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ON THE FAST KHINTCHINE SPECTRUM IN CONTINUED

FRACTIONS

AIHUA FAN, LINGMIN LIAO, BAOWEI WANG†, AND JUN WU

Abstract. For x ∈ [0, 1), let x = [a1(x), a2(x), · · · ] be its continued frac-

tion expansion with partial quotients {an(x), n ≥ 1}. Let ψ : N → N be a

function with ψ(n)/n → ∞ as n → ∞. In this note, the fast Khintchine

spectrum, i.e., the Hausdorff dimension of the set

E(ψ) :=
{

x ∈ [0, 1) : lim
n→∞

1

ψ(n)

n
∑

j=1

log a j(x) = 1
}

is completely determined without any extra condition on ψ.

1. Introduction

Continued fraction expansions are induced by the Gauss transformation

T : [0, 1)→ [0, 1) given by

T (0) := 0, T (x) =
1

x
(mod 1), for x ∈ (0, 1).

Let a1(x) = ⌊x−1⌋ (⌊·⌋ stands for the integral part) and an(x) = a1(T n−1(x)) for

n ≥ 2. Each irrational number x ∈ [0, 1) admits a unique infinite continued

fraction expansion of the form

x =
1

a1(x) +
1

a2(x) +
1

a3(x) +
. . .

. (1.1)

Sometimes, (1.1) is written as x = [a1, a2, · · · ]. The integers an are called

the partial quotients of x. The n-th convergent pn(x)/qn(x) of x is given by

pn(x)/qn(x) = [a1, · · · , an].

The continued fraction is tightly connected with the classic Diophantine

approximation. For example, for any v ≥ 2, the well-known Jarnı́k set
{

x : |x − p/q| < q−v, for infinitely many (p, q) ∈ Z2
}

is equal to Jv−2, where for any β > 0, the set Jβ is defined by continued

fractions as

Jβ :=
{

x : an+1(x) ≥ qn(x)β, for infinitely many n ∈ N
}

.

2000 Mathematics Subject Classification. 11K50, 28A80.
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2 AIHUA FAN, LINGMIN LIAO, BAOWEI WANG†, AND JUN WU

The Gauss transformation is identified with an infinite symbolic dynam-

ical system if we consider the partial quotients as symbols. The appearence

of infinite symbols brings us new phenomena in relative to the case of finite

symbols. For example, consider the set
{

x ∈ [0, 1) : A
{ 1

n
♯{1 ≤ j ≤ n : a j(x) = 1}

}

n≥1
= [0, 1]

}

where A(E) denotes the set of the accumulation points of a set E. The

Hausdorff dimension of this set is 1/2 (see [9]), while in b-adic expansion

a similar set is of Haudorff dimension 0 (see [12]). Another example is that

the multifractal spectrum of the level sets of the Khintchine constant

{

x ∈ [0, 1) : lim
n→∞

1

n

n
∑

j=1

log a j(x) = ξ
}

is neither concave nor convex [3]. Because of the difference from the finite

symbolic dynamical systems and of the observed new phenomena, contin-

ued fractions attracted much attention. One can find rich properties of the

continued fraction dynamical system in [2, 3, 5, 6, 7, 10, 11, 14] and related

works therein.

Let ψ : N→ N. Define

E(ψ) =

{

x ∈ [0, 1) : lim
n→∞

log a1(x) + · · · + log an(x)

ψ(n)
= 1

}

.

When ψ(n) = λn for some λ > 0, the set E(ψ) is a level set of the clas-

sic Khintchine constant. Besides a detailed spectrum analysis of the classic

Khintchine constant in [3], the authors also studied the fast Khintchine spec-

trum, i.e. the Hausdorff dimension of E(ψ) when ψ(n)/n → ∞ as n → ∞.

But the result for the latter case is incomplete. Only under the conditions

that limn→∞
ψ(n+1)

ψ(n)
= b and limn→∞(ψ(n) − ψ(n − 1)) = ∞, the dimension

of E(ψ) was given [3]. In this note, we show that these extra conditions

are unnecessary for determining the dimension of E(ψ) in the case of fast

Khintchine spectrum.

Two functions ψ and ψ̃ defined on N are said to be equivalent if
ψ(n)

ψ̃(n)
→ 1

as n→ ∞.

Theorem 1.1. Let ψ : N → N with ψ(n)/n → ∞ as n → ∞. If ψ is

equivalent to an increasing function, then E(ψ) , ∅ and

dimH E(ψ) =
1

1 + b
, with b = lim sup

n→∞

ψ(n + 1)

ψ(n)
.

Otherwise, E(ψ) = ∅.

Remark 1. The method used in [3] does not apply to general ψ. This is

explained in Section 3 below.
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FAST KHINTCHINE SPECTRUM 3

Remark 2. The upper bound of dimH E(ψ) is the difficult part of the proof

of Theorem 1.1. As a byproduct of the proof, we get that for any β > 0, the

Hausdorff dimension of the set

J∗β :=
{

x ∈ Jβ : lim
n→∞

log qn(x)

n
= ∞

}

is 1/(2 + β), i.e. one half of the dimension of the Jarnı́k set Jβ. A detailed

explanation is given at the end of this paper.

2. Preliminary

This section is devoted to fixing some notation, recalling some elemen-

tary properties enjoyed by continued fractions and citing some technical

lemmas in dimension estimation.

Throughout this paper, we use ⌊·⌋ to denote the integral part of a real

number, |A| the diameter of a set A ⊂ R, H s the s-dimensional Hausdorff

measure, and dimH the Hausdorff dimension of a subset of [0, 1).

Recall that for any irrational number x ∈ [0, 1), pn(x) and qn(x) are the

numerator and denominator of the n-th convergent of x. It is known that

pn = pn(x) and qn = qn(x) can be obtained recursively by the following

relations.

pn = an(x)pn−1 + pn−2, qn = an(x)qn−1 + qn−2 (2.1)

with the conventions p0 = q−1 = 0 and p−1 = q0 = 1. For each n ≥ 1,

pn−1qn − pnqn−1 = (−1)n. (2.2)

For any n ≥ 1 and (a1, a2, · · · , an) ∈ Nn, define

In(a1, a2, · · · , an) =
{

x ∈ [0, 1) : a1(x) = a1, · · · , an(x) = an

}

,

which is the set of points beginning with (a1, · · · , an) in their continued

fraction expansions, and is called a cylinder of order n.

Note that pn and qn are determined by the first n partial quotients of x. So

all points in In(a1, · · · , an) determine the same pn and qn. Hence sometimes,

we write pn = pn(a1, · · · , an) and qn = qn(a1, · · · , an) to denote pn(x) and

qn(x) for x ∈ In(a1, · · · , an).

Proposition 2.1 ([8]). For any n ≥ 1 and (a1, · · · , an) ∈ Nn, let qn be given

recursively by (2.1). The cylinder In(a1, · · · , an) is an interval with the end-

points pn/qn and (pn + pn−1)/(qn + qn−1). Then

1

2q2
n

≤

∣

∣

∣

∣

In(a1, · · · , an)
∣

∣

∣

∣

=
1

qn(qn + qn−1)
≤

1

q2
n

. (2.3)

For each n ≥ 1, qn(a1, · · · , an) ≥ 2(n−1)/2 and

n
∏

k=1

ak ≤ qn(a1, · · · , an) ≤ 2n

n
∏

k=1

ak. (2.4)

ha
l-0

07
23

31
5,

 v
er

si
on

 1
 - 

9 
Au

g 
20

12



4 AIHUA FAN, LINGMIN LIAO, BAOWEI WANG†, AND JUN WU

Now we mention some known results concerning the dimension of sets

in continued fractions. Let {sn}n≥1 be a sequence of integers and ℓ ≥ 2 be

some fixed integer. Set

F({sn}
∞
n=1; ℓ) =

{

x ∈ [0, 1) : sn ≤ an(x) < ℓsn, for all n ≥ 1
}

.

Lemma 2.2 ([3]). Under the assumption that 1
n

∑n
k=1 sk → ∞ as n → ∞,

one has

dimH F({sn}
∞
n=1; ℓ) = lim inf

n→∞

log(s1s2 · · · sn)

2 log(s1s2 · · · sn) + log sn+1

.

Lemma 2.3 ([3]).

dimH

{

x ∈ [0, 1) : lim sup
n→∞

log qn(x)

n
= ∞

}

=
1

2
.

3. Proof of Theorem 1.1

Notice that E(ψ) = E(ψ̃) if ψ and ψ̃ are equivalent. We can assume that

ψ is increasing because of the following simple lemma.

Lemma 3.1. The set E(ψ) , ∅ if and only if ψ is equivalent to an increasing

function.

Proof. If E(ψ) is nonempty, take an x0 ∈ E(ψ). Then put

ψ̃(n) =
⌊

log a1(x0) + · · · + log an(x0)
⌋

for all n ≥ 1. Clearly ψ̃ is increasing. The functions ψ and ψ̃ are equivalent.

On the other hand, if ψ is increasing, we have a point x ∈ E(ψ) such that

for each n ≥ 1

an(x) = ⌊eψ(n)−ψ(n−1)+1⌋.

�

Now we can proceed the proof of Theorem 1.1 with the assumption that

ψ is increasing.

• Lower bound. Apply Lemma 2.2 to sn = ⌊e
ψ(n)−ψ(n−1)⌋ and ℓ = 2. Let

F =
{

x ∈ [0, 1) :
⌊

eψ(n)−ψ(n−1)
⌋

≤ an(x) < 2
⌊

eψ(n)−ψ(n−1)
⌋

, for all n ≥ 1
}

which is subset of E(ψ). We get immediately that

dimH E(ψ) ≥
1

1 + b
.

• Upper bound. This is the main part of the proof.

Let us first recall the method used in [3] under the extra condition that

limn→∞
ψ(n+1)

ψ(n)
= b ≥ 1. Especially when b > 1, we constructed a set con-

taining E(ψ) by posing precise restrictions on each partial quotients, namely
{

x ∈ [0, 1) : eLn ≤ an(x) ≤ eMn ,when n ≫ 1
}

, (3.1)
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FAST KHINTCHINE SPECTRUM 5

where (with a small ǫ > 0)

Ln =
ψ(n)

1 + ǫ
−
ψ(n − 1)

1 − ǫ
and Mn =

ψ(n)

1 − ǫ
−
ψ(n − 1)

1 + ǫ
.

By a standard covering argument, together with limn→∞
ψ(n+1)

ψ(n)
= b, we get

the exact upper bound of the dimension of E(ψ). But as far as a general

function ψ is concerned, the above argument fails. For example, take

ψ(n) = (k + 2)!, when k! ≤ n < (k + 1)!.

Then the set in (3.1) reads as
{

x ∈ [0, 1) :

{

ec1(k+2)! ≤ an(x) ≤ ec2(k+2)!, when n = k!;

1 ≤ an(x) ≤ ec3(k+2)!, when k! < n < (k + 1)!.

}

for suitably chosen constants c1, c2, c3. According to Lemma 2.2, this set

has Hausdorff dimension ≥ 1/2. However, the dimension of E(ψ) is equal

to zero by Theorem 1.1.

Now we are going to prove the upper bound of dimH E(ψ) for a general

function ψ. Since ψ is increasing, we always have b ≥ 1. We distinguish

two cases: b = 1 and b > 1.

Case 1. b = 1. Lemma 2.3 serves for this case. According to the

estimation (2.4), since ψ(n)/n→ ∞ as n→ ∞, we have

lim
n→∞

log qn(x)

ψ(n)
= lim

n→∞

log a1(x) + · · · + log an(x)

ψ(n)
.

Thus Lemma 2.3 gives us

dimH E(ψ) ≤
1

2
=

1

1 + b
.

Case 2. b > 1. Fix an ǫ > 0. Choose a sequence of integers {nk}
∞
k=1
⊂ N

with n1 large enough and for each k ≥ 1 one has

ψ(nk + 1) ≥ ψ(nk)b(1 − ǫ), nk ≤ ǫψ(nk). (3.2)

For each N ≥ 1, let

EN(ψ) =
{

x ∈ [0, 1) : (1 − ǫ) <
1

ψ(n)

n
∑

j=1

log a j(x) < (1 + ǫ), ∀ n ≥ N
}

.

Then

E(ψ) ⊂
⋃

N≥1

EN(ψ).

To estimate the dimension of EN(ψ) for N ≥ 1, we proceed in three steps.

Step i. Find a cover of EN(ψ). For any n ≥ N, set

Dn(ǫ) =
{

(a1, · · · , an) ∈ Nn : (1 − ǫ) <
1

ψ(n)

n
∑

j=1

log a j < (1 + ǫ)
}

. (3.3)

For every (a1, · · · , an) ∈ Dn(ǫ), we define

Dn+1

(

ǫ; (a1, · · · , an)
)

=

{

an+1 ∈ N : (a1, · · · , an, an+1) ∈ Dn+1(ǫ)
}

.
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6 AIHUA FAN, LINGMIN LIAO, BAOWEI WANG†, AND JUN WU

Clearly, by the definition of Dn(ǫ), we have

EN(ψ) ⊂

∞
⋂

n=N

Dn(ǫ), with Dn(ǫ) =
⋃

(a1 ,··· ,an)∈Dn(ǫ)

In(a1, · · · , an). (3.4)

Now instead of considering the intersections in (3.4) from n = N until

n = ∞, we only consider the intersection of two consecutive terms. Namely,

for any n ≥ N,

EN(ψ) ⊂
(

Dn(ǫ) ∩Dn+1(ǫ)
)

=

⋃

(a1 ,··· ,an)∈Dn(ǫ)

Jn(a1, · · · , an),

where

Jn(a1, · · · , an) =
⋃

an+1∈Dn+1(ǫ;(a1 ,··· ,an))

In+1(a1, · · · , an, an+1).

Hence, for each n ≥ N, we get a cover of EN(ψ):

{

Jn(a1, · · · , an) : (a1, · · · , an) ∈ Dn(ǫ)
}

. (3.5)

Thus the s-dimensional Hausdorff measure of EN(ψ) can be estimated as

H s(EN(ψ)) ≤ lim inf
n→∞

∑

(a1,··· ,an)∈Dn(ǫ)

∣

∣

∣

∣

Jn(a1, · · · , an)
∣

∣

∣

∣

s

. (3.6)

As we shall see, Jn(a1, · · · , an) is a union of cylinders of order (n + 1),

say In+1(a1, · · · , an, an+1) with a taking large values (Lemma 3.3). Using

this fact, the length of Jn(a1, · · · , an) will be well estimated.

Step ii. Lengths of Jn(a1, · · · , an). We begin with a fact on Dn+1(ǫ; a1, · · · , an).

Lemma 3.2. For each (a1, · · · , an) ∈ Dn(ǫ),

Dn+1

(

ǫ; (a1, · · · , an)
)

, ∅.

Proof. This follows from the following simple constructions.

(a) If
∑n

j=1 log a j > (1 − ǫ)ψ(n + 1), we choose an+1 = 1.

(b) If
∑n

j=1 log a j ≤ (1 − ǫ)ψ(n + 1), we can choose

an+1 =

⌊ eψ(n+1)

a1 · · · an

⌋

.

�

Recall that the sequence of integers {nk}k≥1 is given in (3.2).

Lemma 3.3. For any (a1, · · · , ank
) ∈ Dnk

(ǫ) and ank+1 ∈ Dnk+1

(

ǫ, (a1, · · · , ank
)
)

,

we have

log ank+1 ≥ (1 − ǫ)
(b(1 − ǫ)2

1 + ǫ
− 1

)

log qnk
=: β log qnk

, (3.7)
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FAST KHINTCHINE SPECTRUM 7

Proof. By the definitions of Dn(ǫ) and the first inequality in (3.2), for any

(a1, · · · , ank
) ∈ Dnk

(ǫ) and ank+1 ∈ Dnk+1

(

ǫ, (a1, · · · , ank
)
)

, one has

nk+1
∑

j=1

log a j ≥ ψ(nk + 1)(1 − ǫ) ≥ ψ(nk)b(1 − ǫ)2

≥
b(1 − ǫ)2

1 + ǫ

nk
∑

j=1

log a j. (3.8)

On the other hand, by (2.4) and the second inequality in (3.2), we get

qnk
(a1, · · · , ank

) ≤ 2nk

nk
∏

j=1

a j ≤

















nk
∏

j=1

a j

















1
1−ǫ

. (3.9)

Combining (3.8) and (3.9), we obtain the desired result. �

Now return back to the cover of EN(ψ) given in (3.5) especially when

n = nk. We estimate the length of Jnk
(a1, · · · , ank

) for every (a1, · · · , ank
) ∈

Dnk
(ǫ). For n = nk, by (3.7) and Proposition 2.1, we have

∣

∣

∣Jn(a1, · · · , an)
∣

∣

∣ ≤
∑

a:a≥q
β
n

∣

∣

∣

∣

a · pn + pn−1

a · qn + qn−1

−
(a + 1)pn + pn−1

(a + 1)qn + qn−1

∣

∣

∣

∣

.

By (2.2), for all a ∈ N, the differences appearing in the series have the same

sign depending only the parity of n. Thus the series is telescopic. Since
(a+1)pn+pn−1

(a+1)qn+qn−1
tends to pn/qn as a→∞, we get

∣

∣

∣

∣

Jn(a1, · · · , an)
∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

q
β
n pn + pn−1

q
β
nqn + qn−1

−
pn

qn

∣

∣

∣

∣

∣

=
1

(q
β
nqn + qn−1)qn

≤
1

q
2+β
n

.

Consider the liminf in (3.6) along the subsequence {nk}k≥1, then we obtain

H s(EN(ψ)) ≤ lim inf
k→∞

∑

(a1,··· ,ank
)∈Dnk

(ǫ)

(

1

qnk

)s(2+β)

. (3.10)

The last step is devoted to estimating the summation in (3.10) under a

suitable choice of s.

Step iii. Bernoulli measures. A family of measures µt defined on cylin-

ders is constructed firstly. For each t > 1 and for any (a1, · · · , an) ∈ Nn,

set

µt(In(a1, · · · , an)) = e−nP(t)−t
∑n

j=1
log a j , (3.11)

where eP(t)
= ζ(t) =

∞
∑

k=1

k−t. By Kolmogorov’s consistency theorem, µt can

be extended into a probability measure on [0, 1).

Fix ǫ > 0. By the assumption that limn→∞ ψ(n)/n = ∞, one can choose

some integer N(ǫ) ∈ N such that for all n ≥ N(ǫ),

nP
(

1 +
ǫ

2

)

≤
ǫ

2
(1 − ǫ)ψ(n). (3.12)
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8 AIHUA FAN, LINGMIN LIAO, BAOWEI WANG†, AND JUN WU

We claim that for each n ≥ N(ǫ) and (a1, · · · , an) ∈ Dn,

qn
−(1+ǫ) ≤ µ(1+ǫ/2)

(

In(a1, · · · , an)
)

. (3.13)

More precisely, for any (a1, · · · , an) ∈ Dn, by (3.3) and (3.12), we have

ǫ

2

n
∑

j=1

log a j ≥ nP(1 +
ǫ

2
). (3.14)

Thus by (2.4) and then (3.14), we get

qn
−(1+ǫ) ≤ e−(1+ǫ)

∑n
j=1 log a j ≤ e−nP(1+ ǫ

2
)−(1+ ǫ

2
)
∑n

j=1 log a j .

Choose s = 1+ǫ
2+β

in (3.10). By (3.13), we have

H
1+ǫ
2+β (EN(ψ)) ≤ lim inf

k→∞

∑

(a1,··· ,ank
)∈Dnk

(ǫ)

µ(1+ǫ/2)

(

Ink
(a1, · · · , ank

)
)

≤ 1.

Hence

dimH E(ψ) ≤ sup
N≥1

{

dimH EN(ψ)
}

≤
1 + ǫ

2 + β
.

Then the desired result follows by letting ǫ → 0. �

Final remark: Now we give a remark on the dimension of J∗β and that of Jβ.

Recall that J∗β and Jβ are defined in Section 1. For any (a1, · · · , an) ∈ Nn,

we define

J̃n(a1, · · · , an) =
⋃

an+1≥q
β
n

In+1(a1, · · · , an, an+1).

Then it is clear that

Jβ =

∞
⋂

N=1

∞
⋃

n=N

⋃

J̃n(a2, · · · , an),

where the last union is taken over all (a1, · · · , an) ∈ Nn. While

J∗β ⊂

∞
⋂

N=1

∞
⋃

n=N

⋃

J̃n(a2, · · · , an),

where the last union is taken over all (a1, · · · , an) ∈ Nn with
log qn

n
being

sufficiently large. As a result,

H s(Jβ) ≤ lim inf
N→∞

∞
∑

n=N

∑

(a1 ,··· ,an)∈Nn

(

1

qn

)s(2+β)

,

while

H s(J∗β) ≤ lim inf
N→∞

∞
∑

n=N

∑

(a1,··· ,an)∈Nn,(log qn)/n large

(

1

qn

)s(2+β)

.

By (2.3), we know that

1 ≤
∑

a1,··· ,an∈N
n

qn
−2 ≤ 2. (3.15)
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FAST KHINTCHINE SPECTRUM 9

While, by (3.13), we get
∑

a1,··· ,an:log qn/n large

qn
−(1+ǫ) ≤ 1. (3.16)

Comparing of (3.15) and (3.16) reveals that

dimH Jβ ≤
2

2 + β
, dimH J∗β ≤

1

2 + β
.

Actually we have proven that dimH J∗β =
1

2+β
since E(ψ) can serve as a

subset of J∗β.
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