal density on a positive axis. Let
Z = max(0, Y ), (38)
Y ∼ N(my, σ2

y). (39)As the density is disontinuous at 0, the expetation is the ontribution of two disrete events:
mz = P (Z = 0)E(Z|Z = 0) + P (Z > 0)E(Z|Z > 0) (40)

= P (Y ≤ 0) · 0 + P (Y > 0)E(Y |Y > 0) (41)
=

∫ ∞

0

y
1

√

2πσ2
y

exp

(

− (y − my)2

2σ2
y

)

dy. (42)46



The substitution u1 ≡ y−m
σ allows to introdue the standard univariate normal density φ(x), and its distri-bution Φ(x):

mz =

∫ ∞

−my
σy

(my + σyu1)φ(u1)du1, (43)
= my Φ

(

my

σy

)

+ σy

∫ ∞

−my
σy

u1φ(u1)du1. (44)It is easy to integrate the remaining term:
∫ ∞

−my
σy

u1φ(u1)du1 =

∫ ∞

−my
σy

u1
1√
2π

exp

(

−u2
1

2

)

du1 (45)
=

1√
2π

∫ ∞

m2
y

2σ2
y

e−u2du2 (46)
=

1√
2π

exp

(

−
m2

y

2σ2
y

) (47)
= φ

(

my

σy

)

. (48)Therefore,
mz = my Φ

(

my

σy

)

+ σy φ

(

my

σy

)

. (49)The variane estimation is more triky:
σ2

z = P (Z = 0)E
(

(Z − mz)
2|Z = 0

)

+ P (Z > 0)E
(

(Z − mz)
2|Z > 0

) (50)
= P (Y ≤ 0)m2

z + P (Y > 0)E
(

(Y − mz)
2|Y > 0

) (51)
= P (Y ≤ 0) · m2

z + P (Y > 0)
(

E(Y 2|Y > 0) − 2mzE(Y |Y > 0) + m2
z

) (52)
= P (Y ≤ 0) · m2

z + P (Y > 0)E(Y 2|Y > 0) − 2mzP (Y > 0)E(Y |Y > 0) + P (Y > 0)m2
z (53)

= P (Y > 0)E(Y 2|Y > 0) − m2
z (54)

= Φ

(

my

σy

)
∫ ∞

0

y2 1
√

2πσ2
y

exp

(

− (y − my)2

2σ2
y

)

dy − m2
z. (55)Again, one �rst redues the loation and sale parameters to their standard values:

∫ ∞

0

y2 1
√

2πσ2
y

exp

(

− (y − my)2

2σ2
y

)

dy =

∫ ∞

−µ
σ

(my + σyu1)
2 1√

2π
exp

(

−u2
1

2

)

du1. (56)The expansion of the quadtrati term produes three integrals. The �rst one is trivial:
∫ ∞

−my
σy

m2
y

1√
2π

exp

(

−u2
1

2

)

du1 = m2
y Φ

(

my

σy

)

. (57)The seond one has already been evaluated in Eq. (48):
2myσy

∫ ∞

−my

σy

u1
1√
2π

exp

(

−u2
1

2

)

du1 = 2myσyφ

(

my

σy

)

. (58)47



The remaining integral demands the appliation of a well-known trik:
σ2

y

∫ ∞

−my

σy

u2
1

1√
2π

exp

(

−u2
1

2

)

du1 = σ2
y(−2)

d

dβ

∫ ∞

−my

σy

1√
2π

exp

(

−β
u2

1

2

)

du1

∣

∣

∣

∣

β=1

(59)
= σ2

y(−2)
d

dβ

∫ ∞

−
√

β
my

σy

1√
2π

exp

(

−u2
2

2

)

du2√
β

∣

∣

∣

∣

β=1

(60)
= σ2

y(−2)
d

dβ

(

1√
β

Φ

(

√

β
my

σy

)) ∣

∣

∣

∣

β=1

(61)
= σ2

yΦ

(

my

σy

)

− myσyφ

(

my

σy

)

. (62)The use of Eqs. (55)�(58) and (62) produes the result:
σ2

z = σ2
yΦ2

(

my

σy

)

+ σ2
yφ2

(

my

σy

)

− myσyΦ

(

my

σy

)

φ

(

my

σy

)

. (63)C Integration MethodsListing 2: The ENSEMI1 integration method.1 function [eimpr] = ensemi1(cmean, L, ybest, v)
Sp = ybest - (kron(ones(1,lamb),cmean)+v*L);3 Sm = ybest - (kron(ones(1,lamb),cmean)-v*L);
Z = zeros(lamb,lamb);5 S = max(Sp,Z)+max(Sm,Z);
sii = sqrt(sum(L.*L, "c"));7 inval = (ybest - cmean)./sii;
cdfu = cdfnor("PQ", inval, zeros(lamb,1), ones(lamb,1));9 pdfu = 1.0/sqrt(2*%pi)*exp(-(inval.^2)/2);
cvec = sii.*(inval.*cdfu + pdfu);11 w = S\cvec;
w = [w; w];13 xvecs = kron(ones(1,2*lamb),cmean)+v*[L, -L];
fws = max([ybest-min(xvecs,’r’);zeros(1,2*lamb)], ’r’);15 eimpr = fws*w;
endfunctionListing 3: The ENSEMI2 integration method.
function [eimpr] = ensemi2(cmean, L, ybest, v)2 Sp = ybest - (kron(ones(1,lamb),cmean)+v*L);
Sm = ybest - (kron(ones(1,lamb),cmean)-v*L);4 Z = zeros(lamb,lamb);
S1 = [max(Sp,Z), max(Sm,Z)];//lambx(2lamb)6 sii = sqrt(sum(L.*L, "c"));
inval = (ybest - cmean)./sii;8 cdfu = cdfnor("PQ", inval, zeros(lamb,1), ones(lamb,1));
pdfu = 1.0/sqrt(2*%pi)*exp(-(inval.^2)/2);10 cvec1 = sii.*(inval.*cdfu + pdfu);
cvec2 = sii.*(sii.*(cdfu.^2+pdfu.^2)-(ybest-cmean).*cdfu.*pdfu);12 S2 = (S1-kron(ones(1,2*lamb),cvec1)).^2;
w = [S1;S2]\[cvec1;cvec2];//falls back to least squares if S is sing.14 xvecs = kron(ones(1,2*lamb),cmean)+v*[L, -L];
fws = max([ybest-min(xvecs,’r’);zeros(1,2*lamb)], ’r’);16 eimpr = fws*w;
endfunction 48
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