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Abstra
tThis work explores the bene�ts of 
loud 
omputing in the development of kriging-based parallel opti-mization algorithms dedi
ated to expensive-to-evaluate fun
tions. We �rst show how the appli
ation of amulti-point expe
ted improvement 
riterion allows to gain insights into the problem of shape optimizationin a turbulent �uid �ow, whi
h arises in the automobile industry. Our work then pro
eeds with a varietyof experiments 
ondu
ted on the ProA
tive PACA Grid 
loud. Due to a multipli
ative in
rease in sear
hspa
e dimensionality, the multi-point 
riterion 
annot exploit a large number of 
omputing nodes. There-fore, we employ the 
riterion with an asyn
hronous a

ess to the simulation resour
es, when the availablenodes are immediately updated while a

ounting for the remaining running simulations. Comparisonsare made with domain de
omposition whi
h is applied here as an alternative parallelization te
hnique.Our experiments indi
ate weaknesses in the use of the multi-point 
riterion with a syn
hronous nodea

ess, and bene�ts when working in the asyn
hronous mode. Finally, a relatively fast and a

uratemethod is developed for the estimation of the expe
ted improvement at multiple points.
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1 Introdu
tionWe shall study optimization of expensive-to-evaluate fun
tions (budgeted optimization) with a parti
ularappli
ation in the design of the shape of an air du
t. The latter demands time-
onsuming numeri
al simu-lations of a turbulent �uid �ow. Our aim is to implement and parallelize the algorithms known as Bayesianoptimization [11℄, and in parti
ular, the expe
ted improvement (EI) algorithm [27, 28℄. More spe
i�
ally, ourwork relies on a multi-point EI 
riterion studied in [35, 20, 18℄, and the goal is to test the algorithms withsyn
hronous and asyn
hronous node a

ess.1.1 Expe
ted ImprovementThe sequential algorithms that we aim to parallelize have �rst been developed independently by J. Mo
kusand H. Kushner in the early 60s [27, 22℄. Both authors 
onsidered Gaussian pro
ess models for an expensive-to-evaluate fun
tion and suggested maximization of the auxiliary quantities for the generation of new 
andi-date lo
ations. H. Kushner advo
ated maximization of the probability of an improvement (PI), J. Mo
kusstudied both, the probability and expe
tation of an improvement.The third prominent dire
tion of a budgeted optimization utilizes the upper 
on�den
e bound (UCB)of an improvement [14℄. Re
ent publi
ations have abbreviated the algorithm as GP�UCB and suppliedit with a wealth of analyses about Gaussian pro
esses in the setting of the so 
alled multi-armed banditproblem [5, 38, 6℄. The key di�eren
e from the previous algorithms here is that the law between exploitation(sampling at the regions with a low preditive mean) and exploration (sampling where a predi
tive varian
eis high) 
hanges as the optimization pro
eeds in time. In addition, the fo
us here is on sharper bounds ofthe so 
alled 
umulative regret fun
tion whi
h 
an be a temporal integral of the absolute di�eren
es betweenthe ideal sought 
ost fun
tion value and the value obtained at a parti
ular time. The aim is to minimize orbound the 
umulative regret by temporally 
hanging the deviation weight in the UCB expressions.A re
ent survey of the use of the three 
riteria 
an be found in [11℄ where they are also referred to asa
quisition fun
tions. Preferen
es over them remain rather subje
tive, and we shall fo
us on the expe
tation-based algorithms be
ause they have less parameters to adjust.The authors of [33℄ emphasize the la
k of 
onvergen
e proofs related to the EI algorithms. This problemhas been investigated more thoroughly only re
ently [40, 12, 42℄. The exists a proof for two 
ontinuity
lasses of obje
tive fun
tions, albeit for algorithms that use Gaussian pro
esses with �xed 
ovarian
e fun
tionparameters [40℄. In this regard, it 
ould be worth 
iting the following text [12℄:"...For pra
titioners, however, these results are somewhat misleading. In typi
al appli
ations, the prioris not held �xed, but depends on parameters estimated sequentially from the data. This pro
ess ensures the
hoi
e of observations is invariant under translation and s
aling of f, and is believed to be more e�
ient(Jones et al., 1998, �2). It has a profound e�e
t on 
onvergen
e, however: Lo
atelli (1997, �3.2) shows that,for a Brownian motion prior with estimated parameters, expe
ted improvement may not 
onverge at all."It is possible to develop better parameter estimators [12℄, but our algorithms in general do not re-estimatethe 
ovarian
e fun
tion, as they 
an easily be �xed before ea
h optimization, 
lf. Eq. (9). Another exampleof a simple rule of thumb for setting up the 
ovarian
e fun
tion parameters before the optimization 
an befound in [6℄. The ability to use �xed parameters is hardly a pra
ti
al limitation of the EI algorithms.A more relevant problem is that the so 
alled NEB assumption stated in [40℄ does not provide 
onvergen
eresults for the Gaussian pro
esses whose 
ovarian
e fun
tion is the Gaussian kernel. Re
ently, it has beenestablished in [42℄ that there exist a 
lass of univariate analyti
 (in�nitely di�erentiable) obje
tive fun
tionswhi
h 
annot be optimized with the EI algorithm that relies on the Gaussian kernel. One should bearin mind, however, that "realisti
 optimization budgets may be too low in many problems for the indi
atedasymptoti
 behavior to be relevant" [42℄.The mismat
h between the theory and pra
ti
e is also evident as often the smoothness 
lass of an obje
tivefun
tion is neither known nor even relevant. In addition, hardly any existing algorithm 
an be implementedso that the global maximum of an a
quisition fun
tion is always rea
hed. This displa
es the a
tual programsfurther away from their theoreti
al 
ounterparts dis
ussed in [40, 12, 42℄.3



1.2 Early Ideas of ParallelizationOn
e the 
loud 
omputing be
ame widespread, it has been realized that most of the algorithms are sequential,and their parallelization demands a separate resear
h. A parallel EI algorithm [37℄ may utilize a gradient-based maximization of the single point EI 
riterion, applied with multiple starting points. Parallelization
an thus be a
hieved by enri
hing the standard EI algorithm with lo
al maxima of an a
quisition fun
tion.Another early pra
ti
al attempt to parallelize relevant algorithms is reported in [33℄. Instead of theimprovement-based 
riteria, the authors utilize a variety of other "a
quisition fun
tions" and 
ompare theiralgorithms with the one developed in [37℄. Notably, parallelization is a
hieved by using multiple referen
e
ost fun
tion values fmin in the EI-related 
riteria. The generation is 
reated by adding one point at a time,and ea
h point is obtained by maximizing the EI 
riterion with di�erent referen
e values. Uniqueness of
andidate points is a
hieved by imposing distan
e 
onstraints.Considering the parallelization performed in [33, 34℄, one 
an draw a useful warning that the speed-upsover sequential algorithms 
an be quite small. For example, with four 
omputing nodes, the speed-ups aregenerally less than four, and for the modi�ed Rosenbro
k and A
kley fun
tions, ea
h with �ve variables, thereported speed-ups are 1.83, and 1.44. Our results will indi
ate a problem where speed-ups 
an be lower.This di�
ulty 
ould be avoided by designing algorithms whi
h 
an leverage a larger number of 
omputingnodes. However, one should note that various sto
hasti
 sampling methods have already been studied withlarge generation sizes, and the speed-up values have often turned out to be bounded by O(1) [39℄.1.3 Dynami
 ParallelizationMany existing parallelization ideas somewhat blindly generate multiple 
andidate points at a time by 
apital-izing on the fa
t that budgeted optimization algorithms have a lot of free parameters. Dynami
 parallelizationtries to predi
t the out
ome of a sequential algorithm without the use of expensive fun
tion evaluations. Itmay also swit
h o� parallelization at the times when the predi
tion is not possible, and thus adaptivelyrequest additional evaluations of an expensive fun
tion.Most of the presently known dynami
 parallelization algorithms, see e.g. [10, 15℄ rely on a heuristi
sequential te
hnique, �rst introdu
ed by M. S
honlau [35℄. The 
ore insight utilizes the fa
t that the varian
eof any Gaussian pro
ess 
onditioned on the observations does not depend on the a
tual observation value, butonly on its spatial lo
ation. This property 
an be exploited to 
reate a bat
h (generation) of distin
t 
andidatelo
ations bypassing their expensive evaluation sequantially, thus, allegedly speeding up the optimization.The 
andidate points are generated one at a time by maximizing an a
quisition fun
tion and updating thepredi
tive varian
e (and possibly, but not ne
essarily, predi
tive mean).This te
hnique is applied in [6, 8℄, where the generation of new lo
ations is built in a sequential mannerdes
ribed above, by maximizing one-point EI 
riterion at a time, and simply repla
ing the 
orrespondingexpensive fun
tion values with the ones sampled from its posterior density 
onditioned on the 
urrent designof experiments (DOE). After obtaining a sample of 
andidate points, 
lustering is then performed to de
reaseredundan
y and size of the generation. The 
lustering 
riterion is simply the sum of weighted Eu
lideandistan
es between the generation points and its 
luster 
enters. The weights are probabilities that a 
ertain
luster point provides a better 
ost fun
tion value than the rest of the 
luster 
enters. There are no knownexpli
it expressions for su
h probabilities even in the 
ase of normal variables, and thus the assumptionof independen
e is made and the standard formulae of the Gaussian order statisti
s is employed. Theexperiments have been performed with generation sizes �xed to 5 and 10.In their more re
ent resear
h [10℄, the authors drop out the 
lustering-based method entirely, and theybuild the generation dire
tly (without any postpro
essing) by maximizing one-point EI 
riterion in the spiritof their previous method. However, the generation size is made adaptive and it in
reases only if the bound onthe deviation of the predi
tive mean from its true value (that would, in theory, be obtained with a sequentialone-point EI algorithm) does not ex
eed a spe
i�ed threshold. A newly added lo
ation in the generationmust be asso
iated not with an arbitrary 
ost fun
tion value (mean, random sample from posterior), but itsglobally optimal value whi
h is assumed to be known. Often, this is indeed the 
ase when only the globallyoptimal argument of an expensive fun
tion is unknown, but the 
ost fun
tion value itself 
an be determined4



with a satisfa
tory pre
ision.A very similar in spirit parallelization, albeit of the GP�UCB algorithm, 
alled GP�BUCB, is presentedin [15℄. One di�eren
e is that the pro
ess mean fun
tion is employed to model the expensive-to-evaluatevalues during the 
onstru
tion of the generation, but the mean values of the generation points may not evenbe updated. Instead, the UCB deviation weight is adjusted when building the generation whose size also
hanges dynami
ally. The latter is 
ontrolled by an available 
umulative regret bound. The authors of [15℄also suggest repla
ing the exa
t varian
e updates with 
ertain bounds in order to speed up the 
reation of anew generation of 
andidate lo
ations. This tri
k is also employed in [10℄, but the latter work uses di�erentbounds. An interesting byprodu
t of both of these methods is that they provide indi
ators of when anexpensive fun
tion evaluation should be performed, and when it is good enough to use the regression modelto generate a new 
andidate lo
ation.However, in addition to the di�
ulties of setting up newly introdu
ed threshold parameters, the problemwith these methods is that they 
annot e�e
tively explore all the available 
omputational nodes as the sizeof the generation is determined algorithmi
ally and 
hanges with time, while parallel resour
es are often�xed and limited. Another drawba
k is that the sizes 
an be nonuniform, whi
h may yield suboptimal totaloptimization times.The latter aspe
t is addressed in [7, 9℄. The authors assume that there exist a spe
i�
 distribution for theduration of an expensive evaluation, and the total optimization time is limited by a �xed known value. Thenumber of total fun
tion evaluations is also �xed, and so is the maximal size of the generation of 
andidatelo
ations. Assuming this information exists, the authors develop a general model whi
h aims to distributegeneration sizes and determine the 
orresponding durations for their parallel evaluations. They introdu
ethe so 
alled CPE 
riterion, whi
h is a 
umulative temporal sum of the number of jobs 
ompleted at a time.Its maximization is shown to prefer uniform s
hedules (distributions of the generation sizes) and 
an thusbe used to limit the parallelization so that the algorithm utilizes more expensive fun
tion values and is stillable to meet a spe
i�ed time horizon.One di�
ulty with this general setting is that parallel exe
ution times are sto
hasti
 (and often the exa
tdistributions are unknown or 
hanging), but the model imposes the upper limit on the duration for theevaluation of the generation. Thus, the evaluation may a
tually fail to 
omplete, and the authors furtheraddress this di�
ulty by introdu
ing the notion of a probabilisti
 safety of an algorithm. Therefore, the aimis to maximize the probability of a safe 
ompletion whi
h is not guaranteed to be unity.1.4 Our Preferen
esInstead of applying sequential heuristi
 te
hniques dis
ussed above, we shall dire
tly maximize the multi-point EI 
riterion, whi
h seems to have been introdu
ed by M. S
honlau, see �5.3 in [35℄, and whose pra
ti
alrelevan
e has been justi�ed only re
ently, see e.g. [18, 20℄. It has been demonstrated that a multi-point EIwill be large where, simultaneously, the 
orresponding one-point EI values are large, and the generationpoints are not 
orrelated. Thus, the multi-point EI 
riterion gives preferen
e to distin
t multiple 
andidatepoints automati
ally, without any additional parameters, heuristi
 distan
e 
onstraints, or additive penaltyfun
tions.The 
riterion demands fewer adjustable parameters, but its maximization is only possible when thegeneration sizes λ are small, typi
ally O(1). It should be understood that a small value of λ does not limitthe parallelization. In parti
ular, we shall advo
ate an asyn
hronous node a

ess where one �rst submits alarge number of expensive fun
tion evaluations to the 
loud, and then updates only λ nodes at a time (thealgorithm remains parallel even when λ = 1).The multi-point EI 
riterion has already been applied to sele
t parameters of various statisti
al modelsin order to further in
rease their performan
e on some known ma
hine learning ben
hmarks [36℄. We shallreport deviations in the optimization evolutions w.r.t. the initial DOE, whi
h turn out to be higher than theerror bars that 
an be seen in [36℄. This indi
ates that 
ertain parameters, su
h as an initial DOE, 
an a�e
tthe out
ome of the optimization results more than a better regression model. High performan
e variabilityw.r.t. the initial DOE is also reported in [32℄. 5



An attempt to improve maximization of the multi-point EI 
riterion is presented in [13℄, where it is shownhow to 
ompute the gradient of this a
quisition fun
tion analyti
ally. This is a resear
h dire
tion whi
h 
ouldbe very important for the asyn
hronous node a

ess where the time it takes to generate and 
ommuni
atenew points (blo
king time) should be minimal. Maximization of the multi-point EI 
riterion is also a
omputational bottlene
k during the testing of any of the relevant algorithms, and a faster maximizationwould provide an appre
iable aid here. However, one should bear in mind that the multi-point EI 
riterionis multimodal, and there is no easy way to rea
h its global maximum with lo
al optimization te
hniques.One 
ould emphasize that the framework introdu
ed in [7, 9℄ is a very general formalization of a budgetedoptimization problem. Our asyn
hronous optimization study that will be presented in Se
tion 4 
orrespondsto a parti
ular 
ase whi
h the authors 
all Online Fastest Completion Poli
y (OFCP). This poli
y is just astrategy to 
al
ulate and evaluate new λ 
andidate lo
ations immediately as λ 
omputational nodes be
omeavailable. Their main 
ritique, and quite a profound insight, is that "it does not use the full time horizon, evenwhen doing so would allow for mu
h less 
on
urren
y" [7℄. The works in [7, 9℄ introdu
e a new perspe
tiveto Bayesian optimization be
ause they expli
itly quantify and minimize the a
tual optimization time insteadof relying on a prevalent statement that Bayesian optimization is "known to be e�
ient".We do not ne
essarily advo
ate the use of this poli
y over others and our results, provided in Se
tion 4,
ould be seen as a further analysis and numeri
al eviden
e that only better 
hara
terizes this poli
y. How-ever, the OFCP poli
y is a natural 
hoi
e when the overall time horizon is not given, or when the exa
ttiming 
hara
teristi
s of the expensive evaluations are not known (but we shall provide analysis when su
hinformation is available). The OFCP poli
y simply works with an assumption of a �xed number of totalfun
tion evaluations, it maximizes the node o

upation time, does not need any sophisti
ated s
heduling,and there is obviously no need to 
onsider a probabilisti
 safety in this 
ase. For the sake of simpli
ity, weshall bypass the de
ision theoreti
 vo
abulary and instead of the OFCP poli
y shall frequently employ a lessinformative des
ription of the asyn
hronous node a

ess.1.5 Stru
ture of the ReportThe report �rst provides the results of the appli
ation of a syn
hronous four-point EI algorithm to theindustrial problem of shape design, whi
h are summarized in Se
tion 2. The optimization operates in su
ha way that one �rst submits four points for their evaluation, and then waits until all of them are 
ompleted.The regression model is then updated, the multi-point EI 
riterion is maximized, and the pro
ess is 
ontinueduntil the budget of expensive evaluations is ex
eeded. The evaluation of a 
ost fun
tion takes about twentyminutes. We improve a re
ently reported result in [31℄, and provide insights into physi
al, and statisti
alaspe
ts of the problem.Se
tion 3 states performan
e results of various parallelization te
hniques dedi
ated to a syn
hronous nodea

ess. Our results indi
ate that a simple strategy su
h as the domain de
omposition is 
ompetitive with moreadvan
ed methods, but there are problems where none of the methods is suitable for parallel optimizationand a single point EI algorithm performs equally well. One should note that the tests are stru
tured in su
ha way that parallel algorithms are exe
uted on a single ma
hine, and independent simulations pertaining todi�erent initial DOEs are then sent to the 
loud to assess how an initial DOE a�e
ts the results. The reasonfor this parti
ular way of utilizing the 
loud is that timing 
hara
teristi
s of the parallel algorithms 
an berather obvious, and in the testing phase the 
ost fun
tions are not expensive to evaluate.Optimization with an asyn
hronous node a

ess is dis
ussed in Se
tion 4. We state a parti
ular modelfor the exe
ution time of an expensive-to-evaluate fun
tion, simulate the asyn
hronous point generations
enarios based on the proposed timing model, and test the performan
e of the multi-point algorithms bysubmitting independent optimizations, ea
h with a di�erent initial DOE, to the 
loud. Here the fo
us ison the average time for a new generation to a
tually be sent to the 
loud, whi
h will be referred to as awall 
lo
k time. A wall 
lo
k time depends not only on the time it takes to maximize the improvementand to 
ommuni
ate the results to the remote nodes, but also on when and where a parti
ular node be
omesavailable while other nodes are a
tive with the evaluation. This is one di�eren
e with the previous work onbudgeted optimization 
onsidered in the literature. 6



Se
tion 5 fo
uses on the possibilities to further speed-up evaluations of the integral for the multi-pointEI 
riterion. We have observed in our numeri
al experiments that the integral has a pe
uliar property thatits upper bound lies extremely 
lose to the a
tual value, espe
ially (but not ne
essarily) when the examinedexpe
ted improvements are further away from the lo
ations where they are maximal. In essen
e, we 
hoose towork within the framework of systemati
 sampling [16℄ (as opposed to importan
e sampling) and show thatone 
an 
onsiderably improve symmetri
 monomial rules (uns
ented transforms) by repla
ing monomialswith integrated one-point improvements. However, one must also mention that a standard Monte Carlosampling proves to be a very reliable integration te
hnique, espe
ially at the lo
ations where the expe
tedimprovements are maximal.As will be seen in the results provided in this report, a signi�
ant bene�t of using a 
omputing 
loud is thatit allows large s
ale testing of the algorithms with di�erent parameter settings. For example, parameters, su
has an initial DOE, greatly a�e
t the optimization results and are very hard to "integrate out". The ability toutilize 
loud resour
es allows one to a
tually send repli
as of the original simulation with parameter 
hangesand then see the e�e
ts. This is very hard to a
hieve when running things lo
ally on a single 
omputer (ina serial manner) be
ause a budgeted optimization of inexpensive-to-evaluate fun
tions is itself a very time-
onsuming pro
ess. In our work, a single 
ost fun
tion evaluation in the rank-one matrix approximationproblem may take mi
rose
onds to evaluate, but a single 
omplete optimization may easily rea
h ten hours(when the CPU rate is 2.5GHz). Our ability to run the 
odes on the ProA
tive PACA Grid 
loud [3℄ allowsto obtain about one hundred su
h independent optimizations in a day, whi
h is a remarkable asset in testing.
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2 Shape Optimization2.1 Expensive-to-Evaluate Fun
tionOur goal is to optimize the geometry of a 
ooling du
t, whi
h has already been studied in [31℄. The 
riterionis the normalized pressure di�eren
e of the �ow at the inlet and outlet of a du
t, whi
h is indi
ated in Fig. 1a.The optimization parameters are shown in Figs. 1b�d.It will su�
e to emphasize that the 
riterion is a positive quantity whose 
omputation is a demandingnumeri
al solution of the k�ǫ model of a �uid �ow. The �ow is linear, vis
ous (ν = 1.6 · 10−4 m2/s.),in
ompressible, and turbulent (Re = 4000).The k�ǫ model is a mixed system of nonlinear partial di�erential and algebrai
 equations [17℄:
∂ūi

∂t
+ ūj

∂ūi

∂xj
=

∂

∂xj

(

(ν + νT )

(

∂ūj

∂xi
+

∂ūi

∂xj

))

− 1

ρ

∂

xi

(

p̄ +
2

3
ρk

)

, (1)
∂ūj

∂xj
= 0, (2)

∂k

∂t
+ ūj

∂k

∂xj
=

∂

∂xj

((

ν +
νT

σk

)

∂k

∂xj

)

+ νT

(

∂ūi

∂xj
+

∂ūj

∂xi

)

∂ūi

∂xj
− ǫ, (3)

∂ǫ

∂t
+ ūj

∂ǫ

∂xj
=

∂

∂xj

(

νT

σǫ

∂ǫ

∂xj

)

+ Cǫ1
ǫ

k
νT

(

∂ūi

∂xj
+

∂ūj

∂xi

)

∂ūi

∂xj
− Cǫ2

ǫ2

k
, (4)

νT = Cµk2/ǫ. (5)It des
ribes the time averages of the pressure �eld p and the �ow velo
ity �eld u:
p̄ ≡ lim

T→0

1

T

∫ T

0

p(x, t)dt, ūi ≡ lim
T→∞

1

T

∫ T

0

ui(x, t)dt. (6)The auxilliary �elds k, ǫ, and νT are the turbulent kineti
 energy k, the spatial dissipation rate of k, 
alled
ǫ, and the turbulent vis
osity νT , resp. One should noti
e that the kinemati
 vis
osity ν is a 
onstant, while
νT is a �eld.The initial and boundary 
onditions are indi
ated in Table 1. The implementation uses the open sour
elibrary 
alled OpenFOAM [2℄. The wall fun
tions "kw", "ǫw", and "νTw" are the OpenFOAM fun
tions"kqRWallFun
tion", "epsilonWallFun
tion", and "nutWallFun
tion", resp. The latter two override theirdefault parameter values with Cµ = 0.09, κ = 0.41, E = 9.8. The initial values of the quantities 
omputedby the wall "fun
tions" 
orrespond to the initial values of the �elds shown in the last 
olumn of Table 1.In addition to OpenFOAM, a 
omplete software sta
k of this �uid dynami
s simulation in
ludes CA-TIA [1℄ (a 3D model of a du
t), STAR�CCM+ [4℄ (
omputational mesh generation), and ParaView [19℄(visualization).2.2 AlgorithmIt is not transparent how the pressure di�eren
e depends on the parameters whi
h spe
ify the geometryof a du
t. Various admissable 
hanges of the geometry are not visually dis
ernable, and the model is amassive nonlinear dynami
al system. This motivates the appli
ation of a budgeted optimization. This typeoptimization estimates the kriging model of an expensive-to-evaluate fun
tion, and generates new 
andidatelo
ations by maximizing the multi-point expe
ted improvement. In parti
ular, given µ a
tive points x1:µand λ free nodes, the algorithm �nds λ new points by solving the following problem:

max
x∈Rdλ

E(max (0, min (fmin, Y (x1:µ)) − min Y (x)) |A
)

, (7)
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Table 1: Initial and boundary 
onditions for key quantities of the k�ǫ model.Name Field Units Boundary 
onditions Initial 
onditionsInlet Outlet Wall
p̃ = p̄/ρ Normalized pressure m2

s2 ∇p̃ = 0 p̃ = 0 ∇p̃ = 0 0
u Flow velo
ity m

s −n 0 if u · n ≤ 0 0 0

k Turb. kin. energy m2

s2 10−3 ∇k = 0 "kw" 10−3

ǫ Dissipation Rate of k m2

s3 10−1 ∇ǫ = 0 "ǫw" 10−1

νT Turbulent Vis
osity m2

s3 0 ∇νT = 0 "νTw" 0where fmin is the 
urrent minimum, Y (x1:µ) = (Y (x1), . . . , Y (xµ)) and Y (x) = (Y (xµ+1), . . . , Y (xµ+λ)) arerandom surrogates (kriging model). A denotes the event when Y values equal to all known expensive-to-evaluate fun
tions at all the known lo
ations. Methods to 
ompute the expe
tation in Eq. (7) are dis
ussedin Se
tion 5.Considering the use of kriging in the optimization, one may refer to [18, 20℄ for more details. In addition,we have applied a few 
hanges to what seems to be a standard pra
ti
e. They are not 
on
eptually interesting,but are worth mentioning:1. The expe
ted improvement is maximized by using the CMA-ES algorithm [29, 39℄. Box 
onstraintsare handled by proje
ting the 
oordinates on the bounds and adding the penalty term to an expe
tedimprovement. The penalty is proportional to the Eu
lidean distan
e from the optimization point tothe boundary if the point is out of bounds, and is zero otherwise.2. Conditional expe
tations are 
al
ulated by using the pseudoinverse of the DOE 
ovarian
e matrix. Thismethod overestimates the 
onditional varian
es, but it does not demand any additional parameters,and it also redu
es to the standard inverse in the absen
e of singularities.3. When the 
onditional 
ovarian
e matrix of the kriging responses is singular, the value of the expe
tedimprovement is simply set to zero. Here by "singularity" it is meant anything that breaks the Choleskyde
omposition. The latter is pla
ed inside the "try blo
k" of the "try and 
at
h" ex
eption handling.4. Multi-point expe
ted improvements are 
al
ulated by using the Monte Carlo sampling with one thou-sand points. This standard method is simple, 
omputationally inexpensive, and reliable w.r.t. in-
reasing dimensions of an integration domain. The seed of the random generator is set to the 
urrentgeneration number, so that the integration routine uses the same random points when evaluating theexpe
ted improvement at di�erent spatial lo
ations.5. Kriging is applied with Gaussian kernels whose varian
es vary with ea
h 
oordinate. The varian
es aredetermined by squaring the median of the absolute deviations from the median of a parti
ular 
oor-dinate. This is simpler and faster than any iterative estimation and, more importantly, it guaranteesthat the appearan
e of 
lose points in DOE does not 
hange kernel varian
es unexpe
tedly.We shall apply what is known as the syn
hronous multi-point algorithm [18℄ with λ = 4 points, whi
h isbrie�y abbreviated as EI0,4. The 
hoi
e of generating four points at a time demands the optimization with
8× 4 = 32 variables. Asking for more points at a time, or using DOEs with more points than O(103) wouldintrodu
e severe numeri
al di�
ulties.2.3 ResultsThe minimization of the pressure di�eren
e is shown in Fig. 2. The �rst 320 observations are generatedby using the Latin Hyper
ube Sampling (LHS) algorithm, so that the a
tual optimization starts at the9



Table 2: Main ResultsLOBS UPBS Worst [31℄ Our result
x1 0.0036 0.0166 0.0036 0.0149 0.0132
x2 0.3 0.8 0.3760 0.4202 0.4756
x3 0.0027 0.0207 0.0207 0.0102 0.0207
x4 0.0405 0.0595 0.0595 0.0479 0.0450
x5 1.25 1.5707 1.2525 1.5582 1.5707
x6 0.21 0.42 0.2254 0.3849 0.3914
x7 0.047 0.055 0.055 0.0541 0.0547
x8 0.0008 0.0088 0.00081 0.0014 0.0016pd nan nan 1.28 0.59 ± 0.01 0.56 ± 0.01observation number 320. The optimization then pro
eeds via a syn
hronous generation of four 
andidatepoints. They are obtained by maximizing the expe
ted improvement with the CMA-ES algorithm [29℄ whi
huses its default parameters, ex
ept that the initial 
oordinate deviation is 
hosen to be 0.1, and the numberof iterations is set to 3000.Optimization results are presented in Table 2. One 
an see the bounds of the variables, the worst observedpoint whi
h gives the maximal pressure di�eren
e value 1.28, previously available best result [31℄, along withour improvement. The presen
e of "nan" values indi
ates that the pressure values are not available at thepoints whose all 
oordinates are simultaneously equal to either the lower or upper bound. The geometry
annot be meshed in these two extreme 
ases.2.4 Analysis of ResultsThe optimization results 
an also be highlighted by 
omparing the optimal �elds with the worst observed
ases. The worst observed geometry is shown in Fig. 3. It only serves the purpose of displaying the sli
ingplane on whi
h the �eld values will be displayed, and in setting up the range for the pressure values, whi
his [0, 4]. The surfa
e of the du
t is 
olored with the ParaView [19℄ s
heme "hsv-blue-to-red" whose range of
olors is also displayed in the 
olor bar.The values of the pressure �eld on the surfa
e and its sli
e are shown in Fig. 4. Both shapes are hard todis
ern visually, but the di�eren
es 
an still be noti
ed without any spe
ial tools. In the optimized 
ase, thepressure values are smaller on the walls at the in�e
tion of the du
t.The 
omponents of the velo
ity �eld are shown in Fig. 5. For 
omparison purposes, the ranges of the �eldvalues are kept the same in both the worst and optimal 
ases, and the 
olor spa
e is the one used with thepressure �elds, 
lf. Fig. 3. The ranges for the x, y, and z-
omponents are [−0.3, 1], [−0.4, 1.4], and −1.6, 0.2,resp. One 
an see that the velo
ity �eld of a �ow in the optimized 
ase is generally smoother, and e�e
tivelyuses a larger volume of a du
t.The optimized geometries are very hard to dis
ern visually, and the pressure �elds are nearly opti
allyidenti
al, whi
h is also a

ompanied by rather small di�eren
es in the numeri
al values of the pressure �elds.However, the results are not identi
al, and the di�eren
es be
ome most pronoun
ed when looking at velo
ity�elds shown in Fig. 6. One 
an see that our result is slightly smoother, whi
h 
an be seen in the upper leftareas of the sli
es in the x and z-
omponents (a,d,
,f), and at the in�e
tion point of a du
t in the 
ase ofthe y 
omponent (b,e).In order to see if our result di�ers from the one in [31℄ statisti
ally, we have performed the prin
ipal
omponent analysis on the data 
orrelation (not 
ovarian
e) matrix. The data is the matrix of size 8 × 788whose 
olumns are the 
andidate lo
ations generated during the optimization (the data 
orrelation matrixis of size 8 × 8). The results are shown in Fig. 7. They indi
ate the proje
tions of the data ve
tors onthe 
hosen eigenve
tors of the 
orrelation matrix. In addition to the data, several important lo
ations are10



Table 3: Eigenve
tors of the 
orrelation matrix of all the geometries.Coord. v1 v2 v3 v4 v5 v6 v7 v8

1 0.47061 −0.01957 0.00218 −0.34455 −0.09434 −0.65004 −0.26550 −0.39683
2 −0.24119 −0.39696 0.20201 −0.27114 −0.80995 0.01527 0.04344 0.10855
3 −0.50275 −0.03497 0.19678 0.10206 0.19948 −0.48401 −0.50937 0.40419
4 0.04089 0.33272 0.87867 0.14932 −0.04204 0.13262 −0.04856 −0.26749
5 −0.49912 0.22259 −0.30076 −0.06057 −0.11561 0.22181 −0.39944 −0.62056
6 −0.33944 0.20969 0.11621 −0.74648 0.29979 −0.07762 0.41716 0.01265
7 −0.16022 0.56533 −0.18227 0.33491 −0.36915 −0.44528 0.41711 0.02842
8 −0.27554 −0.56302 0.10589 0.31937 0.23239 −0.26807 0.39781 −0.45799indi
ated with di�erent markers, and they are: the present optimal solution (Opt), lower and upperb bounds(LB, UP, resp.), previous result [31℄ (PrevBest), the average value of the bounds (Midpoint), and the worstobserved point during the optimization (Worst).As the 
on
entration of varian
e by the �rst prin
ipal 
omponents is not very pronoun
ed, one �nds outthat data does not live in a subspa
e of R8 and all the 
oordinates are valuable. Therefore, the parameter-ization of the problem is not redundant. However, the dimension of the problem 
ould have been redu
eddown to R5 be
ause the se
ond, �fth, and eight pri
ipal 
omponents do not dis
riminate the optimal lo
ationfrom the middle point or the worst point.When 
ompared to the previously available result [31℄, our solution is situated further away from theworst 
ase s
enario when looking at things along the prin
ipal dire
tions 1, 6, and 7, but is 
loser to it inthe dire
tion 8. Interestingly, in the four-dimensional subpsa
e spanned by the eigenve
tors 2, 3, 4, and 5,the result in [31℄ is almost identi
al to ours.The �rst prin
ipal 
omponent allows to separate the optimized points from the initial DOE. It turns outthat the third 
oordinate of the �rst eigenve
tor has the largest magnitude, whi
h, in
identally, is the only
oordinate whi
h makes our solution signi�
antly di�erent from the previous result (in our 
ase x3 is roughlydoubled). For the sake of 
ompleteness, the 
oordinates of all of the eigenve
tors are shown in Table 3.2.5 Con
lusionsWhen a vast majority of admissible �uid domains are opti
ally indistinguishable, the optimization of ageometry 
an be hard to perform manually. Kriging-based optimization proves to be handy when making aprogress with a small budget of the 
ost fun
tion evaluations whi
h is typi
ally less than O(103). We havemade an improvement to the previous solution obtained in [31℄ and have identi�ed its relation to our result.Interestingly, the previous optimization is almost identi
al to ours in the subspa
e of R8 spanned by foureigenve
tors of the 
orrelation matrix of all the points gathered during the sear
h. The prin
ipal 
omponentanalysis suggests that x3 is an imporant parameter, and the intrinsi
 dimension of the problem, i. e. thenumber of independent parameters whi
h 
ould di�erentiate the optimal geometry from the suboptimal one,is at least �ve.
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(a) (
)

(b) (d)

Figure 1: Optimization 
riterion is the di�eren
e between the average (normalized) pressure �eld at the inletand outlet (a). The optimization parameters are x1�x3 (b), x1, x4�x7 (
), and x8 (d).
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Figure 2: Normalized pressure di�eren
e [m2

s2 ℄ w.r.t. in
reasing number of observations during the optimiza-tion. The �rst 320 observations are generated via the LHS algorithm.
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Figure 3: The example of a du
t geometry, the observation plane, and the 
hosen 
olor s
heme for thepressure �eld values.
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(a) (
)

(b) (d)

Figure 4: Pressure �elds: worst observed 
ase (a,b), and optimal solution (
,d).
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(a) (d)

(b) (e)

(
) (f)

Figure 5: Velo
ity �elds: x-
omponents (a,d), y-
omponents (b,e), and z-
omponents (
,f). The �rst 
olumn
orresponds to the worst observed s
enario; the se
ond 
olumn shows the optimized �elds.16



(a) (d)

(b) (e)

(
) (f)

Figure 6: The 
omponents of the velo
ity �eld of a �ow: x-dire
tion (a,d), y-dire
tion (b,e), and z-dire
tion(
,f). The �rst 
olumn 
orresponds to the result in [31℄; the se
ond 
olumn is our result whi
h is the repli
aof the se
ond 
olumn in Fig. 5. 17
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3 Experiments with Syn
hronous Node A

ess3.1 Introdu
tionSe
tion 2 has fo
used on the appli
ation of a parti
ular kriging-based optimization algorithm to the industrialproblem. On average, it takes twenty minutes to evaluate a 
ost fun
tion in su
h a problem. A singleoptimization then demands days to 
omplete. Considering the down-times of the 
loud, a single optimizationmay demand weeks to 
omplete.Thus, one may ask whether our results rightfully re�e
t what 
an be a
hieved with a whole family ofmulti-point improvement-based algorithms des
ribed in [20℄. One should note that so far we have appliedonly one su
h algorithm, whi
h generates λ = 4 points at a time, syn
hronously. It was applied on
e, andonly with a single 
ost fun
tion.We shall report our tests with arti�
ial fun
tions, whi
h will further indi
ate some limitations and unex-plored possibilities of the kriging-based algorithms. In this se
tion, we will fo
us on the asyn
hronous nodea

ess and will try to measure whether multi-point improvements help. The algorithms will be tested alongwith the strategy of the domain de
omposition.3.2 Algorithms3.2.1 Multi-Point ImprovementsThe use of multi-point improvements [20, 18℄ is a theoreti
ally appealing dire
t extension of the krigingalgorithms with one-point improvements. The problem with this approa
h is that it does not s
ale well asthe maximization of the expe
ted λ-point improvements demands the optimization in λ × d dimensions. Inaddition, λ 
annot be very large in prin
iple be
ause the minimum over an in
reasing number of randomvariables is pushed down independently of the demands of a problem, and thus the expe
ted improvementsbe
ome severely overestimated. They are typi
ally overestimated anyway, but one suspe
ts that when thegeneration sizes are not big, su
h as λ = 4, the algorithm 
an be implemented 
orre
tly and one may a
hievea faster optimization.How fast an optimization 
an be? Let us introdu
e the quantity 
alled wall 
lo
k time (WCT), whi
h isthe average time between two 
onse
utive updates of the nodes in the 
loud. It determines the rate at whi
hthe points are sent to (re
eived from) a remote 
loud. Figure 8 presents timing analysis of the syn
hronousoptimization with multi-point improvements.Syn
hronous mode, λ = 1Node 1
tu 3 3 3 3 3 3 3 3 3 3 3 3Syn
hronous mode, λ = 4Node 1Node 2Node 3Node 4
tu 6 6 6 6 6 6Figure 8: In the syn
hronous 
ase, it is the slowest node that determines the node update time. The time
osts of updating λ > 1 points will typi
ally be greater than in the single point 
ase, unless every one outof λ 
omputational nodes is faster than the one applied in the optimization with one-point improvements.This example shows the 
ase when tb is one time unit, independently of an algorithm. The wall 
lo
k timein
reases twi
e when λ 
hanges from 1 to 4. 19



The high level of the node signal indi
ates the time when the node is busy while 
al
ulating an expensive-to-evaluate fun
tion, and the low level spans the time when the node is idle. One 
an see that the use ofmultiple points in
reases the wall 
lo
k time (WCT), and the latter will be solely determined by the slowest
omputational node.Let us introdu
e the blo
king time tb, whi
h is the time it takes to: (i) re
eive λ fun
tion evaluations, (ii)generate λ 
andidate points, and (iii) send them to the λ free nodes. One 
an then perform a more pre
iseanalysis by assuming that the time it takes to evaluate an expensive fun
tion is uniformly distributed. Thenode update time will then be a random variable de�ned as
Tu = tb + max{T1, T2, . . . , Tλ}, Ti ∼ U(tmin, tmax). (8)For example, let tmin = 10, tmax = 30 and tb = 2 time units. Then, WCT ≡ E(Tu) = 22 when λ = 1, butit in
reases up to WCT = 28 when λ = 4. Therefore, the syn
hronous multi-point optimization algorithmneeds to approa
h the optimum at least 28/22 = 1.27 times as fast in order to save time.3.2.2 Domain De
ompositionThis is one of the simplest strategies to employ when making any optimization algorithm parallel. The domainis divided into s parts (subdomains) and the optimization is performed in ea
h subdomain independently,preferrably in parallel. In what follows, we shall perform the optimization in d = 2, 6, and 9 dimensions,and the number of subdomains will be 32. In the 
ase of two dimensions, we divide the �rst 
oordinate intoeight equal parts, and the se
ond into four. In the 
ase of a larger number dimensions, we simply halve the�rst �ve 
oordinates and obtain in this way 25 = 32 subdomains.It is important to emphasize that the domain de
omposition is a strategy. It 
an be applied to make anyalgorithm parallel. We shall use it with both, one-point improvements, and multi-point improvements as well.The interesting question is whether the use of the domain de
omposition with the one-point improvements
an be as good as the use of multi-point improvements alone. In that 
ase, one would de�nitely prefer theformer, as it a
hieves a perfe
t isolation between the parallel �ows of the program whereas the multi-pointalgorithm is more demanding regarding its implementation.3.3 Performan
e CriteriaAll of the optimization algorithms are made to be deterministi
 in order to remove the unne
essary degreesof varian
e. Firstly, we swit
h o� the maximum likelihood estimation of the Gaussian kernel varian
es inthe kriging. Instead of estimating them, the following simple rule is appliedkernel varian
ei =

( |upbi − lobi|
21+ 8

d

)2

, i = 1, . . . , d. (9)Here d is the number of dimensions of the optimization spa
e.The main idea behind this formula is that we shall typi
ally generate 500 points during the entireoptimization (in
luding the points of the initial DOE). This is a realisti
 budget for an expensive-to-evaluatefun
tion on one hand, and the limit after whi
h working with dense matri
es be
omes very ine�
ient (atbest). Thus, in all of the simulations, on average, the number of observations used in kriging is 250. Wethen "round" this number up to 28 = 256, and then 28/d be
omes the number of "ti
ks" that 
an be pla
edon ea
h 
oordinate axis when assuming that the points are distributed uniformly in spa
e. The addition ofunity is somewhat arbitrary and not really 
ru
ial, but it serves one purpose. When d = 8, the varian
ebe
omes equal to a squared "median of the median of absolute di�eren
es 
oordinate-wise".In addition, the Monte Carlo (MC) integration of the expe
ted improvement is always initialized to the
urrent generation number. Thus, the only "degree of freedom" is the initial DOE, and ea
h family of thealgorithms 
an now be tested with a number of optimizations. Ea
h optimization will then 
orrespond to adi�erent initial DOE. This number will be set to one hundred, but it may a
tually be
ome smaller if somenodes fail to 
omplete the optimization. 20



The performan
e of the algorithms is assessed by using three arti�
ial fun
tions as the optimization
riteria. The details are given in Table 4.Table 4: Optimization CriteriaLabel Cost fun
tion Domain Minimal value Modality"mi
halewi
z2d" ∑2
i=1 sin(xi) sin2(ix2

i /π) [0, 5]2 −1.841 multimodal"rosenbro
k6d" ∑5
i=1 100(xi+1 − x2

i )
2 + (1 − xi)

2 [0, 5]6 0 unimodal"rank1approx9d" ‖A4×5 − x4×1y1×5‖2, aij ∼ U(0, 1)1 [−1, 1]9 0.7119 bimodalThese fun
tions are simple to state and to implement. They are also fast to evaluate. The latter featurestill does not let to perform testing on a single ma
hine easily as a kriging-based optimization may takehours even when applied to 
reate only one hundred generations. However, the use of the ProA
tive PACAGrid 
loud [3℄ provides the possibility to test the algorithms with di�erent initial 
onditions at on
e.The optimization quality will be assessed by using the normalized real improvement (NRI) de�ned asNRI(generation) =
f0 − fmin(generation)

f0 − ftrue . (10)Here f0 is the smallest value of the 
ost fun
tion a
hieved on the initial DOE, whi
h is 
reated by using theLatin Hyper-Cube Sampling (LHS), fmin denotes the value a
hieved after a parti
ular generation of pointsis evaluated, and ftrue is the true ideal minimal value, whi
h is given in Table 4.Also, it is useful to summarize the performan
e of various algorithms by de�ning their speed-up, su
h as
S0(NRI) ≡ time to rea
h NRI by EI0,1time to rea
h NRI by EI0,λ

. (11)Here the referen
e algorithm is kriging with one-point improvements, and the speed-up is de�ned for thekriging-based optimization with λ ≥ 1 points.In order to take into a

ount the blo
king time, one de�nes the real-time speed-up of the multi-pointalgorithm over its single point 
ounterpart a

ording to
S1(NRI) =

S0(NRI)RTF = S0 ×
WCT for the algorithm EI0,1WCT for the algorithm EI0,λ

. (12)Here RTF is a real time fa
tor whi
h is the ratio of the 
orresponding wall 
lo
k times. The 
orresponding
riteria for the domain de
omposition are de�ned similarly. The WCT values of all the algorithms that aretested with the syn
hronous node a

ess are given in Table 5.3.4 ResultsThe optimization results are shown in Figs. 9 and 10. One 
an see that the optimization paths vary a lotw.r.t. the initial DOE, but this e�e
t is less pronoun
ed in the problem "rank1approx9d". In the spa
ewith a large number of dimensions it is harder to generate an initial DOE whi
h 
ontains points 
lose tothe global optimum. The problem "rosenbro
k6d" seems to be easy and its solution is 
loser to the problem"mi
halewi
z2d" than the "rank1approx9d" 
ase. In the former two 
ases the approa
h to the optimum ismu
h faster.The values of the speed-up S0 are 
ompared in Table 5. One 
an see that parallelization brings notableimprovements when solving the problems "mi
halewi
z2d" and "rosenbro
k6d", but the gain is very smallfor the problem "rank1approx9d". The latter point be
omes espe
ially strong if we 
onsider the speed-up
S1 whi
h takes into a

ount the real time fa
tor.1The a
tual matrix is generated with the S
ilab 5.3.3 "grand" fun
tion. The Mersenne Twister is applied with an initialseed set to the number 29. 21



Table 5: Wall 
lo
k times, real time fa
tors, and speed-ups of syn
hronous optimization, NRI = 0.8. Param-eters: tmin = 10, tmax = 30, tb = 2.WCT RTF "mi
halewi
z2d" "rosenbro
k6d" "rank1approx9d"
S0 S1 S0 S1 S0 S1EI0,1 22 1 1 1 1 1 1 1EI0,4 28 1.3 3.7 2.9 2.7 2.1 1.3 1.0EI0,1+de
om 30 1.4 2.4 1.8 2.1 1.5 0.70 0.50EI0,4+de
om 30 1.4 4.6 3.4 4.5 3.2 1.2 0.86One �nds out that domain de
omposition is about as good as the use of multi-point improvements. Bothparallel optimization methods 
an also be 
ombined to yield an even greater performan
e. However, none ofthe parallelization methods are worth the e�ort 
onsidering the "rank1approx9d" problem. Considering thedomain de
omposition, perhaps this is not very hard to explain. In a high-dimensional spa
e, i.e., d = 9,halving the �rst �ve 
oordinates 
an make the kriging algorithms less explorative (global).A good use of domain de
omposition seems to be a qui
k assessment of multimodality of the 
ost fun
tion.Figure 11 indi
ates one out of one hundred optimizations in full detail. One 
an see that some of theoptimizations rea
h very high NRI values indi
ating that the 
orresponding subdomain may 
ontain theglobal optimum.3.5 Con
lusionsThe use of multi-point improvements (λ = 4) brings notable speed-ups to the problems "mi
halewi
z2d" and"rosenbro
k6d". However, the algorithm is not as e�
ient as the 
lassi
al EGO (i.e. EI0,1) method in the
ase of "rank1approx9d". This is most likely due to the in
reased dimensionallity of the problem althoughadditional tests would be ne
essary to study if this 
ould also be an e�e
t of the fun
tional lands
ape.The same applies to the domain de
omposition. Considering the "mi
halewi
z2d" and "rosenbro
k6d"problems, running the EI0,1 algorithm with 32 subdomains is better than using EI0,4 without any domainde
omposition. Both methods have been 
ombined to gain an additive e�e
t on the overall speed-up.However, neither domain de
omposition nor multi-point improvements provide an advantage with respe
tto EGO in the "rank1approx9d" problem.The algorithms with multi-point improvements fundamentally 
annot s
ale well be
ause they internallyinvolve a maximization of the joint improvement in d × λ dimensions.In order to make a further progress, it seems that one 
ould: (i) either in
rease the λ value dramati
ally (totens and hundreds of points) by making substantial sa
ri�
es in the quality of the improvement maximization,or (ii) resort to the asyn
hronous node a

ess whi
h may redu
e wall 
lo
k times. The se
ond way seems tobe more viable and will further be investigated.
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4 Experiments with Asyn
hronous Node A

ess4.1 Asyn
hronous ModelLet m be the number of nodes, i.e. the number of virtual ma
hines (
omputers) available on a remote 
loudto evaluate an expensive fun
tion. Let the average time of the fun
tion evaluation be distributed uniformlyin the interval (tmin, tmax), and suppose that the a

ess to the 
loud is possible every time λ nodes providea result. Typi
ally, λ ≪ m, su
h as λ = 1, 2, 3, 4 while m = 32. Let tb be the blo
king time whi
h the timeit takes to 
al
ulate and send λ new arguments to update the free nodes.We will show that the wall 
lo
k time 
an be redu
ed to the blo
king time by simply in
reasing thenumber of nodes m. Moreover, it turns out that the de
rease of the WCT value w.r.t. m is hyperboli
, andits varian
e be
omes negligible with an in
reasing value of m.In order to show that this is possible, let us introdu
e an asyn
hronous a

ess model. Let T be the setof m elements ti whi
h are the real numbers indi
ating the time it takes to evaluate an expensive fun
tion.The node update time 
an then be 
omputed by using these steps:1. Find λ smallest elements of T (not ne
essarily distin
t), and 
reate the set S out of them:
S = {ti1 , ti2 , . . . , tiλ

}. (13)2. Find the largest element in S, and 
all it the 
omputation time tc:
tc = maxS. (14)3. Compute the update time
tu = tb + tc. (15)4. Form the set M = T \ S, and map every element t of M a

ording to:

t 7→ max(0, t − tu). (16)5. Update the set T :
T = M ∪ S. (17)The pro
ess of the node update with the asyn
hronous bu�er model is shown in Fig. 12. The followingthree rules are enfor
ed here:1. The falling front indi
ates that the node be
omes available.2. It takes one time unit to update the node.3. In 
ase more than one node is available at the a

ess time, the faster node is preferred.The initial set T models the a
tual 
omputational times of expensive evaluations. The simplest adequatemodel so far seems to be the uniform distribution with a �nite support given by tmin and tmax. The motivationbehind this 
hoi
e is the analysis of the data whi
h we have gathered during the simulation of the expensiveto evaluate fun
tions. The latter have been 
hosen to be the kriging-based optimization pro
esses themselves.Figure 13 indi
ates the distributions of times that nodes demand to evaluate an expensive fun
tion on theProA
tive PACA Grid 
loud [3℄. Here expensive-to-evaluate fun
tions are 
omplete budgeted optimizationsof inexpensive fun
tions whose evaluation takes only mi
rose
onds to 
omplete. One 
an see that theheterogeneous nature of the 
loud is su
h that tmax = O(tmin).26
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tu 3 3 3 3 3 3 3 3 3 3 3 3Syn
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tu 6 6 6 6 6 6Asyn
hronous mode, λ = 4Node 1Node 2Node 3Node 4
tu 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1Figure 12: Advantages of the asyn
hronous node a

ess. In the syn
hronous 
ase with λ = 1, WCT = 3.Adding three slower Nodes 2�4 allows to have four simultaneous evaluations, but the wall 
lo
k time will bedetermined by the worst node. However, the asyn
hronous a

ess redu
es the tu values to tb for the majorityof expensive fun
tion evaluations.4.2 Computational Analysis of Wall Clo
k TimeThe wall 
lo
k time 
ould be 
omputed by performing the �ve steps indi
ated above. They need to berepeated as many times as the number of λ-generations demands, and also repeating the runs with di�erentinitial sets T . The S
ilab 
ode of a single run is provided in Appendix se
t:listingw
tasyn
, where "bu�sz"stands for m, and "lamb" for λ.Fig. 14 indi
ates how the WCT value de
reases w.r.t. an in
reasing value of m. One 
an see that when

m is large enough, the WCT values be
ome sharply 
on
entrated at the tb value.The WCT values de
rease roughly as O(m−1). A more pre
ise rule that �ts the data presented in Fig. 14is O(m−1−α), where
α ≈ tb

3tmin (λ − 1). (18)Noti
e that tmax is not present in the equation.The setting that mat
hes the ProA
tive PACA Grid 
loud best is the one with tmin = 10, and tmax = 30.When m = 32, this allows to update λ = 4 nodes with the wall 
lo
k time approa
hing tb. The relevantWCT values are shown in Table 6.For 
omparison, here we have also presented the 
orresponding statisti
s with a syn
hronous simulation.As one 
an see in Table 6, the redu
tion of the WCT value due to the asyn
hronous simulation seems tobe impressive. So what exa
tly is optimization of an expensive-to-evaluate fun
tion? The pra
ti
al fun
tionevaluation time is a fun
tion of tmin, m, and tb.
27



Table 6: Mean and deviation of the node update time tu for di�erent algorithms. Parameters: tmin = 10,
tmax = 30, tb = 2. Averaging is performed with 25 · 104 points.Asyn
hronous m λ Mean (WCT) DeviationTrue 32 1 2.04 0.0024True 32 4 2.77 0.13False 0 1 22.0 5.77False 0 4 28.0 3.27Table 7: Wall 
lo
k times, real time fa
tors, and speed-ups of asyn
hronous optimization 
ompared to thesyn
hronous 
ase, NRI = 0.8. Parameters: tmin = 10, tmax = 30, tb = 2.WCT RTF "rank1approx9d"

S0 S1EI0,4 syn
 28 1 1 1EI0,4 asyn
 2.77 0.099 0.42 4.2EI28,4 asyn
 2.77 0.099 0.56 5.74.3 Testing Asyn
hronous AlgorithmsAsyn
hronous algorithms are expe
ted to redu
e the speed of the evolution of the optimization path towardsthe optimum w.r.t. the number of generations. The reason is that a dire
t use of the multi-point improvement
riterion does not ex
lude the possibility of a dupli
ate point generation. One example of the appearan
e ofdupli
ate points is illustrated in Fig. 15.As a 
onsequen
e, the evolution paths of optimization might tend to have more jump dis
ontinuities whenthe 
riterion EI0,λ is employed in the asyn
hronous settings. A dire
t remedy is to utilize a full 
riterionEIµ,λ where µ points 
orrespond to the 
andidate lo
ations whose expensive fun
tion values are being a
tivelyevaluated, but are not known at the time when a request 
omes to send a new 
andidate for the evaluation.Eq. (7) states that in
luding a
tive points x1:µ in the target part of the EI 
riterion prevents the algorithmfrom resampling there [20℄. It 
an be seen that if the new λ points form a subset of the µ a
tive points, thenEIµ,λ will be zero. More generally, EIµ,λ de
reases as some of the new λ sear
h points get 
loser to a
tivepoints [20℄.The appli
ation of the syn
hrononous algorithm with the EI0,4 
riterion, as well as the two 
orrespondingasyn
hronous algorithms, to the "rank1approx9d" problem is summarized in Fig. 16.One 
an see that the asyn
hronous algorithm with the EI0,4 
riterion is inferior to its syn
hronous
ounterpart, but the in
lusion of µ = 28 a
tive points improves the algorithm. Still, the EI28,4 algorithmmakes a slower progress w.r.t. the number of generations. While dupli
ates are not the major issue anymore,one 
an noti
e that a syn
hronous algorithm always uses a 
omplete information, i.e. both, the lo
ation,and the expensive fun
tion value, while the asyn
hronous 
ase only ex
ludes the appearan
e of dupli
ates,but it will often do it "blindly" without an available fun
tion value.The examples of the speed-up values are provided in Table 7.The S0 values indi
ate that asyn
hronous algorithms 
an make the progress w.r.t. generations slower(2x) than the 
orresponding syn
hronous 
ases, but the real time fa
tor is 
ru
ial and may result in anasyn
hronous algorithm whi
h runs �ve times faster in a real time.Optimization paths of asyn
hronous algorithms are 
ompared with the syn
hronous 
ases in Fig. 17.The 
orresponding means and deviations are shown in Fig. 18. The results indi
ate that optimization pathsin
rease slower w.r.t. the number of generations when the algorithms are asyn
hronous. However, one mustreally 
al
ulate the pre
ise values of the speed-ups and then in
orporate the real time fa
tors to see a full28



Table 8: Wall 
lo
k times, real time fa
tors, and speed-ups of asyn
hronous optimization 
ompared to thoseof the syn
hronous 
ase, NRI = 0.75. Parameters: tmin = 10, tmax = 30, tb = 2.WCT RTF "mi
halewi
z2d" "rosenbro
k6d" "rank1approx9d"
S0 S1 S0 S1 S0 S1EI0,1 syn
 22 1 1 1 1 1 1 1EI0,4 syn
 28 1.3 3.8 3.0 2.9 2.3 1.3 1.0EI0,1 asyn
 2.04 0.093 0.86 9.3 0.43 4.6 0.27 2.9EI0,4 asyn
 2.77 0.13 2.0 16 1.2 9.4 0.73 5.8Table 9: Wall 
lo
k times, real time fa
tors, and speed-ups of asyn
hronous optimization, NRI = 0.75.Parameters: tmin = 10, tmax = 30, tb = 2.WCT RTF "mi
halewi
z2d" "rosenbro
k6d" "rank1approx9d"
S0 S1 S0 S1 S0 S1EI0,1 asyn
 2.04 1 1 1 1 1 1 1EI31,1 asyn
 2.04 1 0.89 0.89 0.95 0.95 1.4 1.4EI0,4 asyn
 2.77 1.4 2.3 1.7 2.8 2.0 2.7 2.0EI28,4 asyn
 2.77 1.4 3.0 2.2 2.8 2.0 2.9 2.2pi
ture. The summary is presented in Table 8. One �nds out that the asyn
hronous node a

ess with theEI0,1 
riterion may yield 1/S0 ≈ 1/0.27 ≈ 3.7 slower approa
h to NRI = 0.75 ("rank1approx9d"), but the realtime speed up S1 = 2.9 is notable. With the asyn
hronous a

ess to λ = 4 nodes, the slow-down of the NRIvalue in
rease w.r.t. the number of generations be
omes less pronoun
ed. Considering the "rank1approx9d"problem, 1/S0 ≈ 1/0.73 ≈ 1.4, and the real time speed-up S1 = 5.8 ex
eeds four.Fig. 19 indi
ates the optimization evolutions for the asyn
hronous algorithms with or without the use of

µ points. Fig. 20 provides the 
orresponding summary with NRI averages and their deviations.Integrating out µ points improves the optimization speed-ups w.r.t. the number of generations, but thea
tual �gures are not very signi�
ant. When λ = 1, the "rank1approx9d" problem yields the value of S0 = 1.4whi
h is 
lose to our results obtained with very few optimization runs. In parti
ular, S0 ≈ 0.56/0.42 ≈ 1.3,
lf. Table 7. However, the speed-up 
an be less than unity in the other two 
onsidered problems. When
λ = 4, the use of the EI 
riterion with µ points yields small improvements over the 
orresponding algorithmswith µ = 0.Fig. 19 reveals that in most 
ases, the 
onsideration of µ a
tive lo
ations improves the results.4.4 Con
lusionsIn the syn
hronous node a

ess, the wall 
lo
k time is given by the slowest node WCT = O(tmax), while theasyn
hronous mode is pa
ed by the blo
king (i.e., optimization and 
ommuni
ation) time, WCT ≈ O(tb),
tb ≪ tmax. Asyn
hrony slows down the optimization progress w.r.t. the number of generations, but it redu
esthe WCT values dramati
ally. The in
lusion of a
tive points may improve the asyn
hronous algorithms, butone should note that the improvements are small. The use of a
tive points may in
rease the blo
king time tbas the multi-point improvement 
riterion demands evaluating integrals over domains with higher dimensions.In turn, the generation of new 
andidate points be
omes more 
ostly.We have negle
ted this aspe
t of the problem be
ause one 
an further parallelize the evaluation ofGaussian 
onditional expe
tations [44, 30℄, and even apply better improvement maximization algorithms [13℄.However, one should note that without su
h adjustments, 
onsidering the problem "rank1approx9d", tb may29



in
rease 10 times when µ in
reases from 0 to 28.In the 
ase with the "rank1approx9d" problem, the asyn
hronous algorithms with the 
riteria EI0,1 andEI0,4 
an be 1/0.27 ≈ 3.7 and 1/0.73 ≈ 1.4 times slower than a syn
hronous EI0,1 algorithm when making theprogress w.r.t. the number of generations. However, the 
orresponding algorithms will be 2.9 and 5.8 timesfaster in a real time. Therefore, asyn
hronous algorithms do not typi
ally a
hieve best results if the numberof fun
tion evaluations is a sole performan
e 
riterion. Instead, the asyn
hronous node a

ess provides afaster optimization in a real time.
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Figure 13: Example times needed to evaluate expensive fun
tions. Ea
h histogram indi
ates node 
ounts fordi�erent time values spent to evaluate expensive fun
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Figure 17: Syn
hronous vs. asyn
hronous optimization: Details.34
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Figure 19: The e�e
t of integrating out µ points in the optimization with the asyn
hronous node a

ess:Details. 36
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5 Integral of the Expe
ted Improvement at Multiple Points5.1 Introdu
tionOur goal is to approximately evaluate (as fast as possible) the integral for the expe
ted improvement inEq. (7), whi
h has also been studied previously in [18℄:
α(m,C) =

∫Rd

g(y)p(y)dy, (19)
g(y) = max

(

0, fbest − miny
)

. (20)Here the short
ut y denotes the 
olle
tion of d s
alar values of the kriging responses whi
h are distributeda

ording to the normal probability density p(y) with the mean m and 
ovarian
e C.The 
riterion 
an be applied to sample the 
andidate points for the fun
tion to be minimized, theparameter fbest ∈ R is then the minimal presently known value of the fun
tion.The expe
ted improvement will be large where the mean of the kriging responses is small and the responsesare un
orrelated. When kriging with the Gaussian 
ovarian
e fun
tion, the un
orrelatedness implies distantevents, and the 
riterion helps to sample multiple points with the small expe
ted 
ost value and largeinter-distan
es.Formally, the problem demands an integration w.r.t. the normal density fun
tion, and one is tempted toapply fast fully-symmetri
 rules whi
h exa
tly integrate the Gaussian moments of the lower order [16, 23, 41℄.However, the fun
tion g(y) is not a polynomial. Another key di�
ulty here is that the integration te
hniqueshould not only approximate the true value of the integral, but it should also ensure that the maximizationof the integral w.r.t. m and C gives preferen
e to distin
t lo
ations of the kriging responses. We shall seethat the upper bound of the integral 
an yield the relative error of the true value as low as 0.3%, but this isuseless. The third di�
ulty is that, typi
ally, the integral needs to be evaluated a million times and more,whi
h ex
ludes a variety of a

urate and 
omplex integration pro
edures.There have been several attempts to integrate what 
ould be 
onsidered as a "typi
al", or "average 
ase"integrand, by means of the SVD [43℄, or by applying kriging on the integrand itself, see e.g. [26℄. It isvery 
lear, and it is also pointed out in [16℄, that these frameworks fail to provide pra
ti
al 
riteria for thedetermination of the integration nodes. One 
ould also note that when d = 2, the integrand depends on sixparameters already.Our report on integration is organized in the following way. Se
tion 5.2 dis
usses the properties ofthe integrands and shows their sample extra
ted from an optimization pro
ess where m and C are spatialfun
tions and the expe
ted improvement is maximized w.r.t. the spatial lo
ations. The reader is assumedto be familiar with how the expe
ted improvement 
riterion is used to sample new lo
ations during theoptimization [18℄. Se
tion 5.3 introdu
es a new integration method, Se
tion 5.4 presents the test of themethod, while Se
tion 6 
on
ludes our work.5.2 IntegrandWe shall work with the standardized normal density by using the Cholesky de
omposition C = LLT :
α(m,C) =

∫Rd

g(m + Lu)p(u)du. (21)Hereafter p(u) is the standard d-variate normal probability density fun
tion.The bounds for the expe
ted improvement at multiple points 
an be expressed as the fun
tions of theone-point improvements [20, 18℄:
max
1≤i≤d

α(mi, σ
2
ii) ≤ α(m,C) ≤

d
∑

i

α(mi, σ
2
ii), (22)38



where
α(mi, σ

2
ii) = (fbest − mi)Φ

(

fbest − mi

σi

)

+ σi φ

(

fbest − mi

σi

)

. (23)Here the Φ and φ are the distribution and density fun
tions of the standard normal variable, resp. Theupper bound is often very 
lose to the true value, but it 
annot be applied in the a
tual optimization whenone needs to sele
t the quantities m and C in order to determine the lo
ations of the kriging responses whi
hprovide the maximal expe
ted improvement. The upper bound simply sele
ts the point with the maximalone-point improvement and repli
ates it d − 1 times.The integrand is not equal to zero only in the region de�ned as
S ≡ {u ∈ Rd : fbest − min (m + Lu) ≥ 0}. (24)The 
onstant fbest 
an be subsummed by the minimum operator when introdu
ing the ve
tor 1 with theunity 
oordinates. The "less than zero" 
onstraint imposed on the minimum over the elements implies thatone of the elements is less than zero, whi
h leads to
S = {u ∈ Rd : ∪ (−fbest1 + m + Lu ≤ 0)}, (25)where the set union ∪ a
ts on the halfplanes presented as the inequalities (row-wise).It is good to dis
uss what the integrands look like in the a
tual optimization problem. For this reason,
onsider the problem of approximating a matrix with another one whose rank is one:

(p∗,q∗) = argmin
p,q

‖A− pqT ‖, (26)where A ∈ Rkl, the 
olumn-ve
tors p ∈ Rk, and q ∈ Rl, and ‖ · ‖ is the Frobenius norm.In parti
ular, a 4× 5 matrix A of uniformly distributed elements in [0, 1] is �rst generated, and then weseek its 1-rank approximation by determining the ve
tors p and q whose elements are further 
onstrainedto be in [−1, 1]. This is a 
ontinuous non
onvex 9-dimensional box-
onstrained optimization problem whosesolution is given by the SVD transform.We have applied the expe
ted improvement 
riterion to generate d new points during ea
h of the 50iterations of the basi
 algorithm dis
ussed in [18℄. The initial DOE has 100 points and the values of theFrobenius norm lie in [7.22, 18.26]. The SVD produ
es the optimal 1-rank approximation whose Frobeniusnorm is 0.94. The expe
ted improvement is maximized by using the CMA-ES method [29℄ with the 10-pointpopulation, 500 iterations, and 0.1 initial 
oordinate standard deviation.A sample of the integrands extra
ted from the a
tual optimization pro
ess is shown in Fig. 21. Therein thedashed lines indi
ate the line equations (hyperplanes) of Eq. (25), and the dash-dotted line is the symmetryaxis, whi
h is the set of points where all of the 
oordinates of the ve
tor −fbest1 + m + Lu are equal. Thelines interse
t at the point where all of the 
oordinates are equal to zero.The 
ir
les of the radius √
2 are shown in Fig. 21 in order to emphasize the regions where the normaldensity 
on
entrates its mass. More generally, it is well known that the region of the maximal 
on
entrationis de�ned by the annulus (shell), whose inner and outer radius is

r =
√

d ± 1√
2
. (27)Fig. 21 indi
ates that the regions where the integrand is substantial depend on the lo
ation of the meanvalues of the kriging responses w.r.t. the fbest value. In the bivariate 
ase, the region of substan
e 
anonly be: either (i) the vi
inity of the two edges of a semiin�nite non
onvex polygon, or (ii) the interior of a
ropped annulus.One should also emphasize that the most striking feature of the kriging responses is that they are veryweakly 
orrelated. At the random initial points where the expe
ted improvement is small, the respon
es arevirtually un
orrelated, and at the lo
ations of the maximal improvement only roughly O(ln(d)) elements of39



the row (
olumn) of the 
ovarian
e matrix C attain 10% of the value of a diagonal element. The remainingelements are typi
ally either zero, or less than 0.1%. As a 
onsequen
e, the Cholesky matrix L is 
lose tothe identity matrix I, and the peaks of the integrand appear at the lo
ations whose all but one 
oordinateare zero. The nonzero 
oordinate equals to the lo
ation of the maximum of the integrand of the one-pointexpe
ted improvement.5.3 New Methods for Adaptive IntegrationOur main idea is to work with the exa
t symmetri
 integration rules [25℄, but to repla
e the monomialintegrands with d "sli
es" of the improvement whi
h 
an be integrated exa
tly. This leads to a linear systemof equations for the integration weights, whi
h depends on the parameters m and L. The system 
an besolved qui
kly for ea
h integrand, and the integration rule be
omes adaptive.Let us expand the subintegrand h(u) ≡ g(m + Lu) in Eq. (21):
h(u) = max(0, fbest − min

(

m1 + l11u1,

m2 + l21u1 + l22u2,

. . . ,

md + ld1u1 + ld2u2 + · · · + lddud

)

.

(28)The simplest possible way to get d equations in d unknowns is to apply the following fully-symmetri
rule:
∫Rd

h(u)p(u)du ≃
d
∑

i=1

wi

(

h(Piv) + h(−Piv)
)

, (29)where P is the 
ir
ular shift matrix whose only nonzero elements are pi,i+1 = 1, for i = 1, . . . d − 1, and
pd,1 = 1. The 
olumn-ve
tor v = [v, 0, . . . , 0] ∈ Rd, where v is a free parameter.In order to determine the weights wi, we demand that ea
h "proje
tion" of h(u) is integrated exa
tly:

∫Rd

max(0, fbest − mi − l̃iu)p(u)du = m′
iΦ

(

m′
i

σ′
i

)

+ σ′
i φ

(

m′
i

σ′
i

)

, (30)where l̃i is the ith row of the matrix L, m′
i = fbest − mi, and σ′

i = ‖̃li‖.This results in a linear system of equations Sw = s for the unknown ve
tor of the integration weights
w ∈ Rd. The 
oordinates of the ve
tor s are the values of the rhs of Eq. (30). The system matrix S is notsymmetri
, and has the elements given by

sij = max(0, m′
i − vlij) + max(0, m′

i + vlij). (31)In order to guarantee that it is not singular, one 
an 
hoose the parameter v so that the lower bound for thesmallest singular value is greater than zero. In parti
ular, the bound derived in [21℄ 
an be applied:
σsmallest(S) ≥ min

1≤i≤d

(

|sii| −
1

2

d
∑

j=1
j 6=i

|sij | −
1

2

d
∑

j=1
j 6=i

|sji|
)

. (32)If the observed values of the fun
tion to be optimized are s
aled to be of the zero mean and of the unityvarian
e, then, typi
ally, m′
i = O(1). If we further assume that m′

i ≫ vlij for i 6= j, then both of the termswith the o�-diagonal elements in Eq. (32) sum to O(d). This leads to the 
hoi
e of v di
tated by liiv ≥ O(d).In our problem, the value v = 2d is large enough to guarantee the nonsingularity, but we simply set it to 104.This e�e
tively erases the information about the mean of the kriging responses in the matrix S, and makesthe latter diagonally-dominant if L is diagonally dominant, whi
h is typi
ally the 
ase. The a
tual value of
v does not a�e
t the a

ura
y of the integration, provided it is large enough to avoid the singularity of S.40



To summarize, the approximation of the integral 
an be written by emphasizing the di�eren
e with theupper bound, 
lf. Eq. (22):
α′(m,C) =

d
∑

i=1

biciα(m′
i, σ

′
i), (33)

bi = g(m + li) + g(m − li), (34)
ci =

d
∑

j=1

rji. (35)Here the ve
tor li is the ith 
olumn of the matrix L and rji are the elements of the matrix R ≡ S−1.When vlii ≫ d, the diagonal elements of S be
ome 
onsiderably larger than the remaining matrix entries.If we give the latter ones a 
ertain 
ommon weight z, then the 0th order Taylor series expansion w.r.t. theparameter z leads to cii ≈ 1/(liiv). If we further assume that L ≈ I, then bi ≈ v, and α(m′
i, σ

′
i) ≈ α(m, σ),whi
h leads to the expression for the upper bound, 
lf. Eq. (22). However, generally, neither bici = 1, nor

α(m′
i, σ

′
i) = α(m, σ). At this point, we still do not know whether the approximation will be suitable for theoptimization purposes, but it 
ontains enough "anisotropy" w.r.t. the index i to warrant a pra
ti
al test.The 
omplexity of the method is bound by the need to solve a linear system of d equations every time anew integrand is presented, whi
h demands O(d3) multipli
ations. The basi
 Monte Carlo sampling, on theother hand, demands O(d2n) multipli
ations, where n is the number of samples generated a

ording to thestandard normal distribution. Typi
ally, n ≫ d.There is one way to modify the method by introdu
ing additional d weights into Eq. (29):

∫Rd

h(u)p(u)du ≃
d
∑

i=1

wi

(

h(Piv) +

2d
∑

i=d+1

h(−Pd+iv)
)

, (36)and here one should noti
e that Pd+i = Pi. The weights 
an be determined by using d equations for the"mean sli
es" in Eq. (30), and additional "varian
e sli
es" whi
h 
an also be integrated exa
tly, 
lf. Eq. (63):
∫Rd

(

max(0, fbest − mi − l̃iu) − si

)2
p(u)du = σ′2

i Φ2

(

m′
i

σ′
i

)

+ σ′2
i φ2

(

m′
i

σ′
i

)

− m′
iσiΦ

(

m′
i

σ′
i

)

φ

(

m′
i

σ′
i

)

. (37)Here si denotes the value of the integral in Eq. (30).In pra
ti
e, this modi�
ation yields a singular S matrix, but the use of its pseudoinverse in the determi-nation of the weights w ∈ R2d turns out to be very a

urate in some 
ases. The 
hoi
e of the value of v,however, greatly a�e
ts the integration a

ura
y. We will report the experiments with the 
hoi
e v =
√

dwhi
h pla
es the integration nodes at the points of the maximal 
on
entration of the standard normal density.It turns out that this is the best 
hoi
e when d = 16. In lower dimensions, this strategy is very suboptimal,whi
h greatly limits the use of the method ENSEMI2. The details are presented in the next se
tion.5.4 ResultsThe test is split into two sets of the integrands extra
ted from the a
tual optimization. The set I 
ontains
50 d-variate integrands extra
ted at the random initial lo
ations generated before the maximization of theexpe
ted improvement, and the set II 
ontains the integrands at the optimal lo
ations. The exa
t values ofthe expe
ted improvement are not known, but we have applied the Monte Carlo (MC) sampling with 107points to obtain the estimates of the true values. In the a
tual optimization, this is not possible.For testing purposes, we have implemented the method developed in [24℄. It will simply be referredto as "LDM". This te
hnique exa
tly integrates all the 5th degree monomials w.r.t. the normal density.Instead of using the orbits of a fully symmetri
 group, the method maps the verti
es and the midpoints ofthe standard regular simplex onto a sphere. It also in
orporates the s
aling w.r.t. an in
reasing dimension,41



Table 10: Median Relative Integration Errors, %Problem Set I Problem Set II
d = 2 d = 8 d = 16 d = 2 d = 8 d = 16MC, n = 103 21 ± 6 14 ± 3 10 ± 2 4 ± 1 3 ± 1 3 ± 1ENSEMI2 100 4.5 11 6.9 10 5.1ENSEMI1 0.32 1.0 2.7 3.0 6.0 10Upper Bound [18℄ 0.37 0.93 1.8 3.0 14 18Improved LDM 18 34 60 3.6 9.1 45LDM [24℄ 100 170 370 10 9.8 68Lower Bound [18℄ 34 68 79 25 64 73whi
h approximately follows the law of the 
on
entration of the normal measure: One integration node ispla
ed at the origin, and all of the remaining nodes lie on the sphere of the radius √d + 2).A dire
t improvement to the LDM method, and pra
ti
ally to any te
hnique in this family, e.g. theuns
ented transformations [41℄, is to split the approximate integration into two parts. One �rst applies theLDM rule to 
al
ulate the mean and varian
e of the minimum over the kriging responses V = min(Y ).The expe
ted improvement 
an then be obtained by "propagating" V through the deterministi
 fun
tion

max(0, fbest − V ) under the assumption of the normality of V , 
lf. Eq. (49) of Appendix B.Table 10 indi
ates the relative median errors obtained by various methods. The lower (upper) boundis abbreviated as LB (UB). The new methods are referred to as "ENSEMI1" and "ENSEMI2", and there
ursive a
ronyms stand for "ENSEMIx is Not Symmetri
 Exa
t Monomial Integration".The results 
on�rm that the evaluation of the expe
ted improvements depends on whether their valuesare 
lose to maximal, or not. The upper bound is very 
lose to the true value. The standard MC samplingworks very well on the problem set II, and the error does not depend on the dimension of the integrationspa
e. Considering that the problem set II is more important than the problem set I, an e
onomi
al MCsampling remains a very tough method to improve. Our faster alternative is worse, but 
ompetitive.The LDM rule is signi�
antly improved, but the resulting method is not a

urate enough. Notably, thea

ura
y of the LDM method and its improvement 
onsiderably deteriorates as the dimension d in
reases.Here one 
ould also suggest the use of the exa
t known values of the mean and varian
e over the minimumof two normal variables, followed by the appli
ation of Eq. (49). This leads to the median relative error 1.5%on the problem set II, but, surprisingly, it also produ
es the error of 33% on the problem set I, whi
h 
learlyindi
ates that the normal approximation to the minimum over the normal variables is inadequate. Also, thisapproa
h does not extend to d > 2 as the exa
t moments of the minimum over the normal variables are notknown.Interestingly, as d in
reases, the di�eren
e between the upper bound and the true expe
ted improvementin
reases too and it may rea
h the relative median error of 18% when d = 16 (problem set II). Thus, the powerof the multi-point improvements is likely to be revealed when d is large. However, a large d introdu
es severedi�
ulties in the bla
k-box optimizer, and the true expe
ted improvement may be
ome an overestimatedvalue of the real one.In order to assess how the integration a

ura
y a�e
ts the optimization performan
e, we have applied thealgorithms to the problem "rank1approx9d" with the EI0,4 
riterion in the syn
hronous node a

ess. Theaverage NRI paths (thi
ker lines) along with their 
orresponding deviations (thinner lines) are displayed inFig. 22. One 
an see that the ENSEMIx methods outperform the standard MC method with 103 samples,and yield similar optimization results when the number of samples is very large (ns = 104, 105). Notably,the 
omplexity of the ENSEMIx methods is smaller or equal to that of the MC with ns = 103 samples.Thus, one obtains memory savings, as well as shorter 
omputational times. The ENSEMIx algorithms runabout 1.5 times faster than the MC method with ns = 103 samples, and they are roughly eight times fasterthan the MC method with ns = 105 samples. Notably, a further in
rease of the number of MC samples42



from 104 to 105 does not improve the overall optimization performan
e, whi
h indi
ates that the integrationa

ura
y has a limited impa
t whi
h is also shadowed by other inadequa
ies of the model, su
h as a possiblyinsu�
ient number of the CMA-ES iterations set to maximize the multi-point EI 
riterion.The algorithms have been implemented in S
ilab 5.3.3, and the sour
e 
ode is provided in Appendix C.
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Figure 21: Examples of the bivariate integrand h(u)p(u) whi
h o

ur during the optimization.
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6 Con
lusionsWe have 
ompared several numeri
al integration s
hemes for 
al
ulating the multi-point EI 
riterion. Ourexperiments indi
ate that symmetri
 monomial integration rules are less a

urate than a traditional MonteCarlo sampling. The methods 
an be improved, but they are mu
h less appli
able than stated in the presentliterature on the integration w.r.t. the normal density. The a

ura
y of the e
onomi
al MC sampling is
onsistently better among the methods tried on the problem set II, but simple symmetri
 integration rules(ENSEMI1 and 2) be
ome 
ompetitive if they are adapted to the problem. When d = 2, the relativedi�eren
e between the upper bound and the true value of the expe
ted improvement 
an be as low as 0.37%.The proposed method (ENSEMI1) 
an redu
e this value further down to 0.32%. The introdu
ed methodsdemand O(d3) s
alar multipli
ations for ea
h integration, while the Monte Carlo estimation 
onsumesO(d2n)s
alar multipli
ations, given the number of samples n. Typi
ally, d ≪ n, and the loss of the a

ura
ies by theproposed ENSEMI methods is a

eptable in our test set (when d ≤ 16). Moreover, the developed ENSEMImethods have been shown to yield better global optimization results than the MC integration with 103samples.A Estimation of Wall Clo
k TimeListing 1: S
ilab 5.3.3 
ode whi
h estimates the evarage node update time.1 function [wct] = estimatewct(lamb, buffsz)
tmin = 10;3 tmax = 30;
tb = 2;5 ngenerations = 250;
grand("setsd", sum((getdate())^2));7 tbuff0 = grand(1, buffsz, "unf", tmin, tmax);
tbuff = tbuff0;9 tcvec = [];
for i=1:ngenerations11 [vals, inds] = gsort(tbuff, "g", "i");

tc = max(vals(1:lamb));13 tbuff = tbuff - tc - tb;
tbuff(inds(1:lamb)) = tbuff0(inds(1:lamb));15 tbuff(find(tbuff<=0)) = 0;
tcvec($+1) = tc;17 end

wct = mean(tcvec)+tb;19 endfunctionB Moments of the Censored Normal VariableThe lower-order moments of the 
ensored normal variable should not be 
onfused with those that 
orrespondto the normal density on a positive axis. Let
Z = max(0, Y ), (38)
Y ∼ N(my, σ2

y). (39)As the density is dis
ontinuous at 0, the expe
tation is the 
ontribution of two dis
rete events:
mz = P (Z = 0)E(Z|Z = 0) + P (Z > 0)E(Z|Z > 0) (40)

= P (Y ≤ 0) · 0 + P (Y > 0)E(Y |Y > 0) (41)
=

∫ ∞

0

y
1

√

2πσ2
y

exp

(

− (y − my)2

2σ2
y

)

dy. (42)46



The substitution u1 ≡ y−m
σ allows to introdu
e the standard univariate normal density φ(x), and its distri-bution Φ(x):

mz =

∫ ∞

−my
σy

(my + σyu1)φ(u1)du1, (43)
= my Φ

(

my

σy

)

+ σy

∫ ∞

−my
σy

u1φ(u1)du1. (44)It is easy to integrate the remaining term:
∫ ∞

−my
σy

u1φ(u1)du1 =

∫ ∞

−my
σy

u1
1√
2π

exp

(

−u2
1

2

)

du1 (45)
=

1√
2π

∫ ∞

m2
y

2σ2
y

e−u2du2 (46)
=

1√
2π

exp

(

−
m2

y

2σ2
y

) (47)
= φ

(

my

σy

)

. (48)Therefore,
mz = my Φ

(

my

σy

)

+ σy φ

(

my

σy

)

. (49)The varian
e estimation is more tri
ky:
σ2

z = P (Z = 0)E
(

(Z − mz)
2|Z = 0

)

+ P (Z > 0)E
(

(Z − mz)
2|Z > 0

) (50)
= P (Y ≤ 0)m2

z + P (Y > 0)E
(

(Y − mz)
2|Y > 0

) (51)
= P (Y ≤ 0) · m2

z + P (Y > 0)
(

E(Y 2|Y > 0) − 2mzE(Y |Y > 0) + m2
z

) (52)
= P (Y ≤ 0) · m2

z + P (Y > 0)E(Y 2|Y > 0) − 2mzP (Y > 0)E(Y |Y > 0) + P (Y > 0)m2
z (53)

= P (Y > 0)E(Y 2|Y > 0) − m2
z (54)

= Φ

(

my

σy

)
∫ ∞

0

y2 1
√

2πσ2
y

exp

(

− (y − my)2

2σ2
y

)

dy − m2
z. (55)Again, one �rst redu
es the lo
ation and s
ale parameters to their standard values:

∫ ∞

0

y2 1
√

2πσ2
y

exp

(

− (y − my)2

2σ2
y

)

dy =

∫ ∞

−µ
σ

(my + σyu1)
2 1√

2π
exp

(

−u2
1

2

)

du1. (56)The expansion of the quadtrati
 term produ
es three integrals. The �rst one is trivial:
∫ ∞

−my
σy

m2
y

1√
2π

exp

(

−u2
1

2

)

du1 = m2
y Φ

(

my

σy

)

. (57)The se
ond one has already been evaluated in Eq. (48):
2myσy

∫ ∞

−my

σy

u1
1√
2π

exp

(

−u2
1

2

)

du1 = 2myσyφ

(

my

σy

)

. (58)47



The remaining integral demands the appli
ation of a well-known tri
k:
σ2

y

∫ ∞

−my

σy

u2
1

1√
2π

exp

(

−u2
1

2

)

du1 = σ2
y(−2)

d

dβ

∫ ∞

−my

σy

1√
2π

exp

(

−β
u2

1

2

)

du1

∣

∣

∣

∣

β=1

(59)
= σ2

y(−2)
d

dβ

∫ ∞

−
√

β
my

σy

1√
2π

exp

(

−u2
2

2

)

du2√
β

∣

∣

∣

∣

β=1

(60)
= σ2

y(−2)
d

dβ

(

1√
β

Φ

(

√

β
my

σy

)) ∣

∣

∣

∣

β=1

(61)
= σ2

yΦ

(

my

σy

)

− myσyφ

(

my

σy

)

. (62)The use of Eqs. (55)�(58) and (62) produ
es the result:
σ2

z = σ2
yΦ2

(

my

σy

)

+ σ2
yφ2

(

my

σy

)

− myσyΦ

(

my

σy

)

φ

(

my

σy

)

. (63)C Integration MethodsListing 2: The ENSEMI1 integration method.1 function [eimpr] = ensemi1(cmean, L, ybest, v)
Sp = ybest - (kron(ones(1,lamb),cmean)+v*L);3 Sm = ybest - (kron(ones(1,lamb),cmean)-v*L);
Z = zeros(lamb,lamb);5 S = max(Sp,Z)+max(Sm,Z);
sii = sqrt(sum(L.*L, "c"));7 inval = (ybest - cmean)./sii;
cdfu = cdfnor("PQ", inval, zeros(lamb,1), ones(lamb,1));9 pdfu = 1.0/sqrt(2*%pi)*exp(-(inval.^2)/2);
cvec = sii.*(inval.*cdfu + pdfu);11 w = S\cvec;
w = [w; w];13 xvecs = kron(ones(1,2*lamb),cmean)+v*[L, -L];
fws = max([ybest-min(xvecs,’r’);zeros(1,2*lamb)], ’r’);15 eimpr = fws*w;
endfunctionListing 3: The ENSEMI2 integration method.
function [eimpr] = ensemi2(cmean, L, ybest, v)2 Sp = ybest - (kron(ones(1,lamb),cmean)+v*L);
Sm = ybest - (kron(ones(1,lamb),cmean)-v*L);4 Z = zeros(lamb,lamb);
S1 = [max(Sp,Z), max(Sm,Z)];//lambx(2lamb)6 sii = sqrt(sum(L.*L, "c"));
inval = (ybest - cmean)./sii;8 cdfu = cdfnor("PQ", inval, zeros(lamb,1), ones(lamb,1));
pdfu = 1.0/sqrt(2*%pi)*exp(-(inval.^2)/2);10 cvec1 = sii.*(inval.*cdfu + pdfu);
cvec2 = sii.*(sii.*(cdfu.^2+pdfu.^2)-(ybest-cmean).*cdfu.*pdfu);12 S2 = (S1-kron(ones(1,2*lamb),cvec1)).^2;
w = [S1;S2]\[cvec1;cvec2];//falls back to least squares if S is sing.14 xvecs = kron(ones(1,2*lamb),cmean)+v*[L, -L];
fws = max([ybest-min(xvecs,’r’);zeros(1,2*lamb)], ’r’);16 eimpr = fws*w;
endfunction 48
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