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ABSTRACT

The detection and characterization of burst signals are chal-

lenging tasks for time-frequency analysis, due to their very

short duration. This paper investigates in this context the

recurrence plot analysis (RPA) method, from which it de-

rives the vector samples processing (VeSP) concept. The

paper shows that VeSP is a generic framework that unifies

signal processing concepts like histogram and autocorre-

lation, which it also generalizes and extends. Results of

VeSP based tools are provided, concerning detection of

transient signals, noise reduction, and frequency estima-

tion.

1. INTRODUCTION

Transient signals having a short time span are very com-

mon in signal processing applications. Telecommunica-

tions, reflectometry, ultrasonic testing, biomedical engi-

neering, as well as the study of marine mammals are only

some of the applications where transient signals play a

key role. The common feature of all these transients is

their short duration. Basically, any signal that we operate

with in practice is a transient one (due to its finite dura-

tion). But we call transients those signals whose lengths

are much shorter than the length of the entire signal being

observed. This characteristic is the reason why transient

signal detection and characterization are some challenging

tasks. That is, it is challenging to efficiently detect the time

intervals where transients are present, as well as to dis-

criminate between various types of transients. Although

time-frequency and time-scale tools offer interesting solu-

tions to these signal processing problems, new approaches

are being investigated in order to overcome the problems

raised by the small number of samples in the transients. It

was shown recently that the recurrence plot analysis (RPA)

method [1] offers promising results in transient signal de-

tection [2] and characterization [3]. The method [4, 5] is

basically based on turning the (scalar) signal into a (multi-

dimensional) trajectory, and then computing the recurrence

plot [6] and quantifying the recurrences [7].

This paper approaches the RPA methodology from a

signal processing point of view. The vector samples pro-

cessig (VeSP) concept is introduced in Section 2 and in

Section 3 two signal processing tools (i.e. the time-distribu-

ted histogram (TDH), and the average magnitude differ-

ence function (AMDF)) are formulated in terms of vector

samples. The use of VeSP based tools in transient signals

processing is discussed in Section 4. It addresses the prob-

lems of detection, noise reduction, and fundamental fre-

quency estimation. Section 5 provides results under noise

condtions and section 6 concludes the paper.

2. VECTOR SAMPLES PROCESSING (VESP)

The recurrence plot analysis method is based on building

a phase space trajectory by using succesive samples from

the time series to be studied [4]. (The operation is called

time-delay embedding and is based on Takens’ Theorem

[8, 9].) This phase space trajectory is composed of vectors

like ~vn = (s[n] , s[n + d], s[n + 2d], ..., s[n + (m − 1)d]),
where the elements s are taken from the time series, and m
(phase space dimension) and d (time delay) are some inte-

ger parameters. For a continuous-time signal, s(t), things

remain similar – see Figure 1. The phase space vectors are

computed as [5]:

~vt = (s(t), s(t + τ), ..., s(t + (m − 1)τ)) , (1)

with τ = d · Ts, where Ts is the sampling period. On each

of the m components of the vector ~vt we have the signal to

be analyzed, shifted in time with an integer multiple of the

time delay parameter, τ . We obtained this way the phase

space representation of the signal. Practically, the vector ~vt

contains some of the values of signal s, taken equidistantly

from the time interval [t, t+w], where w = (m−1)·τ , as it

can be seen in Figure 1. Therefore, the whole information

contained in ~vt can be found in the signal fragment located

between the time instants t and t + w.

Based on these considerations, we define the vector

samples version of signal s as:

s
(w)
i (t) = s(i + t) · Ww(i), (2)

where w is the length of the vector samples, and Ww is a

rectangular window defined as:

Ww(x) =

{

1, if x ∈ [−w/2, w/2]
0, otherwise

. (3)



Fig. 1. Illustration of phase space vectors building in RPA.

The m components of a phase space vector span a time

interval of length w.

We note that the i index has the same significance and

range of values as the t argument, i.e. time. In fact, s(w)

is a function of two arguments, t and i, but we put i as an

index in order to simplify notations.

After computing the phase space representation of the

time series, the next step in RPA consists in computing the

recurrence plot [6, 4]. This is done by comparing the dis-

tances between all possible pairs of phase space vectors.

Recurrences are identified when such distances are below

a certain threshold. In terms of vector samples, the mathe-

matical expression for the recurrence plot is:

R
(w,ρ)
l,c = Θ

(

ρ −D{s
(w)
i (l), s

(w)
i (c)}

)

, (4)

where Θ is the Heaviside step function, ρ is the recurrence

threshold, and D denotes a method for computing the dis-

tance between two vector samples. For instance, when

working with the Euclidean distance, D is defined as:

D{s
(w)
i (l), s

(w)
i (c)} =

∥

∥

∥
s
(w)
i (c) − s

(w)
i (l)

∥

∥

∥
, (5)

with the norm of a vector sample s
(w)
i (t) being defined as:

∥

∥

∥
s
(w)
i (t)

∥

∥

∥
=

√

< s
(w)
i (t), s

(w)
i (t) >

=

√

∫ +∞

−∞

s
(w)
i (t) · s

(w)
i (t)di. (6)

However, D can be virtually any operator that produces a

scalar value from two vector samples of the signal.

3. VESP BASED SIGNAL PROCESSING TOOLS

Starting from the recurrence plot defined in (4), several

measures can be obtained. Two such measures are shown

in Figure 2. The σc measure is obtained by computing the

normalized sum of the columns in R, while σd is obtained

by computing the normalized sum of the diagonals in R.

They will be detailed in the following two subsections.

Fig. 2. Obtaining the σc and σd VeSP measures from the

recurrence plot computed from signal vector samples of

length w.

3.1. Extended time-distributed histogram

We define the σc measure for the continuous-time signal s
as:

σ(w,ρ)
c (t) = lim

T∞→∞

1

2T∞

∫ +∞

−∞

R
(w,ρ)
l,t dl, (7)

where R(w,ρ) is the recurrence plot computed from signal

s using vector samples of length w and a threshold of ρ.

If s is a discrete-time signal of N samples, the previous

equation becomes:

σ(w,ρ)
c [n] =

1

N

N
∑

l=1

R
(w,ρ)
l,n . (8)

This equation is sketched in a graphical form in Figure 2.

Having in mind that σc[n] counts all recurrences around

the vector sample located at time instant n, it can be no-

ticed that when the vector sample s
(w)
i [n] is reduced to

the sample s[n] (that is, when w = 0), σ
(0,ρ)
c [n] contains

the (normalized) histogram of signal s, evaluated in s[n].
Hence, σc is an extension of the time-distributed histogram

of signal s (as we have already shown in [2]).

3.2. Extended average magnitude difference function

We define the σd measure for the continuous-time signal s
as:

σ
(w,ρ)
d (t) = lim

T∞→∞

1

2T∞

∫ +∞

−∞

R
(w,ρ)
l,l+t dl. (9)

If s is a dicrete-time signal of N samples, this equation

becomes:

σ
(w,ρ)
d [n] =

1

N − t

N−t
∑

l=1

R
(w,ρ)
l,l+n. (10)

Figure 2 sketches this equation in a graphical form.
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Fig. 3. The test signal: two sinusoidal bursts with different

amplitudes and frequencies.
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Fig. 4. (a) Spectrogram of the test signal. (b) Detection

curve obtained by taking the maximum frequency in the

spectrogram for each time instant.

When the vector sample s
(w)
i [n] in reduced to the sam-

ple s[n], the previous equation becomes:

σ
(0,ρ)
d [n] =

1

N − t

N−t
∑

l=1

Θ (ρ − |s[l + n] − s[n]|) . (11)

The similarity of this equation to the expression of the av-

erage magnitude difference function (AMDF) [10] is obvi-

ous. We recall that the AMDF for signal s is computed as

follows:

AMDF [n] =
1

N − n

N−n
∑

l=1

|s[l + n] − s[n]| . (12)

Equation (11) extends AMDF in (12) by binarizing the

differences using the threshold ρ, and Equation (10) fur-

ther extends it by replacing samples with vector samples

of length w.
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Fig. 5. Detection curve obtained for the test signal by com-

puting the VeSP measure σ̄c
(7,ρ0).
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Fig. 6. (a) Detection curve obtained by using σ̄c, after two

iterations. (b) Denoised signal obtained by multiplicating

the analyzed signal with the obtained detection curve, after

the second iteration.

4. TRANSIENT SIGNAL PROCESSING USING

VESP BASED TOOLS

Let us consider the test signal in Figure 3. It contains

two transients having different start times, durations, and

frequencies. This kind of signals may appear in various

applications (e.g. ultrasonic testing, telecommunications)

where the common point consists in emitting short burst

signals that propagate through a certain environment and

finally reach the receiver. Reflexions and multipath propa-

gation may lead to different delays and attenuations in the

received signal. Regardless of which is the exact applica-

tion, for a signal like the one in Figure 3 we are interested

in estimating the different parameters of the transients it

contains.

Figure 4 shows the solution offered by the spectrogram

to the problem of transients detection. It should be noted

that the quality of the results depends strongly on the size

of the analysis window. For obtaining the results shown

in the figure, we used a window size of 31 samples with

an overlapping of 30 samples. It can be noticed that the

obtained detection curve indicates quite well the positions

of the two transients. However, it is difficult to properly
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Fig. 7. The VeSP measure σd, computed for the two tran-

sients in the test signal.

choose a detection threshold, due to the low values ob-

tained for the second transient. The VeSP measure σc that

we introduced in the previous section offers a potential so-

lution to this problem, as Figure 5 shows. The detection

curve is obtained by taking the complement of σc, that is:

σ̄(w,ρ)
c [n] = 1 − σ(w,ρ)

c [n]. (13)

It detects the second transient very well, regardless of its

low amplitude. We used a value of 7 for the vector sam-

pling window (w), and for the ρ threshold we used the av-

erage distance between all the successive vector samples

of the signal, that is:

ρ0 =
1

N − 1

N−1
∑

l=1

∥

∥

∥
s
(w)
i [l + 1] − s

(w)
i [l]

∥

∥

∥
. (14)

However, the problem of choosing a detection threshold is

still not completely solved by σ̄c. Choosing a threshold

of 0.5 would not miss any of the two transients (unlike in

Figure 4.(b)), but would also generate some false positives.

The fact that the two transients are properly detected (i.e.

values close to 1 in the detection curve) suggests that the

detection curve in Figure 5 could be improved by multipli-

cating it with the original signal (thus reducing the noise)

and reiterating the computation of σ̄c. Figure 6.(a) shows

the detection curve obtained after only two such iterations.

It is much cleaner than the one in Figure 5. This holds true

also for the denoised signal (Figure 6.(b)).

In addition to detection, we might also be interested in

estimating the frequencies of the two transients. The VeSP

measure σd can be useful for this purpose, as Figure 7

shows. It can be noticed that σd has sharp equally spaced

maxima, and the distance between these maxima is the

fundamental period of the analyzed burst signal. Hence,

the estimation of this distance leads to an estimation of the

fundamental frequency.

5. RESULTS

Figure 8 shows in a compact form the behaviour under

noise conditions of the detection curves illustrated in Fig-

ures 4.(a) and 5. Each line in the three plots corresponds

to a certain signal-to-noise ratio, as indicated on the ver-

tical axis. The minimum values are represented in white,
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Fig. 8. (a) The test signal in Figure 3, for multiple signal-

to-noise ratios. (b) Detection curves obtained with the

spectrogram. (c) Detection curves obtained with σ̄c.

while the maximum values are represented in black. Addi-

tive white Gaussian noise was used, and the signal-to-noise

ratio was computed as:

SNR[dB] = 20 · log10

rms(S)

rms(N)
, (15)

where S is the signal, N is the noise, and rms(·) denotes

the root mean square.

When detection and denoising are applied iteratively as

discussed in the previous section, the results obtained after

the fourth iteration are those shown in Figure 9.

Finally, Figure 10 shows a comparative view on the re-

sults given by AMDF [10] and σd for the second transient

in the test signal in Figure 3. We note that AMDF is rep-

resented using white for large values and black for small

values, in order to facilitate the visual comparison with σd.

6. CONCLUSION

The results in the previous section show that vector sam-

ples based detection of transient signals performs better
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Fig. 9. (a) Detection curves obtained with σ̄c from the test

signals in Figure 8.(a), after four iterations. (b) Denoised

signals, obtained after four iterations.

than spectrogram based detection. Due to its characteris-

tics, the σ̄c measure can also be used to reduce noise in the

analyzed signal (by using point to point multiplications).

We also showed that improvements under noise conditions

can be obtained by recursively computing σ̄c from the de-

noised signal. We showed as well that the σd measure of-

fers cleaner results than the average magnitude difference

function.

Hence, the two vector samples processing measures

presented in this paper proved to be useful in tasks such

as transient signal detection, noise reduction, and funda-

mental frequency estimation. Further work could target a

method for choosing the optimum value for the vector sam-

pling window, as well as a deeper study on the influence of

the recurrence threshold. Another research direction could

explore various methods for defining the distance between

two vector samples. Besides that, new measures based on

vector samples computations could be explored as well.
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