
A new method for the reconstruction of unknown

non-monotonic growth functions in the chemostat

Jan Sieber∗, Alain Rapaport†, Serafim Rodrigues‡and Mathieu Desroches§

May 14, 2012

Abstract

We propose an adaptive control law that allows one to identify unstable steady states of the open-loop

system in the single-species chemostat model without the knowledge of the growth function. We then

show how to use a continuation method to reconstruct the whole graph of the growth function. Two

variants, in continuous and discrete time, are presented. The case of two species in competition is also

examined.

1 Introduction

We recall the classical chemostat model [19] for a single species (biomass b) consuming a substrate (mass s):

{

ṡ = −µ(s)b+D(sin − s)

ḃ = µ(s)b−Db
(1)

where the dilution rate D (the input) is the manipulated variable, which takes values in a bounded positive
interval [Dmin, Dmax], and µ(·) is a non-negative Lipschitz continuous function with µ(0) = 0 .

We consider here the following scenario: the function µ(·) is unknown and possibly non-monotonic. Our
objective is to reconstruct the graph of the function µ(·) on the domain (0, sin) by varying the input D
in time. On-line measurements are only available for the variable s (that is, s is the output). This setup
is realistic for experimental investigations such as in [3], however, demonstrations in this paper are based
entirely on simulations of model system (1).

Remark: We assume that the yield coefficient of the bio-conversion is known. Then we can choose it equal
to unity without loss of generality such that µ(s)b appears with the same pre-factor 1 (once positive, and
once negative) in both equations of (1)).

The problem of kinetics estimation in biological and biochemical models has been widely addressed in the
literature ([9, 10, 11, 4, 12, 16, 8]), either as a parameter estimation problem (one chooses a priori analytical
expression of the function µ(·)), or as an on-line estimation of the kinetics (one aims at determining µ(s(t))
at the current time t). Here, our objective is different: we aim at reconstructing the whole graph of the
function µ(·). To our knowledge, this precise problem has not been addressed in the literature.

When the growth function is monotonic, a common way to reconstruct points on the graph of the growth
function µ(·) is to design a series of experiments fixing the dilution rate D with different values and wait
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until the system settles to a steady state (s⋆, b⋆) [4]. As long as D is less than µ(sin), it is well known that
the dynamics converges to a unique positive equilibrium that satisfies µ(s⋆) = D (see for instance [19]). An
alternative approach is to fix a value of s, say s̄ and design an adaptive control law D(·) that stabilizes
the system about the steady state (s̄, sin − s̄), with the value of D converging to µ(s̄). This technique has
been proposed in [3] to stabilize such dynamics without the knowledge of µ(·) and under the constraint
D ∈ [Dmin, Dmax].

Unfortunately, these two reconstruction strategies cannot be used to identify non-monotonic growth
functions, such as the Haldane law. More precisely, these two techniques require the steady state to be
stable in open loop, and consequently cannot reconstruct any part of the graph of a function µ(·) where µ is
non-increasing (such as the example, shown schematically in Figure 1. Furthermore, the global convergence
of these methods is not satisfied in case of bi-stability, which is present in (1), with non-monotonic growth
functions µ (see again [19]).
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Figure 1: Domains of stability and instability in open-loop

In this work, we first propose that it can be useful to introduce a feedback control loop into (1) to identify
the growth function µ of the open-loop system (1) (that is, (1) with constant input D). The feedback control
law is initially a simple constrained piecewise linear relation between system input D and system output s:

D(s, D̄, s̄) = sat[Dmin,Dmax]

(

D̄ −G1(s− s̄)
)

, (2)

where D̄ and s̄ are reference values, and G1 > 0 is the linear control gain. To ensure realistic values for the
input D, we enclose the feedback rule into the saturation function

sat[Dmin,Dmax](x) =











Dmax if x > Dmax,

x if x ∈ [Dmin, Dmax],

Dmin if x < Dmin,

where the limits Dmin and Dmax are the extreme dilution rates that can be achieved experimentally. In
sections 3 and 5 we will then explore adaptation rules for the reference values (s̄, D̄) which ensure that
asymptotically for t → ∞ the input satisfies

D(s, D̄, s̄) = D̄, (3)

or, equivalently, the output satisfies

s = s̄, (4)



such that the control is asymptotically non-invasive. The result is a new adaptive control law that stabilizes
the dynamics about any desired equilibrium point without requiring a-priori knowledge of its location, and
whatever is the monotonicity of the growth function. One requirement on the adaptive law is that it should
work uniformly well around a local maximum of µ (non-invasive feedback laws such as filtered feedback [1]
or time-delayed feedback [17] do not achieve this).

We propose two variants of our method, making adaptation in continuous time (Section 3) or in discrete
time (Section 5).

Then we show that a simple continuation method allows us to the reconstruct continuously the graph of
the growth function, even in the case of non-monotonic growth functions. Finally we investigate the case of
two species that compete for the same common substrate.

2 Global stability of the simple feedback law

Our starting point is that the feedback law (2) is, within reasonable limits, globally stabilizing. Suppose
that we choose the reference value s̄ from an interval [smin, sin) ⊂ (0, sin), and that the limits on the input
cover the growth function µ on this interval:

Dmin < µ(s) for all s ∈ [smin, sin], (5)

Dmax > µ(s) for all s ∈ [0, sin]. (6)

These conditions mean that the graph of µ does not cross the thick parts of the horizontal lines Dmin and
Dmax bounding the grey area in Figure 2 from below and above.

Proposition 1. Suppose that the reference values (s̄, D̄) are chosen from [smin, sin)× [Dmin, Dmax], that
the growth function µ satisfies (5)–(6), and that the gain G1 is chosen sufficiently large, that is,

G1 > − min
s∈[0,sin]

µ′(s), and (7)

G1 >
µ(sin)− D̄

sin − s̄
. (8)

Then the controlled system (1) with D = D(s, D̄, s̄), given in (2), has a stable equilibrium (seq, beq) ∈
[0, sin)× (0,∞), which attracts all initial conditions (s(0), b(0)) ∈ [0, sin)× (0,∞).

Proof of Proposition 1. If D > 0, and the growth function µ satisfies µ(0) = 0 and, for s > 0, µ(s) > 0
then the set

R = {(s, b) : s ∈ [0, sin), b > 0}

is positively invariant (that is, trajectories starting in R will stay in R for all positive times). Furthermore,
all trajectories starting in R approach the subspace

T = {(s, b) ∈ R : s+ b = sin}

with rate at least Dmin forward in time. This implies that it is sufficient to check if all trajectories in T
converge to a unique equilibrium. On T the equation of motion can be expressed as a differential equation
for s only:

ṡ = [D(s, D̄, s̄)− µ(s)][sin − s]. (9)

First, let us check that the equilibrium at s = sin is unstable. The term −G1(sin − s̄) is negative such that
D̄ − G1(sin − s̄) < Dmax for all admissible D̄. Assumption (8) guarantees that D̄ − G1(sin − s̄) < µ(sin).
Assumption (5) guarantees that also Dmin < µ(sin). Hence,

D(sin, D̄, s̄)− µ(sin) < 0



for all admissible (s̄, D̄). Thus, the prefactor of sin − s in (9) is negative such that the equilibrium at sin is
unstable for all admissible (s̄, D̄).

Since ṡ > 0 at s = 0, there must be other equilibria of (9) in (0, sin), which are given as solutions seq of
D(seq, D̄, s̄) = µ(seq). Now let us check indirectly that none of the equilibria can satisfy Dmin = µ(seq).

Assume that (9) had an equilibrium seq with Dmin = µ(seq). Then seq has to be less than smin due
to assumption (5). However, if seq < smin, then D̄ − G1(seq − s̄) > D̄ ≥ Dmin for all admissible (s̄, D̄).
Hence D(seq, D̄, s̄) > Dmin (recall that Dmin = µ(seq) by assumption of the indirect proof) such that
D(seq, D̄, s̄)− µ(seq) > 0, which means that seq cannot be equilibrium.

Assumption (6) excludes that equilibria with µ(seq) = Dmax exist, hence all remaining equilibria seq ∈
(0, sin) must satisfy

D̄ −G1(seq − s̄) = µ(seq).

Condition (7) ensures that this equation has a unique solution and that this solution corresponds to a stable
equilibrium (which must be in (0, sin) because the boundaries of (0, sin) are inflowing for (9)). �

Proposition 1 ensures that the output seq of the controlled system (1) with (2), after transients have
decayed, is a well-defined smooth function of the parameters (s̄, D̄) as long as (s̄, D̄) are chosen from
(smin, smax)× (Dmin, Dmax). We express this fact by using the bracket notation:

seq(s̄, D̄) = lim
t→∞

s(t) where s is output of (1), (2).

The function seq can be evaluated at any admissible point by setting the parameters (s̄, D̄) in the definition
(2) of the feedback rule, waiting until the transients of (1) have settled, and then reading off the output s.
Equilibria of the uncontrolled system can then, according to (4), be found as roots of seq(s̄, D̄) − s̄. More
specifically, we know that, for any admissible s̄,

D̄ = µ(s̄) if and only if seq(s̄, D̄) = s̄. (10)

Relation (10) permits us to identify µ(s̄) as the unique root of seq(s̄, ·) − s̄. Sections 3-5 will explore two
strategies to find this root for a range of admissible s̄ efficiently.

3 An adaptive control scheme

The first strategy is a dynamic feedback that comes on top of the feedback law (2) for D. We treat D̄ not
as a parameter but introduce an additional dynamical equation for D̄, achieving local convergence of the
output s to any reference value s̄ ∈ (0, sin) without the knowledge of the growth function µ. The asymptotic
value of D̄ allows then one to reconstruct the value µ(s̄).

Proposition 2. Fix a number s̄ ∈ (0, sin) and take numbers Dmin, Dmax that fulfill 0 < Dmin < µ(s̄) <
Dmax. Then the dynamical feedback law

D(s, D̄) = sat[Dmin,Dmax]

(

D̄ −G1(s− s̄)
)

˙̄D = −G2(s− s̄)(D̄ −Dmin)(Dmax − D̄)
(11)

exponentially stabilizes the system (1) locally about (s, b) = (s̄, sin − s̄), for any positive constants (G1, G2)
such that G1 > −µ′(s̄). Furthermore one has

lim
t→+∞

D̄(t) = µ(s̄)

Note that the assumptions in Proposition 2 (for example, on the gain G1) are weaker than those of Propo-
sition 1 as Proposition 2 is only concerned with local stability and a single reference value s̄.
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Figure 2: Sketch illustrating shape of growth function µ and set of admissible reference values

Proof of Proposition 2. Locally about s = s̄, the closed loop system is equivalent to the three-dimensional
dynamical system







ṡ = −µ(s)b+ (D̄ −G1(s− s̄))(sin − s)

ḃ = µ(s)b − (D̄ −G1(s− s̄))b
˙̄D = −G2(s− s̄)(D̄ −Dmin)(Dmax − D̄)

This system admits the unique positive equilibrium E⋆ = (s̄, sin − s̄, µ(s̄)).
For simplicity, we write the dynamics in the variables (z, s, D̄) coordinates, where z is defined as z = s+ b:







ż = (D̄ −G1(s− s̄))(sin − z)
ṡ = −µ(s)(z − s) + (D̄ −G1(s− s̄))(sin − s)
˙̄D = −G2(s− s̄)(D̄ −Dmin)(Dmax − D̄)

The Jacobian matrix at E⋆ in these coordinates is




−µ(s̄) 0 0
−µ(s̄) −(µ′(s̄) +G1)(sin − s̄) sin − s̄

0 −G2(µ(s̄)−Dmin)(Dmax − µ(s̄)) 0





Its eigenvalues are λ1 = −µ(s̄) < 0 and λ2, λ3 as eigenvalues of the sub-matrix

M =

(

−(µ′(s̄) +G1)(sin − s̄) sin − s̄
−G2(µ(s̄)−Dmin)(Dmax − µ(s̄)) 0

)

Then, one has
det(M) = G2(µ(s̄)−Dmin)(Dmax − µ(s̄))(sin − s̄)
tr(M) = −(µ′(s̄) +G1)(sin − s̄)



and concludes about the exponential stability of E⋆ when G2 > 0 and G1 > −µ′(s̄). Finally, one obtains
from (11) that D or D̄ converges toward the unknown value µ(s̄). �

4 Reconstruction of the entire growth function

Now, we use a dynamic continuation method, letting s̄ change slowly with time as solution of the simple
dynamics

˙̄s = εs̄(sin − s̄) (12)

to explore the right part of the graph of µ(·) when ε is a small non-negative number, and to explore the
left one when ε is a small non-positive number. Recall that continuation denotes a numerical method that
belongs to the family of homotopy methods and is used to compute solution branches of parametrized
nonlinear equations via a predictor-corrector strategy [2]. For the continuation, the gain G1 has to be been
chosen uniformly large according to (7).

5 A discrete-time adaptation of the method

In this section, we propose an alternative to the continuous adaptation of D̄ and s̄: we treat the root problem
0 = seq(s̄, D̄) − s̄ with ordinary numerical root-finders such as the Newton iteration. We present here an
approach that combines the two steps of the method (the adaptive control and the continuation) in a discrete
time framework.

In an experimental setting one will have to adapt the numerical methods to the lower accuracy of
experimental outputs (see [18] for a demonstration in a mechanical experiment) but for this paper we
restrict ourselves to a numerical demonstration. In the single-species case, one profits from the knowledge of
an approximate derivative of seq with respect to D̄ to make the Newton iteration more efficient. Suppose,
we plan to identify the growth function µ in a sequence of points s̄k = s̄0 + kδ (where δ > 0 is small). The
function values µ(s̄k) are the roots D̄k of seq(s̄k, ·)− s̄k. Then we can approximate

∂seq
∂D̄

(D̄, s̄k) =
1

G1 + µ′(seq(D̄, s̄k))
≈

1

G1 +
D̄−D̄k−1

s̄k−s̄k−1

to obtain the iteration

D̄new = D̄ −
seq(D̄, s̄k)

G1 +
D̄−D̄k−1

s̄k−s̄k−1

, (13)

starting from D̄ = D̄k−1, or (for k > 2)

D̄ = D̄k−1 +
D̄k−1 − D̄k−2

s̄k−1 − s̄k−2
.

For the initial step (k = 1) the derivative of seq has to be either guessed or approximated with a finite
difference (we used the latter in our numerical simulations).

Note that at no point it is necessary to set the internal states s or b of system (1). Only the reference
values (s̄, D̄) have to be set.

5.1 A simplified discrete scheme

The scheme (13) permits one to find µ(s̄k) for an a-priori prescribed set of admissible abscissae s̄k. If one
wants to recover only the graph of µ one does not need to prescribe the sequence s̄k a-priori, thus, avoiding
a Newton iteration. Suppose that we know already two points pk−1 = (sk−1, Dk−1) and pk = (sk, Dk) on
the curve (s, µ(s)). Then we set

(s̄new,k+1, D̄new,k+1) = pk + δ
pk − pk−1

‖pk − pk−1‖
, (14)



where δ > 0 is the approximate desired distance between points along the curve (s, µ(s)), and run the
controlled experiment with the reference values (s̄, D̄) = (s̄new,k+1, D̄new,k+1) in (2) until the transients have
settled to obtain the next point on the curve

sk+1 = seq(s̄new,k+1, D̄new,k+1)

Dk+1 = D(sk+1, D̄new,k+1, s̄new,k+1)

= D̄new,k+1 −G1(sk+1 − s̄new,k+1)

(15)

This simplified procedure cannot guarantee the identification of µ at prescribed equidistantly spaced values
of s but finds µ(sk) for a (nearly evenly spaced) sequence sk given by the intersections of the lines D =
Dnew,k −G1(s− s̄new,k) with the graph D = µ(s).

6 The two species case

The extension of the chemostat model (1) considers two species that compete for the same substrate. The
two-species model can be written as follows











ṡ = −

2
∑

i=1

µi(s)bi +D(sin − s)

ḃi = µi(s)bi −Dbi (i = 1, 2)

(16)

The two-species model has co-existing equilibria E∗

i , which correspond to the state where species i is present
but the other species is not. The following result shows that feedback stabilization based on input D and
output s breaks down for the equilibrium corresponding to the species with the smaller growth rate.

Proposition 3. Fix s̄ ∈ (0, sin) and consider the equilibrium E⋆
2 = (s̄, 0, sin − s̄).

1. If µ1(s̄) > µ2(s̄), there does not exist feedback D(·) of the form

D = f(s, ξ), ξ̇ = g(s, ξ), (ξ ∈ R
k)

with f(s̄, 0) = µ2(s̄) and g(s̄, 0) = 0, that stabilizes asymptotically the system (16) about E⋆
2 .

2. If µ1(s̄) < µ2(s̄), then the feedback (11) exponentially stabilizes the system (16) locally about E⋆
2 , for

any positive constants (G1, G2) such that G1 > −µ′

2(s̄). Furthermore one has

lim
t→+∞

D̄(t) = µ2(s̄)

Proof of Proposition 3. Consider the extended dynamics



















ṡ = −

2
∑

i=1

µi(s)bi + f(s, ξ)(sin − s)

ḃi = µi(s)bi − f(s, ξ)bi (i = 1, 2)

ξ̇ = g(s, ξ)

that we write in (z, b1, b2, ξ) coordinates with z = s+ b1 + b2:







ż = f(z − b1 − b2, ξ)(sin − z)

ḃi = (µi(z − b1 − b2)− f(z − b1 − b2, ξ))bi
ξ̇ = g(z − b1 − b2, ξ)



1. At equilibrium E⋆
2 , the Jacobian matrix possesses the following form in (z, b1, b2, ξ) coordinates









−µ2(s̄) 0 0 0
0 µ1(s̄)− µ2(s̄) 0 0
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆









,

which has the positive eigenvalue µ1(s̄)− µ2(s̄). This proves that E
∗

2 is unstable whatever the choice of the
feedback D(·).

2. At equilibrium E⋆
2 , the Jacobian matrix can be written as follows, in (z, b1, b2, D̄) coordinates







−µ2(s̄) 0
0 µ1(s̄)− µ2(s̄)

0

⋆ M







with

M =

(

−(µ′

2(s̄) +G1)(sin − s̄) sin − s̄
−G2(µ2(s̄)−Dmin)(Dmax − µ2(s̄)) 0

)

Its eigenvalues are λ1 = −µ2(s̄) < 0, λ2 = µ1(s̄)− µ2(s̄) < 0, λ3 and λ4 with

λ3.λ4 = G2(µ2(s̄)−Dmin)(Dmax − µ2(s̄))(sin − s̄)
λ3 + λ4 = −(µ′

2(s̄) +G1)(sin − s̄)

As in the proof of Proposition 2, one concludes the exponential stability of E⋆
2 when G2 > 0 andG1 > −µ′

2(s̄),
and the convergence of D(·) toward µ2(s̄). �

Consequently, the adaptive control scheme proposed in Section 3 only allows one to reconstruct the
larger of the two growth rates at any given s. Nevertheless, the dynamics of (12), which defines the dynamic
continuation method presented in Section 4, may still be of help in reconstructing the smaller growth rate at
least in some cases. Suppose that the graphs µ1 and µ2 cross each other at some value sc, say, µ1(s) < µ2(s)
for s < sc but µ1(s) > µ2(s) for s > sc. If one treats s̄ as a parameter then the equilibria E∗

1 and E∗

2 undergo
an exchange of stability (a degenerate transcritical bifurcation) at s̄ = sc. As the continuation rule (12) lets
s̄ drift slowly (with speed ε) the full system exhibits a phenomenon known as delayed loss of stability [6]
in the context of dynamic bifurcations [5], widely studied in slow-fast systems. Physically this means (say,
we are increasing s̄ slowly from below sc) that concentration b2 comes close to 0 while s̄ < sc. Then, when
s̄ has crossed sc, the concentration b2 grows exponentially, but still takes some time until it reaches values
noticeably different from 0. The value s̄loss of s̄ at which b2 becomes noticeably non-zero is in the ideal ODE
model independent of the drift speed ε of s̄. Figure 7 in Section 7 shows this effect: since b2 is nearly zero the
variable D continues to follow the, by now unstable, drifting equilibrium E∗

1 . This delay mechanism allows
one in principle a reconstruction of a part of the slower growth rate close to the about the bifurcation value
of s̄. This is in line with the philosophy behind continuation methods, which allow one to track both stable
and unstable solution branches, hence, to go past bifurcation points.

The numerical simulations show only the case of continuously drifting s̄. Setting the value of s̄ at discrete
times (as one would do in the discrete-time framework of Section 5), achieves the same delay effect.

7 Numerical simulations

Figures are given at the end of the paper.



7.1 The one species case

For the unknown function, we have chosen the non-monotonic Haldane function

µ(s) =
s

1 + s+ 10s2

and sin = 1. The grey background curve in Figure 3 shows µ(·), which is clearly non-monotonic on the
domain (0, sin) (sin = 1). Figure 3 shows the stabilization of the control law (11) for s̄ in the increasing
(left panel) and decreasing (right panel) part of the growth law µ. Figure 4 shows how the continuation (12)
reconstructs the entire graph of the growth function. For the left panel, ε = +0.01, and for the right panel,
ε = −0.01.

Figure 5 shows the output of a simulation with the discrete-time adaptation method proposed in Section
5. The black dots correspond to values at which the control was accepted as non-invasive. Using continu-
ation one achieves small and rapidly decaying transients in every evaluation of seq (which involves running
system (1) with control until transients have settled). This is so because the transients all lie inside the
subspace {(s, b) : s + b = sin} after system (1) has run at least once. Second, the initial offset from the
equilibrium is always small, because the adjustments of s̄ and D̄ are small.

Figure 6 demonstrates the speed-up using the simplified scheme (14)–(15) (note the times at the abscis-
sae). The difference to Figure 5 is that the values at which the growth function is evaluated are not exactly
equidistantly spaced.

7.2 The two species case

We have chosen two monotonic Monod functions

µ1(s) =
s

0.1 + s
, µ2(s) = 1.5

s

0.4 + s

and sin = 1. Their graphs are shown as faint curves in the background of Figure 7. The simulations depicted
in Figure 7 have been made with the drift speed parameter ε equal to ±0.01. One can see that the delayed
loss of stability permits us to reconstruct parts of the graphs of the growth curves that do not belong to
their supremum envelope.

From a practical view point, the sudden “jump” between the two graphs could inform of the presence of
another species, if one belongs that the culture in chemostate was initially pure.

Remark. If the drift speed ε of the continuation is too small the concentration of the initially suppressed
species (for example, b2 in the left panel of Figure 7) will become unrealistically small in the numerical
simulations. In a real experiment this would correspond to the species becoming almost extinct. This makes
the validity of the ODE model (16) with two species questionable as a good representation of reality [7] such
that it is difficult to conclude from numerical simulations of the ODE model (16) how large the delay effect
is in real experiments. This question will the matter of future investigations.

8 Conclusion

In this work, we have presented a new framework for the functional identification of non-monotonic growth
functions in the chemostat. Continuous and discrete time variants have been proposed. Numerical simula-
tions illustrate the potential of the method. Further investigations are required to find out which approach
(discrete or continous) is better suited for real experiments.

The approach is more general than the case we have presented here for the chemostat model. We introduce
feedback control to reduce a dynamical system to an algebraic equation. Then we apply either numerical
methods (in discrete time) or dynamical equations (in continuous time) to identify unstable equilibria of the
original uncontrolled dynamical system. We use the chemostat as a conceptually simple example that is still
of practical interest.



Another application we plan to explore in the future are regulation problems. For example, one can
regulate the single-species chemostat to operate at the substrate concentration s at which the growth rate
µ is maximal by following the same recipe. This approach to regulation, which is similar in spirit to the
act-and-wait technique for delay compensation [15], does not require an a-priori identification of the growth
rate µ, and leads to a different algorithm than the methods discussed in the literature [13, 14]).
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Figure 3: Simulations for two different values of s̄ in the (s,D)-projection.
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Figure 4: Dynamical continuation using (12) to explore dynamically the left and right part of the graph of
the unknown function µ(·).
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Figure 5: Simulation of discrete-time continuation using (13) where s̄k = 0.05k. Panel (a) shows the time
profile of output s and input D throughout the run. Panel (b) shows the same in the (s,D)-plane. Black
dots indicate when convergence (|seq − s̄k| < tol) was reached, and the iteration moved on to the next s̄k.
Parameters: tol = 10−4, G1 = 1/(sin − s̄k), Dmax = 0.2, Dmin = 0.02. Transients were accepted as settled
if max s−min s < 0.1 on the interval [t− 10, t].
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Figure 6: Simulation of simplified discrete-time continuation using (14)–(15) where δ = 0.05. Note the
shorter time scales on the x-axis of panel (a) compared to Figure 5. The convention in the panels and the
parameters are identical to Figure 5.
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Figure 7: Stability loss delay in the continuation method for the two species case (s̄ is increasing on the left
figure, and decreasing on the right one)


