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For x ∈ [0, 1), let x = [a 1 (x), a 2 (x), • • • ] be its continued fraction expansion with partial quotients {a n (x), n ≥ 1}. Let ψ : N → N be a function with ψ(n)/n → ∞ as n → ∞. In this note, the fast Khintchine spectrum, i.e., the Hausdorff dimension of the set

is completely determined without any extra condition on ψ.

Introduction

Continued fraction expansions are induced by the Gauss transformation T : [0, 1) → [0, 1) given by T (0) := 0, T (x) = 1 x (mod 1), for x ∈ (0, 1).

Let a 1 (x) = ⌊x -1 ⌋ (⌊•⌋ stands for the integral part) and a n (x) = a 1 (T n-1 (x)) for n ≥ 2. Each irrational number x ∈ [0, 1) admits a unique infinite continued fraction expansion of the form

x = 1 a 1 (x) + 1 a 2 (x) + 1 a 3 (x) + . . . . (1.1) 
Sometimes, (1.1) is written as x = [a 1 , a 2 , • • • ]. The integers a n are called the partial quotients of x. The n-th convergent p n (x)/q n (x) of x is given by

p n (x)/q n (x) = [a 1 , • • • , a n ].
The continued fraction is tightly connected with the classic Diophantine approximation. For example, for any v ≥ 2, the well-known Jarník set

x : |xp/q| < q -v , for infinitely many (p, q) ∈ Z 2 is equal to J v-2 , where for any β > 0, the set J β is defined by continued fractions as J β := x : a n+1 (x) ≥ q n (x) β , for infinitely many n ∈ N .

The Gauss transformation is identified with an infinite symbolic dynamical system if we consider the partial quotients as symbols. The appearence of infinite symbols brings us new phenomena in relative to the case of finite symbols. For example, consider the set

x ∈ [0, 1) : A 1 n ♯{1 ≤ j ≤ n : a j (x) = 1} n≥1 = [0, 1]
where A(E) denotes the set of the accumulation points of a set E. The Hausdorff dimension of this set is 1/2 (see [START_REF] Liao | Dimension of some non-normal continued fraction sets[END_REF]), while in b-adic expansion a similar set is of Haudorff dimension 0 (see [START_REF] Olsen | Extremely non-normal numbers[END_REF]). Another example is that the multifractal spectrum of the level sets of the Khintchine constant

x ∈ [0, 1) : lim

n→∞ 1 n n j=1 log a j (x) = ξ
is neither concave nor convex [START_REF] Fan | On Kintchine exponents and Lyapunov exponents of continued fractions[END_REF]. Because of the difference from the finite symbolic dynamical systems and of the observed new phenomena, continued fractions attracted much attention. One can find rich properties of the continued fraction dynamical system in [START_REF] Fan | On the frequency of partial quotients of regular continued fractions[END_REF][START_REF] Fan | On Kintchine exponents and Lyapunov exponents of continued fractions[END_REF][START_REF] Jaerisch | The arithmetic-geometric scaling spectrum for continued fractions[END_REF][START_REF] Kesseböhmer | A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates[END_REF][START_REF] Kifer | A dimension gap for continued fractions with independent digits[END_REF][START_REF] Mauldin | Conformal iterated function systems with applications to the geometry of continued fractions[END_REF][START_REF] Mayer | On the thermodynamics formalism for the Gauss map[END_REF][START_REF] Pollicott | Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation[END_REF] and related works therein.

Let ψ : N → N. Define

E(ψ) = x ∈ [0, 1) : lim n→∞ log a 1 (x) + • • • + log a n (x) ψ(n) = 1 .
When ψ(n) = λn for some λ > 0, the set E(ψ) is a level set of the classic Khintchine constant. Besides a detailed spectrum analysis of the classic Khintchine constant in [START_REF] Fan | On Kintchine exponents and Lyapunov exponents of continued fractions[END_REF], the authors also studied the fast Khintchine spectrum, i.e. the Hausdorff dimension of E(ψ) when ψ(n)/n → ∞ as n → ∞.

But the result for the latter case is incomplete. Only under the conditions that lim n→∞ ψ(n+1) ψ(n) = b and lim n→∞ (ψ(n) -ψ(n -1)) = ∞, the dimension of E(ψ) was given [START_REF] Fan | On Kintchine exponents and Lyapunov exponents of continued fractions[END_REF]. In this note, we show that these extra conditions are unnecessary for determining the dimension of E(ψ) in the case of fast Khintchine spectrum.

Two functions ψ and ψ defined on N are said to be equivalent if

ψ(n) ψ(n) → 1 as n → ∞. Theorem 1.1. Let ψ : N → N with ψ(n)/n → ∞ as n → ∞. If ψ is equivalent to an increasing function, then E(ψ) ∅ and dim H E(ψ) = 1 1 + b , with b = lim sup n→∞ ψ(n + 1) ψ(n) .
Otherwise, E(ψ) = ∅.

Remark 1. The method used in [START_REF] Fan | On Kintchine exponents and Lyapunov exponents of continued fractions[END_REF] does not apply to general ψ. This is explained in Section 3 below.

Remark 2. The upper bound of dim H E(ψ) is the difficult part of the proof of Theorem 1.1. As a byproduct of the proof, we get that for any β > 0, the Hausdorff dimension of the set

J * β := x ∈ J β : lim n→∞ log q n (x) n = ∞ is 1/(2 + β),
i.e. one half of the dimension of the Jarník set J β . A detailed explanation is given at the end of this paper.

Preliminary

This section is devoted to fixing some notation, recalling some elementary properties enjoyed by continued fractions and citing some technical lemmas in dimension estimation.

Throughout this paper, we use ⌊•⌋ to denote the integral part of a real number, |A| the diameter of a set A ⊂ R, H s the s-dimensional Hausdorff measure, and dim H the Hausdorff dimension of a subset of [0, 1).

Recall that for any irrational number x ∈ [0, 1), p n (x) and q n (x) are the numerator and denominator of the n-th convergent of x. It is known that p n = p n (x) and q n = q n (x) can be obtained recursively by the following relations.

p n = a n (x)p n-1 + p n-2 , q n = a n (x)q n-1 + q n-2 (2.1) 
with the conventions p 0 = q -1 = 0 and p -1 = q 0 = 1. For each n ≥ 1,

p n-1 q n -p n q n-1 = (-1) n . (2.2) For any n ≥ 1 and (a 1 , a 2 , • • • , a n ) ∈ N n , define I n (a 1 , a 2 , • • • , a n ) = x ∈ [0, 1) : a 1 (x) = a 1 , • • • , a n (x) = a n ,
which is the set of points beginning with (a 1 , • • • , a n ) in their continued fraction expansions, and is called a cylinder of order n. Note that p n and q n are determined by the first n partial quotients of x. So all points in I n (a 1 , • • • , a n ) determine the same p n and q n . Hence sometimes, we write

p n = p n (a 1 , • • • , a n ) and q n = q n (a 1 , • • • , a n ) to denote p n (x) and q n (x) for x ∈ I n (a 1 , • • • , a n ). Proposition 2.1 ([8]). For any n ≥ 1 and (a 1 , • • • , a n ) ∈ N n ,
let q n be given recursively by (2.1). The cylinder I n (a 1 , • • • , a n ) is an interval with the endpoints p n /q n and (p n + p n-1 )/(q n + q n-1 ). Then

1 2q 2 n ≤ I n (a 1 , • • • , a n ) = 1 q n (q n + q n-1 ) ≤ 1 q 2 n .
(2.3)

For each n ≥ 1, q n (a 1 , • • • , a n ) ≥ 2 (n-1)/2 and n k=1 a k ≤ q n (a 1 , • • • , a n ) ≤ 2 n n k=1 a k . (2.4)
Now we mention some known results concerning the dimension of sets in continued fractions. Let {s n } n≥1 be a sequence of integers and ℓ ≥ 2 be some fixed integer. Set

F({s n } ∞ n=1 ; ℓ) = x ∈ [0, 1) : s n ≤ a n (x) < ℓs n , for all n ≥ 1 . Lemma 2.2 ([3]). Under the assumption that 1 n n k=1 s k → ∞ as n → ∞, one has dim H F({s n } ∞ n=1 ; ℓ) = lim inf n→∞ log(s 1 s 2 • • • s n ) 2 log(s 1 s 2 • • • s n ) + log s n+1 . Lemma 2.3 ([3]). dim H x ∈ [0, 1) : lim sup n→∞ log q n (x) n = ∞ = 1 2 .
3. Proof of Theorem 1.1

Notice that E(ψ) = E( ψ) if ψ and ψ are equivalent. We can assume that ψ is increasing because of the following simple lemma.

Lemma 3.1. The set E(ψ) ∅ if and only if ψ is equivalent to an increasing function.

Proof. If E(ψ) is nonempty, take an x 0 ∈ E(ψ). Then put

ψ(n) = log a 1 (x 0 ) + • • • + log a n (x 0 )
for all n ≥ 1. Clearly ψ is increasing. The functions ψ and ψ are equivalent.

On the other hand, if ψ is increasing, we have a point x ∈ E(ψ) such that for each n ≥ 1 a n (x) = ⌊e ψ(n)-ψ(n-1)+1 ⌋.

Now we can proceed the proof of Theorem 1.1 with the assumption that ψ is increasing.

• Lower bound. Apply Lemma 2.2 to s n = ⌊e ψ(n)-ψ(n-1) ⌋ and ℓ = 2. Let 1) , for all n ≥ 1 which is subset of E(ψ). We get immediately that

F = x ∈ [0, 1) : e ψ(n)-ψ(n-1) ≤ a n (x) < 2 e ψ(n)-ψ(n-
dim H E(ψ) ≥ 1 1 + b .
• Upper bound. This is the main part of the proof. Let us first recall the method used in [START_REF] Fan | On Kintchine exponents and Lyapunov exponents of continued fractions[END_REF] under the extra condition that lim n→∞

ψ(n+1) ψ(n) = b ≥ 1.
Especially when b > 1, we constructed a set containing E(ψ) by posing precise restrictions on each partial quotients, namely

x ∈ [0, 1) : e L n ≤ a n (x) ≤ e M n , when n ≫ 1 , (3.1) 
where (with a small ǫ > 0)

L n = ψ(n) 1 + ǫ - ψ(n -1) 1 -ǫ and M n = ψ(n) 1 -ǫ - ψ(n -1) 1 + ǫ .
By a standard covering argument, together with lim n→∞ ψ(n+1) ψ(n) = b, we get the exact upper bound of the dimension of E(ψ). But as far as a general function ψ is concerned, the above argument fails. For example, take

ψ(n) = (k + 2)!, when k! ≤ n < (k + 1)!.
Then the set in (3.1) reads as

x ∈ [0, 1) :

e c 1 (k+2)! ≤ a n (x) ≤ e c 2 (k+2)! , when n = k!; 1 ≤ a n (x) ≤ e c 3 (k+2)! , when k! < n < (k + 1)!.
for suitably chosen constants c 1 , c 2 , c 3 . According to Lemma 2.2, this set has Hausdorff dimension ≥ 1/2. However, the dimension of E(ψ) is equal to zero by Theorem 1.1. Now we are going to prove the upper bound of dim H E(ψ) for a general function ψ. Since ψ is increasing, we always have b ≥ 1. We distinguish two cases: b = 1 and b > 1.

Case 1. b = 1. Lemma 2.3 serves for this case. According to the estimation (2.4), since ψ(n)/n → ∞ as n → ∞, we have

lim n→∞ log q n (x) ψ(n) = lim n→∞ log a 1 (x) + • • • + log a n (x) ψ(n) . Thus Lemma 2.3 gives us dim H E(ψ) ≤ 1 2 = 1 1 + b .
Case 2. b > 1. Fix an ǫ > 0. Choose a sequence of integers {n k } ∞ k=1 ⊂ N with n 1 large enough and for each k ≥ 1 one has

ψ(n k + 1) ≥ ψ(n k )b(1 -ǫ), n k ≤ ǫψ(n k ). (3.2) 
For each N ≥ 1, let

E N (ψ) = x ∈ [0, 1) : (1 -ǫ) < 1 ψ(n) n j=1 log a j (x) < (1 + ǫ), ∀ n ≥ N . Then E(ψ) ⊂ N≥1 E N (ψ).
To estimate the dimension of E N (ψ) for N ≥ 1, we proceed in three steps.

Step i. Find a cover of E N (ψ). For any n ≥ N, set

D n (ǫ) = (a 1 , • • • , a n ) ∈ N n : (1 -ǫ) < 1 ψ(n) n j=1 log a j < (1 + ǫ) . (3.3) For every (a 1 , • • • , a n ) ∈ D n (ǫ), we define D n+1 ǫ; (a 1 , • • • , a n ) = a n+1 ∈ N : (a 1 , • • • , a n , a n+1 ) ∈ D n+1 (ǫ) .
Clearly, by the definition of D n (ǫ), we have

E N (ψ) ⊂ ∞ n=N D n (ǫ), with D n (ǫ) = (a 1 ,••• ,a n )∈D n (ǫ) I n (a 1 , • • • , a n ). (3.4)
Now instead of considering the intersections in (3.4) from n = N until n = ∞, we only consider the intersection of two consecutive terms. Namely, for any n ≥ N,

E N (ψ) ⊂ D n (ǫ) ∩ D n+1 (ǫ) = (a 1 ,••• ,a n )∈D n (ǫ) J n (a 1 , • • • , a n ),
where

J n (a 1 , • • • , a n ) = a n+1 ∈D n+1 (ǫ;(a 1 ,••• ,a n )) I n+1 (a 1 , • • • , a n , a n+1 ).
Hence, for each n ≥ N, we get a cover of E N (ψ):

J n (a 1 , • • • , a n ) : (a 1 , • • • , a n ) ∈ D n (ǫ) . (3.5) 
Thus the s-dimensional Hausdorff measure of E N (ψ) can be estimated as

H s (E N (ψ)) ≤ lim inf n→∞ (a 1 ,••• ,a n )∈D n (ǫ) J n (a 1 , • • • , a n ) s . (3.6) 
As we shall see, J n (a 1 , • • • , a n ) is a union of cylinders of order (n + 1), say I n+1 (a 1 , • • • , a n , a n+1 ) with a taking large values (Lemma 3.3). Using this fact, the length of J n (a 1 , • • • , a n ) will be well estimated.

Step ii. Lengths of J n (a 1 , • • • , a n ). We begin with a fact on D n+1 (ǫ;

a 1 , • • • , a n ). Lemma 3.2. For each (a 1 , • • • , a n ) ∈ D n (ǫ), D n+1 ǫ; (a 1 , • • • , a n ) ∅.
Proof. This follows from the following simple constructions.

(a) If n j=1 log a j > (1 -ǫ)ψ(n + 1), we choose a n+1 = 1. (b) If n j=1 log a j ≤ (1 -ǫ)ψ(n + 1), we can choose a n+1 = e ψ(n+1) a 1 • • • a n .
Recall that the sequence of integers {n k } k≥1 is given in (3.2).

Lemma 3.3. For any (a 1 , • • • , a n k ) ∈ D n k (ǫ) and a n k +1 ∈ D n k +1 ǫ, (a 1 , • • • , a n k ) , we have log a n k +1 ≥ (1 -ǫ) b(1 -ǫ) 2 1 + ǫ -1 log q n k =: β log q n k , (3.7) 
Proof. By the definitions of D n (ǫ) and the first inequality in (3.2), for any

(a 1 , • • • , a n k ) ∈ D n k (ǫ) and a n k +1 ∈ D n k +1 ǫ, (a 1 , • • • , a n k ) , one has n k +1 j=1 log a j ≥ ψ(n k + 1)(1 -ǫ) ≥ ψ(n k )b(1 -ǫ) 2 ≥ b(1 -ǫ) 2 1 + ǫ n k j=1 log a j . (3.8) 
On the other hand, by (2.4) and the second inequality in (3.2), we get

q n k (a 1 , • • • , a n k ) ≤ 2 n k n k j=1 a j ≤         n k j=1 a j         1 1-ǫ .
(3.9)

Combining (3.8) and (3.9), we obtain the desired result. Now return back to the cover of E N (ψ) given in (3.5) especially when n = n k . We estimate the length of

J n k (a 1 , • • • , a n k ) for every (a 1 , • • • , a n k ) ∈ D n k (ǫ).
For n = n k , by (3.7) and Proposition 2.1, we have

J n (a 1 , • • • , a n ) ≤ a:a≥q β n a • p n + p n-1 a • q n + q n-1 - (a + 1)p n + p n-1 (a + 1)q n + q n-1 .
By (2.2), for all a ∈ N, the differences appearing in the series have the same sign depending only the parity of n. Thus the series is telescopic. Since (a+1)p n +p n-1

(a+1)q n +q n-1 tends to p n /q n as a → ∞, we get

J n (a 1 , • • • , a n ) ≤ q β n p n + p n-1 q β n q n + q n-1 - p n q n = 1 
(q β n q n + q n-1 )q n ≤ 1

q 2+β n .
Consider the liminf in (3.6) along the subsequence {n k } k≥1 , then we obtain

H s (E N (ψ)) ≤ lim inf k→∞ (a 1 ,••• ,a n k )∈D n k (ǫ) 1 q n k s (2+β) 
.

(3.10)

The last step is devoted to estimating the summation in (3.10) under a suitable choice of s.

Step iii. Bernoulli measures. A family of measures µ t defined on cylinders is constructed firstly. For each t > 1 and for any (a

1 , • • • , a n ) ∈ N n , set µ t (I n (a 1 , • • • , a n )) = e -nP(t)-t n j=1 log a j , (3.11) 
where e P(t) = ζ(t) = ∞ k=1 k -t . By Kolmogorov's consistency theorem, µ t can be extended into a probability measure on [0, 1). Fix ǫ > 0. By the assumption that lim n→∞ ψ(n)/n = ∞, one can choose some integer N(ǫ) ∈ N such that for all n ≥ N(ǫ),

nP 1 + ǫ 2 ≤ ǫ 2 (1 -ǫ)ψ(n). (3.12) 
We claim that for each n ≥ N(ǫ) and (a 

1 , • • • , a n ) ∈ D n , q n -(1+ǫ) ≤ µ (1+ǫ/2) I n (a 1 , • • • , a n ) . ( 3 
q n -(1+ǫ) ≤ e -(1+ǫ) n j=1 log a j ≤ e -nP(1+ ǫ 2 )-(1+ ǫ 2 ) n j=1 log a j .
Choose s = 1+ǫ 2+β in (3.10). By (3.13), we have

H 1+ǫ 2+β (E N (ψ)) ≤ lim inf k→∞ (a 1 ,••• ,a n k )∈D n k (ǫ) µ (1+ǫ/2) I n k (a 1 , • • • , a n k ) ≤ 1. Hence dim H E(ψ) ≤ sup N≥1 dim H E N (ψ) ≤ 1 + ǫ 2 + β .
Then the desired result follows by letting ǫ → 0. Then it is clear that

J β = ∞ N=1 ∞ n=N Jn (a 2 , • • • , a n ),
where the last union is taken over all (a 1 ,

• • • , a n ) ∈ N n . While J * β ⊂ ∞ N=1 ∞ n=N Jn (a 2 , • • • , a n ),
where the last union is taken over all (a 1 , • • • , a n ) ∈ N n with log q n n being sufficiently large. As a result, .

H s (J β ) ≤ lim inf N→∞ ∞ n=N (a 1 ,••• ,a n )∈N n 1 q n s(2+β)
By (2.3), we know that 

  Final remark: Now we give a remark on the dimension of J * β and that of J β . Recall that J * β and J β are defined in Section 1. For any (a 1 ,• • • , a n ) ∈ N n , we define Jn (a 1 , • • • , a n ) = a n+1 ≥q β n I n+1 (a 1 , • • • , a n , a n+1 ).

  1 ,••• ,a n )∈N n ,(log q n )

  Actually we have proven that dim H J * β = 1 2+β since E(ψ) can serve as a subset of J * β .

	While, by (3.13), we get				
			q n	-(1+ǫ) ≤ 1.	(3.16)
	a 1 ,••• ,a n :log q n /n large		
	Comparing of (3.15) and (3.16) reveals that	
	dim H J β ≤	2 2 + β	, dim H J * β ≤	1 2 + β	.
			q n	-2 ≤ 2.		(3.15)

1 ≤ a 1 ,••• ,a n ∈N n
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