
HAL Id: hal-00723253
https://hal.science/hal-00723253v1

Preprint submitted on 8 Aug 2012 (v1), last revised 28 Jan 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multifractal analysis of some multiple ergodic averages
in linear Cookie-Cutter dynamical systems

Ai-Hua Fan, Lingmin Liao, Meng Wu

To cite this version:
Ai-Hua Fan, Lingmin Liao, Meng Wu. Multifractal analysis of some multiple ergodic averages in linear
Cookie-Cutter dynamical systems. 2012. �hal-00723253v1�

https://hal.science/hal-00723253v1
https://hal.archives-ouvertes.fr


MULTIFRACTAL ANALYSIS OF SOME MULTIPLE ERGODIC

AVERAGES IN LINEAR COOKIE-CUTTER DYNAMICAL

SYSTEMS

AI-HUA FAN, LINGMIN LIAO AND MENG WU

Abstract. In this Note, we study the multiple ergodic averages of a locally
constant real-valued function in linear Cookie-Cutter dynamical systems. The
multifractal spectrum of these multiple ergodic averages is completely deter-
mined.

§1. Introduction and statement of results

Consider a piecewise linear map T on the unit interval with m branches (m ≥ 2).
Let I0, · · · , Im−1 ⊂ [0, 1] be m closed intervals with disjoint interiors. Suppose that
on each interval Ii, the restriction T : Ii → [0, 1] is bijective and linear with slop
eλi (λi > 0). Let JT :=

⋂∞

n=1 T
−n[0, 1] be the corresponding Cookie-Cutter set.

We will study the dynamical system (JT , T ). Let ℓ ≥ 2 be an integer and let ϕ be
a real-valued function defined on [0, 1]ℓ. Let q ≥ 2 be an integer. We would like to
calculate the Hausdorff dimensions of the following level sets

Lϕ(α) :=

{

x ∈ JT : lim
n→∞

1

n

n
∑

k=1

ϕ(T kx, T qkx, · · · , T qℓ−1kx) = α

}

(α ∈ R). (1)

If ϕ = g1 ⊗ · · · ⊗ gℓ is a tensor product of ℓ real-valued functions, the averages
in (1) is nothing but the multiple ergodic averages which have been widely studied
in ergodic theory. The research for the dimensions of the level sets (1), which
was initiated by Fan, Liao and Ma [1], is concerned with multifractal analysis of
multiple ergodic averages and has attracted much attention (see e.g. [6, 7, 3, 4,
9, 5, 10, 8]). Most of the results concentrated on the symbolic space where the
Lyapunov exponents for the shift transformation are constant. Liao and Rams [8]
gave the multifractal analysis of a special multiple ergodic averages for systems
with non-constant Lyapunov exponents. They considered the level set in (1) with
m = ℓ = q = 2 and ϕ = 1I1⊗1I1 . Liao-Rams’ argument was based on computations
of Peres and Solomyak [9], which seems inconvenient to be adapted to general case.
However, in this note we show how to adapt the arguments in [4] to arbitrary
m, ℓ, q ≥ 2 and a class of functions ϕ.

We assume that ϕ is locally constant: for any (a1, a2, · · · , aℓ), (b1, b2, · · · , bℓ) ∈
Ii1 × Ii2 × · · · × Iiℓ (0 ≤ i1, i2, · · · , iℓ ≤ m− 1), we have

ϕ(a1, a2, · · · , aℓ) = ϕ(b1, b2, · · · , bℓ).

With an abuse of notation, we write ϕ(a1, a2, · · · , aℓ) = ϕ(ii, i2, · · · , iℓ) if (a1, a2, · · · , aℓ) ∈
Ii1 × Ii2 × · · · × Iiℓ .

For simplicity of notation, we restrict ourselves to the case ℓ = 2 (the same
arguments works for arbitrary ℓ ≥ 2 without any problem). For any s, r ∈ R,
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2 Multifractal analysis of some multiple ergodic averages in linear Cookie-Cutter dynamical systems

consider the non-linear transfer system

ti(s, r)
q =

m−1
∑

j=0

esϕ(i,j)+rλitj(s, r), (i = 0, · · · ,m− 1). (2)

The difference between (2) and a similar system in [4] is that the Lyapunov ex-
ponents λi’s are introduced in (2). It is easy to prove that the system admits a
unique strictly positive solution (t0(s, r), · · · , tm−1(s, r)) (see [4]). Define the pres-
sure function by

P (s, r) = log

m−1
∑

j=0

tj(s, r).

It will be shown (Lemma 1) that P is analytic and convex, and even strictly convex
if ϕ is not constant and the λi’s are not all the same.

Let A and B be respectively the infimum and the supremum of the set
{

a ∈ R : ∃(s, r) ∈ R2 such that
∂P

∂s
(s, r) = a

}

.

It will be proved (Lemma 3) that for any α ∈ (A,B), there exists a unique solution
(s(α), r(α)) ∈ R2 to the system

{

P (s, r) = αs
∂P
∂s

(s, r) = α.
(3)

and that r(α) is analytic on (A,B), increasing on (A,ϕ0) and decreasing on (ϕ0, B)
where ϕ0 =

∑

i,j ϕ(i, j)/m
2. Hence the limits r(A) := limα→A r(α) and r(B) :=

limα→B r(α) := r(B) exist.
Let Dϕ = {α ∈ R : Lϕ(α) 6= ∅} . Our main result is the following.

Theorem 1. We have Dϕ = [A,B]. For any α ∈ [A,B], we have dimH Lϕ(α) =
r(α)

q logm
.

§2. Proof of Theorem 1

We sketch the proof. Let fi : [0, 1] → Ii be the branches of T−1. Define
π : Σm → [0, 1] by

π((ωk)
∞
k=1) = lim

n→∞
fω1

◦ fω2
· · · fωn

(0).

Then we have π(Σm) = JT . Define the subset Eϕ(α) of Σm which was studied in
[3, 4]:

Eϕ(α) :=

{

(ωk)
∞
k=1 ∈ Σm : lim

n→∞

1

n

∑

ϕ(ωk, ωqk) = α

}

.

Then with a difference of a countable set, we have Lϕ(α) = π(Eϕ(α)).
In [3, 4], a family of Gibbs-type measures called telescopic product measures were

used to compute the Hausdorff dimension of Eϕ(α). Here we construct a similar
class of measures in order to determine the Hausdorff dimension of Lϕ(α). In the
following, we suppose that ϕ is not constant (otherwise the problem is trivial) and
the λi’s are not the same (otherwise the problem is reduced to the case considered
in [3]).

Lemma 1. For any s, r ∈ R, the system (2) admits a unique solution (t0(s, r), · · · , tm−1(s, r))
with strictly positive components, which are analytic functions of (s, r). The pres-
sure function P is strictly convex in R2.
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Proof It is essentially the same proof as in [4], with some small modifications. �

The solution (t0(s, r), t1(s, r), · · · , tm−1(s, r)) of the system (2) allows us to define
a Markov measure µs,r with initial law (π(i))i∈S and probability transition matrix
(pi,j)S×S defined by

π(i) =
ti(s, r)

t0(s, r) + · · ·+ tm−1(s, r)
, pi,j = esϕ(i,j)+rλi

tj(s, r)

ti(s, r)2
.

Then we decompose the set of positive integers N∗ into Λi (q ∤ i) with Λi = {iqk}k≥0

so that Σm =
∏

i:q∤i S
Λi . Take a copy µs,r on each SΛi and define the product

measure Ps,r of these copies. Then Ps,r is a probability measure on Σm.
Let νs,r = π∗Ps,r = Ps,r ◦ π−1 and let D(νs,r, x) be the lower local dimension of

νs,r at x.

Lemma 2. Let α ∈ (A,B). For any (s, r) ∈ R2 such that P (s, r) = α, for any
x ∈ Lϕ(α) we have

D(νs,r, x) ≤
r

q logm
.

Proof It is the same proof as in [4]. �

It follows that dimH Lϕ(α) ≤ r
q logm

. Minimizing the right hand side gives an

upper bound:

dimH E(α) ≤
r(α)

q logm
,

where r(α) together with an s ∈ R constitute a (unique) solution of the system (3).
The following lemma says that such r(α) is really unique.

Lemma 3. For any α ∈ (A,B), there exists a unique solution (s(α), r(α)) ∈ R2 to
the equation (3). Moreover the function r(α) is analytic on (A,B), increasing on
(A,ϕ0) and decreasing on (ϕ0, B) where ϕ0 =

∑

i,j ϕ(i, j)/m
2 is the average of ϕ

with respect to the Lebesgue measure on Σm.

Proof Similar proof as in Proposition 4.13 of [2]. �

In order to get the lower bound, we only have to show that νs(α),r(α) is sup-
ported on Lϕ(α) and the local dimension of νs(α),r(α) is almost everywhere equal to
r(α)/q logm. To this end, we need the following law of large numbers (LLN) (see
Theorem 6 in [4]).

Lemma 4 ([4]). Let (Fn) be a sequence of functions defined on {0, 1, · · · ,m− 1}2

such that
supn supx,y |Fn(x, y)| < ∞. For Ps,r-a.e. ω ∈ Σm, we have

lim
n→∞

1

n

n
∑

k=1

(Fk(ωk, ωqk)− EPs
Fk(ωk, ωqk)) = 0.

Applying the above lemma to Fn(ωn, ωqn) = ϕ(ωn, ωqn) for all n and computing
EPs,r

ϕ(ωn, ωqn), we get

Lemma 5. For Ps,r-a.e. ω ∈ Σm, we have

lim
n→∞

1

n

n
∑

k=1

ϕ(ωk, ωqk) =
∂P

∂s
(s, r).
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Lemma 5 implies Ps(α),r(α)(Eϕ(α)) = 1. Hence

νs(α),r(α)(Lϕ(α)) = Ps(α),r(α)(π
−1(Lϕ(α))) = Ps(α),r(α)(Eϕ(α)) = 1.

Finally, it remains to show the measure νs,r is exact in the sense that its local
dimension is almost everywhere constant.

Lemma 6. For νs,r-a.e. x we have

D(νs,r, x) =
r

q logm
+

P (s, r) − s∂P
∂s

(s, r)

λ(s, r)
,

where λ(s, r) is the expected limit with respect to Ps,r of the Lyapunov exponent
1
n

∑n
k=1 λωk

with ω ∈ Σm.

Proof It suffices to apply the LLN to get the expected limits of logPs,r(Cn(ω))/n
and of log |π(Cn(ω))|/n where Cn(ω) = {u ∈ Σm : uk = ωk, ∀k ≤ n}. �

Thus we have finished the proof for α ∈ (A,B). If α = A (resp. B), as in the
standard multifractal analysis, we use the measure νs(α),r(α) and let α tend to A
(resp. B).
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