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Abstract

We consider supervised learning problems within the positive-definite kernel framework,

such as kernel ridge regression, kernel logistic regression or the support vector machine. With

kernels leading to infinite-dimensional feature spaces, a common practical limiting difficulty

is the necessity of computing the kernel matrix, which most frequently leads to algorithms

with running time at least quadratic in the number of observations n, i.e., O(n2). Low-rank

approximations of the kernel matrix are often considered as they allow the reduction of running

time complexities toO(p2n), where p is the rank of the approximation. The practicality of such

methods thus depends on the required rank p. In this paper, we show that for approximations

based on a random subset of columns of the original kernel matrix, the rank p may be chosen to

be linear in the degrees of freedom associated with the problem, a quantity which is classically

used in the statistical analysis of such methods, and is often seen as the implicit number of

parameters of non-parametric estimators. This result enables simple algorithms that have sub-

quadratic running time complexity, but provably exhibit the same predictive performance than

existing algorithms.

1 Introduction

Kernel methods, such as the support vector machine or kernel ridge regression, are now widely

used in many areas of science and engineering, such as computer vision or bioinformatics (see,

e.g., [1, 2, 3, 4]). Their main attractive features are that (1) they allow non-linear predictions through

the same algorithms than for linear predictions, owing to the kernel trick; (2) they allow the sepa-

ration of the representation problem (designing good kernels for non-vectorial data) and the algo-

rithmic/theoretical problems (given a kernel, how to design, run efficiently and analyze estimation

algorithms). Moreover, (3) their applicability goes beyond supervised learning problems, through

the kernelization of classical unsupervised learning techniques such as principal component analysis

or K-means. Finally, (4) probabilistic Bayesian interpretations through Gaussian processes allow

their simple use within larger probabilistic models. For more details, see, e.g., [5, 1, 2].

However, kernel methods typically suffer from at least quadratic running-time complexity in the

number of observations n, as this is the complexity of computing the kernel matrix. In large-
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scale settings where n may be large, this is usually not acceptable. In these situations where plain

kernel methods cannot be run, practitioners would commonly (a) turn to methods such as boosting,

decision trees or random forests, which have both good running time complexity and predictive

performance. However, these methods are typically run on data coming as vectors and usually put a

strong emphasis on a sequence of decisions based on single variables. Another common solution is

(b) to stop using infinite-dimensional kernels and restrict the kernels to be essentially linear kernels

(i.e., by choosing an explicit representation of the data whose size is independent of the number

of observations) where the non-parametric kernel machinery (of adapting the complexity of the

underlying predictor to the size of the dataset) is lost, and the methods may then underfit.

In this paper, we consider the traditional kernel set-up for supervised learning, where the input

data are only known through (portions of) the kernel matrix. The main question we try to tackle

is the following: Is it possible to run supervised learning methods with positive-definite kernels in

time which is subquadratic in the number of observations without losing prediction performance?

Of course, if adaptation is desired, linear complexity seems impossible, and therefore we should

expect (hopefully slightly) super-linear algorithms. Statistically, a quantity that characterizes the

non-parametric nature of kernel method is the degrees of freedom, which play the role of an implicit

number of parameters and which we define in Section 4.1. Does it play a role in the computational

properties of kernel methods?

An important feature of kernel matrices is that they are positive-semidefinite, and thus they may well

be approximated from a random subset of p of their columns, in running-time complexity O(p2n)
and with a computable bound on the error (see details in Section 3). This appears through different

formulations within numerical linear algebra or machine learning, e.g., Nyström method [6], sparse

greedy approximations [7], incomplete Cholesky decomposition [8], Gram-Schmidt orthonormal-

ization [2] or CUR matrix decompositions [9]. It has been studied a lot [9, 10, 11], in contexts where

the goal is kernel matrix approximation or approximate eigenvalue decomposition. Such bounds

have also been subsequently used to characterize the approximation of predictions made from these

low-rank decompositions [12, 13], but this two-stage analyses do not lead to guarantees that reflect

the good observed practical behavior. In this paper, our analysis aims at answering explicitly the

simple question: how big should p be to incur no loss of predictive performance compared to the

full kernel matrix? The key insight of this paper is not to try to approximate the kernel matrix well,

but to predict well from the approximation. This requires a sharper analysis of the approximation

properties of the column sampling approach.

We make the following contributions:

– In the least-squares regression setting, we show in Section 4.2 that the rank p can be chosen to

be linear in the degrees of freedom associated with the problem.

– We present in Section 4.4 simple algorithms that have sub-quadratic running time complexity,

and, for the square loss, provably exhibit the same predictive performance as classical algo-

rithms than run in quadratic time (or more).

– We provide in Section 4.3 explicit examples of optimal values of the regularization parameters,

as a function of the decay of the eigenvalues of the kernel matrix, shedding some light in the

joint computational/statistical trade-offs for choosing a good kernel. In particular, we show that

with kernels with fast spectrum decays (such as the exponential or Gaussian kernels), com-
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putational limitations may prevent exploring the relevant portions of the regularization paths,

leading to underfitting.

2 Supervised learning with positive-definite kernels

In this section, we present the problem we try to solve, as well as several areas of the machine

learning and statistics literatures our method relates to.

2.1 Equivalent formulations

Let (xi, yi), i = 1, . . . , n, be n pairs of points in X × Y , where X is the input space, and Y is the

set of outputs/labels. In this paper, we consider the problem of minimizing

min
f∈F

1

n

n∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2, (1)

where F is a reproducing kernel Hilbert space with feature map φ : X → F , and positive-definite

kernel k : X × X → R. While this problem is formulated as an optimization problem in a Hilbert

space, it may be formulated as the optimization over Rn in two different ways.

First, using the representer theorem (see, e.g., [1, 2]), the unique solution f may be found as f =∑n
i=1 αiφ(xi). Thus, by replacing the expression of f in Eq. (1), α is a solution of the following

optimization problem:

min
α∈Rn

1

n

n∑

i=1

ℓ(yi, (Kα)i) +
λ

2
α⊤Kα, (2)

where K ∈ R
n×n is the kernel matrix, defined as Kij = k(xi, xj).

Second, for convex losses only, an equivalent dual problem is classically obtained as (see proof in

the appendix):

max
α∈Rn

−g(−λα) − λ

2
α⊤Kα, (3)

where g(z) = maxu∈Rn − 1
n

∑n
i=1 ℓ(yi, ui) + uizi is the Fenchel-conjugate of the empirical risk

(for the hinge loss, Eq. (3) is exactly the classical dual formulation of the SVM). Again, one may

express the primal solution as f =
∑n

i=1 αiφ(xi). In many situations (such as with the square loss

or logistic loss), then the solution of Eq. (3) is unique, and it is also a solution of Eq. (2) (note

however that the converse is not true).

2.2 Related work

Efficient optimization algorithms for kernel methods. In order to solve Eq. (1), algorithms typ-

ically consider a primal or a dual approach. Solving Eq. (2) (i.e., primal formulation after applica-
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tion of the representer theorem) is typically inefficient because the problem is ill-conditioned1 and

thus second-order algorithms are typically used [14]. Alternatively, K is represented explicitly as

K = ΦΦ⊤ and a change of variable w = Φ⊤α is considered (note that when the kernel k is linear,

Φ is simply the design matrix, and we are solving directly a linear supervised learning problem).

Then, the classical battery of convex optimization algorithms may be used, such as gradient de-

scent, stochastic gradient descent [15] or cutting-planes [16]. However, in a kernel setting where a

small matrix Φ (i.e., with few columns) is not known a priori, then they all exhibit at least quadratic

complexity in n, as the full kernel matrix is used.

The dual problem in Eq. (3) is usually better-behaved (it has a better condition number) [14], and

algorithms such as coordinate descent and its variants such as sequential minimal optimization may

be used [17]. Again, the full kernel matrix is needed.

Some algorithms do not need to compute the full kernel matrix, such as the “forgetron” [18] or the

“projectron” [19], which operate online on a fixed budget and come with theoretical approximation

guarantees; however, these do not characterize the required rank which is needed to achieve the

same accuracy than the problem with a full kernel matrix. In fact, one of the main motivations for

this work is to derive precise bounds for reduced-set stochastic gradient algorithms for supervised

kernel problems.

Analysis of column sampling approximation. Given a positive semi-definite matrix K of size n,

many methods exist for approximating it with a low-rank (typically also positive semidefinite) ma-

trix L. While the optimal approximation is obtained from the eigenvalue decomposition, it is not

computationally efficient as it has complexity at least quadratic in n (as it requires the knowledge

of K). In order to achieve linear complexity in n, approximations from subsets of columns are

considered and appear under many names: Nyström method [6], sparse greedy approximations [7],

incomplete Cholesky decomposition [8], Gram-Schmidt orthonormalization [2] or CUR matrix de-

compositions [9]. Note that reduced-set methods (see, e.g., [20]) typically consider using a subset of

columns after the predictor has been estimated. These low-rank methods are described in Section 3

and have running time complexity O(p2n) for an approximation of rank p. Note that they may also

be used in a Bayesian setting with Gaussian processes (see, e.g., [21]).

Column sampling has been analyzed a lot [9, 12, 11]; however, typically the analysis provides a

bound on the error ‖K − L‖ for an appropriate norm (typically operator, Frobenius or trace norm),

but this is too pessimistic and does not really match with good practical performance (see more

details in Section 4.2). Some works do consider prediction guarantees [12, 13], but as shown in

Section 4.2, these are not sufficient to reach sharp results depending on the degrees of freedom.

Moreover, many analyses consider situations where the matrix K is close to low-rank, which is not

the case with kernel matrices. In this paper, the control of K −L is more precise and adapted to the

use of K within a supervised learning method.

Dimension reduction for linear predictions. The method presented in this paper, which considers

random columns from the original kernel matrix, is also related to random projection techniques

used for linear prediction problems (see, e.g., [22, 23]). These techniques require however the

knowledge of a matrix square root Φ (such that K = ΦΦ⊤), which leads to complexity greater than

1The objective function in Eq. (2) is a function of K1/2
α, with a kernel matrix K which is often ill-conditioned,

usually leading to ill-conditioning of the original problem [14].
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quadratic, and then consider replacing it by ΦA where A is a random matrix with fewer columns

than rows.

Theoretical analysis of predictive performance of kernel methods. In order to assess the re-

quired precision in approximating the kernel matrix, it is key to understand the typical predictive

performance of kernel methods. For the square loss, this is classically obtained from a bias-variance

decomposition of this performance (see Section 4). A key quantity is the degrees of freedom, which

play the role of an implicit number of parameters and is applicable to many non-parametric es-

timation methods which consists in “smoothing” the response vector by a linear operator (see,

e.g., [24, 25, 26, 27]). See precise definitions in Section 4.1.

3 Approximation from subset of columns

Approximation from columns. Given a random subset I of V = {1, . . . , n} of cardinality p,

we simply consider the approximation of the kernel matrix K from the knowledge of K(V, I) (the

columns of K indexed by I), by the matrix

L = K(V, I)K(I, I)†K(I, V ) = k(xV , xI)k(xI , xI)
†k(xI , xV ), (4)

where M † denotes the pseudo-inverse of M , and k(xA, xB) denotes the |A|× |B| matrix composed

of elements k(xi, xj) for (i, j) ∈ A × B. This corresponds to creating an explicit feature map of

dimension p, i.e., φ̃(x) = k(xI , xI)
−1/2k(xI , x) ∈ R

p, and, this allows the application to test data

points (note that using such techniques also allows better testing running time peformance).

Given the true feature map φ(x) ∈ F , we have φ̃(x) = k(xI , xI)
−1/2φ(xI)

⊤φ(x) ∈ R
p, and thus

we simply perform a linear dimension reduction. Given the fact that we consider random subsets I
of size p, this is similar to a random projection, but here the randomness is associated to the specifics

of the kernel problem.

Such a feature map may be efficiently obtained in running time O(p2n) using incomplete Cholesky

decomposition (often interpreted as partial Gram-Schmidt orthonormalization [2]), with the possi-

bility of having a bound on the trace norm of the approximation error (see, e.g., [2]).

Pivoting vs. random sampling. While selecting a random subset is computationally efficient, it

may not lead to the best performance. For the task of approximating the kernel matrix, algorithms

such as the incomplete Cholesky decomposition with pivoting, provide an approximate greedy al-

gorithm with the same complexity than random subsampling [7, 8].

In Section 5, we provide comparisons between the two approaches, showing the potential advantage

of the greedy method over random subsampling. However, the analysis of such algorithms is harder,

and, to the best of our knowledge, still remains an open problem.

4 Fixed design analysis for least-square regression (ridge regression)

To simplify the analysis, we assume that the n data points x1, . . . , xn are deterministic and that

Y = R. In this setting, the classical generalization error (prediction error on unseen data points)
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is replaced by the in-sample prediction error (prediction error on observed data points). This fixed

design assumption could be relaxed by using tools from [27] (results for random design settings are

typically similar to the fixed design settings).

We assume that the loss ℓ is the square loss, i.e., ℓ(yi, f(xi)) = 1
2 (yi − f(xi))

2. By using the

representer theorem (see Section 2.1), we classically obtain:

f(x) =

n∑

i=1

αik(x, xi) with α = (K + nλI)−1y.

This leads to a prediction vector ẑ = K(K + nλI)−1y ∈ R
n, which is a linear function of the

output observations y, and is often referred to as a smoothed estimate of z.

4.1 Analysis of the in-sample prediction error

We denote by zi = Eyi ∈ R the expectation of yi, and we denote by εi = yi − zi = yi − Eyi ∈ R

the noise variables; they have zero mean and are only assumed to have finite covariance matrix C
(note that the noise may neither be independent nor identically distributed).

Bias/variance decomposition of the generalization error. Following classical results from the

statistics literature (see, e.g., [24, 25, 26]), we obtain the following expected prediction error:

1
nEε‖ẑ − z‖2 = 1

n‖Eεẑ − z‖2 + 1
n tr varε(ẑ)

= 1
n‖(I −K(K + nλI)−1)z‖2 + 1

n trCK2(K + nλI)−2

= nλ2z⊤(K + nλI)−2z + 1
n trCK2(K + nλI)−2,

which may be classically decomposed in two terms:

bias(K) = nλ2z⊤(K + nλI)−2z

variance(K) = 1
n trCK2(K + nλI)−2.

Note that the bias term is a matrix-decreasing function of K/λ (and thus an increasing function

of λ), while the variance term is a matrix-increasing function of K/λ and the noise covariance

matrix C .

Degrees of freedom. Note that an assumption which is usually made is C = σ2I , and the variance

term then takes the form σ2 trK2(K+nλI)−2 and trK2(K+nλI)−2 is referred to as the degrees

of freedom [24, 25, 26, 27] (note that an alternative definition is often used, i.e., trK(K + nλI)−1,

and that as shown in the appendix, they behave similarly). In ordinary least-squares estimation from

d variables, the variance term is equal to σ2d/n, and thus the degrees of freedom play the role of

an implicit number of parameters. In this paper, we show that a proxy to this statistical quantity

also plays a role in optimization: the number of columns needed to approximate the kernel matrix

precisely enough to incur no loss of performance is linear in the degrees of freedom.

More precisely, we define the maximal marginal degrees of freedom d as

d = n
∥∥diag

(
K(K + nλI)−1

)∥∥
∞. (5)
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We have trK2(K + nλI)−2 6 trK(K + nλI)−1 =
∥∥diag

(
K(K + nλI)−1

)∥∥
1
6 d, and

thus d provides an upper-bound on the regular degrees of freedom. It may be significantly larger in

situations where there may be outliers and the vector diag
(
K(K + nλI)−1

)
is far from uniform.

4.2 Predictive performance of column sampling

We consider sampling p columns (without replacement) from the original n columns. We consider

the column sampling approximation defined in Eq. (4) and provide sufficient conditions (a lower-

bound on p) to obtain the same predictive performance than with the full kernel matrix.

Theorem 1 (Generalization performance of column sampling) Assume z ∈ R
n and K ∈ R

n×n

are respectively a deterministic vector and a symmetric positive semi-definite matrix, and λ > 0.

Let d = n
∥∥diag

(
K(K+nλI)−1

)∥∥
∞ andR2 = ‖diag(K)‖∞. Assume ε ∈ R

n is a random vector

with finite variance and zero mean, and define the smoothed estimate ẑK = (K + nλI)−1K(z +
ε). Assume that I is a uniform random subset of p indices in {1, . . . , n} and consider L =
K(V, I)K(I, I)†K(I, V ), with the approximate smoothed estimate ẑL = (L + nλI)−1L(z + ε).
Let δ ∈ (0, 1). If

p >
(32d
δ

+ 2
)
log

nR2

δλ
, (6)

then
1

n
EIEε‖ẑL − z‖2 6

1

n
(1 + 4δ)Eε‖ẑK − z‖2. (7)

We can make the following observations:

– The bound in Eq. (7) provides a relative approximation guarantee: the predictions ẑL are shown

to perform as well as ẑK (no kernel matrix approximation). Small values of δ impose no loss

of performance, while δ = 1/4 impose that the prediction errors have a similar behavior (up to

a factor of 2).

– The lower bound for the rank p in Eq. (6) shows that the maximal marginal degrees of freedom

provides a quantity which, up to logarithmic terms, is sufficient to scale with, in order to incur

no loss of prediction performance. Note that the previous result also allows the derivation of an

approximation guarantee δ given a rank p, by inverting Eq. (6).

– The bound in Eq. (7) provides a result in expectation, both with respect to the data (i.e., Eε)

and the sampling of columns (i.e., EI ). While results in high-probability with respect to I
are readily obtained (in fact, the proof is based on such results), doing so with respect to ε
would require additional assumptions, which are standard in the analysis in ridge regression

(see, e.g., [27, 28]), but that would make the results significantly more complicated.

– Theorem 1 shows that in the specific instance that we are faced with, we do not lose any average

predictive performance. This is different than achieving a good approximation of the kernel

matrix [9]. Previous work [12, 13] considers explicitly the use of kernel matrix approximation

bounds within classifiers or regressors, but obtain bounds that involve multiplicative terms of the

form 1/λ2, which, as we show in Section 4.3, would grow as n grows. Our proof technique, that

focuses directly on prediction performance, avoids this, and our dependence is only logarithmic
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in λ (see details in the proof in the appendix). Finally, as opposed to [13], the bound is not on

the worst-case predictive performance (obtained from optimizing over λ, and with worst-case

analysis over K), but for given λ and K .

– Theorem 1 provides a sufficient lower-bound for the required rank p. Deriving precise necessary

lower-bounds is outside the scope of this paper. However, given that with a reduced space of

p dimensions, we can achieve a prediction error of O(p/n) from ordinary least-squares, we

should expect p to be larger than the known minimax rates of estimation for the problem at

hand (see, e.g., [29]). In Section 4.3, we show that in some situations, it turns out that d is of

the order of the minimax rate; therefore, we could expect that in certain settings, d is also a

necessary lower-bound on p (up to constants and logarithms).

– In the existing analysis of sampling techniques for kernel methods, another source of ineffi-

ciency which makes our result sharper is the proof technique for bounding ‖K − L‖. Indeed,

most analyses use a linear algebra lemma from [9, 10], that relies on the (p+1)-th eigenvalue to

be small; hence it is adapted to matrices with sharp eigenvalue decrease, which is not the case

for kernel matrices (see an illustrative example in the appendix, where the kernel approximation

error decays much slower than the prediction error as the rank p increases). We provide a new

proof technique based on regularizing the column sampling approximation and optimizing the

extra regularization parameter using a monotonicity argument.

– In our experiments, we have noticed that the low-rank approximation may have an additional

regularizing effect leading to a better prediction performance than with the full kernel matrix.

4.3 Optimal choice of the regularization parameter

For simplicity, in this section, we assume that the noise variables ε are i.i.d. (i.e., C = σ2I). Our

goal is to study simplified situations, where we can derive explicit formulas for the bias, the variance,

and the optimal regularization parameter. Throughout this section, we will consider specific decays

of certain sequences, which we characterize with the notation un = Θ(vn), which means that there

exist strictly positive constants A and B such that Aun 6 vn 6 Bvn for all n.

We assume that the kernel matrix K has eigenvalues of the form Θ(nµi), i = 1, . . . , n, for some

summable sequence (µi)—so that trK = Θ(n), and that the coordinates of z on the eigenbasis ofK
have the asymptotic behavior Θ(

√
nνi) for a summable sequence (νi)—so that 1

nz
⊤z = Θ(1). In

Table 1, we provide asymptotic equivalents of all quantities for several pairs of sequences (µi) and

(νi) (see proofs in the appendix), with polynomial or exponential decays.

Note that for decays of νi which are polynomial, i.e., νi = O(i−2δ), then the best possible prediction

performance is known to be O(n1/2δ−1) [29] and is achieved if the RKHS is large enough (lines 2

and 4 in Table 1). For exponential decay, the best performance is O(log n/n).

Given a specific decay (νi) for expected outputs z = Ey, then depending on the decay (µi) of the

eigenvalues of the kernel matrix, the final prediction performance and the optimal regularization

parameter may be different. Usually, the smaller the RKHS, the faster the decay of eigenvalues of

the kernel matrix K (this is true for translation-invariant kernels [1], and the kernels considered in

Section 5). Thus there are two regimes:
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(µi) (νi) var. bias optimal λ pred. perf. deg. freed. d condition

i−2β i−2δ n−1λ−1/2β λ2 n−1/(2+1/2β) n1/(4β+1)−1 n1/(4β+1) if 2δ > 4β + 1

i−2β i−2δ n−1λ−1/2β λ(2δ−1)/2β n−β/δ n1/(2δ)−1 n1/(2δ) if 2δ < 4β + 1

i−2β e−κi n−1λ−1/2β λ2 n−1/(2+1/2β) n1/(4β+1)−1 n1/(4β+1)

e−ρi i−2δ n−1 log 1
λ (log 1

λ)
1−2δ exp(−n1/(2δ)) n1/(2δ)−1 n1/(2δ)

e−ρi e−κi n−1 log 1
λ λ2 n−1/2 log n/n log n if κ > 2ρ

e−ρi e−κi n−1 log 1
λ λκ/ρ n−ρ/κ log n/n log n if κ < 2ρ

Table 1: Variance, bias, optimal regularization parameter and corresponding prediction perfor-

mance, for several decays of eigenvalues and signal coefficients (we always assume δ > 1/2,

β > 1/2, ρ > 0, κ > 0, to make the series summable). All entries are functions of i, n or λ and are

only asymptotic bounded below and above, i.e., corresponding to the asymptotic notation Θ(·).

– The RKHS is too large, for lines 1 and 3 in Table 1: the eigenvalues of K, which depend

linearly on µi, do not decay fast enough. In other words, the functions in the RKHS are not

smooth enough. In this situation, the prediction performance is suboptimal (do not attain the

best possible rate).

– The RKHS is too small, for lines 2, 4, and 6 in Table 1: the eigenvalues of K decay fast

enough to get an optimal prediction performance. In other words, the functions in the RKHS

are potentially smoother than what is necessary. In this situation however, the required value

of λ may be very small (much smaller than O(n−1)), leading to potentially harder optimization

problems (since the condition number that depends on 1/λ may be very large).

There is thus a computational/statistical trade-off: if the RKHS is chosen too large, then the pre-

diction performance is suboptimal; if the RKHS is chosen too small, the prediction performance

could be optimal, but the optimization problems are harder, and sometimes cannot be solved with

the classical precision of numerical techniques (see examples of such behavior in Section 5).

4.4 Optimization algorithms with column sampling

Given a rank p and a regularization parameter λ, we consider the following algorithm to solve

Eq. (1) for twice differentiable convex losses:

1. Select at random p columns of K (without replacement).

2. Compute Φ ∈ R
n×p such that ΦΦ⊤ = K(V, I)K(I, I)†K(I, V ) using incomplete Cholesky

decomposition (see details in [2]).

3. Minimize minw∈Rp
1
n

∑n
i=1 ℓ(yi, (Φw)i)+

λ
2‖w‖2 using Newton’s method (i.e., a single linear

system for the square loss).

The complexity of step 2 is already O(p2n), therefore using faster techniques for step 3 (e.g., accel-

erated gradient descent) does not change the overall complexity, which is thus O(p2n). Moreover,
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since we use a second-order method for step 3, we are robust to ill-conditioning and in particular to

small values of λ (though not below machine precision as seen in Section 5). This is not the case for

algorithms that relies on the strong convexity of the objective function, whose convergence is much

slower when λ is small (as seen in Section 4.3, when n grows, the optimal value of λ can decay

very rapidly, making these traditional methods non robust).

According to Theorem 1, at least for the square loss, the dimension p may be chosen to be linear

in the degrees of freedom d, which, as illustrated in Table 1, is typically smaller than n1/2 (d is of

the order of the prediction performance multiplied by n). Therefore, if p is properly chosen, the

complexity is subquadratic. Given λ, d (and thus p) can be estimated from a low-rank approxima-

tion of K. However, our current analysis assumes that λ is given. Selecting the rank p and the

regularization parameter λ in a data-driven way would make the prediction method more robust, but

this would require extra assumptions (see, e.g., [28] and references therein).

5 Simulations

Synthetic examples. In order to study various behaviors of the regularization parameters λ and

the degrees of freedom d, we consider periodic smoothing splines on [0, 1] and points x1, . . . , xn
uniformly spread over [0, 1], either deterministically or randomly. In order to generate problems

with given sequences (µi) and (νi), it suffices to choose k(x, y) =
∑∞

i=1 2µi cos 2iπ(x− y), and a

function f(x) =
∑∞

i=1 2ν
1/2
i cos 2iπx. For µi = i−2β , we have k(x, y) = 1

(2β)!B2β(x−y−⌊x−y⌋),
where B2β is the (2β)-th Bernoulli polynomial (see details in the appendix).

Optimal values of λ. In a first experiment, we illustrate the results from Section 4.3, and compute in

Figure 1 the best value of the regularization parameter (left) and the obtained predictive performance

(middle), for a problem with νi = i−2δ for δ = 8, and for which we considered several kernels, for

which µi = i−2β , for β = 1, β = 4 and β = 8. We can make the following observations:

– For β = 1, the rate of convergence of n1/(4β+1)−1 is achieved (line 1 in Table 1), with a certain

asymptotic decay of the regularization parameter, and it is slower than n1/(2δ)−1.

– For β = 4, the optimal rate of n1/(2δ)−1 is achieved (line 2 in Table 1), as expected.

– For β = 8, the rate of convergence should be n1/(2δ)−1 (line 2 in Table 1), however, as seen in

the left plot, the regularization parameter saturates as n grows at the machine precision, leading,

because of numerical errors, to worse prediction performance. The problem is so ill-conditioned

that the matrix inversion cannot be algorithmically robust enough.

Performance of low-rank approximations. In this series of experiments, we compute the rank p
which is necessary to achieve a predictive performance at most 1% worse than with p = n, and

compute2 the ratio with the marginal degrees of freedom d = n
∥∥diag

(
K(K + nλI)−1

)∥∥
∞ and

the traditional degrees of freedom dave = trK2(K + nλI)−2. In the right plot of Figure 1, we

consider data randomly distributed in [0, 1] with the same kernels and functions than above, while

2Note that in practice, computing the degrees of freedom exactly requires to know the full matrix. However, it can

also be approximated efficiently using a low-rank approximation based on column sampling.
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Figure 1: Left and middle: Effect of size of RKHS in predictive performance. Right: Ratio of

the sufficient rank to obtain 1% worse predictive performance, over the degrees of freedom (plain:

random column sampling, dashed: incomplete Cholesky decomposition with column pivoting).
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Figure 2: Ratio of the sufficient rank to obtain 1% worse predictive performance, over the degrees

of freedom (plain: random column sampling, dashed: incomplete Cholesky decomposition with

column pivoting). From left to right: pumadyn datasets 32fh, 32nh, 32nm.

in Figure 2, we considered three of the pumadyn datasets from the UCI machine learning repository

(here we compute the classical generalization performance on unseen data points). We can make

the following observations:

– On all datasets, the ratios stay relatively close to one, illustrating the results from Theorem 1.

– Using pivoting to select the columns does not change significantly the results, but may some-

times reduce the number of required columns by a constant factor.

6 Conclusion

In this paper, we have provided an analysis of column sampling for kernel least-squares regression

that shows that the rank may be chosen proportional to the degrees of freedom of the problem,

showing that the statistical quantity characterizing prediction performance also plays a computa-

tional role. The current analysis could be extended in various ways: First, other column sampling

11



schemes beyond uniform, such as presented in [10, 11], could be considered with potentially better

behavior; the analysis may also be extended to other losses than the square loss, such as the logistic

loss, using self-concordant analysis [30]. Finally, in this paper, we have considered a batch set-

ting and extending these results to online settings is of significant practical and theoretical interest.

In particular, the difficulty would be to study regularization parameters that adapt to the number

of observations, which lead to vanishing strong convexity constants and does not allow rates of

order O(n−1).
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A Duality for kernel supervised learning

We consider the following problem, where F is an RKHS with feature map φ : X → F :

min
f∈F

1

n

n∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2,

which may be rewritten with the feature map φ as:

min
f∈F ,u∈Rn,

1

n

n∑

i=1

ℓ(yi, ui) +
λ

2
‖f‖2 such that ui = 〈f, φ(xi)〉.

We may then introduce dual parameters (Lagrange multipliers) α ∈ R
n and the Lagrangian

L(f, u, α) = 1

n

n∑

i=1

ℓ(yi, ui) +
λ

2
‖f‖2 + λ

n∑

i=1

αi(ui − 〈f, φ(xi)〉).

Minimizing with respect to (f, u), we get f =
∑n

i=1 αiφ(xi) and the dual problem:

max
α∈Rn

−g(−λα) − λ

2
α⊤Kα,

where, for z ∈ R
n, g(z) = maxu∈Rn − 1

n

∑n
i=1 ℓ(yi, ui) + uizi is the Fenchel-conjugate of the

empirical risk.

B Comparison of relative errors of kernel approximation and predic-

tion performance

In Figure 3, we consider a prediction problem with n = 400 and a decay of eigenvalues of the

kernel matrix which is the inverse of a low-order polynomial. We compare the decays to zero of

the relative kernel matrix approximation ‖K − L‖/‖K‖ (for the trace and operator norms) with

the decay of the relative prediction performance (i.e., prediction for L minus prediction for the full

matrix K).

As the rank p increases, the decay of the relative prediction error is much faster than the error in ma-

trix approximation, suggesting that relying on good kernel matrix approximation may be suboptimal

if the goal is simply to predict well.

C Proof of Theorem 1

We first prove a lemma that provides a Bernstein-type inequality for subsampled covariance matri-

ces.
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Figure 3: Relative average errors (in log-scale) as the rank p grows, for kernel matrix approximation

‖K − L‖ (trace and operator norms) and predictions errors, for a synthetic prediction problem

described in the experiments section of the main paper for n = 400. The prediction error (red

curve) stops when the average prediction error of the column sampling approach gets below the

prediction error of the full kernel matrix approach.

C.1 Concentration of subsampled covariance matrices

Given the matrix Ψ ∈ R
n×r and I ⊂ {1, . . . , p}, we denote by ΨI the submatrix of Ψ composed of

the rows of Ψ indexed by I .

Lemma 1 (Concentration of subsampled covariance) Let Ψ ∈ R
n×r, with all rows of ℓ2-norm

less than R. Let I a random subset of {1, . . . , n} with p elements (i.e., p elements chosen without

replacement uniformly at random). Then, for all t > 0,

¶I

(
λmax

[ 1
n
Ψ⊤Ψ− 1

p
Ψ⊤

I ΨI

]
> t

)
6 r exp

( −pt2/2
λmax(

1
nΨ

⊤Ψ)(R2 + t/3)

)
.

Proof Let ψ1, . . . , ψn ∈ R
r be the n rows of Ψ. We consider the matrix ∆ ∈ R

r×r defined as:

∆ =
1

n
Ψ⊤Ψ− 1

p
Ψ⊤

I ΨI =
1

n

n∑

i=1

ψiψ
⊤
i − 1

p

∑

i∈I
ψiψ

⊤
i .

By construction, we have E∆ = 0, and, as shown in [31, 32] and [33], we have

E tr exp(s∆) 6 E tr exp(sΞ),

where Ξ is obtained by sampling independently p rows with replacement, i.e., is equal to

Ξ =
1

n

n∑

i=1

ψiψ
⊤
i − 1

p

p∑

j=1

n∑

i=1

zjiψiψ
⊤
i ,

where zj ∈ R
n is a random element of the canonical basis of Rn such that ¶(zji = 1) = 1

n for all

i ∈ {1, . . . , n} and j ∈ {1, . . . , p}. This result extends to the matrix case the classical result of

Hoeffding [34].
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We thus have:

Ξ =
1

p

p∑

j=1

(
1

n

n∑

i=1

ψiψ
⊤
i −

n∑

i=1

zjiψiψ
⊤
i

)
=

p∑

j=1

Mj ,

with Mj =
1
p

(∑n
i=1 z

j
i (

1
nΨ

⊤Ψ−ψiψ
⊤
i )

)
. We have EMj = 0, λmax(Mj) 6 λmax(

1
nΨ

⊤Ψ)/p, and

λmax

( p∑

j=1

EM2
j

)
=

1

p2
λmax

( p∑

j=1

n∑

i=1

n∑

k=1

Ezji z
j
k

( 1
n
Ψ⊤Ψ− ψiψ

⊤
i

)( 1
n
Ψ⊤Ψ− ψkψ

⊤
k

))

=
1

p
λmax

(
1

n

n∑

i=1

( 1
n
Ψ⊤Ψ− ψiψ

⊤
i

)2
)

because Ezji z
j
k =

1

n
δi=k

=
1

p
λmax

( 1
n

n∑

i=1

ψiψ
⊤
i ψiψ

⊤
i −

( 1
n
Ψ⊤Ψ

)2)
6

1

p
λmax

( 1
n

n∑

i=1

ψiψ
⊤
i ψiψ

⊤
i

)

6
R2

p
λmax

( 1
n
Ψ⊤Ψ

)
because ψiψ

⊤
i ψiψ

⊤
i 4 R2ψiψ

⊤
i .

We can then apply the matrix Bernstein inequality of [32, Theorem 6.1] to obtain the bound:

r exp

(
− t2/2

R2

p
λmax

( 1
n
Ψ⊤Ψ

)
+

1

p
λmax

( 1
n
Ψ⊤Ψ

) t
3

)
,

which leads to the desired result.

C.2 Proof of Theorem 1

Proof principle. Let Φ ∈ R
n×n be such that K = ΦΦ⊤. Note that if K has rank r, we could

instead choose Φ ∈ R
n×r.

We consider the regularized low-rank approximation Lγ = ΦNγΦ
⊤, with

Nγ = Φ⊤
I (ΦIΦ

⊤
I + pγI)−1ΦI = Φ⊤

I ΦI(Φ
⊤
I ΦI + pγI)−1 = I − γ(Φ⊤

I ΦI/p+ γI)−1 (8)

(using the matrix inversion lemma). We have L = L0 but we will consider Lγ for γ > 0 to obtain a

bound for γ = 0, using a monotonicity argument.

Following the same reasoning than in Section 4.1 of the main paper, the in-sample prediction error
1
nEε‖ẑLγ − z‖2 is equal to

1

n
Eε‖ẑLγ − z‖2 = nλ2‖(ΦNγΦ

⊤ + nλI)−1z‖2 + 1

n
trC

[
ΦNγΦ

⊤(ΦNγΦ
⊤ + nλI)−1

]2

= bias(Lγ) + variance(Lγ).

The function γ 7→ Nγ is matrix-non-increasing (i.e., if γ > γ′, then Nγ 4 Nγ′). Therefore, we have

0 4 Nγ 4 N0 4 I . Since the variance term variance(Lγ) =
1
n trC

[
ΦNγΦ

⊤(ΦNγΦ
⊤+nλI)−1

]2
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is non-decreasing in Nγ , this implies that the variance term with Nγ is smaller than the one with N0

and then less then the one with Nγ replaced by I (which corresponds to the variance term without

any approximation). For the bias term we have:

bias(Lγ) = nλ2‖(ΦNγΦ
⊤ + nλI)−1z‖2 = nλ2z⊤(ΦNγΦ

⊤ + nλI)−2z, (9)

which is a non-decreasing function of γ. Therefore, if we prove an upper-bound on the bias term

for any γ > 0, we have a bound for γ = 0. This requires lower-bounding Nγ .

Lower-bounding Nγ . Let Ψ = Φ( 1nΦ
⊤Φ + γI)−1/2 ∈ R

n×n. We may rewrite Nγ defined in

Eq. (8) as

Nγ = I − γ(
1

p
Φ⊤
I ΦI + γI)−1

= I − γ
( 1
n
Φ⊤Φ+ γI − 1

n
Φ⊤Φ+

1

p
Φ⊤
I ΦI

)−1

= I − γ(
1

n
Φ⊤Φ+ γI)−1/2

[
I − 1

n
Ψ⊤Ψ+

1

p
Ψ⊤

I ΨI

]−1

(
1

n
Φ⊤Φ+ γI)−1/2.

Thus, in order to obtain a lower-bound on Nγ , it suffices to have an upper-bound of the form

λmax

( 1
n
Ψ⊤Ψ− 1

p
Ψ⊤

I ΨI

)
6 t, (10)

which would imply

I −Nγ 4
γ

1− t

( 1
n
Φ⊤Φ+ γI

)−1
,

K − Lγ = Φ(I −Nγ)Φ
⊤
4

γ

1− t
Φ(

1

n
Φ⊤Φ+ γI)−1Φ⊤ =

nγ

1− t
(K + nγI)−1K 4

nγ

1− t
I.

Assume
γ/λ
1−t 6 1. We then have, using the previous inequality:

(Lγ+nλI)
−1

4
(
K− nγ

1− t
I+nλI

)−1
=

(
K+nλ

[
1− γ/λ

1 − t

]
I
)−1

4 (1− γ/λ

1 − t
)−1(K+nλI)−1.

Thus, the bias term in Eq. (9) is less than the original bias term times (1 − γ/λ
1−t)

−2. If the bound

defined in Eq. (10) is not met, then we can upper-bound the bias term by 1
nz

⊤z, which is itself upper-

bounded by the unapproximated bias term times (1+R2

λ )—indeed, we have nλ2z⊤(K+nλI)−2z >

nλ2z⊤z(nλ + nR2)−2 = 1
nz

⊤z(1 + R2/λ)−2. Thus if we define pt = ¶I

(
λmax

[
1
nΨ

⊤Ψ −
1
pΨ

⊤
I ΨI

]
> t

)
, then, EI

[
bias(Lγ)

]
is upper-bounded by

B = pt(1 +R2/λ) + (1− pt)
(
1− γ/λ

1− t

)−2
, (11)

times bias(K).
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Probabilistic control. We need to upper-bound the largest eigenvalue of 1
nΨ

⊤Ψ− 1
pΨ

⊤
I ΨI , where

I is a random subset of {1, . . . , n} of cardinality p. This is the difference between an empirical

second-order moment and the empirical moment of a subset of p random elements. In order to

apply Lemma 1, we need to upper-bound the squared ℓ2-norm as (assuming γ 6 λ):

max
i∈{1,...,n}

(
ΨΨ⊤)

ii
= max

i∈{1,...,n}

(
Φ(

1

n
Φ⊤Φ+ γI)−1Φ⊤)

ii

= λγ−1 max
i∈{1,...,n}

(
Φ(

1

n
(λγ−1)Φ⊤Φ+ λI)−1Φ⊤)

ii

6 λγ−1 max
i∈{1,...,n}

(
Φ(

1

n
Φ⊤Φ+ λI)−1Φ⊤)

ii
because γ 6 λ,

= nλγ−1
∥∥diag

(
K(K + nλI)−1

)∥∥
∞ = λγ−1d.

Thus for γ 6 λ, all rows of Ψ have a squared ℓ2-norm upper-bounded by λγ−1d, and 1
nΨ

⊤Ψ 4 I ,

we can apply Lemma 1, to obtain that:

pt = ¶I

(
λmax

[ 1
n
Ψ⊤Ψ− 1

p
Ψ⊤

I ΨI

]
> t

)
6 n exp

( −pt2/2
λγ−1d+ t/3

)
.

Using the bound from Eq. (11), we get, given δ ∈ (0, 1), t = 1/2, and γ = λδ
4 ,

B = 1 +
R2

λ
pt + (1− pt)

[(
1− γ/λ

1− t

)−2 − 1

]

6 1 +
nR2

λ
exp

( −p/8
4d/δ + 1/6

)
+

[
(1− δ/2)−2 − 1

]

6 1 +
nR2

λ
exp

( −p
32d/δ + 2

)
+

[
δ − δ2/4

(1− δ/2)2

]

6 1 +
nR2

λ
exp

( −p
32d/δ + 2

)
+ δ

[
1− δ/4

(1− δ/2)2

]

6 1 +
nR2

λ
exp

( −p
32d/δ + 2

)
+ δ

[
3/4

1/4

]
=
nR2

λ
exp

( −p
32d/δ + 2

)
+ 3δ.

Thus, if p >
(
32d
δ + 2

)
log nR2

δλ , we obtain that B 6 1 + 4δ.

Thus,

EI

[
bias(L) + variance(L)

]
6 EI

[
bias(Lγ) + variance(K)

]
by monotonicity

= EI

[
bias(Lγ)] + variance(K)

6 (1 + 4δ)bias(K) + variance(K)

6 (1 + 4δ)
[
bias(K) + variance(K)

]
,

which is the desired result. Note that

– We could improve the bound by expliciting the reduction of the variance term.

– In some situations, the prediction performance for the approximated version may in fact be

smaller than the non-approximated version.
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D Asymptotics of bias and variance terms

In this appendix, we consider various decays of eigenvalues nµi of K and components
√
nνi (in

magnitude) of the signal z to estimate. We follow the reasoning of [35] (i.e., replacing sums by

integrals). Given our assumptions, we have:

bias = n2λ2
n∑

i=1

nνi
(nµi + nλ)2

= nλ2
n∑

i=1

νi
(µi + λ)2

,

n

σ2
variance =

n∑

i=1

n2µ2i
(nµi + nλ)2

=
n∑

i=1

µ2i
(µi + λ)2

.

For all cases we need to consider, for simplicity, we only provide an upper-bound for µi exactly

equal to its asymptotic equivalent. Considering lower-bounds and a constant times the asymptotic

equivalent may be done in a similar way.

D.1 Variance terms

We consider the two possible cases (the variance term only depends on (µi)). Moreover we show

that the two traditional definitions of the degrees of freedom, trK(K + nλI)−1 and trK2(K +
nλI)−2, have the same asymptotically equivalents.

Polynomial decay (µi = i−2β , β > 1/2). The renormalized variance term is less than

n∑

i=1

1

(1 + i2βλ)2
6

∫ n

0

1

(1 + t2βλ)2
dt

=

∫ λn2β

0

1

(1 + u)2
λ−1/2βu1/2β−1 1

2β
du with the change of variable u = λt2β,

6

∫ ∞

0

1

(1 + u)2
λ−1/2βu1/2β−1 1

2β
du

= O(λ−1/2β) since the integral is finite.

With the same reasoning, we have trK(K+nλI)−1 6
∫ λn2β

0
1

(1+u)λ
−1/2βu1/2β−1 1

2β du = O(λ−1/2β).
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Exponential decay (µi = e−ρi). The renormalized variance term is less than

n∑

i=1

1

(1 + eρiλ)2
6

∫ n

0

1

(1 + eρtλ)2
dt =

∫ n

0

e−2ρt

(e−ρt + λ)2
dt

=
1

ρ

∫ 1

e−ρn

u

(u+ λ)2
du with the change of variable u = e−ρt

6
1

ρ

∫ 1

0

(
1

u+ λ
− λ

(u+ λ)2

)
du 6

1

ρ

∫ 1

0

1

u+ λ
du

=
1

ρ

[
log(1 + λ)− log λ

]
= O(log

1

λ
).

We the same technique, we get bounds on trK(K + nλI)−1 in the same way we just did for

trK2(K + nλI)−2.

D.2 Bias terms

The bias terms depend on both (µi) and (νi) and we consider all combinations.

Polynomial decays (µi = i−2β , νi = i−2δ , β, δ > 1/2). The bias term is less than

nλ2
n∑

i=1

i4β−2δ

(1 + i2βλ)2
6 2nλ2

∫ n

1

t4β−2δ

(1 + t2βλ)2
dt. (12)

If 2δ−4β > 1, then we have an upper bound of 2nλ2
∫∞
1 t4β−2δdt = O(nλ2), because the integral

is finite.

If 2δ − 4β < 1, then we can further bound Eq. (12) as

2nλ2
∫ n

1

t4β−2δ

(1 + t2βλ)2
dt = 2nλ2

∫ n2βλ

λ

u
2−δ/β+ 1

2β
−1
λ
−2+δ/β− 1

2β

(1 + u)2
1

2β
du

with the change of variable u = λt2β

= O(λ(2δ−1)/2β)

∫ ∞

0

u2−δ/β+ 1

2β
−1

(1 + u)2
1

2β
du = O(λ(2δ−1)/2β),

because the integral is finite (due to the assumptions made on β and δ).

Exponential decays (µi = e−ρi, νi = e−κi, ρ, κ > 0). The bias term is less than

nλ2
n∑

i=1

e(2ρ−κ)i

(1 + eρiλ)2
6 nλ2

∫ n

1

e(ρ−κ)t

(1 + eρtλ)2
eρtdt

=
nλ

ρ

∫ λenρ

λ

(u/λ)1−κ/ρ

(1 + u)2
du with the change of variables u = λeρt.
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If κ/ρ > 2, then we have a bound

nλ2

ρ

∫ ∞

1

u1−κ/ρ

(1 + λu)2
du = O(nλ2),

because the integral is finite and uniformly bounded in λ.

If κ/ρ < 2, then we have a bound

nλκ/ρ

ρ

∫ λenρ

λ

u1−κ/ρ

(1 + u)2
du 6

nλκ/ρ

ρ

∫ ∞

0

u1−κ/ρ

(1 + u)2
du = O(nλκ/ρ).

Mixed decays. For µi with polynomial decays and νi with exponential decays, we are in a situ-

ation where νi is decaying fast enough (faster than i−2δ for any δ > 1/2) so that, given previous

results, the bias is nλ2.

The only remaining result to show is µi = e−ρi and νi = i−2δ, δ > 1/2, which we now consider.

The bias term is equal to

nλ2
n∑

i=1

νi
(µi + λ)2

= nλ2
n∑

i=1

i−2δ

(e−ρi + λ)2

= nλ2
∑

i6 1

ρ
log λ−1

i−2δ

(e−ρi + λ)2
+ nλ2

∑

n>i> 1

ρ
log λ−1

i−2δ

(e−ρi + λ)2

6 nλ2
∑

i6 1

ρ
log λ−1

i−2δ

e−2ρi
+ nλ2

∑

n>i> 1

ρ
log λ−1

i−2δ

λ2

6 n
∑

i6 1

ρ
log λ−1

i−2δ + n
∑

i> 1

ρ
log λ−1

i−2δ

= O(n) +O(n(log λ−1)1−2δ) = O(n(log λ−1)1−2δ).

D.3 Optimal regularization parameters

We can now take all six cases, and compute the optimal λ and the resulting optimal regularization

error.

– µi = i−2β , νi = i−2δ (2δ > 4β + 1): we need to minimize with respect to λ the function

n−1λ−1/2β + λ2, which leads to λ ≈ n−1/(2+1/2β) and an optimal value of n1/(4β+1)−1.

– µi = i−2β , νi = i−2δ (2δ < 4β + 1): we need to minimize with respect to λ the function

n−1λ−1/2β + λ(2δ−1)/2β , which leads to λ ≈ n−β/δ and an optimal value of n1/(2δ)−1.

– µi = i−2β , νi = e−κi: same computation as the first one.

– µi = e−ρi, νi = i−2δ: we need to minimize with respect to λ the function n−1 log 1
λ +

(log 1
λ)

1−2δ , which leads to log 1
λ ≈ n1/2δ and an optimal value of n1/2δ−1.
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– µi = e−ρi, νi = e−κi (κ > 2ρ): we need to minimize with respect to λ the function

n−1 log 1
λ + λ2, which leads to λ ≈ n−1/2 and an optimal value of log n/n.

– µi = e−ρi, νi = e−κi (κ < 2ρ): we need to minimize with respect to λ the function

n−1 log 1
λ + λκ/ρ, which leads to λ ≈ n−ρ/κ and an optimal value of log n/n.

E Kernels on [0,1]

In this appendix, we consider kernels on X = [0, 1] that lead to closed-form expressions (or asymp-

totic equivalents) for eigenvalues of K and components of z. These are used in simulations.

Kernels. For a positive summable sequence (µi)i>1, we consider k(x, y) =
∑∞

i=1 2µi cos 2iπ(x−
y). It is defined for any (x, y) ∈ [0, 1]2 and is 1-periodic in x and y. It is a function g of x − y −
⌊x− y⌋, i.e., k(x, y) = g(x− y − ⌊x− y⌋). Moreover k(x, x) is independent of x.

For µi =
1
i2β

, we have k(x, y) = 1
(2β)!B2β(x − y − ⌊x − y⌋), where B2β is the (2β)-th Bernoulli

polynomial [24]. For example, we haveB2(x) = x2−x+ 1
6 andB6(x) = x6−3x5+ 5

2x
4− 1

2x
2+ 1

42 .

For µi = e−ρi, we have, k(x, y) = 2 eρ cos 2π(x−y)−1
e2ρ−2eρ cos 2π(x−y)+1

. Indeed, we have

k(x, y) = Re

( ∞∑

i=1

2e−ρi+2iωπ(x−y)

)
with ω2 = −1,

= 2Re

( ∞∑

i=1

ei(−ρ+2ωπ(x−y))

)
= 2Re

(
e−ρ+2ωπ(x−y)

1− e−ρ+2ωπ(x−y)

)

= 2Re

(
1

eρ−2ωπ(x−y) − 1

)
= 2

eρ cos 2π(x− y)− 1

e2ρ − 2eρ cos 2π(x− y) + 1
.

Data and eigenvectors. If we consider n data points xi = i−1
n , i = 1, . . . , n, then the kernel

matrix K has components Kij = k( i−1
n , j−1

n ). It is a circulant matrix, thus it is diagonalisable in

the discrete Fourier basis [36], with eigenvalues equal to the discrete Fourier transform of the first

column of the matrix, i.e., (g(0), g(1/n), . . . , g(1 − 1/n))⊤.
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Thus, the i-th eigenvector has j-th component 1√
n
e2ωi(j−1)π/n (with ω2 = 01) and the i-th eigen-

value is

λi =
n∑

j=1

e−2ωi(j−1)π/ng((j − 1)/n)

=

n∑

j=1

e−2ωi(j−1)π/n
∞∑

s=1

2µs cos 2sπ(j − 1)/n

=

n∑

j=1

e−2ωi(j−1)π/n
∞∑

s=1

µs[e
2sωπ(j−1)/n + e−2sωπ(j−1)/n]

= n
∞∑

s=1

µs
[
δs=i[n] + δ−s=i[n]

]
because of the orthonormality of the Fourier basis,

= nµi + n

∞∑

h=1

µi+hn + n

∞∑

h=1

µ−i+hn.

If n is large and µi tends to zero when i tends to +∞, then an asymptotic equivalent for λi is nµi.

For data sampled from the uniform distribution in [0, 1], then similar equivalents hold (see, e.g., [35]).

Functions. Let f(x) =
∑∞

i=1 2ν
1/2
i cos 2iπx, for νi a non-negative summable sequence. We

consider zi = f(xi) = f((i−1)/n). The component of z on the i-th eigenvector ofK is (following

the same reasoning as above):

n∑

j=1

1√
n
e−2ωi(j−1)π/nf((j − 1)/n)

=
√
n

(
ν
1/2
i +

∞∑

h=1

ν
1/2
i+hn +

∞∑

h=1

ν
1/2
−i+hn

)
,

and the asymptotic equivalent is (nνi)
1/2.

Link with Sobolev spaces. The kernel k(x, y) defined above corresponds for µi = i−2β to certain

Sobolev spaces [24, 26]. Indeed, for β integer, the associated RKHS is the Sobolev space of periodic

functions which are β-times differentiable.

Moreover, when νi = i−2δ, then for δ > δ0, then the corresponding function is (δ0 − 1/2)-times

differentiable, and the minimax rate of estimation is known to be exactly O(n1/2δ0) [37, 29]. Thus,

up to logarithmic terms, the best possible rate is O(n1/2δ), and is achieved if β is large enough (see

Section 4.3 of the main paper).
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