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A new method for the reconstruction of unknown non-monotonic growth functions in the chemostat

We propose an adaptive control law that allows one to identify unstable steady states of the open-loop system in the single-species chemostat model without the knowledge of the growth function. We then show how to use a continuation method to reconstruct the whole graph of the growth function. Two variants, in continuous and discrete time, are presented. The case of two species in competition is also examined.

Introduction

We recall the classical chemostat model [START_REF] Smith | The Theory of the Chemostat[END_REF] for a single species (biomass b) consuming a substrate (mass s):

ṡ = -µ(s)b + D(s in -s) ḃ = µ(s)b -Db (1) 
where the dilution rate D (the input ) is the manipulated variable, which takes values in a bounded positive interval [D min , D max ], and µ(•) is a non-negative Lipschitz continuous function with µ(0) = 0 .

We consider here the following scenario: the function µ(•) is unknown and possibly non-monotonic. Our objective is to reconstruct the graph of the function µ(•) on the domain (0, s in ) by varying the input D in time. On-line measurements are only available for the variable s (that is, s is the output ). This setup is realistic for experimental investigations such as in [START_REF] Antonelli | Set point regulation of an anaerobic digestion process with bounded output feedback[END_REF], however, demonstrations in this paper are based entirely on simulations of model system [START_REF] Abed | Stabilization of period doubling bifurcations and implicatons for control of chaos[END_REF].

Remark: We assume that the yield coefficient of the bio-conversion is known. Then we can choose it equal to unity without loss of generality such that µ(s)b appears with the same pre-factor 1 (once positive, and once negative) in both equations of (1)).

The problem of kinetics estimation in biological and biochemical models has been widely addressed in the literature ( [START_REF] Dochain | Adaptive identification and control algorithms for non linear bacterial growth systems[END_REF][START_REF] Dochain | On-line estimation of microbial growth rates[END_REF][START_REF] Dochain | On-line estimation of specific growth rates : an illustrative case study[END_REF][START_REF] Bastin | On-Line Estimation and Adaptive Control of Bioreactors[END_REF][START_REF] Dochain | Dynamical Modelling, Analysis, Monitoring and Control Design for Nonlinear Bioprocesses[END_REF][START_REF] Perrier | Tuning of observer-based estimators: theory and application to the on-line estimation of kinetic parameters Control Engineering Practice[END_REF][START_REF]Dochain State and parameter estimation in chemical and biochemical processes : a survey[END_REF]), either as a parameter estimation problem (one chooses a priori analytical expression of the function µ(•)), or as an on-line estimation of the kinetics (one aims at determining µ(s(t)) at the current time t). Here, our objective is different: we aim at reconstructing the whole graph of the function µ(•). To our knowledge, this precise problem has not been addressed in the literature.

When the growth function is monotonic, a common way to reconstruct points on the graph of the growth function µ(•) is to design a series of experiments fixing the dilution rate D with different values and wait until the system settles to a steady state (s ⋆ , b ⋆ ) [START_REF] Bastin | On-Line Estimation and Adaptive Control of Bioreactors[END_REF]. As long as D is less than µ(s in ), it is well known that the dynamics converges to a unique positive equilibrium that satisfies µ(s ⋆ ) = D (see for instance [START_REF] Smith | The Theory of the Chemostat[END_REF]). An alternative approach is to fix a value of s, say s and design an adaptive control law D(•) that stabilizes the system about the steady state (s, s in -s), with the value of D converging to µ(s). This technique has been proposed in [START_REF] Antonelli | Set point regulation of an anaerobic digestion process with bounded output feedback[END_REF] to stabilize such dynamics without the knowledge of µ(•) and under the constraint

D ∈ [D min , D max ].
Unfortunately, these two reconstruction strategies cannot be used to identify non-monotonic growth functions, such as the Haldane law. More precisely, these two techniques require the steady state to be stable in open loop, and consequently cannot reconstruct any part of the graph of a function µ(•) where µ is non-increasing (such as the example, shown schematically in Figure 1. Furthermore, the global convergence of these methods is not satisfied in case of bi-stability, which is present in [START_REF] Abed | Stabilization of period doubling bifurcations and implicatons for control of chaos[END_REF], with non-monotonic growth functions µ (see again [START_REF] Smith | The Theory of the Chemostat[END_REF]). s µ stable unstable In this work, we first propose that it can be useful to introduce a feedback control loop into (1) to identify the growth function µ of the open-loop system (1) (that is, (1) with constant input D). The feedback control law is initially a simple constrained piecewise linear relation between system input D and system output s:

D(s, D, s) = sat [Dmin,Dmax] D -G 1 (s -s) , (2) 
where D and s are reference values, and G 1 > 0 is the linear control gain. To ensure realistic values for the input D, we enclose the feedback rule into the saturation function

sat [Dmin,Dmax] (x) =      D max if x > D max , x if x ∈ [D min , D max ], D min if x < D min ,
where the limits D min and D max are the extreme dilution rates that can be achieved experimentally. In sections 3 and 5 we will then explore adaptation rules for the reference values (s, D) which ensure that asymptotically for t → ∞ the input satisfies

D(s, D, s) = D, (3) 
or, equivalently, the output satisfies

s = s, (4) 
such that the control is asymptotically non-invasive. The result is a new adaptive control law that stabilizes the dynamics about any desired equilibrium point without requiring a-priori knowledge of its location, and whatever is the monotonicity of the growth function. One requirement on the adaptive law is that it should work uniformly well around a local maximum of µ (non-invasive feedback laws such as filtered feedback [START_REF] Abed | Stabilization of period doubling bifurcations and implicatons for control of chaos[END_REF] or time-delayed feedback [START_REF] Pyragas | Continuous control of chaos by self-controlling feedback[END_REF] do not achieve this).

We propose two variants of our method, making adaptation in continuous time (Section 3) or in discrete time (Section 5).

Then we show that a simple continuation method allows us to the reconstruct continuously the graph of the growth function, even in the case of non-monotonic growth functions. Finally we investigate the case of two species that compete for the same common substrate.

Global stability of the simple feedback law

Our starting point is that the feedback law (2) is, within reasonable limits, globally stabilizing. Suppose that we choose the reference value s from an interval [s min , s in ) ⊂ (0, s in ), and that the limits on the input cover the growth function µ on this interval:

D min < µ(s) for all s ∈ [s min , s in ],
(5)

D max > µ(s) for all s ∈ [0, s in ]. (6) 
These conditions mean that the graph of µ does not cross the thick parts of the horizontal lines D min and D max bounding the grey area in Figure 2 from below and above.

Proposition 1. Suppose that the reference values (s, D) are chosen from [s min , s in ) × [D min , D max ], that the growth function µ satisfies ( 5)- [START_REF] Boudjellaba | Stability Loss Delay in Harvesting Competing Populations[END_REF], and that the gain G 1 is chosen sufficiently large, that is,

G 1 > -min s∈[0,sin] µ ′ (s), and (7) 
G 1 > µ(s in ) - D s in - s . (8) 
Then the controlled system (1) with D = D(s, D, s), given in (2), has a stable equilibrium (s eq , b eq ) ∈ [0, s in ) × (0, ∞), which attracts all initial conditions (s(0), b(0)) ∈ [0, s in ) × (0, ∞).

Proof of Proposition 1. If D > 0, and the growth function µ satisfies µ(0) = 0 and, for s > 0, µ(s) > 0 then the set

R = {(s, b) : s ∈ [0, s in ), b > 0}
is positively invariant (that is, trajectories starting in R will stay in R for all positive times). Furthermore, all trajectories starting in R approach the subspace

T = {(s, b) ∈ R : s + b = s in }
with rate at least D min forward in time. This implies that it is sufficient to check if all trajectories in T converge to a unique equilibrium. On T the equation of motion can be expressed as a differential equation for s only:

ṡ = [D(s, D, s) -µ(s)][s in -s]. (9) 
First, let us check that the equilibrium at s = s in is unstable. The term

-G 1 (s in -s) is negative such that D -G 1 (s in -s) < D max for all admissible D. Assumption (8) guarantees that D -G 1 (s in -s) < µ(s in ).
Assumption [START_REF] Benoît | Dynamic bifurcations: proceedings of a conference held in Luminy[END_REF] guarantees that also D min < µ(s in ). Hence,

D(s in , D, s) -µ(s in ) < 0
for all admissible (s, D). Thus, the prefactor of s in -s in ( 9) is negative such that the equilibrium at s in is unstable for all admissible (s, D). Since ṡ > 0 at s = 0, there must be other equilibria of ( 9) in (0, s in ), which are given as solutions s eq of D(s eq , D, s) = µ(s eq ). Now let us check indirectly that none of the equilibria can satisfy D min = µ(s eq ).

Assume that ( 9) had an equilibrium s eq with D min = µ(s eq ). Then s eq has to be less than s min due to assumption [START_REF] Benoît | Dynamic bifurcations: proceedings of a conference held in Luminy[END_REF]. However, if s eq < s min , then D -G 1 (s eq -s) > D ≥ D min for all admissible (s, D). Hence D(s eq , D, s) > D min (recall that D min = µ(s eq ) by assumption of the indirect proof) such that D(s eq , D, s) -µ(s eq ) > 0, which means that s eq cannot be equilibrium.

Assumption [START_REF] Boudjellaba | Stability Loss Delay in Harvesting Competing Populations[END_REF] excludes that equilibria with µ(s eq ) = D max exist, hence all remaining equilibria s eq ∈ (0, s in ) must satisfy D -G 1 (s eq -s) = µ(s eq ).

Condition [START_REF] Campillo | Effect of population size in a Prey-Predator model[END_REF] ensures that this equation has a unique solution and that this solution corresponds to a stable equilibrium (which must be in (0, s in ) because the boundaries of (0, s in ) are inflowing for ( 9)).

Proposition 1 ensures that the output s eq of the controlled system (1) with ( 2), after transients have decayed, is a well-defined smooth function of the parameters (s, D) as long as (s, D) are chosen from (s min , s max ) × (D min , D max ). We express this fact by using the bracket notation:

s eq (s, D) = lim t→∞ s(t)
where s is output of ( 1), ( 2).

The function s eq can be evaluated at any admissible point by setting the parameters (s, D) in the definition (2) of the feedback rule, waiting until the transients of (1) have settled, and then reading off the output s. Equilibria of the uncontrolled system can then, according to (4), be found as roots of s eq (s, D) -s. More specifically, we know that, for any admissible s, D = µ(s) if and only if s eq (s, D) = s. [START_REF] Dochain | On-line estimation of microbial growth rates[END_REF] Relation [START_REF] Dochain | On-line estimation of microbial growth rates[END_REF] permits us to identify µ(s) as the unique root of s eq (s, •) -s. Sections 3-5 will explore two strategies to find this root for a range of admissible s efficiently.

An adaptive control scheme

The first strategy is a dynamic feedback that comes on top of the feedback law (2) for D. We treat D not as a parameter but introduce an additional dynamical equation for D, achieving local convergence of the output s to any reference value s ∈ (0, s in ) without the knowledge of the growth function µ. The asymptotic value of D allows then one to reconstruct the value µ(s).

Proposition 2. Fix a number s ∈ (0, s in ) and take numbers D min , D max that fulfill 0 < D min < µ(s) < D max . Then the dynamical feedback law Locally about s = s, the closed loop system is equivalent to the three-dimensional dynamical system

D(s, D) = sat [Dmin,Dmax] D -G 1 (s -s) Ḋ = -G 2 (s -s)( D -D min )(D max -D) (11 
   ṡ = -µ(s)b + ( D -G 1 (s -s))(s in -s) ḃ = µ(s)b -( D -G 1 (s -s))b Ḋ = -G 2 (s -s)( D -D min )(D max -D)
This system admits the unique positive equilibrium E ⋆ = (s, s in -s, µ(s)).

For simplicity, we write the dynamics in the variables (z, s, D) coordinates, where z is defined as z = s + b:

   ż = ( D -G 1 (s -s))(s in -z) ṡ = -µ(s)(z -s) + ( D -G 1 (s -s))(s in -s) Ḋ = -G 2 (s -s)( D -D min )(D max -D)
The Jacobian matrix at E ⋆ in these coordinates is

  -µ(s) 0 0 -µ(s) -(µ ′ (s) + G 1 )(s in -s) s in - s 0 -G 2 (µ(s) -D min )(D max -µ(s)) 0  
Its eigenvalues are λ 1 = -µ(s) < 0 and λ 2 , λ 3 as eigenvalues of the sub-matrix

M = -(µ ′ (s) + G 1 )(s in -s) s in - s -G 2 (µ(s) -D min )(D max -µ(s)) 0 Then, one has det(M ) = G 2 (µ(s) -D min )(D max -µ(s))(s in -s) tr(M ) = -(µ ′ (s) + G 1 )(s in -s)
and concludes about the exponential stability of E ⋆ when G 2 > 0 and G 1 > -µ ′ (s). Finally, one obtains from (11) that D or D converges toward the unknown value µ(s).

Reconstruction of the entire growth function

Now, we use a dynamic continuation method, letting s change slowly with time as solution of the simple dynamics ṡ = εs(s in -s) [START_REF] Dochain | Dynamical Modelling, Analysis, Monitoring and Control Design for Nonlinear Bioprocesses[END_REF] to explore the right part of the graph of µ(•) when ε is a small non-negative number, and to explore the left one when ε is a small non-positive number. Recall that continuation denotes a numerical method that belongs to the family of homotopy methods and is used to compute solution branches of parametrized nonlinear equations via a predictor-corrector strategy [START_REF] Allgower | Introduction to Numerical Continuation Methods[END_REF]. For the continuation, the gain G 1 has to be been chosen uniformly large according to (7).

A discrete-time adaptation of the method

In this section, we propose an alternative to the continuous adaptation of D and s: we treat the root problem 0 = s eq (s, D) -s with ordinary numerical root-finders such as the Newton iteration. We present here an approach that combines the two steps of the method (the adaptive control and the continuation) in a discrete time framework.

In an experimental setting one will have to adapt the numerical methods to the lower accuracy of experimental outputs (see [START_REF] Sieber | Experimental continuation of periodic orbits through a fold[END_REF] for a demonstration in a mechanical experiment) but for this paper we restrict ourselves to a numerical demonstration. In the single-species case, one profits from the knowledge of an approximate derivative of s eq with respect to D to make the Newton iteration more efficient. Suppose, we plan to identify the growth function µ in a sequence of points sk = s0 + kδ (where δ > 0 is small). The function values µ(s k ) are the roots Dk of s eq (s k , •) -sk . Then we can approximate

∂s eq ∂ D ( D, sk ) = 1 G 1 + µ ′ (s eq ( D, sk )) ≈ 1 G 1 + D-Dk-1 sk -s k-1
to obtain the iteration Dnew = Ds eq ( D, sk )

G 1 + D-Dk-1 sk -s k-1 , (13) 
starting from D = Dk-1 , or (for k > 2)

D = Dk-1 + Dk-1 -Dk-2 sk-1 -sk-2 .
For the initial step (k = 1) the derivative of s eq has to be either guessed or approximated with a finite difference (we used the latter in our numerical simulations). Note that at no point it is necessary to set the internal states s or b of system (1). Only the reference values (s, D) have to be set.

A simplified discrete scheme

The scheme (13) permits one to find µ(s k ) for an a-priori prescribed set of admissible abscissae sk . If one wants to recover only the graph of µ one does not need to prescribe the sequence sk a-priori, thus, avoiding a Newton iteration. Suppose that we know already two points p k-1 = (s k-1 , D k-1 ) and p k = (s k , D k ) on the curve (s, µ(s)). Then we set

(s new,k+1 , Dnew,k+1 ) = p k + δ p k -p k-1 p k -p k-1 , (14) 
where δ > 0 is the approximate desired distance between points along the curve (s, µ(s)), and run the controlled experiment with the reference values (s, D) = (s new,k+1 , Dnew,k+1 ) in (2) until the transients have settled to obtain the next point on the curve s k+1 = s eq (s new,k+1 , Dnew,k+1 )

D k+1 = D(s k+1 , Dnew,k+1 , snew,k+1 ) = Dnew,k+1 -G 1 (s k+1 -snew,k+1 ) (15) 
This simplified procedure cannot guarantee the identification of µ at prescribed equidistantly spaced values of s but finds µ(s k ) for a (nearly evenly spaced) sequence s k given by the intersections of the lines D = D new,k -G 1 (s -snew,k ) with the graph D = µ(s).

The two species case

The extension of the chemostat model ( 1) considers two species that compete for the same substrate. The two-species model can be written as follows

     ṡ = - 2 i=1 µ i (s)b i + D(s in -s) ḃi = µ i (s)b i -Db i (i = 1, 2) (16) 
The two-species model has co-existing equilibria E * i , which correspond to the state where species i is present but the other species is not. The following result shows that feedback stabilization based on input D and output s breaks down for the equilibrium corresponding to the species with the smaller growth rate. Proposition 3. Fix s ∈ (0, s in ) and consider the equilibrium E ⋆ 2 = (s, 0, s in -s).

1. If µ 1 (s) > µ 2 (s), there does not exist feedback D(•) of the form

D = f (s, ξ), ξ = g(s, ξ), (ξ ∈ R k )
with f (s, 0) = µ 2 (s) and g(s, 0) = 0, that stabilizes asymptotically the system ( 16) about E ⋆ 2 .

2. If µ 1 (s) < µ 2 (s), then the feedback (11) exponentially stabilizes the system [START_REF] Perrier | Tuning of observer-based estimators: theory and application to the on-line estimation of kinetic parameters Control Engineering Practice[END_REF] locally about E ⋆ 2 , for any positive constants (G 1 , G 2 ) such that G 1 > -µ ′ 2 (s). Furthermore one has lim t→+∞

D(t) = µ 2 (s)
Proof of Proposition 3. Consider the extended dynamics

         ṡ = - 2 i=1 µ i (s)b i + f (s, ξ)(s in -s) ḃi = µ i (s)b i -f (s, ξ)b i (i = 1, 2) ξ = g(s, ξ) that we write in (z, b 1 , b 2 , ξ) coordinates with z = s + b 1 + b 2 :    ż = f (z -b 1 -b 2 , ξ)(s in -z) ḃi = (µ i (z -b 1 -b 2 ) -f (z -b 1 -b 2 , ξ))b i ξ = g(z -b 1 -b 2 , ξ) 1. At equilibrium E ⋆ 2 , the Jacobian matrix possesses the following form in (z, b 1 , b 2 , ξ) coordinates     -µ 2 (s) 0 0 0 0 µ 1 (s) -µ 2 (s) 0 0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆     ,
which has the positive eigenvalue µ 1 (s) -µ 2 (s). This proves that E * 2 is unstable whatever the choice of the feedback D(•).

At equilibrium E ⋆

2 , the Jacobian matrix can be written as follows, in

(z, b 1 , b 2 , D) coordinates    -µ 2 (s) 0 0 µ 1 (s) -µ 2 (s) 0 ⋆ M    with M = -(µ ′ 2 (s) + G 1 )(s in -s) s in - s -G 2 (µ 2 (s) -D min )(D max -µ 2 (s)) 0 Its eigenvalues are λ 1 = -µ 2 (s) < 0, λ 2 = µ 1 (s) -µ 2 (s) < 0, λ 3 and λ 4 with λ 3 .λ 4 = G 2 (µ 2 (s) -D min )(D max -µ 2 (s))(s in -s) λ 3 + λ 4 = -(µ ′ 2 (s) + G 1 )(s in -s)
As in the proof of Proposition 2, one concludes the exponential stability of E ⋆ 2 when G 2 > 0 and G 1 > -µ ′ 2 (s), and the convergence of D(•) toward µ 2 (s).

Consequently, the adaptive control scheme proposed in Section 3 only allows one to reconstruct the larger of the two growth rates at any given s. Nevertheless, the dynamics of [START_REF] Dochain | Dynamical Modelling, Analysis, Monitoring and Control Design for Nonlinear Bioprocesses[END_REF], which defines the dynamic continuation method presented in Section 4, may still be of help in reconstructing the smaller growth rate at least in some cases. Suppose that the graphs µ 1 and µ 2 cross each other at some value s c , say, µ 1 (s) < µ 2 (s) for s < s c but µ 1 (s) > µ 2 (s) for s > s c . If one treats s as a parameter then the equilibria E *

1 and E * 2 undergo an exchange of stability (a degenerate transcritical bifurcation) at s = s c . As the continuation rule (12) lets s drift slowly (with speed ε) the full system exhibits a phenomenon known as delayed loss of stability [START_REF] Boudjellaba | Stability Loss Delay in Harvesting Competing Populations[END_REF] in the context of dynamic bifurcations [START_REF] Benoît | Dynamic bifurcations: proceedings of a conference held in Luminy[END_REF], widely studied in slow-fast systems. Physically this means (say, we are increasing s slowly from below s c ) that concentration b 2 comes close to 0 while s < s c . Then, when s has crossed s c , the concentration b 2 grows exponentially, but still takes some time until it reaches values noticeably different from 0. The value sloss of s at which b 2 becomes noticeably non-zero is in the ideal ODE model independent of the drift speed ε of s. Figure 7 in Section 7 shows this effect: since b 2 is nearly zero the variable D continues to follow the, by now unstable, drifting equilibrium E * 1 . This delay mechanism allows one in principle a reconstruction of a part of the slower growth rate close to the about the bifurcation value of s. This is in line with the philosophy behind continuation methods, which allow one to track both stable and unstable solution branches, hence, to go past bifurcation points.

The numerical simulations show only the case of continuously drifting s. Setting the value of s at discrete times (as one would do in the discrete-time framework of Section 5), achieves the same delay effect.

Figures are given at the end of the paper.

The one species case

For the unknown function, we have chosen the non-monotonic Haldane function µ(s) = s 1 + s + 10s 2 and s in = 1. The grey background curve in Figure 3 shows µ(•), which is clearly non-monotonic on the domain (0, s in ) (s in = 1). Figure 3 shows the stabilization of the control law [START_REF] Dochain | On-line estimation of specific growth rates : an illustrative case study[END_REF] for s in the increasing (left panel) and decreasing (right panel) part of the growth law µ. Figure 4 shows how the continuation [START_REF] Dochain | Dynamical Modelling, Analysis, Monitoring and Control Design for Nonlinear Bioprocesses[END_REF] reconstructs the entire graph of the growth function. For the left panel, ε = +0.01, and for the right panel, ε = -0.01.

Figure 5 shows the output of a simulation with the discrete-time adaptation method proposed in Section 5. The black dots correspond to values at which the control was accepted as non-invasive. Using continuation one achieves small and rapidly decaying transients in every evaluation of s eq (which involves running system (1) with control until transients have settled). This is so because the transients all lie inside the subspace {(s, b) : s + b = s in } after system (1) has run at least once. Second, the initial offset from the equilibrium is always small, because the adjustments of s and D are small.

Figure 6 demonstrates the speed-up using the simplified scheme ( 14)-( 15) (note the times at the abscissae). The difference to Figure 5 is that the values at which the growth function is evaluated are not exactly equidistantly spaced.

The two species case

We have chosen two monotonic Monod functions

µ 1 (s) = s 0.1 + s , µ 2 (s 
) = 1.5 s 0.4 + s and s in = 1. Their graphs are shown as faint curves in the background of Figure 7. The simulations depicted in Figure 7 have been made with the drift speed parameter ε equal to ±0.01. One can see that the delayed loss of stability permits us to reconstruct parts of the graphs of the growth curves that do not belong to their supremum envelope.

From a practical view point, the sudden "jump" between the two graphs could inform of the presence of another species, if one belongs that the culture in chemostate was initially pure.

Remark. If the drift speed ε of the continuation is too small the concentration of the initially suppressed species (for example, b 2 in the left panel of Figure 7) will become unrealistically small in the numerical simulations. In a real experiment this would correspond to the species becoming almost extinct. This makes the validity of the ODE model ( 16) with two species questionable as a good representation of reality [START_REF] Campillo | Effect of population size in a Prey-Predator model[END_REF] such that it is difficult to conclude from numerical simulations of the ODE model ( 16) how large the delay effect is in real experiments. This question will the matter of future investigations.

Conclusion

In this work, we have presented a new framework for the functional identification of non-monotonic growth functions in the chemostat. Continuous and discrete time variants have been proposed. Numerical simulations illustrate the potential of the method. Further investigations are required to find out which approach (discrete or continous) is better suited for real experiments.

The approach is more general than the case we have presented here for the chemostat model. We introduce feedback control to reduce a dynamical system to an algebraic equation. Then we apply either numerical methods (in discrete time) or dynamical equations (in continuous time) to identify unstable equilibria of the original uncontrolled dynamical system. We use the chemostat as a conceptually simple example that is still of practical interest.

Another application we plan to explore in the future are regulation problems. For example, one can regulate the single-species chemostat to operate at the substrate concentration s at which the growth rate µ is maximal by following the same recipe. This approach to regulation, which is similar in spirit to the act-and-wait technique for delay compensation [START_REF] Insperger | Act-and-wait concept for continuous-time control systems with feedback delay[END_REF], does not require an a-priori identification of the growth rate µ, and leads to a different algorithm than the methods discussed in the literature [START_REF] Dochain | Extremum Seeking Control and its Application to Process and Reaction Systems: A Survey[END_REF][START_REF] Guay | Adaptive extremum seeking control of stirred tank bioreactors[END_REF]). 
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 34 Figure 3: Simulations for two different values of s in the (s, D)-projection.
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 5 Figure 5: Simulation of discrete-time continuation using (13) where sk = 0.05k. Panel (a) shows the time profile of output s and input D throughout the run. Panel (b) shows the same in the (s, D)-plane. Black dots indicate when convergence (|s eq -sk | < tol) was reached, and the iteration moved on to the next sk . Parameters: tol = 10 -4 , G 1 = 1/(s in -sk ), D max = 0.2, D min = 0.02. Transients were accepted as settled if max s -min s < 0.1 on the interval [t -10, t].
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 67 Figure 6: Simulation of simplified discrete-time continuation using (14)-(15) where δ = 0.05. Note the shorter time scales on the x-axis of panel (a) compared to Figure 5. The convention in the panels and the parameters are identical to Figure 5.