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Let α be an irrational and ϕ : N → R + be a function decreasing to zero. For any α with a given Diophantine type, we show some sharp estimations for the Hausdorff dimension of the set E ϕ (α) := {y ∈ R : nα -y < ϕ(n) for infinitely many n}, where • denotes the distance to the nearest integer.

Introduction

Let α be an irrational real number. Denote by • the distance to the nearest integer. A famous result of Minkowski ([Min57]) in 1907 showed that if y ∈ Z + αZ, then for infinitely many n ∈ Z, we have

nα -y < 1 4|n|
.

If n is restricted to positive integers only, Khintchine ([Khi26]) in 1926 proved that for any real number y, there exist infinitely many n ∈ N satisfying the Diophantine inequalities:

(1.1) nα -y < 1 √ 5n .

We shall always restrict n to positive integers. Khintchine's resault is equivalent to say that the set E(α, c) := y ∈ R : nα -y < c n for infinitely many n , is the whole space R when the constant c equals to 1/ √ 5. It is showed by Cassels [Cas50] in 1950 that the set E(α, c) is of full measure for any constant c > 0.

However, if the error function (the right-hand side of (1.1)) of the above Diophantine inequalities is replaced by a function decreasing to zero faster than c/n, the sizes of the sets in question would be of zero Lebesgue measure and then the Hausdorff dimension is involved.

Define the Diophantine type β(α) of α by β(α) := sup{θ ≥ 1 : lim inf n→∞ n θ nα = 0}.

In 1999, Bernik and Dodson [START_REF] Bernik | Metric Diophantine approximation on manifolds[END_REF] proved that the Hausdorff dimension, denoted by dim H , of the set

E γ (α) := y ∈ R : nα -y < 1 n γ for infinitely many n (γ ≥ 1), satisfies 1 β(α) • γ ≤ dim H E γ (α) ≤ 1 γ .
In 2003, Bugeaud [START_REF] Bugeaud | A note on inhomogeneous Diophantine approximation[END_REF], and independently Schmeling and Troubetzkoy [START_REF] Troubetzkoy | Inhomogeneous Diophantine approximations and angular recurrence for billiards in polygons[END_REF] improved the above result. They showed that for any irrational α,

dim H E γ (α) = 1 γ .
Now let ϕ : N → R + be a function decreasing to zero. Consider the set

E ϕ (α) := {y ∈ R : nα -y < ϕ(n) for infinitely many n}.
This is the set of well-approximated numbers with a general error function ϕ.

It easily follows from the Borel-Cantelli lemma that the Lebesgue measure of E ϕ (α) is zero whenever the series ∞ n=1 ϕ(n) converges. But on the other hand, it seems hard to obtain a lower bound of the Lebesgue measure of E ϕ (α) ∩ [0, 1] when the series ∞ n=1 ϕ(n) diverges. For the results on the Lebesgue measure, we refer the readers to [START_REF] Kurzweil | On the metric theory of inhomogeneous Diophantine approximations[END_REF], [START_REF] Laurent | Inhomogeneous approximation with coprime integers and lattice orbits[END_REF], [START_REF] Kim | A note on metric inhomogeneous Diophantine approximation[END_REF], and the references therein.

In this paper, we are concerned with the Hausdorff dimension of the set E ϕ (α). We can find a natural upper bound:

dim H E ϕ (α) ≤ lim sup n→∞ log n -log ϕ(n) .
It can also be proved that for almost all real numbers α, the above inequality becomes an equality. However, in [START_REF] Fan | A note on inhomogeneous Diophantine approximation with a general error function[END_REF], Fan and Wu constructed an example which shows that the equality is not always true. In fact, they found a Liouville number α and constructed an error function ϕ such that

dim H E ϕ (α) = lim inf n→∞ log n -log ϕ(n) < lim sup n→∞ log n -log ϕ(n) .
So in general case, the dimension formula seems mystery. Recently, Xu [START_REF] Xu | Inhomogenous Diophantine approximation and Hausdorff dimension[END_REF] made a progress, he proved the following theorem.

Theorem 1.1 (Xu). For any α, we have the following estimation

lim sup n→∞ log q n -log ϕ(q n ) ≤ dim H (E ϕ (α)) ≤ lim sup n→∞ log n -log ϕ(n) ,
where q n denotes the denominator of the n-th convergent of the continued fraction of α.

As a corollary, Xu proved that for any irrational number α with Diophantine type 1,

dim H (E ϕ (α)) = lim sup n→∞ log n -log ϕ(n) .
For the simplicity, let us denote

u ϕ := lim sup n→∞ log n -log ϕ(n) l ϕ := lim inf n→∞ log n -log ϕ(n) .
In this paper, we prove the following results.

Theorem 1.2. For any α with Diophantine type β, we have

min u ϕ , max l ϕ , 1 + u ϕ 1 + β ≤ dim H (E ϕ (α)) ≤ u ϕ . Corollary 1.3. If β ≤ 1/u ϕ , then dim H (E ϕ (α)) = u ϕ .
Example 1.4. Take β = 2, u = 1/2 and l = 1/3. We can construct an irrational α such that for all n, q 2 n ≤ q n+1 ≤ 2q 2 n . Define

ϕ(n) = max n -1/l , q -1/l k if q u/l k-1 < n ≤ q u/l k .
Then by Corollary 1.3, we have

lim n→∞ log q n -log ϕ(q n ) = l < u = dim H (E ϕ (α)).
Thus the lower bound of Xu (Theorem 1.1) is not optimal.

The next two theorems show that the estimations in Theorem 1.2 are sharp.

Theorem 1.5. For any irrational α and for any 0 ≤ l < u ≤ 1, with u > 1/β, there exists a decreasing function ϕ :

N → R + , with l ϕ = l and u ϕ = u, such that dim H (E ϕ (α)) = max l, 1 + u 1 + β < u.
Theorem 1.6. Suppose 0 ≤ l < u ≤ 1. There exists a decreasing function ϕ : N → R + , with l ϕ = l and u ϕ = u, such that for any α with β < ∞,

dim H (E ϕ (α)) = u.

Three steps dimension

The goal of this section is to prove Proposition 2.2 which will be the base of our dimension estimation (compare [Xu10, Section 3]).

As a direct corollary of Proposition 2.2, we will also give a new proof of Xu's theorem (Theorem 1.1) at the end of this section.

Let us start with a technical lemma.

Lemma 2.1. Let 1 > a > b and 1 > c > d. Then for any δ ∈ [0, 1] we have

log(δa + (1 -δ)c) log(δb + (1 -δ)d) ≥ min log a log b , log c log d . Proof. Denote s := min log a log b , log c log d . Then log(δa + (1 -δ)c) log(δb + (1 -δ)d) ≥ log(δb s + (1 -δ)d s ) log(δb + (1 -δ)d) .
By concavity of the function x → x s , we have

δb s + (1 -δ)d s ≤ (δb + (1 -δ)d) s
and the assertion follows.

Let α be an irrational number with Diophantine type β(α) > 1. Recall that q n is the denominator of the n-th convergent of the continued fraction of α. Let B ≥ 1 and suppose there exists a sequence of natural numbers

{n i } such that (2.1) log q n i +1 log q n i → B.
Let {m i } be a sequence of natural numbers such that q n i < m i ≤ q n i +1 . By passing to subsequences, we suppose the limit

N := lim i→∞ log m i log q n i exists. Then obviously, 1 ≤ N ≤ B. Let K > 1. Denote E i := y ∈ R : ||nα -y|| < 1 2 q -K n i for some n ∈ (m i-1 , m i ] . Let E := ∞ i=1 E i and F := ∞ j=1 ∞ i=j E i . Proposition 2.2. If {n i } is increasing sufficiently fast then dim H E = dim H F = S,
where

S = S(N, B, K) := min N K , max 1 K , 1 1 + B -N .
Proof. As F ⊃ E, we only need to get the lower bound for dim H E and the upper bound for dim H F . For the former, we will use the Frostman Lemma, and for the latter, we will use a natural cover. We will distinguish two cases: B ≥ K and B < K. Notice the following fact.

Fact:

If B ≥ K then N K > 1 1 + B -N , and S = max 1 K , 1 1 + B -N . If B < K, then 1 K < 1 1 + B -N
, and S = min

N K , 1 1 + B -N .
Indeed, the second statement follows by noting 1/K < 1/B. For the first statement, if N ≥ K then it is obviously true because the right hand side is smaller than 1. Otherwise, we have

K -N N < K -N , hence K N < 1 + K -N.
Since B ≥ K, we have

1 + B -N ≥ 1 + K -N > K/N.
Distribution of the points. Now, let us study the distribution of the points {nα (mod 1)}. Let {n i } be a fast increasing sequence satisfying (2.1). By passing to a subsequence, we can always assume that {n i } grows as fast as we wish; the exact conditions on the rate of growth will be clear later. Denote

N i := m i -m i-1 .
By passing to a subsequence, we can suppose that N i ≥ q n i . The three steps theorem tells us how the points {nα (mod 1)

} m i n=m i-1 +1
are distributed on the unit circle: there are q n i groups of points, each consisting of N i /q n i ( • denotes the integer part) points, the distances between points inside each group are equal to ξ i := q n i α and the distances between groups are

ζ i := q n i -1 α -( N i /q n i -1) q n i α .
In the first case, i.e., B ≥ K, we have ξ i ≤ q -K n i for all i big enough, hence the intervals [nα -q -K n i /2, nα + q -K n i /2] intersect each other (inside each group). So E i consists of M i := q n i intervals of length y i := ( N i /q n i -1)ξ i + q -K n i . By noting that q n α is comparable with q -1 n+1 , we have

y i = ( N i /q n i -1)ξ i + q -K n i = q -min(K,1+B-N )+O(ε) n i .
In the second case, i.e., B < K, for big i, E i consists of N i intervals of length z i := q -K n i . As q n i+1 q n i +1 , we can freely assume that for any ε > 0, each component of E i contains at least M 1-ε i+1 (in the first case) or N 1-ε i+1 (in the second case) components of E i+1 . Calculations. We will distribute a probability measure µ in the most natural way: the measure attributed to each component of

F i = E 1 ∩ . . . ∩ E i is the same.
Here we distribute the measure only on those components of F i that are components of E i , i.e., at all stages we count only components completely contained in previous generation sets.

Case 1:

B ≥ K. At level i we have at least M 1-ε i components of F i , each of size y i and inside each component of F i-1 , the components of F i are in equal distance c i := ζ i -q -K n i . Let x ∈ E. For y i ≤ r < y i-1 , consider (2.2) f (r) = log µ(B r (x)) log r .
Notice that the convex hull of components of F i intersecting B r (x) has measure at most 3µ(B r (x)) and length at most 6r. For simplicity, we can assume that the interval B r (x) is a convex hull of some components of F i contained in one component of F i-1 . Hence,

(2.3) f (ny i + (n -1)c i ) ≥ log(nM -(1-ε) i ) log(ny i + (n -1)c i )
.

As the right hand side of equation (2.3) is the ratio of logarithms of two functions, both linear in n and smaller than 1, by Lemma 2.1 the minimum of f (r) in range (y i , y i-1 ) is achieved at one of endpoints. We have

(2.4) f (y i ) ≥ (1 -ε) -log M i log y i = max 1 K , 1 1 + B -N + O(ε)
and the same holds for f (y i-1 ). Recalling the fact at the beginning of the proof, we get the lower bound by Frostman Lemma. The upper bound is simpler: for any i, F is contained in n>i E n . Hence, we can use the components of all E n , n > i as a cover for F . For any s the sum of s-th powers of diameters of components of E n is bounded by M n y s n , and for s > max( 1 K , 1 1+B-N ) + O(ε) it is exponentially decreasing with n. The upper bound then follows by the definition of Hausdorff dimension.

Case 2: B < K. Once again to obtain the lower bound we will consider the function f (r) given by (2.2). However, in this case the components of F i are not uniformly distributed inside a component of F i-1 but they are in groups. There are at least s i groups in distance c i from each other, each group is of size y i and contains at least N 1-ε i components. Inside each group the components of size z i are in distance d i := ξ i -q -K n i from each other. We need to consider z i ≤ r < z i-1 . This range can be divided into two subranges. The equation (2.3) works for y i ≤ r < z i-1 , while for z i ≤ r < y i the same reasoning gives

(2.5) f (nz i + (n -1)d i ) ≥ log(nN -(1-ε) i ) log(nz i + (n -1)d i )
.

Like in the first case, Lemma 2.1 implies that the minimum of f (r) in each subrange is achieved at one of endpoints. We have

f (z i ) ≥ (1 -ε) -log N i log z i = N K + O(ε)
and the same for f (z i-1 ), while f (y i ) is still given by (2.4). Together with the fact at the beginning of the proof, this gives the lower bound.

To get the upper bound for the dimension of F we can use two covers. One is given by using the convex hulls of groups of components of F n with n > i. As in the first case (taking into account the fact that 1/K < 1/(1 + B -N )), this cover gives

dim H F ≤ 1 1 + B -N + O(ε).
The other cover consists of components of E n with n > i. For any s the sum of s-th powers of diameters of components of E n is bounded by N n z s n , and for s > N K + O(ε) it is exponentially decreasing with n. We will choose one of the two covers that gives us the smaller Hausdorff dimension.

The statement of Proposition 2.2 could be also written in the following way, fixing B and N and varying K:

S(N, B, K) =    1/K K < 1 + B -N 1/(1 + B -N ) 1 + B -N ≤ K ≤ N (1 + B -N ) N/K K > N (1 + B -N ).
By Proposition 2.2, we can directly deduce Theorem 1.1.

A new proof of Theorem 1.1: The upper bound is easy, and we only show the lower bound. We will apply Proposition 2.2. Let q n i be a sparse subsequence such that lim i→∞ log q n i +1 -log ϕ(q n i +1 ) = lim sup n→∞ log q n -log ϕ(q n ) =: L.

By passing to a subsequence, suppose the limit lim i→∞ log q n i +1 log q n i =: B exists. Take m i = q n i +1 . Then 1 ≤ N = B. Take K = N L -1 and construct the sets E i and E as in Proposition 2.2. We can easily check that E is a subset of E ϕ (α). By Proposition 2.2, we have

dim H E ϕ (α) ≥ min L, 1 .
Then the result follows.

Proof of Theorem 1.2

The upper bound of Theorem 1.2 is trivial by using the natural covering, hence we will only concern ourselves with the lower bound.

Note that the lower bound in Theorem 1.2 can be written as max l ϕ , min u ϕ , 1 + u ϕ 1 + β .

By the result of Bugeaud [START_REF] Bugeaud | A note on inhomogeneous Diophantine approximation[END_REF] and Schmeling and Troubetzkoy [START_REF] Troubetzkoy | Inhomogeneous Diophantine approximations and angular recurrence for billiards in polygons[END_REF], the Hausdorff dimension of E ϕ is at least l ϕ . So we just need to show it is not smaller than min(u ϕ , (1 + u ϕ )/(1 + β)).

We shall suppose that l ϕ > 0, the case l ϕ = 0 can be done by a limit argument. Since the result is known if l ϕ = u ϕ , we also suppose that l ϕ < u ϕ .

The Diophantine type of the irrational number α can be defined alternatively by

β = lim sup n→∞ log q n+1 log q n .
Choose a sequence m i of natural numbers such that

lim i→∞ log m i -log ϕ(m i ) = u ϕ .
Let n i be such that q n i < m i ≤ q n i +1 . By passing to a subsequence we can assume that -the sequence log q n i +1 / log q n i has some limit B ∈ [1, β], -the sequence log m i / log q n i has some limit N ∈ [1, B], -the sequence {n i } grows fast enough for Proposition 2.2.

4. Proof of Theorems 1.5 and 1.6

Proof of Theorem 1.5: Let α be of Diophantine type β > 1/u. Let q n i be a sparse subsequence of denominators of convergents such that β = lim i→∞ log q n i +1 log q n i .

For any 0 ≤ l < u ≤ 1, define z = max l, 1 + u 1 + β .

Note that z ≤ u.

Define also a function ϕ : N → R as follows:

ϕ(n) := max{n -1/l , k -1/u n i }, if k n i-1 < n ≤ k n i ,
where k n i = q u/z n i . Let D 1 be the set {y ∈ R : for infinitely many i, ||nα -y|| < k -1 u n i for some n ∈ (k n i-1 , k n i ]} and D 2 be the set {y ∈ R : ||nα -y|| < n -1 l for infinitely many n}.

Clearly, E ϕ (α) = D 1 ∪ D 2 . The Hausdorff dimension of D 1 is given by Proposition 2.2 (with B = β, K = 1/z, N = u/z):

dim H D 1 = min u, max z, z (1 + β)z -u = z
(the equality is valid both when z = l and z = (1 + u)/(1 + β)).

By [START_REF] Bugeaud | A note on inhomogeneous Diophantine approximation[END_REF] and [START_REF] Troubetzkoy | Inhomogeneous Diophantine approximations and angular recurrence for billiards in polygons[END_REF] we have dim H (D 2 ) = l.

Then the proof is completed.

Proof of Theorem 1.6: Construct a sequence {n i } i≥1 by recurrence:

n 1 = 2, n i+1 = 2 n i (i ≥ 1).
Define a function ϕ : N → R as ϕ(n) = n -1/l i for n ∈ (n i , n u/l i ) and ϕ(n) = n -1/u elsewhere.

Suppose that dim H (E ϕ (α)) < u. By Theorem 1.1, no q m could be between n i and n l/u i+1 . Since n i go to infinity very fast, α cannot be of finite type.
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Moreover, we can freely assume that N > 1: otherwise, by the monotonicity of ϕ, we would have lim i→∞ log q n i -log ϕ(q n i ) = u ϕ and the assertion would follow from Theorem 1.1. Take K = N/u ϕ . By the definition of m i , for any small δ > 0, we have for all large i ϕ(m i ) ≥ (m i ) -1/uϕ-δ ≥ q -K n i . Thus by monotonicity of ϕ,

The assumptions of Proposition 2.2 are satisfied, so we can calculate the Hausdorff dimension of the set E defined in the previous section. By (3.1), E ⊂ E ϕ , so this gives the lower bound for the Hausdorff dimension of E ϕ :

and we want to estimate the minimal value of

First thing to note is that increasing B not only decreases M (B, N ) for a fixed N but also increases the range of possible N 's. Hence, the minimum of M (N, B) is achieved for

We are then left with a simple optimization problem of a function of one variable. We can write

Otherwise, as u ϕ /N is a decreasing and 1/(1+β -N ) an increasing function of N , the global minimum over N of the maximum of the two is achieved at the point N 0 where they are equal:

hence this global minimum is the local minimum we are looking for. Thus, in this case

We are done.