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INHOMOGENEOUS DIOPHANTINE APPROXIMATION

WITH GENERAL ERROR FUNCTIONS

LINGMIN LIAO AND MICHA L RAMS

Abstract. Let α be an irrational and ϕ : N → R
+ be a function

decreasing to zero. For any α with a given Diophantine type, we
show some sharp estimations for the Hausdorff dimension of the
set

Eϕ(α) := {y ∈ R : ‖nα− y‖ < ϕ(n) for infinitely many n},

where ‖ · ‖ denotes the distance to the nearest integer.

1. Introduction

Let α be an irrational real number. Denote by ‖ · ‖ the distance to
the nearest integer. A famous result of Minkowski ([Min57]) in 1907
showed that if y 6∈ Z+ αZ, then for infinitely many n, we have

‖nα− y‖ <
1

4n
.

Define the Diophantine type β(α) of α by

β(α) := sup{θ ≥ 1 : lim inf
n→∞

nθ‖nα‖ = 0}.

In 1999, Bernik and Dodson [BD99] proved that the Hausdorff dimen-
sion, denoted by dimH , of the set

Eγ(α) :=

{

y ∈ R : ‖nα− y‖ <
1

nγ
for infinitely many n

}

(γ ≥ 1),

of well-approximated numbers satisfies

1

β(α) · γ
≤ dimH Eγ(α) ≤

1

γ
.

In 2003, Bugeaud [Bug03], and independently Schmeling and Trou-
betzkoy [TS03] improved the above result. They showed that for any
irrational α,

dimH Eγ(α) =
1

γ
.
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Now let ϕ : N → R
+ be a function decreasing to zero, and satisfying

nϕ(n) ≤ 1/2 for all n ∈ N. Consider the set

Eϕ(α) := {y ∈ R : ‖nα− y‖ < ϕ(n) for infinitely many n}.

This is the set of well-approximated numbers with a general error func-
tion ϕ. We can find a natural upper bound for the Hausdorff dimension
of Eϕ(α):

dimH Eϕ(α) ≤ lim sup
n→∞

log n

− logϕ(n)
.

It can also be proved that for almost all real numbers α, the above
inequality becomes an equality. However, in [FW06], Fan and Wu
constructed an example which shows that the equality is not always
true. In fact, they found a Liouville number α and constructed an
error function ϕ such that

dimH Eϕ(α) = lim inf
n→∞

log n

− logϕ(n)
< lim sup

n→∞

logn

− logϕ(n)
.

So in general case, the dimension formula seems mystery.
Recently, Xu [Xu10] made a progress, he proved the following theo-

rem.

Theorem 1.1 (Xu). For any α, we have the following estimation

lim sup
n→∞

log qn
− logϕ(qn)

≤ dimH(Eϕ(α)) ≤ lim sup
n→∞

log n

− logϕ(n)
,

where qn denotes the denominator of the n-th convergent of the contin-

ued fraction of α.

As a corollary, Xu proved that for any irrational number α with
Diophantine type 1,

dimH(Eϕ(α)) = lim sup
n→∞

log n

− logϕ(n)
.

For the simplicity, let us denote

uϕ := lim sup
n→∞

log n

− logϕ(n)
lϕ := lim inf

n→∞

log n

− logϕ(n)
.

In this paper, we prove the following results.

Theorem 1.2. For any α with Diophantine type β, we have

min

{

uϕ, max

{

lϕ,
1 + uϕ

1 + β

}}

≤ dimH(Eϕ(α)) ≤ uϕ.

Corollary 1.3. If β ≤ 1/uϕ, then

dimH(Eϕ(α)) = uϕ.
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Example 1.4. Take β = 2, u = 1/2 and l = 1/3. We can construct
an irrational α such that for all n, q2n ≤ qn+1 ≤ 2q2n. Define

ϕ(n) = max
{

n−1/l, q
−1/l
k

}

if q
u/l
k−1 < n ≤ q

u/l
k .

Then by Corollary 1.3, we have

lim
n→∞

log qn
− logϕ(qn)

= l < u = dimH(Eϕ(α)).

Thus the lower bound of Xu (Theorem 1.1) is not optimal.

The next two theorems show that the estimations in Theorem 1.2
are sharp.

Theorem 1.5. For any irrational α and for any 0 ≤ l < u ≤ 1, with
u > 1/β, there exists a decreasing function ϕ : N → R

+, with lϕ = l
and uϕ = u, such that

dimH(Eϕ(α)) = max

{

l,
1 + u

1 + β

}

< u.

Theorem 1.6. Suppose 0 ≤ l < u ≤ 1. There exists a decreasing

function ϕ : N → R
+, with lϕ = l and uϕ = u, such that for any α with

β < ∞,

dimH(Eϕ(α)) = u.

2. Three steps dimension

The goal of this section is to prove Proposition 2.2 which will be the
base of our dimension estimation (compare [Xu10, Section 3]).

As a direct corollary of Proposition 2.2, we will also give a new proof
of Xu’s theorem (Theorem 1.1) at the end of this section.

Let us start with a technical lemma.

Lemma 2.1. Let 1 > a > b and 1 > c > d. Then for any δ ∈ [0, 1] we
have

log(δa+ (1− δ)c)

log(δb+ (1− δ)d)
≥ min

(

log a

log b
,
log c

log d

)

.

Proof. Denote

s := min

(

log a

log b
,
log c

log d

)

.

Then
log(δa+ (1− δ)c)

log(δb+ (1− δ)d)
≥

log(δbs + (1− δ)ds)

log(δb+ (1− δ)d)
.

By concavity of the function x → xs, we have

δbs + (1− δ)ds ≤ (δb+ (1− δ)d)s

and the assertion follows. �
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Let α be an irrational number with Diophantine type β(α) > 1. Re-
call that qn is the denominator of the n-th convergent of the continued
fraction of α. Let B ≥ 1 and suppose there exists a sequence of natural
numbers {ni} such that

(2.1)
log qni+1

log qni

→ B.

Let {mi} be a sequence of natural numbers such that qni
< mi ≤ qni+1.

By passing to subsequences, we suppose the limit

N := lim
i→∞

logmi

log qni

exists. Then obviously, 1 ≤ N ≤ B.
Let K > 1. Denote

Ei :=
{

y ∈ R : ||nα− y|| <
1

2
q−K
ni

for some n ∈ (mi−1, mi]
}

.

Let

E :=
∞
⋂

i=1

Ei and F :=
∞
⋂

j=1

∞
⋃

i=j

Ei.

Proposition 2.2. If {ni} is increasing sufficiently fast then

dimH E = dimH F = S,

where

S = S(N,B,K) := min

(

N

K
, max

(

1

K
,

1

1 +B −N

))

.

Proof. As F ⊃ E, we only need to get the lower bound for dimH E and
the upper bound for dimH F . For the former, we will use the Frostman
Lemma, and for the latter, we will use a natural cover.

We will distinguish two cases: B ≥ K and B < K. Notice the
following fact.

Fact: If B ≥ K then

N

K
>

1

1 +B −N
, and S = max

(

1

K
,

1

1 +B −N

)

.

If B < K, then

1

K
<

1

1 +B −N
, and S = min

(

N

K
,

1

1 +B −N

)

.

Indeed, the second statement follows by noting 1/K < 1/B. For the
first statement, if N ≥ K then it is obviously true because the right
hand side is smaller than 1. Otherwise, we have

K −N

N
< K −N,
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hence
K

N
< 1 +K −N.

Since B ≥ K, we have

1 +B −N ≥ 1 +K −N > K/N.

Distribution of the points.
Now, let us study the distribution of the points {nα (mod 1)}. Let
{ni} be a fast increasing sequence satisfying (2.1). By passing to a
subsequence, we can always assume that {ni} grows as fast as we wish;
the exact conditions on the rate of growth will be clear later. Denote

Ni := mi −mi−1.

By passing to a subsequence, we can suppose that Ni ≥ qni
.

The three steps theorem tells us how the points {nα (mod 1)}mi

n=mi−1+1

are distributed on the unit circle: there are qni
groups of points, each

consisting of ⌊Ni/qni
⌋ (⌊·⌋ denotes the integer part) points, the dis-

tances between points inside each group are equal to ξi := ‖qni
α‖ and

the distances between groups are ζi := ‖qni−1α‖−(⌊Ni/qni
⌋−1)‖qni

α‖.
In the first case, i.e., B ≥ K, we have ξi ≤ q−K

ni
for all i big enough,

hence the intervals [nα−q−K
ni

/2, nα+q−K
ni

/2] intersect each other (inside
each group). So Ei consists of Mi := qni

intervals of length yi :=
(⌊Ni/qni

⌋− 1)ξi+ q−K
ni

. By noting that ‖qnα‖ is comparable with q−1
n+1,

we have

yi = (⌊Ni/qni
⌋ − 1)ξi + q−K

ni
= q−min(K,1+B−N)+O(ε)

ni
.

In the second case, i.e., B < K, for big i, Ei consists of Ni intervals
of length zi := q−K

ni
.

As qni+1
≫ qni+1, we can freely assume that for any ε > 0, each

component of Ei contains at least M
1−ε
i+1 (in the first case) or N1−ε

i+1 (in
the second case) components of Ei+1.
Calculations.
We will distribute a probability measure µ in the most natural way:
the measure attributed to each component of Fi = E1 ∩ . . . ∩Ei is the
same. Here we distribute the measure only on those components of Fi

that are components of Ei, i.e., at all stages we count only components
completely contained in previous generation sets.

Case 1: B ≥ K. At level i we have at least M1−ε
i components of

Fi, each of size yi and inside each component of Fi−1, the components
of Fi are in equal distance ci := ζi − q−K

ni
.

Let x ∈ E. For yi ≤ r < yi−1, consider

(2.2) f(r) =
logµ(Br(x))

log r
.

Notice that the convex hull of components of Fi intersecting Br(x) has
measure at most 3µ(Br(x)) and length at most 6r. For simplicity, we



6 LINGMIN LIAO AND MICHA L RAMS

can assume that the interval Br(x) is a convex hull of some components
of Fi contained in one component of Fi−1. Hence,

(2.3) f(nyi + (n− 1)ci) ≥
log(nM

−(1−ε)
i )

log(nyi + (n− 1)ci)
.

As the right hand side of equation (2.3) is the ratio of logarithms of
two functions, both linear in n and smaller than 1, by Lemma 2.1 the
minimum of f(r) in range (yi, yi−1) is achieved at one of endpoints. We
have

(2.4) f(yi) ≥ (1− ε)
− logMi

log yi
= max

(

1

K
,

1

1 +B −N

)

+ O(ε)

and the same holds for f(yi−1). Recalling the fact at the beginning of
the proof, we get the lower bound by Frostman Lemma.

The upper bound is simpler: for any i, F is contained in
⋃

n>iEn.
Hence, we can use the components of all En, n > i as a cover for
F . For any s the sum of s-th powers of diameters of components of
En is bounded by Mny

s
n, and for s > max( 1

K
, 1
1+B−N

) + O(ε) it is
exponentially decreasing with n. The upper bound then follows by the
definition of Hausdorff dimension.

Case 2: B < K. Once again to obtain the lower bound we will
consider the function f(r) given by (2.2). However, in this case the
components of Fi are not uniformly distributed inside a component of
Fi−1 but they are in groups. There are at least si groups in distance
ci from each other, each group is of size yi and contains at least N1−ε

i

components. Inside each group the components of size zi are in distance
di := ξi − q−K

ni
from each other.

We need to consider zi ≤ r < zi−1. This range can be divided into
two subranges. The equation (2.3) works for yi ≤ r < zi−1, while for
zi ≤ r < yi the same reasoning gives

(2.5) f(nzi + (n− 1)di) ≥
log(nN

−(1−ε)
i )

log(nzi + (n− 1)di)
.

Like in the first case, Lemma 2.1 implies that the minimum of f(r)
in each subrange is achieved at one of endpoints. We have

f(zi) ≥ (1− ε)
− logNi

log zi
=

N

K
+O(ε)

and the same for f(zi−1), while f(yi) is still given by (2.4). Together
with the fact at the beginning of the proof, this gives the lower bound.

To get the upper bound for the dimension of F we can use two covers.
One is given by using the convex hulls of groups of components of Fn

with n > i. As in the first case (taking into account the fact that
1/K < 1/(1 +B −N)), this cover gives

dimH F ≤
1

1 +B −N
+O(ε).
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The other cover consists of components of En with n > i. For any s the
sum of s-th powers of diameters of components of En is bounded by
Nnz

s
n, and for s > N

K
+O(ε) it is exponentially decreasing with n. We

will choose one of the two covers that gives us the smaller Hausdorff
dimension. �

The statement of Proposition 2.2 could be also written in the follow-
ing way, fixing B and N and varying K:

S(N,B,K) =







1/K K < 1 +B −N
1/(1 +B −N) 1 +B −N ≤ K ≤ N(1 +B −N)
N/K K > N(1 +B −N).

By Proposition 2.2, we can directly deduce Theorem 1.1.
A new proof of Theorem 1.1:

The upper bound is easy, and we only show the lower bound. We will
apply Proposition 2.2. Let qni

be a sparse subsequence such that

lim
i→∞

log qni+1

− logϕ(qni+1)
= lim sup

n→∞

log qn
− logϕ(qn)

=: L.

By passing to a subsequence, suppose the limit

lim
i→∞

log qni+1

log qni

=: B

exists. Take mi = qni+1. Then 1 ≤ N = B. Take K = NL−1 and
construct the sets Ei and E as in Proposition 2.2. We can easily check
that E is a subset of Eϕ(α). By Proposition 2.2, we have

dimH Eϕ(α) ≥ min
{

L, 1
}

.

Then the result follows.

3. Proof of Theorem 1.2

The upper bound of Theorem 1.2 is trivial by using the natural
covering, hence we will only concern ourselves with the lower bound.

Note that the lower bound in Theorem 1.2 can be written as

max

{

lϕ, min

{

uϕ,
1 + uϕ

1 + β

}}

.

By the result of Bugeaud [Bug03] and Schmeling and Troubetzkoy
[TS03], the Hausdorff dimension of Eϕ is at least lϕ. So we just need
to show it is not smaller than min(uϕ, (1 + uϕ)/(1 + β)).

We shall suppose that lϕ > 0, the case lϕ = 0 can be done by a limit
argument. Since the result is known if lϕ = uϕ, we also suppose that
lϕ < uϕ.
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The Diophantine type of the irrational number α can be defined
alternatively by

β = lim sup
n→∞

log qn+1

log qn
.

Choose a sequence mi of natural numbers such that

lim
i→∞

logmi

− logϕ(mi)
= uϕ.

Let ni be such that qni
< mi ≤ qni+1. By passing to a subsequence we

can assume that

– the sequence log qni+1/ log qni
has some limit B ∈ [1, β],

– the sequence logmi/ log qni
has some limit N ∈ [1, B],

– the sequence {ni} grows fast enough for Proposition 2.2.

Moreover, we can freely assume that N > 1: otherwise, by the mono-
tonicity of ϕ, we would have

lim
i→∞

log qni

− logϕ(qni
)
= uϕ

and the assertion would follow from Theorem 1.1.
Take K = N/uϕ. By the definition of mi, for any small δ > 0, we

have for all large i

ϕ(mi) ≥ (mi)
−1/uϕ−δ ≥ q−K

ni
.

Thus by monotonicity of ϕ,

(3.1) ϕ(n) ≥ q−K
ni

∀n ≤ mi.

The assumptions of Proposition 2.2 are satisfied, so we can calculate
the Hausdorff dimension of the set E defined in the previous section.
By (3.1), E ⊂ Eϕ, so this gives the lower bound for the Hausdorff
dimension of Eϕ:

dimH Eϕ ≥ M(N,B) := min

(

uϕ,max

(

uϕ

N
,

1

1 +B −N

))

and we want to estimate the minimal value of M for B ∈ [1, β], N ∈
[1, B].

First thing to note is that increasing B not only decreases M(B,N)
for a fixed N but also increases the range of possible N ’s. Hence,
the minimum of M(N,B) is achieved for B = β. Denote M(N) =
M(N, β).

We are then left with a simple optimization problem of a function of
one variable. We can write

M(N) = min

(

uϕ,max

(

uϕ

N
,

1

1 + β −N

))

.
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If βuϕ ≤ 1 then uϕ ≤ 1/(1 + β −N) for all N , hence

min
N

M(N) = uϕ ≤
1 + uϕ

1 + β
.

Otherwise, as uϕ/N is a decreasing and 1/(1 + β − N) an increasing
function ofN , the global minimum over N of the maximum of the two is
achieved at the point N0 where they are equal: uϕ/N0 = 1/(1+β−N0),
that is for

N0 =
uϕ(1 + β)

1 + uϕ
.

As βuϕ > 1 implies 1 < N0 < βuϕ ≤ β, N0 is inside the interval [1, β],
hence this global minimum is the local minimum we are looking for.
Thus, in this case

min
N

M(N) = M(N0) =
1 + uϕ

1 + β
< uϕ.

We are done.

4. Proof of Theorems 1.5 and 1.6

Proof of Theorem 1.5: Let α be of Diophantine type β > 1/u.
Let qni

be a sparse subsequence of denominators of convergents such
that

β = lim
i→∞

log qni+1

log qni

.

For any 0 ≤ l < u ≤ 1, define

z = max

(

l,
1 + u

1 + β

)

.

Note that z ≤ u.
Define also a function ϕ : N → R as follows:

ϕ(n) := max{n−1/l, k−1/u
ni

}, if kni−1
< n ≤ kni

,

where
kni

= qu/zni
.

Let D1 be the set

{y ∈ R : for infinitely many i, ||nα−y|| < k
− 1

u
ni for some n ∈ (kni−1

, kni
]}

and D2 be the set

{y ∈ R : ||nα− y|| < n−
1

l for infinitely many n}.

Clearly, Eϕ(α) = D1 ∪D2. The Hausdorff dimension of D1 is given
by Proposition 2.2 (with B = β,K = 1/z,N = u/z):

dimH D1 = min

(

u, max

(

z,
z

(1 + β)z − u

))

= z

(the equality is valid both when z = l and z = (1 + u)/(1 + β)).
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By [Bug03] and [TS03] we have

dimH(D2) = l.

Then the proof is completed.

Proof of Theorem 1.6: Construct a sequence {ni}i≥1 by recur-
rence:

n1 = 2, ni+1 = 2ni (i ≥ 1).

Define a function ϕ : N → R as ϕ(n) = n
−1/l
i for n ∈ (ni, n

u/l
i ) and

ϕ(n) = n−1/u elsewhere.
Suppose that dimH(Eϕ(α)) < u. By Theorem 1.1, no qm could be

between ni and n
l/u
i+1. Since ni go to infinity very fast, α cannot be of

finite type.
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