On the fast Khintchine spectrum in continued fractions

Fan Ai-Hua, Lingmin Liao, Bao-Wei Wang, Jun Wu

To cite this version:

Fan Ai-Hua, Lingmin Liao, Bao-Wei Wang, Jun Wu. On the fast Khintchine spectrum in continued fractions. Monatshefte für Mathematik, 2013, 171, pp.329-340. hal-00723315

HAL Id: hal-00723315

https://hal.science/hal-00723315

Submitted on 9 Aug 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON THE FAST KHINTCHINE SPECTRUM IN CONTINUED FRACTIONS

AIHUA FAN, LINGMIN LIAO, BAOWEI WANG ${ }^{\dagger}$, AND JUN WU

Abstract

For $x \in[0,1)$, let $x=\left[a_{1}(x), a_{2}(x), \cdots\right]$ be its continued fraction expansion with partial quotients $\left\{a_{n}(x), n \geq 1\right\}$. Let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ be a function with $\psi(n) / n \rightarrow \infty$ as $n \rightarrow \infty$. In this note, the fast Khintchine spectrum, i.e., the Hausdorff dimension of the set

$$
E(\psi):=\left\{x \in[0,1): \lim _{n \rightarrow \infty} \frac{1}{\psi(n)} \sum_{j=1}^{n} \log a_{j}(x)=1\right\}
$$

is completely determined without any extra condition on ψ.

1. Introduction

Continued fraction expansions are induced by the Gauss transformation $T:[0,1) \rightarrow[0,1)$ given by

$$
T(0):=0, T(x)=\frac{1}{x}(\bmod 1), \text { for } x \in(0,1) .
$$

Let $a_{1}(x)=\left\lfloor x^{-1}\right\rfloor\left(\lfloor\cdot\rfloor\right.$ stands for the integral part) and $a_{n}(x)=a_{1}\left(T^{n-1}(x)\right)$ for $n \geq 2$. Each irrational number $x \in[0,1)$ admits a unique infinite continued fraction expansion of the form

$$
\begin{equation*}
x=\frac{1}{a_{1}(x)+\frac{1}{a_{2}(x)+\frac{1}{a_{3}(x)+\ddots}}} . \tag{1.1}
\end{equation*}
$$

Sometimes, (1.1) is written as $x=\left[a_{1}, a_{2}, \cdots\right]$. The integers a_{n} are called the partial quotients of x. The n-th convergent $p_{n}(x) / q_{n}(x)$ of x is given by $p_{n}(x) / q_{n}(x)=\left[a_{1}, \cdots, a_{n}\right]$.

The continued fraction is tightly connected with the classic Diophantine approximation. For example, for any $v \geq 2$, the well-known Jarník set

$$
\left\{x:|x-p / q|<q^{-v}, \text { for infinitely many }(p, q) \in \mathbb{Z}^{2}\right\}
$$

is equal to J_{v-2}, where for any $\beta>0$, the set J_{β} is defined by continued fractions as

$$
J_{\beta}:=\left\{x: a_{n+1}(x) \geq q_{n}(x)^{\beta}, \text { for infinitely many } n \in \mathbb{N}\right\} .
$$

[^0]The Gauss transformation is identified with an infinite symbolic dynamical system if we consider the partial quotients as symbols. The appearence of infinite symbols brings us new phenomena in relative to the case of finite symbols. For example, consider the set

$$
\left\{x \in[0,1): \mathbb{A}\left\{\frac{1}{n} \sharp\left\{1 \leq j \leq n: a_{j}(x)=1\right\}\right\}_{n \geq 1}=[0,1]\right\}
$$

where $\mathbb{A}(E)$ denotes the set of the accumulation points of a set E. The Hausdorff dimension of this set is $1 / 2$ (see [9]), while in b-adic expansion a similar set is of Haudorff dimension 0 (see [12]). Another example is that the multifractal spectrum of the level sets of the Khintchine constant

$$
\left\{x \in[0,1): \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \log a_{j}(x)=\xi\right\}
$$

is neither concave nor convex [3]. Because of the difference from the finite symbolic dynamical systems and of the observed new phenomena, continued fractions attracted much attention. One can find rich properties of the continued fraction dynamical system in $[2,3,5,6,7,10,11,14]$ and related works therein.

Let $\psi: \mathbb{N} \rightarrow \mathbb{N}$. Define

$$
E(\psi)=\left\{x \in[0,1): \lim _{n \rightarrow \infty} \frac{\log a_{1}(x)+\cdots+\log a_{n}(x)}{\psi(n)}=1\right\} .
$$

When $\psi(n)=\lambda n$ for some $\lambda>0$, the set $E(\psi)$ is a level set of the classic Khintchine constant. Besides a detailed spectrum analysis of the classic Khintchine constant in [3], the authors also studied the fast Khintchine spectrum, i.e. the Hausdorff dimension of $E(\psi)$ when $\psi(n) / n \rightarrow \infty$ as $n \rightarrow \infty$. But the result for the latter case is incomplete. Only under the conditions that $\lim _{n \rightarrow \infty} \frac{\psi(n+1)}{\psi(n)}=b$ and $\lim _{n \rightarrow \infty}(\psi(n)-\psi(n-1))=\infty$, the dimension of $E(\psi)$ was given [3]. In this note, we show that these extra conditions are unnecessary for determining the dimension of $E(\psi)$ in the case of fast Khintchine spectrum.

Two functions ψ and $\tilde{\psi}$ defined on \mathbb{N} are said to be equivalent if $\frac{\psi(n)}{\tilde{\psi}(n)} \rightarrow 1$ as $n \rightarrow \infty$.

Theorem 1.1. Let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ with $\psi(n) / n \rightarrow \infty$ as $n \rightarrow \infty$. If ψ is equivalent to an increasing function, then $E(\psi) \neq \emptyset$ and

$$
\operatorname{dim}_{H} E(\psi)=\frac{1}{1+b}, \text { with } b=\limsup _{n \rightarrow \infty} \frac{\psi(n+1)}{\psi(n)} .
$$

Otherwise, $E(\psi)=\emptyset$.
Remark 1. The method used in [3] does not apply to general ψ. This is explained in Section 3 below.

Remark 2. The upper bound of $\operatorname{dim}_{H} E(\psi)$ is the difficult part of the proof of Theorem 1.1. As a byproduct of the proof, we get that for any $\beta>0$, the Hausdorff dimension of the set

$$
J_{\beta}^{*}:=\left\{x \in J_{\beta}: \lim _{n \rightarrow \infty} \frac{\log q_{n}(x)}{n}=\infty\right\}
$$

is $1 /(2+\beta)$, i.e. one half of the dimension of the Jarník set J_{β}. A detailed explanation is given at the end of this paper.

2. Preliminary

This section is devoted to fixing some notation, recalling some elementary properties enjoyed by continued fractions and citing some technical lemmas in dimension estimation.

Throughout this paper, we use $\lfloor\cdot\rfloor$ to denote the integral part of a real number, $|A|$ the diameter of a set $A \subset \mathbb{R}, \mathcal{H}^{s}$ the s-dimensional Hausdorff measure, and dim_{H} the Hausdorff dimension of a subset of $[0,1)$.

Recall that for any irrational number $x \in[0,1), p_{n}(x)$ and $q_{n}(x)$ are the numerator and denominator of the n-th convergent of x. It is known that $p_{n}=p_{n}(x)$ and $q_{n}=q_{n}(x)$ can be obtained recursively by the following relations.

$$
\begin{equation*}
p_{n}=a_{n}(x) p_{n-1}+p_{n-2}, \quad q_{n}=a_{n}(x) q_{n-1}+q_{n-2} \tag{2.1}
\end{equation*}
$$

with the conventions $p_{0}=q_{-1}=0$ and $p_{-1}=q_{0}=1$. For each $n \geq 1$,

$$
\begin{equation*}
p_{n-1} q_{n}-p_{n} q_{n-1}=(-1)^{n} . \tag{2.2}
\end{equation*}
$$

For any $n \geq 1$ and $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in \mathbb{N}^{n}$, define

$$
I_{n}\left(a_{1}, a_{2}, \cdots, a_{n}\right)=\left\{x \in[0,1): a_{1}(x)=a_{1}, \cdots, a_{n}(x)=a_{n}\right\},
$$

which is the set of points beginning with $\left(a_{1}, \cdots, a_{n}\right)$ in their continued fraction expansions, and is called a cylinder of order n.

Note that p_{n} and q_{n} are determined by the first n partial quotients of x. So all points in $I_{n}\left(a_{1}, \cdots, a_{n}\right)$ determine the same p_{n} and q_{n}. Hence sometimes, we write $p_{n}=p_{n}\left(a_{1}, \cdots, a_{n}\right)$ and $q_{n}=q_{n}\left(a_{1}, \cdots, a_{n}\right)$ to denote $p_{n}(x)$ and $q_{n}(x)$ for $x \in I_{n}\left(a_{1}, \cdots, a_{n}\right)$.

Proposition 2.1 ([8]). For any $n \geq 1$ and $\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{N}^{n}$, let q_{n} be given recursively by (2.1). The cylinder $I_{n}\left(a_{1}, \cdots, a_{n}\right)$ is an interval with the endpoints p_{n} / q_{n} and $\left(p_{n}+p_{n-1}\right) /\left(q_{n}+q_{n-1}\right)$. Then

$$
\begin{equation*}
\frac{1}{2 q_{n}^{2}} \leq\left|I_{n}\left(a_{1}, \cdots, a_{n}\right)\right|=\frac{1}{q_{n}\left(q_{n}+q_{n-1}\right)} \leq \frac{1}{q_{n}^{2}} . \tag{2.3}
\end{equation*}
$$

For each $n \geq 1, q_{n}\left(a_{1}, \cdots, a_{n}\right) \geq 2^{(n-1) / 2}$ and

$$
\begin{equation*}
\prod_{k=1}^{n} a_{k} \leq q_{n}\left(a_{1}, \cdots, a_{n}\right) \leq 2^{n} \prod_{k=1}^{n} a_{k} . \tag{2.4}
\end{equation*}
$$

Now we mention some known results concerning the dimension of sets in continued fractions. Let $\left\{s_{n}\right\}_{n \geq 1}$ be a sequence of integers and $\ell \geq 2$ be some fixed integer. Set

$$
F\left(\left\{s_{n}\right\}_{n=1}^{\infty} ; \ell\right)=\left\{x \in[0,1): s_{n} \leq a_{n}(x)<\ell s_{n}, \text { for all } n \geq 1\right\} .
$$

Lemma 2.2 ([3]). Under the assumption that $\frac{1}{n} \sum_{k=1}^{n} s_{k} \rightarrow \infty$ as $n \rightarrow \infty$, one has

$$
\operatorname{dim}_{H} F\left(\left\{s_{n}\right\}_{n=1}^{\infty} ; \ell\right)=\liminf _{n \rightarrow \infty} \frac{\log \left(s_{1} s_{2} \cdots s_{n}\right)}{2 \log \left(s_{1} s_{2} \cdots s_{n}\right)+\log s_{n+1}}
$$

Lemma 2.3 ([3]).

$$
\operatorname{dim}_{H}\left\{x \in[0,1): \limsup _{n \rightarrow \infty} \frac{\log q_{n}(x)}{n}=\infty\right\}=\frac{1}{2}
$$

3. Proof of Theorem 1.1

Notice that $E(\psi)=E(\tilde{\psi})$ if ψ and $\tilde{\psi}$ are equivalent. We can assume that ψ is increasing because of the following simple lemma.

Lemma 3.1. The set $E(\psi) \neq \emptyset$ if and only if ψ is equivalent to an increasing function.
Proof. If $E(\psi)$ is nonempty, take an $x_{0} \in E(\psi)$. Then put

$$
\tilde{\psi}(n)=\left\lfloor\log a_{1}\left(x_{0}\right)+\cdots+\log a_{n}\left(x_{0}\right)\right\rfloor
$$

for all $n \geq 1$. Clearly $\tilde{\psi}$ is increasing. The functions ψ and $\tilde{\psi}$ are equivalent.
On the other hand, if ψ is increasing, we have a point $x \in E(\psi)$ such that for each $n \geq 1$

$$
a_{n}(x)=\left\lfloor e^{\psi(n)-\psi(n-1)+1}\right\rfloor .
$$

Now we can proceed the proof of Theorem 1.1 with the assumption that ψ is increasing.

- Lower bound. Apply Lemma 2.2 to $s_{n}=\left\lfloor e^{\psi(n)-\psi(n-1)}\right\rfloor$ and $\ell=2$. Let

$$
F=\left\{x \in[0,1):\left\lfloor e^{\psi(n)-\psi(n-1)}\right\rfloor \leq a_{n}(x)<2\left\lfloor e^{\psi(n)-\psi(n-1)}\right\rfloor, \text { for all } n \geq 1\right\}
$$

which is subset of $E(\psi)$. We get immediately that

$$
\operatorname{dim}_{H} E(\psi) \geq \frac{1}{1+b}
$$

- Upper bound. This is the main part of the proof.

Let us first recall the method used in [3] under the extra condition that $\lim _{n \rightarrow \infty} \frac{\psi(n+1)}{\psi(n)}=b \geq 1$. Especially when $b>1$, we constructed a set containing $E(\psi)$ by posing precise restrictions on each partial quotients, namely

$$
\begin{equation*}
\left\{x \in[0,1): e^{L_{n}} \leq a_{n}(x) \leq e^{M_{n}}, \text { when } n \gg 1\right\}, \tag{3.1}
\end{equation*}
$$

where (with a small $\epsilon>0$)

$$
L_{n}=\frac{\psi(n)}{1+\epsilon}-\frac{\psi(n-1)}{1-\epsilon} \text { and } M_{n}=\frac{\psi(n)}{1-\epsilon}-\frac{\psi(n-1)}{1+\epsilon} .
$$

By a standard covering argument, together with $\lim _{n \rightarrow \infty} \frac{\psi(n+1)}{\psi(n)}=b$, we get the exact upper bound of the dimension of $E(\psi)$. But as far as a general function ψ is concerned, the above argument fails. For example, take

$$
\psi(n)=(k+2)!, \text { when } k!\leq n<(k+1)!.
$$

Then the set in (3.1) reads as

$$
\left\{x \in[0,1):\left\{\begin{array}{ll}
e^{c_{1}(k+2)!} \leq a_{n}(x) \leq e^{c_{2}(k+2)!}, & \text { when } n=k!; \\
1 \leq a_{n}(x) \leq e^{c_{3}(k+2)!}, & \text { when } k!<n<(k+1)!.
\end{array}\right\}\right.
$$

for suitably chosen constants c_{1}, c_{2}, c_{3}. According to Lemma 2.2, this set has Hausdorff dimension $\geq 1 / 2$. However, the dimension of $E(\psi)$ is equal to zero by Theorem 1.1.

Now we are going to prove the upper bound of $\operatorname{dim}_{H} E(\psi)$ for a general function ψ. Since ψ is increasing, we always have $b \geq 1$. We distinguish two cases: $b=1$ and $b>1$.

Case 1. $b=1$. Lemma 2.3 serves for this case. According to the estimation (2.4), since $\psi(n) / n \rightarrow \infty$ as $n \rightarrow \infty$, we have

$$
\lim _{n \rightarrow \infty} \frac{\log q_{n}(x)}{\psi(n)}=\lim _{n \rightarrow \infty} \frac{\log a_{1}(x)+\cdots+\log a_{n}(x)}{\psi(n)} .
$$

Thus Lemma 2.3 gives us

$$
\operatorname{dim}_{H} E(\psi) \leq \frac{1}{2}=\frac{1}{1+b} .
$$

Case 2. $b>1$. Fix an $\epsilon>0$. Choose a sequence of integers $\left\{n_{k}\right\}_{k=1}^{\infty} \subset \mathbb{N}$ with n_{1} large enough and for each $k \geq 1$ one has

$$
\begin{equation*}
\psi\left(n_{k}+1\right) \geq \psi\left(n_{k}\right) b(1-\epsilon), \quad n_{k} \leq \epsilon \psi\left(n_{k}\right) . \tag{3.2}
\end{equation*}
$$

For each $N \geq 1$, let

$$
E_{N}(\psi)=\left\{x \in[0,1):(1-\epsilon)<\frac{1}{\psi(n)} \sum_{j=1}^{n} \log a_{j}(x)<(1+\epsilon), \forall n \geq N\right\} .
$$

Then

$$
E(\psi) \subset \bigcup_{N \geq 1} E_{N}(\psi)
$$

To estimate the dimension of $E_{N}(\psi)$ for $N \geq 1$, we proceed in three steps.
Step i. Find a cover of $E_{N}(\psi)$. For any $n \geq N$, set

$$
\begin{equation*}
D_{n}(\epsilon)=\left\{\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{N}^{n}:(1-\epsilon)<\frac{1}{\psi(n)} \sum_{j=1}^{n} \log a_{j}<(1+\epsilon)\right\} . \tag{3.3}
\end{equation*}
$$

For every $\left(a_{1}, \cdots, a_{n}\right) \in D_{n}(\epsilon)$, we define

$$
D_{n+1}\left(\epsilon ;\left(a_{1}, \cdots, a_{n}\right)\right)=\left\{a_{n+1} \in \mathbb{N}:\left(a_{1}, \cdots, a_{n}, a_{n+1}\right) \in D_{n+1}(\epsilon)\right\} .
$$

Clearly, by the definition of $D_{n}(\epsilon)$, we have

$$
\begin{equation*}
E_{N}(\psi) \subset \bigcap_{n=N}^{\infty} \mathfrak{D}_{n}(\epsilon) \text {, with } \mathfrak{D}_{n}(\epsilon)=\bigcup_{\left(a_{1}, \cdots, a_{n}\right) \in D_{n}(\epsilon)} I_{n}\left(a_{1}, \cdots, a_{n}\right) \text {. } \tag{3.4}
\end{equation*}
$$

Now instead of considering the intersections in (3.4) from $n=N$ until $n=\infty$, we only consider the intersection of two consecutive terms. Namely, for any $n \geq N$,

$$
E_{N}(\psi) \subset\left(\mathfrak{D}_{n}(\epsilon) \cap \mathfrak{D}_{n+1}(\epsilon)\right)=\bigcup_{\left(a_{1}, \cdots, a_{n}\right) \in D_{n}(\epsilon)} J_{n}\left(a_{1}, \cdots, a_{n}\right)
$$

where

$$
J_{n}\left(a_{1}, \cdots, a_{n}\right)=\bigcup_{a_{n+1} \in D_{n+1}\left(\epsilon ;\left(a_{1}, \cdots, a_{n}\right)\right)} I_{n+1}\left(a_{1}, \cdots, a_{n}, a_{n+1}\right) .
$$

Hence, for each $n \geq N$, we get a cover of $E_{N}(\psi)$:

$$
\begin{equation*}
\left\{J_{n}\left(a_{1}, \cdots, a_{n}\right):\left(a_{1}, \cdots, a_{n}\right) \in D_{n}(\epsilon)\right\} \tag{3.5}
\end{equation*}
$$

Thus the s-dimensional Hausdorff measure of $E_{N}(\psi)$ can be estimated as

$$
\begin{equation*}
\mathcal{H}^{s}\left(E_{N}(\psi)\right) \leq \liminf _{n \rightarrow \infty} \sum_{\left(a_{1}, \cdots, a_{n}\right) \in D_{n}(\epsilon)}\left|J_{n}\left(a_{1}, \cdots, a_{n}\right)\right|^{s} \tag{3.6}
\end{equation*}
$$

As we shall see, $J_{n}\left(a_{1}, \cdots, a_{n}\right)$ is a union of cylinders of order $(n+1)$, say $I_{n+1}\left(a_{1}, \cdots, a_{n}, a_{n+1}\right)$ with a taking large values (Lemma 3.3). Using this fact, the length of $J_{n}\left(a_{1}, \cdots, a_{n}\right)$ will be well estimated.

Step ii. Lengths of $J_{n}\left(a_{1}, \cdots, a_{n}\right)$. We begin with a fact on $D_{n+1}\left(\epsilon ; a_{1}, \cdots, a_{n}\right)$.
Lemma 3.2. For each $\left(a_{1}, \cdots, a_{n}\right) \in D_{n}(\epsilon)$,

$$
D_{n+1}\left(\epsilon ;\left(a_{1}, \cdots, a_{n}\right)\right) \neq \emptyset
$$

Proof. This follows from the following simple constructions.
(a) If $\sum_{j=1}^{n} \log a_{j}>(1-\epsilon) \psi(n+1)$, we choose $a_{n+1}=1$.
(b) If $\sum_{j=1}^{n} \log a_{j} \leq(1-\epsilon) \psi(n+1)$, we can choose

$$
a_{n+1}=\left\lfloor\frac{e^{\psi(n+1)}}{a_{1} \cdots a_{n}}\right\rfloor
$$

Recall that the sequence of integers $\left\{n_{k}\right\}_{k \geq 1}$ is given in (3.2).
Lemma 3.3. For any $\left(a_{1}, \cdots, a_{n_{k}}\right) \in D_{n_{k}}(\epsilon)$ and $a_{n_{k}+1} \in D_{n_{k}+1}\left(\epsilon,\left(a_{1}, \cdots, a_{n_{k}}\right)\right)$, we have

$$
\begin{equation*}
\log a_{n_{k}+1} \geq(1-\epsilon)\left(\frac{b(1-\epsilon)^{2}}{1+\epsilon}-1\right) \log q_{n_{k}}=: \beta \log q_{n_{k}} \tag{3.7}
\end{equation*}
$$

Proof. By the definitions of $D_{n}(\epsilon)$ and the first inequality in (3.2), for any $\left(a_{1}, \cdots, a_{n_{k}}\right) \in D_{n_{k}}(\epsilon)$ and $a_{n_{k}+1} \in D_{n_{k}+1}\left(\epsilon,\left(a_{1}, \cdots, a_{n_{k}}\right)\right)$, one has

$$
\begin{align*}
\sum_{j=1}^{n_{k}+1} \log a_{j} \geq \psi\left(n_{k}+1\right)(1-\epsilon) & \geq \psi\left(n_{k}\right) b(1-\epsilon)^{2} \\
& \geq \frac{b(1-\epsilon)^{2}}{1+\epsilon} \sum_{j=1}^{n_{k}} \log a_{j} \tag{3.8}
\end{align*}
$$

On the other hand, by (2.4) and the second inequality in (3.2), we get

$$
\begin{equation*}
q_{n_{k}}\left(a_{1}, \cdots, a_{n_{k}}\right) \leq 2^{n_{k}} \prod_{j=1}^{n_{k}} a_{j} \leq\left(\prod_{j=1}^{n_{k}} a_{j}\right)^{\frac{1}{1-\epsilon}} \tag{3.9}
\end{equation*}
$$

Combining (3.8) and (3.9), we obtain the desired result.
Now return back to the cover of $E_{N}(\psi)$ given in (3.5) especially when $n=n_{k}$. We estimate the length of $J_{n_{k}}\left(a_{1}, \cdots, a_{n_{k}}\right)$ for every $\left(a_{1}, \cdots, a_{n_{k}}\right) \in$ $D_{n_{k}}(\epsilon)$. For $n=n_{k}$, by (3.7) and Proposition 2.1, we have

$$
\left|J_{n}\left(a_{1}, \cdots, a_{n}\right)\right| \leq \sum_{a: a \geq q_{n}^{\beta}}\left|\frac{a \cdot p_{n}+p_{n-1}}{a \cdot q_{n}+q_{n-1}}-\frac{(a+1) p_{n}+p_{n-1}}{(a+1) q_{n}+q_{n-1}}\right|
$$

By (2.2), for all $a \in \mathbb{N}$, the differences appearing in the series have the same sign depending only the parity of n. Thus the series is telescopic. Since $\frac{(a+1) p_{n}+p_{n-1}}{(a+1) q_{n}+q_{n-1}}$ tends to p_{n} / q_{n} as $a \rightarrow \infty$, we get

$$
\left|J_{n}\left(a_{1}, \cdots, a_{n}\right)\right| \leq\left|\frac{q_{n}^{\beta} p_{n}+p_{n-1}}{q_{n}^{\beta} q_{n}+q_{n-1}}-\frac{p_{n}}{q_{n}}\right|=\frac{1}{\left(q_{n}^{\beta} q_{n}+q_{n-1}\right) q_{n}} \leq \frac{1}{q_{n}^{2+\beta}} .
$$

Consider the liminf in (3.6) along the subsequence $\left\{n_{k}\right\}_{k \geq 1}$, then we obtain

$$
\begin{equation*}
\mathcal{H}^{s}\left(E_{N}(\psi)\right) \leq \liminf _{k \rightarrow \infty} \sum_{\left(a_{1}, \cdots, a_{n_{k}}\right) \in D_{n_{k}}(\epsilon)}\left(\frac{1}{q_{n_{k}}}\right)^{s(2+\beta)} . \tag{3.10}
\end{equation*}
$$

The last step is devoted to estimating the summation in (3.10) under a suitable choice of s.

Step iii. Bernoulli measures. A family of measures μ_{t} defined on cylinders is constructed firstly. For each $t>1$ and for any $\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{N}^{n}$, set

$$
\begin{equation*}
\mu_{t}\left(I_{n}\left(a_{1}, \cdots, a_{n}\right)\right)=e^{-n P(t)-t \sum_{j=1}^{n} \log a_{j}}, \tag{3.11}
\end{equation*}
$$

where $e^{P(t)}=\zeta(t)=\sum_{k=1}^{\infty} k^{-t}$. By Kolmogorov's consistency theorem, μ_{t} can be extended into a probability measure on $[0,1)$.

Fix $\epsilon>0$. By the assumption that $\lim _{n \rightarrow \infty} \psi(n) / n=\infty$, one can choose some integer $N(\epsilon) \in \mathbb{N}$ such that for all $n \geq N(\epsilon)$,

$$
\begin{equation*}
n P\left(1+\frac{\epsilon}{2}\right) \leq \frac{\epsilon}{2}(1-\epsilon) \psi(n) . \tag{3.12}
\end{equation*}
$$

We claim that for each $n \geq N(\epsilon)$ and $\left(a_{1}, \cdots, a_{n}\right) \in D_{n}$,

$$
\begin{equation*}
q_{n}^{-(1+\epsilon)} \leq \mu_{(1+\epsilon / 2)}\left(I_{n}\left(a_{1}, \cdots, a_{n}\right)\right) \tag{3.13}
\end{equation*}
$$

More precisely, for any $\left(a_{1}, \cdots, a_{n}\right) \in D_{n}$, by (3.3) and (3.12), we have

$$
\begin{equation*}
\frac{\epsilon}{2} \sum_{j=1}^{n} \log a_{j} \geq n P\left(1+\frac{\epsilon}{2}\right) \tag{3.14}
\end{equation*}
$$

Thus by (2.4) and then (3.14), we get

$$
q_{n}{ }^{-(1+\epsilon)} \leq e^{-(1+\epsilon) \sum_{j=1}^{n} \log a_{j}} \leq e^{-n P\left(1+\frac{\epsilon}{2}\right)-\left(1+\frac{\epsilon}{2}\right) \sum_{j=1}^{n} \log a_{j}}
$$

Choose $s=\frac{1+\epsilon}{2+\beta}$ in (3.10). By (3.13), we have

$$
\mathcal{H}^{\frac{1+\epsilon}{2+\beta}}\left(E_{N}(\psi)\right) \leq \liminf _{k \rightarrow \infty} \sum_{\left(a_{1}, \cdots, a_{n_{k}}\right) \in D_{n_{k}}(\epsilon)} \mu_{(1+\epsilon / 2)}\left(I_{n_{k}}\left(a_{1}, \cdots, a_{n_{k}}\right)\right) \leq 1
$$

Hence

$$
\operatorname{dim}_{H} E(\psi) \leq \sup _{N \geq 1}\left\{\operatorname{dim}_{H} E_{N}(\psi)\right\} \leq \frac{1+\epsilon}{2+\beta}
$$

Then the desired result follows by letting $\epsilon \rightarrow 0$.
Final remark: Now we give a remark on the dimension of J_{β}^{*} and that of J_{β}. Recall that J_{β}^{*} and J_{β} are defined in Section 1. For any $\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{N}^{n}$, we define

$$
\tilde{J}_{n}\left(a_{1}, \cdots, a_{n}\right)=\bigcup_{a_{n+1} \geq q_{n}^{\beta}} I_{n+1}\left(a_{1}, \cdots, a_{n}, a_{n+1}\right)
$$

Then it is clear that

$$
J_{\beta}=\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \bigcup \tilde{J}_{n}\left(a_{2}, \cdots, a_{n}\right)
$$

where the last union is taken over all $\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{N}^{n}$. While

$$
J_{\beta}^{*} \subset \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \bigcup \tilde{J}_{n}\left(a_{2}, \cdots, a_{n}\right)
$$

where the last union is taken over all $\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{N}^{n}$ with $\frac{\log q_{n}}{n}$ being sufficiently large. As a result,

$$
\mathcal{H}^{s}\left(J_{\beta}\right) \leq \liminf _{N \rightarrow \infty} \sum_{n=N}^{\infty} \sum_{\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{N}^{n}}\left(\frac{1}{q_{n}}\right)^{s(2+\beta)}
$$

while

$$
\mathcal{H}^{s}\left(J_{\beta}^{*}\right) \leq \liminf _{N \rightarrow \infty} \sum_{n=N}^{\infty} \sum_{\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{N}^{n},\left(\log q_{n}\right) / n \text { large }}\left(\frac{1}{q_{n}}\right)^{s(2+\beta)} .
$$

By (2.3), we know that

$$
\begin{equation*}
1 \leq \sum_{a_{1}, \cdots, a_{n} \in \mathbb{N}^{n}} q_{n}^{-2} \leq 2 \tag{3.15}
\end{equation*}
$$

While, by (3.13), we get

$$
\begin{equation*}
\sum_{a_{1}, \cdots, a_{n}: \log q_{n} / n \text { large }} q_{n}^{-(1+\epsilon)} \leq 1 . \tag{3.16}
\end{equation*}
$$

Comparing of (3.15) and (3.16) reveals that

$$
\operatorname{dim}_{H} J_{\beta} \leq \frac{2}{2+\beta}, \quad \operatorname{dim}_{H} J_{\beta}^{*} \leq \frac{1}{2+\beta}
$$

Actually we have proven that $\operatorname{dim}_{H} J_{\beta}^{*}=\frac{1}{2+\beta}$ since $E(\psi)$ can serve as a subset of J_{β}^{*}.

Acknowledgement: This work was partially supported by PICS program No. 5727, RFDP20090141120007, NSFC 10901066 and NSFC 11171124. The authors thank the Morningside Center of Mathematics, Beijing for its hospitality.

References

[1] Billingsley, P., Henningsen, I.: Hausdorff dimension of some continued-fraction sets. Z. Wahrscheinlichkeitstheorie verw. Geb. 31, 163-173 (1975)
[2] Fan, A.-H., Liao, L.-M., Ma, J.-H.: On the frequency of partial quotients of regular continued fractions. Math. Proc. Camb. Phil. Soc. 148, 179-192 (2010)
[3] Fan, A.-H., Liao, L.-M., Wang, B. W., Wu, J.: On Kintchine exponents and Lyapunov exponents of continued fractions. Ergod. Th. Dynam. Sys. 29, 73-109 (2009)
[4] Jarník, I.: Zur metrischen Theorie der diopahantischen Approximationen. Proc. Mat. Fyz. 36, 91-106 (1928)
[5] Jaerisch, J., Kesseböhmer, M.: The arithmetic-geometric scaling spectrum for continued fractions. Arkiv för Matematik 48 (2), 335-360 (2010)
[6] Kesseböhmer, M., Stratmann, S.: A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates. J. Reine Angew. Math. 605, 133163 (2007)
[7] Kifer, Y., Peres, Y., Weiss, B.: A dimension gap for continued fractions with independent digits. Israel J. Math. 124(1), 61-76 (2001)
[8] Khintchine, A. Ya.: Continued Fractions. P. Noordhoff, Groningen, The Netherlands (1963)
[9] Liao, L.-M., Ma, J.-H., Wang, B.-W.: Dimension of some non-normal continued fraction sets. Math. Proc. Cambridge Philos. Soc. 145 (1), 215-225 (2008)
[10] Mauldin, R. D., Urbański, M.: Conformal iterated function systems with applications to the geometry of continued fractions. Trans. Amer. Math. Soc. 351 (12), 4995-5025 (1999)
[11] Mayer, D.: On the thermodynamics formalism for the Gauss map. Comm. Math. Phys. 130, 311-333 (1990)
[12] Olsen, L.: Extremely non-normal numbers. Math. Proc. Cambridge Philos. Soc. 137 (1), 43-53 (2004)
[13] Pesin, Y.: Dimension Theory in Dynamical Systems: Contemporary Views and Applications. Chicago Lectures in Mathematics, The University of Chicago Press, Chicago (1998)
[14] Pollicott, M., Weiss, H.: Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation. Comm. Math. Phys. 207 (1), 145-171 (1999)

Lamfa, Umr 7352 (Ex 6140), CNRS, Université de Picardie Jules Verne, 33, Rue Saint Leu, 80039 Amiens Cedex 1, France

E-mail address: ai-hua.fan@u-picardie.fr
Lama, Umr 8050, CNRS, Université Paris-Est Créteil Val de Marne, 61, avenue du Général de Gaulle 94010 Créteil Cedex France

E-mail address: lingmin.liao@u-pec.fr
School of Mathematics and Statistics, Huazhong University of Science and Technology, 430074 Wuhan, China

E-mail address: bwei_wang@yahoo.com.cn
School of Mathematics and Statistics, Huazhong University of Science and Technology, 430074 Wuhan, China

E-mail address: wujunyu@public.wh.hb.cn

[^0]: 2000 Mathematics Subject Classification. 11K50, 28A80.
 Key words and phrases. Continued fractions, Fast Khintchine spectrum, Hausdorff dimension.
 ${ }^{\dagger}$ Corresponding author.

