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Introduction and statement of results

Let T : X → X be a continuous map on a compact metric space X. Let f 1 , • • • , f ℓ (ℓ ≥ 2) be ℓ bounded real-valued functions on X. The following multiple ergodic average

1 n n k=1 f 1 (T k x)f 2 (T 2k x) • • • f ℓ (T ℓk x)
is widely studied in ergodic theory by Furstenberg [START_REF] Furstenberg | Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions[END_REF], Bourgain [START_REF] Bourgain | Double recurrence and almost sure convergence[END_REF], Host and Kra [START_REF] Host | Nonconventional ergodic averages and nilmanifolds[END_REF], Bergelson, Host and Kra [START_REF] Bergelson | Multiple recurrence and nilsequences (with an appendix by I. Rusza)[END_REF] and others. Fan, Liao and Ma [START_REF] Fan | Level sets of multiple ergodic averages[END_REF] and Kifer [START_REF] Kifer | A nonconventional strong law of large numbers and fractal dimensions of some multiple recurrence sets[END_REF] have independently studied such multiple ergodic averages from the point of view of multifractal analysis. Later on, the multifractal analysis of multiple ergodic averages have attracted much attention. First works are done on symbolic spaces. Let m ≥ 2 be an integer and S = {0, • • • , m -1}. Consider the symbolic space Σ m = S N * endowed with the metric d(x, y) = m -min{n,xn =yn} , ∀x, y ∈ Σ m .

The first object of study was the Hausdorff dimension of the following level sets ( [START_REF] Fan | Level sets of multiple ergodic averages[END_REF])

E(α) = (x k ) ∞ k=1 ∈ Σ 2 : lim n→∞ 1 n n k=1 x k x 2k = α , α ∈ [0, 1].
More generally we may consider the Hausdorff spectrum of the following level sets of multiple ergodic averages

E ℓ ϕ (α) = (x k ) ∞ k=1 ∈ Σ m : lim n→∞ 1 n n k=1 ϕ(x k , x kq , • • • , x kq ℓ-1 ) = α , α ∈ R (1)
where q ≥ 2, ℓ ≥ 2 are integers and ϕ is a real-valued function defined on {0, • • • , m-1} ℓ . The level set E(α) then corresponds to the set E ℓ ϕ (α) with special choice q = 2, ℓ = 2 and ϕ(x, y) = xy. See the works of Kenyon, Peres and Solomyak [START_REF] Kenyon | Hausdorff dimension of the multiplicative golden mean shift[END_REF][START_REF] Kenyon | Hausdorff dimension for fractals invariant under the multiplicative integers[END_REF], Peres, Schmeling, Seuret and Solomayk [START_REF] Peres | Dimensions of some fractals defined via the semigroup generated by 2 and 3[END_REF] on some specific subsets of level sets E(α). See Peres and Solomyak [START_REF] Peres | Dimension spectrum for a nonconventional ergodic average[END_REF] for the multifractal analysis of E(α). Fan, Schmeling and Wu [START_REF] Fan | Multifractal analysis of multiple ergodic averages[END_REF][START_REF] Fan | Multifractal analysis of some multiple ergodic averages[END_REF] have considered a class of functions ϕ that are involved in [START_REF] Bergelson | Multiple recurrence and nilsequences (with an appendix by I. Rusza)[END_REF]. Fan, Schmeling and Wu [START_REF] Fan | Multifractal analysis of V-statistics[END_REF] have also considered some similar averages called V -statistics.

All of the above mentioned results concentrated on the full shift dynamical system (Σ m , σ) where the Lyapunov exponent of the shift transformation is constant. Recently, Liao and Rams [START_REF] Liao | Multifractal analysis of some multiple ergodic averages for the systems with non-constant Lyapunov exponents[END_REF] performed the multifractal analysis of a class of special multiple ergodic averages for some systems with non-constant Lyapunov exponents. More precisely, they considered a piecewise linear map T on the unit interval with two branches. Let I 0 , I 1 ⊂ [0, 1] be two intervals with disjoint interiors. Suppose that for each i ∈ {0, 1}, the restriction T : I i → [0, 1] is bijective and linear with slop e λi , λ i > 0. Let J T be the repeller of T , i.e.

J T := ∞ n=1 T -n [0, 1].
Then (J T , T ) becomes a dynamical system. As in [START_REF] Fan | Level sets of multiple ergodic averages[END_REF][START_REF] Fan | Multifractal analysis of multiple ergodic averages[END_REF][START_REF] Peres | Dimension spectrum for a nonconventional ergodic average[END_REF], Liao and Rams investigated the following sets

L(α) = x ∈ J T : lim n→∞ 1 n n k=1 1 I1 (T k x)1 I1 (T 2k x) = α (α ∈ [0, 1]).
By adapting the method of [START_REF] Peres | Dimension spectrum for a nonconventional ergodic average[END_REF], they obtained the Hausdorff spectrum of the above level sets L(α).

We point out that the methods used in [START_REF] Peres | Dimension spectrum for a nonconventional ergodic average[END_REF] and [START_REF] Liao | Multifractal analysis of some multiple ergodic averages for the systems with non-constant Lyapunov exponents[END_REF] seem inconvenient to be generalised to other IFSs with many branches and more general potentials ϕ. Some more adaptive methods are needed to generalise Liao-Rams' results. The aim of this paper is to use similar arguments as in [START_REF] Fan | Multifractal analysis of some multiple ergodic averages[END_REF] to extend Liao-Rams' results to the situation that we describe below.

Let [START_REF] Bergelson | Multiple recurrence and nilsequences (with an appendix by I. Rusza)[END_REF] be such that the restriction T |Ii is bijective and linear with slop e λi , λ i > 0 (0 ≤ i ≤ m -1). Denote by J T the repeller of T .

I 0 , • • • , I m-1 ⊂ [0, 1] be m intervals with disjoint interiors. Let T : ∪ m-1 i=0 I i → [0,
Let ℓ ≥ 2 be an integer, and ϕ be a function defined on [0, 1] ℓ taking real values. We assume that ϕ is locally constant in the sense that ϕ is constant on each hyperrectangle

I i1 × I i2 × • • • × I i ℓ (0 ≤ i 1 , i 2 , • • • , i ℓ ≤ m -1)
. With an abuse of notation, we write

ϕ(a 1 , a 2 , • • • , a ℓ ) = ϕ(i i , i 2 , • • • , i ℓ ) for all (a 1 , a 2 , • • • , a ℓ ) ∈ I i1 × I i2 × • • • × I i ℓ .
In this paper, we would like to study the following sets

L ϕ (α) := x ∈ J T : lim n→∞ 1 n ϕ(T k x, T kq x, • • • , T kq ℓ-1 x) = α , α ∈ R.
Our aim is to determine the Hausdorff dimension of L ϕ (α).

For simplicity of notations, we restrict ourselves to the case ℓ = 2 (the same arguments work for arbitrary ℓ ≥ 2 without any problem). For any s, r ∈ R, consider the non-linear transfer operator N (s,r) on R m + defined by

N (s,r) t i =   m-1 j=0 e sϕ(i,j)-rλj t j   1/q , (i = 0, • • • , m -1). ( 2 
)
for all t = (t j ) m-1 j=0 ∈ R m + . In [START_REF] Fan | Multifractal analysis of some multiple ergodic averages[END_REF], a family of similar operators N s (s ∈ R) was defined. Notice that the Lyapunov exponents λ j 's are now introduced in the definition of N (s,r) . It will be shown in Proposition 1 (see Section 2) that the equation N (s,r) t = t admits a unique strictly positive solution (t 0 (s, r), • • • , t m-1 (s, r)). We then define the pressure function by

P (s, r) = (q -1) log m-1 j=0 t j (s, r)e -rλj .
It will also be shown (Proposition 1) that P is real-analytic and convex, and even strictly convex if ϕ is not constant and the λ j 's are not all the same.

Let A and B be the infimum and the supremum respectively of the set

a ∈ R : ∃(s, r) ∈ R 2 such that ∂P ∂s (s, r) = a . Let D ϕ = {α ∈ R : L ϕ (α) = ∅} .
Our main result is as follows.

Theorem 1. Under the assumptions made above, we have

(i). We have D ϕ = [A, B].
(ii). For any α ∈ (A, B), there exists a unique solution (s(α), r(α)) ∈ R 2 to the system

P (s, r) = αs ∂P ∂s (s, r) = α. (3) 
Furthermore, s(α) and r(α) are real-analytic functions of α ∈ (A, B). (iii). The following limits exist: (iv). For any α ∈ [A, B], we have

dim H L ϕ (α) = r(α).
The paper is organized as follows. In Section 2, we first prove that the non-linear transfer operator N (s,r) admits a unique positive fixed point t(s, r) which is realanalytic and convex as a function of (s, r). Then we recall the class of telescopic product measures studied in [START_REF] Kenyon | Hausdorff dimension for fractals invariant under the multiplicative integers[END_REF][START_REF] Fan | Multifractal analysis of some multiple ergodic averages[END_REF]. From each fixed point t(s, r), we construct a special telescopic product measure, which will play the role of a Gibbs measure in our study of L ϕ (α). In Section 3, we study the local dimensions of the telescopic product measures defined by t(s, r) and the formula of their local dimensions will be given. Section 4 is devoted to the proof of (ii) of Theorem 1. The assertions (i), (iii) and (iv) of Theorem 1 are proven in Section 5.

2. Non-linear transfer equation and a class of special telescopic product measures.

Recall that S = {0, 1, • • • , m -1} and Σ m = S N * . For i ∈ S, let f i : [0, 1] → I i be the branches of T -1 . Define the coding map Π : Σ m → [0, 1] by Π((x k ) ∞ k=1 ) = lim n→∞ f x1 • f x2 • • • f xn (0).
Then we have Π(Σ m ) = J T . Define the subset E ϕ (α) of Σ m which was studied in [START_REF] Fan | Multifractal analysis of multiple ergodic averages[END_REF][START_REF] Fan | Multifractal analysis of some multiple ergodic averages[END_REF]:

E ϕ (α) := (x k ) ∞ k=1 ∈ Σ m : lim n→∞ 1 n n k=1 ϕ(x k , x kq ) = α .
Then with a difference of a countable set, we have L ϕ (α) = Π(E ϕ (α)).

In [START_REF] Fan | Multifractal analysis of multiple ergodic averages[END_REF][START_REF] Fan | Multifractal analysis of some multiple ergodic averages[END_REF], a family of Gibbs-type measures called telescopic product measures were used to compute the Hausdorff dimension of E ϕ (α). Here we construct a similar class of measures in order to determine the Hausdorff dimension of L ϕ (α). In the following, we suppose that ϕ is not constant (otherwise the problem is trivial) and that the λ j 's are not the same (otherwise the problem is reduced to the case considered in [START_REF] Fan | Multifractal analysis of multiple ergodic averages[END_REF][START_REF] Fan | Multifractal analysis of some multiple ergodic averages[END_REF]).

2.1. Non-linear transfer operator. In this subsection, we present some properties of the non-linear transfer operator N (s,r) , which will be used later.

Proposition 1. For any s, r ∈ R, the equation N (s,r) y = y admits a unique solution t(s, r) = (t 0 (s, r), • • • , t m-1 (s, r)) with strictly positive components, which can be obtained as the limit of the iteration N n (s,r) 1 =: t n (s, r), where 1 = (1, 1, • • • , 1). The functions t i (s, r) and the pressure function P (s, r) are real-analytic and strictly convex on R 2 .

Proof. [START_REF] Bergelson | Multiple recurrence and nilsequences (with an appendix by I. Rusza)[END_REF]. Existence and uniqueness of solution. Since e sϕ(i,j)+rλj > 0 for all 0 ≤ i, j ≤ m -1, the existence and uniqueness of solution are deduced directly from the following lemma.

Lemma 1. [7, Theorem 4.1] For any matrix A = (A(i, j)) 0≤i,j≤m-1 with strictly positive entries, there exists a unique fixed vector

x = (x 0 , • • • , x m-1 ) ∈ R m with strictly positive components to the operator N : R m + → R m + defined by ∀y ∈ R m + , (N y) i =   m-1 j=0 A(i, j)y j   1/q , (i = 0, • • • , m -1).
Furthermore, the fixed vector x can be obtained as x = lim n N n (1).

(2). Analyticity of (s, r) → t(s, r). This has been proven in [7, Proposition 4.2] for the case when all λ i 's are the same. We adapt the proof given there with minor modifications.

We consider the map G :

R 2 × R m + → R m defined by ∀z = (z 0 , • • • , z m-1 ) G((s, r), z) = (G i ((s, r), z)) m-1 i=0
, where

G i ((s, r), z) = z q i - m-1 j=0
e sϕ(i,j)-rλj z j .

It is clear that G is real-analytic. By Lemma 1, for any fixed (s, r) ∈ R 2 , t(s, r) is the unique positive vector satisfying G((s, r), t(s, r)) = 0.

By the Implicit Function Theorem, to prove the analyticity of (s, r) → t(s, r), we only need to show that the Jacobian matrix

M (s) = ∂G i ∂z j ((s, r), t(s, r)) 0≤i,j≤m-1
is invertible for all (s, r) ∈ R 2 . To this end, we consider the following matrix

M (s) = t j (s, r) ∂G i ∂z j ((s, r), t(s, r)) 0≤i,j≤m-1
, obtained by multiplying the j-th column of M (s) by t j (s, r) for each 0 ≤ j ≤ m -1.

Then det(M (s)) = 0 if and only if det( M (s)) = 0. So it suffices to prove that M (s) is invertible. We will show that M (s) is strictly diagonal dominating. Then by Gershgorin Circle Theorem (see e.g. [17, Theorem 1.4, page 6]), M (s) is invertible.

Recall that a matrix is said to be strictly diagonal dominating if for every row of the matrix, the modulus of the diagonal entry in the row is strictly larger than the sum of the modulus of all the other (non-diagonal) entries in that row. Now we are left to show that for any 0 ≤ i ≤ m -1,

t i (s, r) ∂G i ∂z i ((s, r), t(s, r)) - 0≤j≤m-1 i =j t j (s, r) ∂G i ∂z j ((s, r), t(s, r)) > 0. (4) 
In fact, we have

∂G i ∂z j ((s, r), t(s, r)) = qt q-1 i (s, r) -e sϕ(i,i)-rλi if j = i, e sϕ(i,j)+rλj otherwise.
Then, substituting the last expression into (4), we deduce that the left hand side of ( 4) is equal to

qt q i (s, r) - m-1 j=0
e sϕ(i,j)-rλj t j (s, r).

(

) 5 
By the fact that t(s, r) is the fixed vector of N (s,r) , ( 5) is equal to (q -1)t q i (s, r) which is strictly positive.

(3). Convexity of t(s, r) and P (s, r). When all λ i 's are the same, the convexity results of t(s, r) and P (s, r) have been proven in detail in Sections 4 and 5 of [START_REF] Fan | Multifractal analysis of some multiple ergodic averages[END_REF] by studying the operator N (s,r) . The main idea there is to prove by induction the convexity of each (s, r) → t n (s, r). Then the limit t(s, r) = lim n t n (s, r) is also convex. For the strictly convexity of t(s, r), one uses analyticity property and the fact that a convex analytic function is either strictly convex or linear.

We will omit the proofs which are elementary and are just minor modifications of those of [START_REF] Fan | Multifractal analysis of some multiple ergodic averages[END_REF]. One can refer to Sections 4, 5 and also 10 of [START_REF] Fan | Multifractal analysis of some multiple ergodic averages[END_REF].

To end this subsection, we give the following remark on the monotonicity of the function r → P (s, r).

Remark 1. Observe that for any fixed s ∈ R, the function r → N n (s,r) 1 is decreasing for all n. Thus for all 0 ≤ i ≤ m -1, the function r → t i (s, r) is also decreasing, and so is the function r → P (s, r).

2.2.

Construction of telescopic product measures and law of large numbers. An important tool for the study of the multiple ergodic average of ϕ, introduced in [START_REF] Kenyon | Hausdorff dimension of the multiplicative golden mean shift[END_REF][START_REF] Kenyon | Hausdorff dimension for fractals invariant under the multiplicative integers[END_REF] and used in [START_REF] Fan | Multifractal analysis of multiple ergodic averages[END_REF][START_REF] Fan | Multifractal analysis of some multiple ergodic averages[END_REF][START_REF] Peres | Dimension spectrum for a nonconventional ergodic average[END_REF][START_REF] Liao | Multifractal analysis of some multiple ergodic averages for the systems with non-constant Lyapunov exponents[END_REF], is the telescopic product measure. This class of measures will also be the main ingredient of our proofs concerning the estimate of Hausdorff dimension of L ϕ (α). Let us recall the definition of the telescopic product measure. Consider the following partition of N * :

N * = i≥1,q∤i Λ i with Λ i = {iq j } j≥0 .
Then we decompose Σ m as follows:

Σ m = i≥1,q∤i S Λi .
Let µ be a probability measure on Σ m . We consider µ as a measure on S Λi , which is identified with Σ m , for every i with q ∤ i. Let µ i be a copy of µ on S Λi and P µ = i≤n,q∤i µ i . More precisely, for any word u of length n we define

P µ ([u]) = i≤n,q∤i µ([u |Λ i ]),
where [u] denotes the cylinder set of all sequences starting with u and

u |Λ i = u i u iq • • • u iq j , iq j ≤ |u| < iq j+1 .
Below, we construct a special class of Markov measures whose initial laws and transition probabilities are determined by the fixed point (t i (s, r)) i∈S of the operator N (s,r) . The corresponding telescopic product measure will play a central role in the study of E ϕ (α).

Recall that (t i (s, r)) i∈S satisfies

t i (s, r) q = m-1 j=0
e sϕ(i,j)-rλj t j (s, r),

(i = 0, • • • , m -1).
The functions t i (s, r) allow us to define a Markov measure µ s,r with initial law π s,r = (π(i)) i∈S and probability transition matrix Q s,r = (p i,j ) S×S defined by

π(i) = t i (s, r)e -rλi t 0 (s, r)e rλ0 + • • • + t m-1 (s, r)e rλm-1 , p i,j = e sϕ(i,j)-rλj t j (s, r) t i (s, r) q . ( 6 
)
We denote by P s,r the telescopic product measure associated to µ s,r . Recall that Π is the coding map from Σ m to [0, 1]. Define

ν s,r = Π * P s,r = P s,r • Π -1 .
We will use the following law of large numbers which is proved in [START_REF] Fan | Multifractal analysis of some multiple ergodic averages[END_REF].

Theorem 2 (Theorem 2.6 in [START_REF] Fan | Multifractal analysis of some multiple ergodic averages[END_REF]). Let µ be any probability measure on Σ m and let F be a real-valued function defined on S × S. For P µ a.e. x ∈ Σ m we have

lim n→∞ 1 n n k=1 F (x k , x kq ) = (q -1) 2 ∞ k=1 1 q k+1 k-1 j=0 E µ F (x j , x j+1 ).

Local dimension of ν s,r

For a Borel measure µ on a metric space X, the lower local dimension of µ at a point x ∈ X is defined by D(µ, x) := lim inf r→0 log µ(B(x, r)) log r .

If the limit exists, then the limit will be called the local dimension of µ at x, and denoted by D(µ, x).

In this section, we study the local dimension of ν s,r . The main results of this section are Propositions 3, 4, and 5. Proposition 3 gives estimates of the local dimensions of ν s,r on the level set L ϕ (α). Proposition 4 proves that ν s,r is supported on L ϕ ( ∂P ∂s (s, r)). In Proposition 5, it is shown that ν s,r is exact dimensional, i.e., the local dimension of ν s,r exists and is constant almost surely. The exact formula of this constant is given as well.

We first give an explicit relation between the mass P s,r ([x n 1 ]) and the multiple ergodic sum n j=1 ϕ(x j , x qj ). For x ∈ Σ m , define

B n (x) = n j=1 log t xj (s, r).
Proposition 2. We have

log P s,r ([x n 1 ]) = s ⌊ n q ⌋ j=1 ϕ(x j , x jq ) -(n -⌊ n q ⌋) P (s, r) q -1 -r n j=1 λ xj -qB ⌊ n q ⌋ (x) + B n (x). Proof. For q ∤ i, let Λ i (n) = Λ i ∩ [1, n].
By the definition of P s,r , we have

-log P s,r [x n 1 ] = - q∤i,i≤n log µ s,r [x n 1 | Λi(n) ]. We classify Λ i (n) (q ∤ i, i ≤ n) according to their length |Λ i (n)|. We have min q∤i,i≤n |Λ i (n)| = 1 and max q∤i,i≤n |Λ i (n)| = ⌊log q n⌋. Observe that |Λ i (n)| = k if and only if n q k < i ≤ n q k-1 . So -log P s,r [x n 1 ] = - ⌊log q n⌋ k=1 n q k <i≤ n q k-1 ,q∤i log µ s,r [x n 1 | Λi(n) ]. ( 7 
)
Denote t ∅ (s, r) := j∈S t j (s, r)e -rλj . For simplicity, we also write t ∅ and t j for t ∅ (s, r) and t j (s, r) and keep their dependences on s and r in mind.

By the definition of µ s,r , for i with n q k < i ≤ n q k-1 , we have

log µ s,r [x n 1 | Λi(n) ] = log t xi e -rλx i t ∅ + k-1 j=1 log e sϕ(x iq j-1 ,x iq j )-rλx iq j t x iq j t q x iq j-1 = sS n,i ϕ(x) -(q -1)S n,i t(x) + log t x iq k-1 -rS n,i λ(x) -log t ∅ , where S n,i ϕ(x) = k-1 j=1 ϕ(x iq j-1 , x iq j ), S n,i t(x) = k-1 j=1 log t x iq j-1 and S n,i λ(x) = j∈Λi(n) λ xj .
Substituting the above expressions in [START_REF] Fan | Multifractal analysis of some multiple ergodic averages[END_REF] and noticing that n q k < i

≤ n q k-1 is equivalent to n q < iq k-1 ≤ n, we obtain log P s,r [x n 1 ] = s q∤i,i≤n S n,i ϕ(x) -(q -1) q∤i,i≤n S n,i t(x) + n q ≤ℓ<n log t x ℓ -r q∤i,i≤n S n,i λ(x) -♯{q ∤ i, i ≤ n} log t ∅ = s ⌊ n q ⌋ j=1 ϕ(x j , x jq ) -(q -1) ⌊ n q ⌋ j=1 log t xj + n ℓ=⌊ n q ⌋+1 log t x ℓ -r n j=1 λ xj -(n -⌊ n q ⌋) log t ∅ .
We then end the proof by observing that (q -1) log t ∅ (s, r) = P (s, r) and -(q -1)

⌊ n q ⌋ j=1 log t xj + n ℓ=⌊ n q ⌋+1 log t x ℓ = -qB ⌊ n q ⌋ (x) + B n (x).

3.1.

Local dimensions of ν s,r on level sets. As an application of Proposition 2, we obtain an upper bound for the local dimension of ν s,r on L ϕ (α) in Proposition 3 below. The following elementary result will be useful for the estimates of local dimension of ν s,r .

Lemma 2. Let (a n ) n≥1 be a bounded sequence of non-negative real numbers. Then

lim inf n→∞ a ⌊ n q ⌋ -a n ≤ 0. Proof. Let b l = a q l-1 -a q l for l ∈ N * . Then the boundedness implies lim l→∞ b 1 + • • • + b l l = lim l→∞ a 1 -a q l l = 0.
This in turn implies lim inf l→∞ b l ≤ 0. Thus lim inf

l→∞ a ⌊ n q ⌋ -a n ≤ lim inf l→∞ b l ≤ 0.
Proposition 3. For any x ∈ E ϕ (α), we have

lim inf n log ν s,r (Π[x n 1 ]) log |Π[x n 1 ]| ≤ r + lim sup n P (s, r)/q -αs/q ( n j=1 λ xj )/n . Proof. Since ν s,r (Π[x n 1 ]) = P s,r ([x n 1 ]
), by Proposition 2 we can write log ν s,r (Π[x n 1 ]) as

s ⌊ n q ⌋ j=1 ϕ(x j , x jq ) -(n -⌊ n q ⌋) P (s, r) q -1 -r n j=1 λ xj -qB ⌊ n q ⌋ (x) + B n (x).
On the other hand, log

|Π[x n 1 ]| = - n j=1 λ xj . Thus, for x ∈ E ϕ (α) lim inf n log ν s,r (Π[x n 1 ]) log |Π[x n 1 ]| ≤ lim sup n P (s, r)/q -αs/q ( n j=1 λ xj )/n + r + lim inf n q n B ⌊ n q ⌋ (x) -1 n B n (x) ( n j=1 λ xj )/n .
Then, we end the proof by applying Lemma 2 to the sequence 1 n B n (x): Then λ(x) ∈ [λ min , λ max ] and lim sup n P (s, r)/qαs/q ( n j=1 λ xj )/n = P (s, r)/qαs/q λ(x) .

lim inf n q n B ⌊ n q ⌋ (x) - 1 n B n (x) ≤ 0.
So we deduce from Proposition 3 that for any x ∈ L ϕ (α)

D(ν s,r , x) ≤ r + P (s, r)/q -αs/q λ(x) , (s, r) ∈ R 2 . ( 8 
)
We have estimated the local dimension of ν s,r on the level set L ϕ (α). In the following proposition we show that ν s,r is supported on L ϕ ( ∂P ∂s (s, r)). Proposition 4. For P s,r -a.e. x = (x i ) ∞ i=1 ∈ Σ m , we have

lim n→∞ 1 n n k=1 ϕ(x k , x kq ) = ∂P ∂s (s, r). (9) 
In particular, ν s,r L ϕ ∂P ∂s (s, r) = 1.

Proof. We first prove the statement [START_REF] Furstenberg | Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions[END_REF]. By Theorem 2, we have for P s,r -a.e.

x ∈ Σ m lim n→∞ 1 n n k=1 ϕ(x k , x kq ) = (q -1) 2 ∞ k=1 1 q k+1 k-1 h=0 E µs,r ϕ(x h , x h+1 ). ( 10 
)
Thus we only need to prove that the right hand side of (10) equals to ∂P ∂s (s, r). Observe that E µs,r ϕ(x h , x h+1 ) can be expressed as

πQ h Q(1), with π = t i (s, r)e -rλi t ∅ (s, r) i∈S , Q = e sϕ(i,j)-rλj t j (s, r) t i (s, r) q (i,j)∈S×S
and Q = e sϕ(i,j)-rλj ϕ(i, j) t j (s, r) t q i (s, r) (i,j)∈S×S .

Recall that (t i (s, r)) i is the fixed point of N s,r :

t q i (s, r) = m-1 j=0
e sϕ(i,j)-rλj t j (s, r), (i, j) ∈ S × S.

Taking the derivative with respect to s of both sides of (11), we get

qt q-1 i (s) ∂t i ∂s (s, r) = m-1 j=0
e sϕ(i,j)-rλj ϕ(i, j)t j (s, r) + e sϕ(i,j) ∂t j ∂s (s, r) .

Dividing both sides of the above equation by t q i (s, r), we obtain m-1 j=0 e sϕ(i,j)-rλj ϕ(i, j) t j (s, r) t q i (s, r)

= q ∂ti ∂s (s, r) t i (s, r) - m-1 j=0
e sϕ(i,j) ∂tj ∂s (s, r) t q i (s, r)

. ( 12 
)
Let w and v be two vectors defined by

w = q ∂t0 ∂s (s, r) t 0 (s) , . . . , ∂tm-1 ∂s (s, r) t m-1 (s) t and v =   m-1 j=0
e sϕ(0,j) ∂tj ∂s (s, r) t q 0 (s)

, . . . , m-1 j=0 e sϕ(m-1,j) ∂tj ∂s (s, r) t q m-1 (s)   .
Then, by ( 12), we have

Q(1) = w -v.
Observe that Qw = qv, so

k-1 h=0 πQ h Q(1) = k-1 h=0 πQ h (w -v) = πw + q k-1 h=1 πQ h-1 v - k-1 h=0 πQ h v = πw + qS k-1 -S k , (13) 
where we denote S k = k-1 h=0 πQ h v for k ≥ 1 and S 0 = 0. Denote by α(s) the right hand side of [START_REF] Host | Nonconventional ergodic averages and nilmanifolds[END_REF]. Observe that S k /q k → 0 when k → ∞. Substituting ( 13) in [START_REF] Host | Nonconventional ergodic averages and nilmanifolds[END_REF], we obtain

α(s) = (q -1) 2 ∞ k=1 1 q k+1 (πw + qS k-1 -S k ) = (q -1) 2 ∞ k=1 1 q k+1 πw = q -1 q πw = (q -1) m-1 j=0 ∂tj ∂s (s, r)e -rλj t ∅ (s, r) = ∂P ∂s (s, r).
Now we show that ν s,r L ϕ ∂P ∂s (s, r) = 1. The formula [START_REF] Furstenberg | Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions[END_REF] implies

P s,r E ϕ ( ∂P ∂s (s, r)) = 1.
Hence

ν s,r L ϕ ∂P ∂s (s, r) = P s,r Π -1 L ϕ ∂P ∂s (s, r) = P s,r E ϕ ∂P ∂s (s, r) = 1.
Let λ(s, r) be the expected limit with respect to P s,r of the average of the Lyapunov exponents

1 n n k=1 λ ω k with ω ∈ Σ m . By Theorem 2, we have λ(s, r) = (q -1) 2 ∞ k=1 1 q k+1 k-1 j=0 E µs,r λ ωj .
As an application of Proposition 4, we show that the measure ν s,r is exact dimensional and we have the following formula for its dimension.

Proposition 5. For ν s,r -a.e. x we have D(ν s,r , x) = r + P (s, r)s ∂P ∂s (s, r) qλ(s, r) .

Proof. We only need to show that for P s,r -a.e. y ∈ Σ m lim

n→∞ log P s,r ([y n 1 ]) log |Π([y n 1 ])| = r + P (s, r) -s ∂P ∂s (s, r) qλ(s, r) . ( 14 
)
Since |Π([y n 1 ])| = e -n k=1 λy k , from the discussion preceding Proposition 5, we get for P s,r -a.e. y

lim n→∞ log |Π([y n 1 ])| n = -λ(s, r). (15) 
On the other hand, by Theorem 2, Proposition 2 and Proposition 4, we have for P s,r -a.e. y lim

n→∞ log P s,r ([y n 1 ]) n = s q ∂P ∂s (s, r) - 1 q P (s, r) -rλ(s, r). (16) 
Combining ( 15) and ( 16), we get (14).

4. Further properties of the pressure function and study of the system (3)

The main result of this section is Proposition 6 below on the solution of the system (3).

We will use the following lemma concerning the range of the partial derivatives of P (s, r). Recall that (A, B) = ∂P ∂s (s, r) : (s, r) ∈ R 2 . Lemma 3. For any r ∈ R, we have

∂P ∂s (s, r) : s ∈ R = (A, B) Proof. Fix r 0 ∈ R. Since s → P (s, r) is convex, It suffices to show that lim s→+∞ ∂P ∂s (s, r 0 ) = B and lim s→-∞ ∂P ∂s (s, r 0 ) = A.
We only give the proof for the case when s goes to +∞. The case for s tending to -∞ is similar. The proof will be done by contradiction. Suppose that there exists ǫ > 0 such that ∂P ∂s (s, r 0 ) ≤ Bǫ for all s ∈ R.

By the Mean Value Theorem, for any s > 0, we have

P (s, r 0 ) -P (0, r 0 ) ≤ s(B -ǫ). (17) 
By the definition of B, there exists (s

′ , r ′ ) ∈ R 2 such that ∂P ∂s (s ′ , r ′ ) = B -ǫ/2. By Proposition 4, ν s ′ ,r ′ (L ϕ (B -ǫ/2)) = 1, so L ϕ (B -ǫ/2) = ∅. Let x ∈ L ϕ (B -ǫ/2).
By Proposition 3 and Remark 2, we have D(ν s,r0 , x) ≤ r 0 + P (s, r 0 )/q -(Bǫ/2)s/q λ(x) .

Substituting [START_REF] Varga | Geršgorin and his circles[END_REF] in the above inequality, we get D(ν s,r0 , x) ≤ r 0 + P (0, r 0 )/qǫs/2q λ(x) .

Since λ(x) ∈ [λ min , λ max ], the second term in the right hand side of the above inequality tends to -∞ when s → +∞. So, for s large enough we must have D(ν s,r0 , x) < 0. But this is impossible since ν s,r0 is a probability measure. Thus, we conclude that lim s→+∞ ∂P ∂s (s, r 0 ) = B. Proposition 6. For any α ∈ (A, B), there exists a unique solution (s(α), r(α)) ∈ R 2 to the system

P (s, r) = αs ∂P ∂s (s, r) = α, (18) 
Moreover the functions s(α), r(α) are analytic on (A, B).

Proof. 1). Existence and uniqueness of the solution (s(α), r(α)). Fix α ∈ (A, B). By Lemma 3 and the strict convexity of s → P (s, r), for any r ∈ R, there exists a unique s = s(α, r) ∈ R such that

∂P ∂s (s(α, r), r) = α. (19) 
In the following, we will show that there exists a unique solution r = r(α) ∈ R to the equation P (s(α, r), r) = αs(α, r).

Set h(r) := P (s(α, r), r)αs(α, r). By (19)

h ′ (r) = ∂P ∂s (s(α, r), r) ∂s(α, r) ∂r + ∂P ∂r (s(α, r), r) -α ∂s(α, r) ∂r = ∂P ∂r (s(α, r), r).
For fixed s the function r → P (s, r) is strictly decreasing, since it is strictly convex and decreasing (Remark 1). So ∂P ∂r (s(α, r), r) < 0 and thus h(r) is also strictly decreasing. For the rest of the proof, we only need to show lim r→+∞ h(r) < 0 and lim r→-∞ h(r) > 0, then we conclude by applying the Intermediate Value Theorem.

By Proposition 5, we have dim ν s(α,r),r = r + P (s(α, r), r)s(α, r)α qλ(s(α, r), r) .

Observe that for any r ∈ R, we have always 0 ≤ dim ν s(α,r),r ≤ 1 and 0 < λ min ≤ λ(s(α, r), r) ≤ λ max . So we have lim r→+∞ h(r) = lim r→+∞ dim ν s(α,r),rr qλ(s(α, r), r) < 0.

Similarly, lim

r→-∞ h(r) > 0.

2). Analyticity of (s(α), r(α)). Consider the map Proof. By (8) and the equality P (s(α), r(α)) = αs(α), we have D(ν s(α),r(α) , x) ≤ r(α) for all x ∈ L ϕ (α).

F = F 1 F 2 = P (s,
Then Lemma 4 implies that dim H L ϕ (α) ≤ r(α).

By Proposition 4 and the equality ∂P ∂s (s(α), r(α)) = αs(α), we know that ν s(α),r(α) (L ϕ (α)) = 1.

On the other hand, by Proposition 5, D(ν s(α),r(α) , x) = r(α) for ν s(α),r(α) -a.e. x.

Applying Lemma 4 again, we obtain dim H L ϕ (α) ≥ r(α). Proof. We prove it by contradiction. Suppose that L ϕ (α) = ∅ for some α > B. Let x ∈ L ϕ (α). Then by [START_REF] Fan | Multifractal analysis of V-statistics[END_REF] and taking r = 0, we have

D(ν s,0 , x) ≤ P (s, 0) -αs q λ(x) for all s ∈ R. ( 20 
)
On the other hand, by the mean value theorem, we have

P (s, 0) -αs = ∂P ∂s (η s , 0)s -αs + P (0, 0) (21) 
for some real number η s between 0 and s. In the following, we suppose that s > 0. Substituting ( 21) in (20), we get D(ν s,0 , x) ≤ ∂P ∂s (η s , 0)sαs + P (0, 0) q λ(x) ≤ (Bα)s + P (0, 0) q λ(x) .

Since B -α < 0 and λ(x) ∈ [λ min , λ max ], the last term in the above inequalities tend to -∞ when s → +∞. But this is impossible since we have always D(ν s,0 , x) ≥ 0. Thus we must have L ϕ (α) = ∅ for any α > B. Similarly we can also prove that L ϕ (α) = ∅ for any α < A.

As we will show, we actually have the equality {α : L ϕ (α) = ∅} = [A, B] (see Theorem 4). 

(ii). If

α = A or B, then L ϕ (α) = ∅ and dim H L ϕ (α) = r(α).
We will give the proof of Theorem 4 for the case α = A, the proof for α = B is similar.

5.3.1.

Accumulation points of µ s(α),r(α) when α tends to A. As all components of the vector π s,r and the matrix Q s,r (see formula [START_REF] Fan | Multifractal analysis of multiple ergodic averages[END_REF]) are non-negative and bounded by 1, the set {(π s(α),r(α) , Q s(α),r(α) ), α ∈ (A, B)} is precompact. So there exists a sequence (α n ) n ∈ (A, B) with lim n α n = A such that the limits lim n→∞ π s(αn),r(αn) , lim n→∞ Q s(αn),r(αn) exist. Using these limits as initial law and transition probability, we construct a Markov measure which we denote by µ ∞ . It is clear that the Markov measure µ s(αn),r(αn) corresponding to π s(αn),r(αn) and Q s(αn),r(αn) converges to µ ∞ with respect to the weak-star topology. We denote by P ∞ the telescopic product measure associated to µ ∞ and set ν

∞ := P ∞ • Π -1 . Proposition 8. We have ν ∞ (L ϕ (A)) = 1. In particular, L ϕ (A) = ∅. Proof. Since ν ∞ (L ϕ (A)) = P ∞ (E ϕ (A)), we only need to show that P ∞ (E ϕ (A)) = 1, i.e., for P ∞ -a.e. x ∈ Σ m we have lim n→∞ 1 n n k=1 ϕ(x k , x kq ) = A.
By Theorem 2, for P ∞ -a.e. x ∈ Σ m the limit in the left hand side of the above equation equals M (µ ∞ ) where M is the functional on the space of probability measures defined by

M (ν) = (q -1) 2 ∞ k=1 1 q k+1 k-1 j=0 E ν ϕ(x j , x j+1 ).
The function ν → M (ν) is continuous, since the above series converges uniformly on ν and the function ν → E ν ϕ(x j , x j+1 ) is continuous for all j. Since µ s(αn),r(αn) converges to µ ∞ when n → ∞, we have that lim n→∞ M (µ s(αn),r(αn) ) = M (µ ∞ ).

Recall that the vector (s(α), r(α)) satisfies ∂P ∂s (s(α), r(α)) = α. By Proposition 4, we know that M (µ s(αn),r(αn

) ) = α n . So M (µ ∞ ) = lim n→∞ α n = A.
From Theorem 3, we know that for each α ∈ (A, B), r(α) = dim H L ϕ (α) ∈ [0, 1]. So, in particular the set {r(α) : α ∈ (A, B)} is bounded.

We have the following formula for dim H ν ∞ .

Proposition 9. The limit r(A) := lim n r(α n ) exists and we have dim ν ∞ = r(A).

Proof. Let (α n k ) k be any subsequence of (α n ) n such that the the limit lim k r(α n k ) exists. We will show that this limit is equal to dim ν ∞ . The measure ν ∞ is exact dimensional and its dimension is given by

dim ν ∞ = dim(P ∞ ) λ(P ∞ ) ,
where dim(P ∞ ) is the a.e. local dimension of P ∞ and λ(P ∞ ) is the expected limit with respect to P ∞ of the average of the Lyapunov exponents 1 where we have used Theorem 3 for the last equality. Since the subsequence (α n k ) k is arbitrary, we deduce that the limit r(A) := lim n r(α n ) exists and dim ν ∞ = r(A).

In the proof of Theorem 4, we will use the following lemma. Recall that for α ∈ (A, B), the vector (s(α), r(α)) is the unique solution of the equation (18). We have inf D ′ ≥ A ′ > A. For any α < A ′ , we have ∂P ∂s (s(α), r(α)) = α < A ′ ≤ ∂P ∂s (0, r(α)).

Using again the fact that the function s → ∂P ∂s (s, r) is strictly increasing, we get s(α) < 0 for α ∈ (A, A ′ ). exist. With a same proof of Proposition 9, we can show that the limit lim k r(β n k ) exists and equals to dim ν ∞ . Thus, we deduce that the limit lim α→A r(α) exists and equals to dim ν ∞ .

(2). We will show that dim H L ϕ (A) = r(A).

By Proposition 8 and 9 and Lemma 4, we get dim H L ϕ (A) ≥ r(A).

We now show the reverse inequality. By [START_REF] Fan | Multifractal analysis of V-statistics[END_REF] and again Lemma 4, we obtain dim H L ϕ (A) ≤ r + P (s, r) -As q λ(x) for any (s, r) ∈ R 2 .

Note that λ(x) ∈ [λ min , λ max ], so in particular λ(x) > 0. For any α ∈ (A, A ′ ), we have P (s(α), r(α)) -As(α) = P (s(α), r(α))αs(α) + (α -A)s(α) = (α -A)s(α) < 0, where for the second equality we have used the fact that P (s(α), r(α)) = αs(α) and the last inequality follows from Lemma 5. Thus, we deduce that dim H L ϕ (A) ≤ r(α) for all α ∈ (A, A ′ ].

Since α n → A and r(α n ) → r(A), we have dim H L ϕ (A) ≤ lim n→∞ r(α n ) = r(A).

  r(A) := lim α↓A r(α), r(B) := lim α↑B r(α).

Remark 2 .

 2 Denote λ min = min i λ i and λ max = max i λ i . Let λ(x) := lim inf

5 . 1 5. 1 .Theorem 3 .

 5113 r)αs ∂P ∂s (s, r)α .The jacobian matrix of F is equal to (F ))| s=s(α),r=r(α) = -Implicit Function Theorem, s(α) and r(α) are analytic. Proof of Theorem Computation of dim H L ϕ (α) for α ∈ (A, B). We will use the following Billingsley Lemma.Lemma 4 (see e.g. Proposition 4.9. in[START_REF] Falconer | Fractal geometry -Mathematical foundations and applications[END_REF]). Let E ⊂ Σ m be a Borel set and let µ be a finite Borel measure on Σ m .(i) If µ(E) > 0 and D(µ, x) ≥ d for µ-a.e x, then dim H (E) ≥ d; (ii) If D(µ, x) ≤ d for all x ∈ E, then dim H (E) ≤ d.For any α ∈ (A, B), we have dim H L ϕ (α) = r(α).

5. 2 .Proposition 7 .

 27 Range of {α : L ϕ (α) = ∅}. We have {α : L ϕ (α) = ∅} ⊂ [A, B].

5. 3 .

 3 Computation of dim H L ϕ (A) and dim H L ϕ (B). Now, we consider the level set L ϕ (α) when α = A or B. The aim of this subsection is to prove the following theorem. Theorem 4. (i). The following limits exist: r(A) := lim α→A r(α), r(B) := lim α→B r(α).

E

  k with ω ∈ Σ m , i.e., λ(P ∞ ) = (q -1) µ∞ λ ωj .By similar arguments as used in the proof of Proposition 8, we can show that the functions µ → dim(P µ ), µ → λ(P µ ) are continuous on the space of probability measures. Thus, we deduce that dim ν ∞ = lim k→∞ dim(P µ s(αn k ),r(αn k ) ) λ(P µ s(αn k ),r(αn k ) ) = lim k→∞ dim ν s(αn k ),r(αn k ) = lim k→∞ r(α n k ),

Lemma 5 .

 5 There exists A ′ ∈ (A, B) such thats(α) < 0 for α ∈ (A, A ′ ). Proof. Let D := ∂P ∂s (0, r) : r ∈ [0, 1] .Then D is a compact set of R. Since for any r ∈ R the function s → ∂P ∂s (s, r) is strictly increasing and inf s∈R ∂P ∂s (s, r) = A (Lemma 3), we get ∂P ∂s (0, r) > A for all r ∈ R. Thus we have A ′ := min{D} > A. Now, we consider the following subset of D: D ′ := ∂P ∂s (0, r(α)) : α ∈ (A, B) .

  Now, we can give the proof of Theorem 4. Proof of Theorem 4. (1). Fix any sequence (β n ) n ∈ (A, B) with lim n β n = A. Then there exists a subsequence (β n k ) k of (β n ) n such that the limits lim k→∞ π s(βn k ),r(βn k ) , lim k→∞ Q s(βn k ),r(βn k )
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