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Abstract

We consider a two period model in which a continuum of agents trade
in a context of costly information acquisition and systematic heteroge-
neous expectations biases. Because of systematic biases agents are sup-
posed not to learn from others’ decisions. In a previous work under some-
how strong technical assumptions a market equilibrium was proved to
exist and the supply and demand functions were proved to be strictly
monotonic with respect to the price. Here we extend these results under
very weak technical assumptions. We also prove that the equilibrium price
maximizes the trading volume and further additional properties (such as
the anti-monotonicity of the trading volume with respect to the marginal
information price).
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1 Introduction

We consider a continuum of agents that act in a two-period (t ∈ {0, T}) market
consisting of a single asset of value V . The value V is constant, deterministic
but unknown to the agents. Each agent constructs an estimation for V in
the form of a normal random variable with known mean and variance. The
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numerical value of the mean, which is not necessarily V and as such can be
interpreted as a systematic bias, is given by the estimation method and cannot
be changed. However, the variance can be reduced at time t = 0 by paying
a cost, which is a known deterministic function of the variance to be attained.
Each agent uses a CARA utility function and constructs the functional mapping
each triplet (market price, estimation mean, estimation variance) to the optimal
number of units to trade. The sum of all such functions from all agents results
at time t = 0 in aggregate market demand and supply functions; the price of
the asset is chosen to clear the market (we prove in particular that such a price
exists and is unique). This price can be different from the real value V and in
practice it will. The agents close their position at final time t = T . This paper
investigates the following questions: existence of an equilibrium, continuity of
supply and demand functions, and interpretation of the equilibrium price as the
value maximizing the liquidity (trading volume).

The paper is organized as follows. The rest of this section presents a lit-
erature overview. In Section 2 the model is explained and the fundamental
assumption 3 is introduced. In Sections 3 and 3.1 we prove the existence of an
equilibrium and important properties of the liquidity (here defined as the trans-
action volume); in particular we prove that the equilibrium price maximizes the
trading volume. We apply our results to a Grossmann-Stiglitz framework in
Section 4. Finally, in Section 5 we show that the liquidity is inversely correlated
with the marginal price of information.

1.1 Literature overview

The model has two important ingredients:
- the existence of heterogeneous beliefs (or expectations) biases among a

continuum of agents;
- the fact that the information is costly (the literature refers to “information

acquisition” cost).
There are many models that explain how disagreements between agent esti-

mations’ generate investment decisions and trading volume. The importance of
the heterogeneity of opinions on the future value of a financial instrument and
its use in speculation has been recognized as early as Keynes (see [10]) who in-
vokes the ”beauty contest” metaphor to explain how speculators infer the future
(consensus) price.

A model of speculative trading in a large economy with a continuum of
agents with heterogeneous beliefs was presented in [26, 27] (see also the refer-
ences within). They demonstrate the existence of price amplification effects and
show that the equilibrium prices can be different from the rational expectation
equilibrium price. It is also shown that trading volume is positively related to
the directions of price changes and they explain the recurrent presence of di-
verse beliefs. We also refer to [20] and references within for a survey on how
heterogeneous beliefs among agents generate speculation and trading.

The difference-of-opinion approach (see [22, 8]) does not consider ”noise
agents” but on the contrary obtains diverse posterior beliefs from the differences
in the way agents interpret common information. They focus on the implications
of the dispersion in beliefs on the price level or direction. Yet another different
method explains diverse posterior beliefs by relaxing the assumption of common
prior (see [15]); the authors also model the learning process which enables a
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convergence towards a common estimation when more information is available.
Such a framework was invoked for modeling asset pricing during initial public
offerings, but not for other speculative circumstances. Finally, authors in [16]
analyze the implications of low liquidity in a market and propose appropriate
incentive schemes to shift the market to a equilibrium characterized by a higher
number of transactions.

An important advance has been to recognize that the dynamics of the in-
formation gathering is important; it was thus established how the presence of
private information and noise (liquidity) agents interact with market price and
volume (see, for example [7, 14] and [25] for recent related endeavors). More
specifically it was recognized (the so called ”Grossman-Stiglitz paradox”) that
it is not always optimal for the agents to obtain all the information on a partic-
ular asset. This remark is of importance in our paper in the following because,
as explained in Section 2, our model allows each agent to choose his level of
precision related to the estimation of the true value of the traded asset. In the
classical paper of [24] and in subsequent related works [9, 23, 11, 12, 13, 17]
a framework is proposed where the information is costly and agents can pay
more to lower their uncertainty on the future value of the risky asset. Verrec-
chia derives a closed form solution which requires some particular assumptions,
among which the convexity of the cost as function of the precision (inverse of
the variance of the estimate). On the contrary our cost function is here only
lower semi-continuous. Our approach also differs in a more fundamental way
in that we suppose that heterogeneity of estimations is given but arbitrary, i.e.
not centered around the correct price. Moreover, the Verrecchia model relies on
the heterogeneity of risk tolerances in the CARA utility function while in our
work the price formation mechanism does not require such an assumption, the
heterogeneity in estimations being enough. Also, in this model the endowments
of the agents do not play any role and in particular are not required to obtain an
equilibrium. The paper extends a previous work [21] where stronger technical
assumptions were invoked.

2 The model

We consider a two-period model, t = 0 and t = T in which a risky security of
value V is traded. The value V is unknown to the agents and each participant
x in the market constructs an estimate Ãx for V at t = 0, Ãx being a random
variable. For simplicity, we suppose that Ãx has a normal distribution, and
that Ãx1 and Ãx2 are independent if x1 and x2 are two distinct agents (this
independence assumption is motivated by the existence of an individual bias
for each agent as explained below). Also, we assume that the mean and the
variance of Ãx are respectively given by Ax and (σx)2, both mean and variance
being known to the agent x. As in [24] we work with the precision Bx = 1/(σx)2

instead of the variance (σx)2.
Many estimation procedures can output results in the form of a normal vari-

able with known mean and variance, the most known example being a Kalman-
Bucy filter, see [3] for details.

Note that we do not model here the riskless security, but everything works
as if the numeraire was the riskless security; from a technical point of view this
allows to set the interest rate to zero.
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An important remark is that each agent has his own bias attached to the
estimate Ãx because he has his own procedure to interpret the available infor-
mation. It may be due to personal optimism or pessimism (e.g., the agent is a
”bull” or ”bear”) or be correlated with some exogenous factors, such as overall
economic outlooks, commodities evolution, geopolitical factors, that each agent
interprets with a specific systematic bias. See also the cited references for ad-
ditional discussion on how agents interpret the information they obtain. We
assume that the bias Ax−V of agent x does not depend on the precision Bx to
be attained and only depends on the agent; the value Ax associated to an agent
is known only by himself. The agent does not influence Ax in any way during the
process of forecasting; his forecasting process is not influenced by other agents’
decisions i.e., there is no collective learning in this model. Hence, two different
agents x1 and x2 have generically different biases Ax1 −V and Ax2 −V and thus
different estimation averages Ax1 and Ax2 . This is not a collateral property of
the model. It is instead the mere reason for which the agents trade. They trade
because they have different (heterogeneous) expectations on the final value of
the security.

We define ρ(A) to be the distribution of Ax among the agents; neither the
law of the distribution ρ(A) nor any moments or statistics are known by the
agents. We also introduce the expected value with respect to ρ(·), which is
denoted EA; see also [1] for related works on empirical estimation of such a
distribution ρ. We do not assume the law of ρ to be normal or have particular
properties (except technical assumption 9 below).

From a theoretical point of view it is interesting to explore the case when
EA(A) = V . This means that the average estimate is V , so that the agents are
neither overpricing nor underpricing the security with respect to its (unknown)
value. However, we will see that this does not necessarily indicate that the
market price is V .

The only parameter the agent can control is the accuracy of the result, i.e.
the precision Bx. However, this has a cost: the agent has to pay f(Bx) to
obtain the precision Bx. The precision cost function f : R+ → R+ is defined on
positive numbers but if needed we set by convention f(b) = ∞ for any b < 0.
See also [18] for an example involving a power function and [17] for a structural
model to motivate such a function.

Such a model is relevant in the case of high expense for information sources,
for instance news broadcasting fees. The expense also involves the reward of
research personnel or the need for more accurate computer simulations.

Based on his estimations the agent x decides at time t = 0 to trade a
quantity of θx security units. When θx is positive, the agent is long, so he buys
the security, whereas when θx is negative, he is short: he sells it.

Hence, each agent is characterized by three parameters: his mean estimate
Ax, the precision Bx of the estimate (that comes at a cost f(Bx)) and the
quantity of traded units, θx.

The agents buy or sell the security at time t = 0 by formulating demand
and supply functions depending on the price. The market price at time t = 0 is
chosen to clear the aggregate total demand/supply.

Remark 1 The price that clears the market is also called market equilibrium
price. Note however that the uniqueness of the equilibrium is, at this stage, not
proved.
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We set the investment horizon of all agents to be the final time t = T which
is the time when each agent liquidates his initial position. Each agent supposes
that this final transaction takes place at a price in agreement with his initial
estimation.

In order to describe the model for the market price, we introduce for any
price p > 0 the basic notions of total supply S(p) and total demand D(p) defined
as:

D(p) = EA(θ+), S(p) = EA(θ−), (1)

where for any real number a we define a+ = max{a, 0}, a− = max{−a, 0}.
A price p∗ such that S(p∗) = D(p∗) is said to clear the market. From the

definition of D(·) and S(·) in (2) this is equivalent to say that EA(θ) = 0 i.e., at
the price p∗, the overall (signed) demand is zero. Note that such a price may
not exist or may not be unique. Hence, one of the goals of the paper is to prove
existence and uniqueness of p∗.

The transaction volume at some price p is the number of units that can be
exchanged at that price and is defined as follows

TV (p) = min{S(p), D(p)}. (2)

A price p∗ for which TV (·) reaches its maximum is of particular interest
because it maximizes the total number of asset units being exchanged. Note
that such a price may not exist, and may also be non-unique.

Let us recall the following result (see [21] for the proof):

Theorem 2 Suppose that functions S(p), D(p) are continuous and positive,
S(0) = 0 and limp→∞ D(p) = 0.

A/ if S(p) is increasing, not identically zero, and D(p) is decreasing then
there exists at least one price p∗ < ∞ such that S(p∗) = D(p∗); moreover
TV (p∗) ≥ TV (p) for all p ≥ 0;

B/ In addition to previous assumptions suppose that S(p) is strictly increas-
ing and limp→∞ S(p) > 0, whereas D(p) is strictly decreasing and such that
D(0) > 0. Then the following statements are true.

1/ There exists a unique p∗1 such that S(p∗1) = D(p∗1);
2/ There exists a unique p∗2 such that TV (p∗2) ≥ TV (p) for all p ≥ 0;
3/ Moreover p∗1 = p∗2.

Recall that F : R+ → R+ ∪ {+∞} is said to be lower semi-continuous
(denoted “l.s.c.”) if for any x ∈ R+

F (x) ≤ lim inf
y→x

F (y). (3)

A function G such that −G is l.s.c. is said to be upper semi-continuous (denoted
“u.s.c.”).

For any function ζ : R+ → R+ ∪ {+∞} we define

ζ(x) = lim inf
y→x

ζ(y), ζ ′(x) = lim inf
y→x

ζ(y)− ζ(x)

y − x
(4)

In particular f ′(0) = lim infy→0
f(y)−f(0)

y . Denote by
(

f ′(0)
)

+
its positive part.

Let us introduce an important assumption of this paper.
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Assumption 3 We say that a function f : R+ → R+ ∪ {+∞} satisfies as-
sumption 3 if f(0) < ∞, f is lower semi-continuous and there exists β > 0 such
that

lim inf
x→∞

f(x)

x1+β
> 0. (5)

Remark 4 The quantity f(0) < ∞ represents the residual cost, when preci-
sion approaches zero, to enter the market. It is not related to the precision
(because there is none in the limit) but to the fixed costs to trade on the market
(independent of the quantity). A market with infinite fixed costs is not realistic.

The assumption f(0) < ∞ implies, by lower semi-continuity, that f(0) < ∞
and is realistic in that it demands that the price of zero precision be finite.

In order to model the choices of the agents, we consider that the agents max-
imize a CARA-type expected utility function (see [2]) i.e., if the output is the
random variable X they maximize E(−e−λX). Note that if X is a normal ran-
dom variable with mean E(X) and variance var(X), then maximizing E(−e−λX)
is equivalent to maximizing the mean-variance utility function E(X)− λ

2 var(X).
We refer to equation (6) for the treatment of degenerate normal variables with
infinite variance. The parameter λ ∈ R+ is called the risk aversion coefficient.
Note that all agents have here the same utility function, see for instance [6, 5]
who argue that differences in preferences are not a major factor in explaining
the magnitude of trade in speculative markets.

Of course, the expected wealth of the agent at time t = T is a function
of θx and Bx. It is computed under the assumption that each agent enters
the transaction (buys or sells) at time t = 0 at the market price and exits the
transaction (sells or buys) at time t = T at a price coherent with his estimation,
i.e. we condition on the available information at time t = 0. Thus, for a given
price p, which is not necessarily equal to the market equilibrium price P, the
average expected wealth at time t = T of the agent x denoted by ux is given by:
ux = θx(Ax − p) − f(Bx). The variance of the wealth, denoted by vx is given

by: vx = (θx)2

Bx .

Thus, for a given price p (not necessarily the market equilibrium price P)
the fact that agent x optimizes his CARA utility function is equivalent to say
that he optimizes with respect to θx and Bx his mean-variance utility:

J(θx, Bx) =







θx(Ax − p)− f(Bx)− λ
2
(θx)2

Bx if Bx, θx > 0
−∞ if Bx = 0, θx > 0
−f(0) if Bx = θx = 0

. (6)

3 Existence of the transaction volume

Each agent x is characterized by his own bias Ax. The agents consider the
market price as being fixed, which means they cannot influence it directly. They
do not know any statistics on ρ so the market price is not directly informative,
but the acquired information is. Therefore, their strategy depend on two values:
the bias A and the market price p.

Under assumption 3, the agent chooses the optimal pair of precisionBopt(p,A; f)
and demand / supply θopt(p,A; f), i.e. the value of the pair maximizing the fol-
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lowing expression:

J (y, z) =







y(A− p)− f(z)− λ
2
y2

z if y, z > 0
−∞ if z = 0, y > 0
−f(0) if y = z = 0

, (7)

so that:
J (θopt(p,A; f), Bopt(p,A; f)) ≥ J (y, z), ∀y, z ≥ 0. (8)

Let gp,A;f (X) = (p−A)2

2λ X−f(X) and α be the function defined by α(p,A) =
(p−A)2

2λ . To simplify the notations we sometimes write only gp,A, gp or g instead
of gp,A;f and θopt(p,A)/Bopt(p,A) instead of θopt(p,A; f)/Bopt(p,A; f); likewise
α stands for α(p,A) .

Lemma 5 Under assumption 3, for any p and A, there exists a pair (Bopt(p,A),
θopt(p,A)) such that (8) is satisfied.

Proof. Since f satisfies assumption 3, there exists x1 and some constant C1

such that f(x) ≥ C1x
1+β for all x ≥ x1. In particular for

x > max

{

x1,

(

2α

C1

)1/β

,

(

2f(0)

C1

)1/(1+β)
}

we have g(x) < −f(0) = g(0). Since f is l.s.c. then g is u.s.c.; it follows that g at-

tains its maximum on R+ in the interval

[

0,max

{

x1,
(

2α
C1

)1/β

,
(

2f(0)
C1

)1/(1+β)
}]

.

We set Bopt(p,A) to be one such maximum (it may not be unique) and set

θopt(p,A) =
(A−p)Bopt(p,A)

λ .
Note that Bopt(p,A) = 0 implies θopt(p,A) = 0 thus

∀y > 0 : J (θopt(p,A), Bopt(p,A)) > −∞ = J (y, 0). (9)

When y = z = 0 one has:

J (0, 0) = g(0) ≤ g(Bopt(p,A)) = J (θopt(p,A), Bopt(p,A)). (10)

Let y, z > 0. Since J is a parabola with negative leading coefficient with
respect to its first argument it follows that:

J (y, z) ≤ J (
(A− p)z

λ
, z) = g(z) ≤ g(Bopt(p,A)) = J (θopt(p,A), Bopt(p,A)).

(11)

Remark 6 Note that the formula θopt(p,A) =
(A−p)Bopt(p,A)

λ is completely com-
patible with previous works, see [4] p575, although here we have no assumption
on budget constraints and the risk-less interest rate being set to zero.

In order to prove the existence of an equilibrium we need the following
auxiliary results.
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Lemma 7 Under assumption 3, let (p1, A1), (p2, A2) be such that α1 ≤ α2,
where αk = α(pk, Ak). Then Bopt(p1, A1) ≤ Bopt(p2, A2). We say that Bopt(p,A)
is increasing with respect to α. In particular, for fixed A, we have:

- Bopt(p,A) is increasing with respect to p on the interval ]A,∞[;
- Bopt(p,A) is decreasing with respect to p on the interval ]0, A[.

Proof. Let, for k = 1, 2: Bk = Bopt(pk, Ak). Recall that Bk optimizes
αkB − f(B) with respect to B. Then:

α1B1 − f(B1) ≥ α1B2 − f(B2) = α2B2 − f(B2) + (α1 − α2)B2

≥ α2B1 − f(B1) + (α1 − α2)B2. (12)

Thus, α1B1 ≥ α2B1 + (α1 − α2)B2 and hence (α1 − α2)(B1 − B2) ≥ 0, which
gives the conclusion.

Lemma 8 Under assumption 3, let αn = α(pn, An), n ≥ 0, be a sequence such
that αn →

n→+∞

α0 but Bopt(pn, An) does not converge to Bopt(p0, A0). The set of

such α0 is at most countable. In particular, if p is fixed, then the set of A such
that Bopt(p,A) is discontinuous with respect to A is countable. An analogous
result holds if A is fixed.

Proof. Let Bn = Bopt(pn, An), for n ≥ 0. Without loss of generality, we
only investigate the case when αn ց

n→+∞

α0. Then, we have Bn ≥ B0, ∀n ≥ 0.

Since Bn does not converge to B0, let η =

(

lim
n→+∞

Bn

)

− B0. Note that

η > 0 and Bn ≥ B0 + η, ∀n ≥ 0. Also recall that:

αnBn − f(Bn) ≥ αnB − f(B), ∀B. (13)

Yet, since −f is u.s.c.,

α0(B0 + η)− f(B0 + η) ≥ lim sup
n→∞

αnBn − f(Bn), (14)

and for fixed B, αnB − f(B) →
n→+∞

α0B − f(B). In the limit when n → ∞, it

holds that
α0(B0 + η)− f(B0 + η) ≥ α0B − f(B), ∀B. (15)

This implies that B0 + η is also a maximum for α0B − f(B). From this we
deduce that gα0

has at least two distinct maximums, B0 and B0 + η.
Let α be such that gα has at least two distinct minimums x1

α and x2
α with

x1
α < x2

α; we associate to α a rational number qα such that qα ∈]x1
α, x

2
α[. Take

α and α̃ such that α 6= α̃, to fix notations suppose α < α̃. Then by the previous
result x2

α ≤ x1
α̃; moreover qα < x2

α ≤ x1
α̃ < qα̃ i.e. qα 6= qα̃. Thus the set of α

such that gα has at least two distinct minimums is of cardinality smaler than
the cardinality of Q, i.e., at most countable. Since continuity can only fail when
gα has non-unique maximum the conclusion follows.

Assumption 9 We say that ρ(A) satisfies assumption 9 if ρ is absolutely con-
tinuous with respect to the Lebesgue measure and:

∫

∞

0

A1+2/βρ(A)dA < ∞. (16)
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Lemma 10 Let S(f, p) and D(f, p) (or in short notation S(p) and D(p) when
function f is implicit) be defined by:

S(f, p) =
1

2λ

∫

∞

0

(A− p)−Bopt(p,A; f)ρ(A)dA, (17)

D(f, p) =
1

2λ

∫

∞

0

(A− p)+Bopt(p,A; f)ρ(A)dA. (18)

Then under assumptions 3 and 9 S(p) and D(p) are finite, continuous and
monotonic. Moreover S(0) = 0 = limp→∞ D(p).

Proof. To prove that S(p) and D(p) are finite we recall that the maxi-

mum of gp,A is attained in the interval

[

0,max

{

x1,
(

2α
C1

)1/β

,
(

2f(0)
C1

)1/(1+β)
}]

,

i.e., Bopt(p,A) ≤ max

{

x1,
(

2α
C1

)1/β

,
(

2f(0)
C1

)1/(1+β)
}

. Recalling that α =

(A−p)2

2λ it follows that both integrals are bounded (modulo some constant) by
∫

∞

0
A1+2/βρ(A)dA i.e., S(p) and D(p) are finite for all p ≥ 0.
Let pn ր

n→+∞

p. For any X, the set of A such that Bopt(X,A) is discontin-

uous is at most countable. Denote it by BX . Let B = Bp ∪
(

⋃+∞

n=1 Bpn

)

. B is

also clearly countable and thus ρ(B) = 0 .
Let ζn(A) = (A − pn)−Bopt(pn, A) and ζ(A) = (A − p)−Bopt(p,A). Then

lim
n→+∞

ζn(A) = ζ(A), for all A with the possible exception of the null set B.

Also, the sequence ζn is increasing.
Then from the Beppo-Levi theorem, it holds:

lim
n→+∞

S(pn) = lim
n→+∞

1

2λ

∫ +∞

0

(A− pn)−Bopt(pn, A)ρ(A)dA

=
1

2λ

∫ +∞

0

(A− p)−Bopt(p,A)ρ(A)dA = S(p). (19)

This proves sequential continuity of S(p) and thus its continuity. The mono-
tonicity is a consequence of the monotonicity of Bopt(p,A). This result also holds
for the demand D(p), recalling that −D(p) is increasing and lower-bounded.

The property S(0) = 0 is trivial. To prove limp→∞ D(p) = 0 it is sufficient
to use the above upper bound for Bopt(p,A) and limp→∞

∫

∞

p
A1+2/βρ(A)dA = 0

Recall that S(p) is increasing on [0,+∞[ but in order to use Theorem 2 we
need to prove its strict monotonicity.

Lemma 11 Under assumptions 3 and 9 and supposing
(

f ′(0)
)

+
< ∞ the fol-

lowing hold:

1. S(p) is strictly increasing on

]√

2λ
(

f ′(0)
)

+
+ inf(supp(ρ)),+∞

[

;

2. S(0) = 0;

3. lim
p→+∞

S(p) > 0.
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4. D(p) is strictly decreasing on

[

0, sup(supp(ρ))−

√

2λ
(

f ′(0)
)

+

]

;

5. if sup(supp(ρ)) >

√

2λ
(

f ′(0)
)

+
then D(0) > 0;

6. lim
p→+∞

D(p) = 0.

Remark 12 The assumption
(

f ′(0)
)

+
< ∞ will be relaxed in Section 3.1, cf.

Theorem 18.

Proof. Note that
(

f ′(0)
)

+
< ∞ implies in particular continuity of f(B) at

B = 0. Let p and p′ be such that p > p′ > A ≥ 0:

S(p)− S(p′) =
1

2λ

∫

∞

0

[(A− p)−Bopt(p,A)− (A− p′)−Bopt(p
′, A)] ρ(A)dA

=
1

2λ

∫

∞

0

[(A− p)−Bopt(p,A)− (A− p′)−Bopt(p,A)] ρ(A)dA

+
1

2λ

∫

∞

0

[(A− p′)−Bopt(p,A)− (A− p′)−Bopt(p
′, A)] ρ(A)dA. (20)

Since Bopt is increasing if p > A,

1

2λ

∫

∞

0

(A− p′)−(Bopt(p,A)−Bopt(p
′, A))ρ(A)dA ≥ 0. (21)

Hence,

S(p)− S(p′) ≥
1

2λ

∫

∞

0

((A− p)− − (A− p′)−)Bopt(p,A)ρ(A)dA (22)

Note that A < p′ < p implies that ((A− p)− − (A− p′)−) > 0. So, in order to
prove the strict inequality in the estimation above it is sufficient to prove that
Bopt(p,A) > 0 with A in the support of ρ. Yet

Bopt(p,A) = argmax
B

gp(B) = argmax
B

(αB − f(B)). (23)

Therefore we only need to prove that there exists B such that αB − f(B) >
0 with A in the support of ρ. A sufficient condition is that the upper limit
of derivative of αB − f(B) at B = 0 be strictly positive. This means α −
(

f ′(0)
)

+
> 0 which is equivalent to: (p−A)2

2λ >
(

f ′(0)
)

+
. Recalling that p >

A, the latter condition can be rewritten as p − A >

√

2λ
(

f ′(0)
)

+
or else

p > A +

√

2λ
(

f ′(0)
)

+
, for at least one A in the support of ρ. Therefore

S(p) − S(p′) > 0 as soon as p is in

]√

2λ
(

f ′(0)
)

+
+ inf(supp(ρ)),+∞

[

. This

implies strict monotonicity for S(p) on

]√

2λ
(

f ′(0)
)

+
+ inf(supp(ρ)),+∞

[

,

and hence also on the interval

[√

2λ
(

f ′(0)
)

+
+ inf(supp(ρ)),+∞

[

.
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We have already seen that S(0) = 0. Moreover since the supply is strictly

increasing on

[√

2λ
(

f ′(0)
)

+
+ inf(supp(ρ)),+∞

[

and increasing on [0,+∞[,

it holds that lim
p→+∞

S(p) > 0.

For the monotonicity of the demand, let p and p′ be such that A > p > p′.
Then:

D(p)−D(p′) =
1

2λ

∫

∞

0

[(A− p)+Bopt(p,A)− (A− p′)+Bopt(p
′, A)] ρ(A)dA

=
1

2λ

∫

∞

0

[(A− p)+Bopt(p,A)− (A− p′)+Bopt(p,A)] ρ(A)dA

+
1

2λ

∫

∞

0

[(A− p′)+Bopt(p,A)− (A− p′)+Bopt(p
′, A)] ρ(A)dA. (24)

Since Bopt is decreasing for A > p > p′, we have:

1

2λ

∫

∞

0

(A− p′)+(Bopt(p,A)−Bopt(p
′, A))ρ(A)dA ≤ 0. (25)

Hence,

D(p)−D(p′) ≤
1

2λ

∫

∞

0

((A− p)+ − (A− p′)+)Bopt(p,A)ρ(A)dA. (26)

Note that A > p > p′ implies that (A−p)+−(A−p′)+ < 0. For strict inequality
it is sufficient to prove that Bopt(p,A) > 0. Using the same arguments as in

Lemma 11, we have strict monotonicity as soon as (p−A)2

2λ >
(

f ′(0)
)

+
.

Recalling that p < A, the latter condition can be written as A − p >
√

2λ
(

f ′(0)
)

+
or else p < A −

√

2λ
(

f ′(0)
)

+
for at least one A in the sup-

port of ρ. Therefore, D(p) − D(p′) < 0 as soon as p is in ]0, sup(supp(ρ)) −
√

2λ
(

f ′(0)
)

+
[. This yields strict monotonicity of D(p) on ]0, sup(supp(ρ)) −

√

2λ
(

f ′(0)
)

+
[. Monotonicity also holds on [0, sup(supp(ρ)) −

√

2λ
(

f ′(0)
)

+
]

by continuity.

Since sup(supp(ρ))−

√

2λ
(

f ′(0)
)

+
> 0, we have Bopt(0, A) > 0 soD(0) > 0.

Hence, demand is strictly decreasing. Previously we also proved that lim
p→+∞

D(p) =

0.
The above results can be summarized in the following:

Theorem 13 Under assumptions 3 and 9 and supposing
(

f ′(0)
)

+
< ∞ the

following hold:
A/ there exists at least a p∗ ≥ 0 such that TV (p∗) ≥ TV (p), ∀p ≥ 0,

moreover D(p∗) = S(p∗).

B/ suppose that diam(supp(ρ)) > 2

√

2λ
(

f ′(0)
)

+
then:

1. The functions Bopt and θopt are well defined.

11



2. There exists a unique p∗ > 0 such that TV (p∗) ≥ TV (p), ∀p ≥ 0.
Moreover p∗ is the unique solution of the equation D(p∗) = S(p∗).

Note that the results of [21] are a special case of this Theorem (any convex C2

function is l.s.c.).

Remark 14 If diam(supp(ρ)) ≤ 2

√

2λ
(

f ′(0)
)

+
, then TV ≡ 0 and S(p) =

D(p) = 0, ∀p (see Figure 1).

TV = 0
S(p) = 0
D(p) = 0

↓

price

vo
lu
m
e

S(p) D(p)

Figure 1: Illustration of Remark 14.

Remark 15 Since we assume the distribution ρ to be absolutely continuous with
respect to the Lebesgue measure, it holds that diam(supp(ρ)) > 0. Thus one can
always find a critical value λ∗ defined as

λ∗ =











diam(supp(ρ))2

8(f ′(0))
+

if
(

f ′(0)
)

+
> 0

0 if
(

f ′(0)
)

+
= 0

(27)

such that for any λ < λ∗, the assumptions of Theorem 13 are satisfied, i.e.
there exists a market price maximizing the volume and clearing the market. On
the contrary there exists no such market price for λ ≥ λ∗. The results of [21]
are a special case of this remark. In fact, under the assumptions given in [21],
(

f ′(0)
)

+
= f ′(0) = 0 and thus λ∗ = 0.

The critical value λ∗ can be interpreted as the maximum risk aversion allow-
ing the market to function. If the risk aversion becomes larger than the critical

12



value, the market stops and a liquidity crisis occurs. In the latter case, several
actions can be proposed to stop the liquidity crisis:

- lowering the perception of risk, i.e. lower the λ of the agents;

- making λ∗ higher by lowering
(

f ′(0)
)

+
, i.e. lower the marginal cost of

information around zero precision. In other words eliminate any entry barriers
for new agents on that market by largely spreading information about the real
situation of the asset V ;

- making λ∗ higher by increasing diam(supp(ρ)). This means inviting to the
market agents with new, different evaluation procedures. This can be carried out
for instance by eliminating any entry barrier for newcomers when they have a
different background and different evaluation procedures.

3.1 Necessary and sufficient results for general functions

In this section we relax the assumption
(

f ′(0)
)

+
< ∞. For any function h we

denote by h∗ the Legendre-Fenchel transform (cf. [19]) of h, by h∗∗ the Legendre-
Fenchel transform applied twice and so on. We show in this section that the
twice Legendre-Fenchel transform f∗∗ of the cost function f has remarkable
properties i.e., we can replace f by f∗∗ for any practical means. In particular
this means that from a technical point of view one can suppose f is convex even
if the actual function is not.

Theorem 16 Let f be a function satisfying assumption 3. Then

1. f∗∗ also satisfies assumption 3;

2. except for a countable set of values α(p,A) we have

Bopt(p,A; f) = Bopt(p,A; f
∗∗), θopt(p,A; f) = θopt(p,A; f

∗∗). (28)

3. as a consequence

S(f, p) = S(f∗∗, p), D(f, p) = D(f∗∗, p), ∀p ≥ 0. (29)

Proof. To prove point 1 we recall that f∗∗ is a convex function and ∀b ≥ 0:
f∗∗(b) ≤ f(b). In particular f∗∗ is l.s.c. and continuous in 0. Let us now check
the growth condition and take β that satisfies assumption 3 for f . Take also C1

as the constant in Lemma 5, i.e., f(x) ≥ C1x
1+β for all x ≥ x1. Consider now

the function

f1(x) =

{

0 if x ≤ x1

C1x
1+β if x > x1

. (30)

Then it is straightforward to see that

f∗∗

1 (x) =







0 if x ≤ x1

C1(1 + β)xβ
2 (x− x1) if x1 ≤ x ≤ x2

C1x
1+β if x ≥ x2

. (31)

where x2 = 1+β
β x1; of course f1 ≤ f and is l.s.c. Then we also have the

inequality f∗∗

1 ≤ f∗∗. But obviously lim infx→∞

f∗∗

1 (x)
x1+β = C1 > 0. Hence

lim infx→∞

f∗∗(x)
x1+β > 0.

13



To prove point 2 we recall that the cost function f is used only as a part of
the function gα. Let us take a point α0 and x0 a minimum of gα0

. This implies

α0x0 − f(x0) ≥ α0x− f(x) ∀x (32)

which can also be written

f(x) ≥ f(x0) + α0(x− x0), (33)

i.e., as stated in [19], the function f has a supporting hyper-plane at x0. Since f
has a supporting hyper-plane at x0 this implies that f(x0) = f∗∗(x0); recall that
f∗∗ is the convex hull of f i.e., the largest convex function such that f∗∗ ≤ f .
Hence, recalling that for any function f∗∗∗ = f∗:

α0x0−f∗∗(x0) = α0x0−f(x0) = f∗(α0) = f∗∗∗(α0) = max
x

α0x−f∗∗(x). (34)

We thus obtained that x0 is a maximum of α0x− f∗∗(x).
Therefore, if f is replaced by f∗∗, the minimization problem involving gα

gives the same solution, except possibly a countable set of values α where the
maximum is attained (either for f or f∗∗) in more than one point.

Point 3 is a mere consequence of point 2.
For all purposes of calculating aggregate supply and demand we can thus

replace f by f∗∗ i.e. replace f by its convex hull. Therefore one can work as if
f was convex.

Remark 17 This result is particularly useful when f(0) 6= f(0) because in this

situation
(

f ′(0)
)

+
= ∞. Then one cannot use the previous results that guaran-

tee the uniqueness of the market clearing price. When f is replaced by f∗∗ it can

be shown that
(

f ′(0)
)

+
becomes finite and the results apply for f∗∗. However

Theorem 16 allows to recover the results for the initial function f and obtain the
full information on the supply and demand functions and on the market price.

We obtain the following:

Theorem 18 Suppose assumptions 3 and 9 are satisfied. Then there exists at
least one price P ≥ 0 such that

TV (P) ≥ TV (p), ∀p ≥ 0. (35)

This price also satisfies
D(P) = S(P). (36)

Furthermore

I) If there exists B > 0 such that f(B) < f(0) then D(p; f) and S(p; f) are
always strictly positive and strictly monotonic, S(0) = 0 = limp→∞ D(p).
Moreover the price P satisfying (35) is unique.

II) Suppose now that f(B) ≥ f(0), ∀B ≥ 0; then the following hold:

a) (alternative 1) suppose that diam(supp(ρ)) > 2

√

2λ
(

(f∗∗)′(0)
)

+
then:

14



i) The functions Bopt and θopt are well defined.

ii) The price P satisfying (35) is unique and TV (P) > 0; P is also
the unique solution of (36).

b) (alternative 2) if on the contrary we suppose that

diam(supp(ρ)) ≤ 2

√

2λ
(

(f∗∗)′(0)
)

+
, (37)

then TV (p) = 0, ∀p ≥ 0.

Proof. We prove first point I. If f(B∗) < f(0) then for all α ≥ 0: αB∗ −
f(B∗) > α · 0 − f(0) thus Bopt(p,A) > 0 for all p,A. As a consequence we
obtain D(p; f) > 0 for all p and the same for S(p; f). For strict monotonicity
it suffices to use same arguments as in the proof of Lemma 11. Of course,
S(0) = 0 = limp→∞ D(p) due to Lemma 10.

The point IIa follows from the discussion above.
To prove IIb we need to analyze in greater detail the values of D(p) and S(p).

If we consider Bopt(p,A; f
∗∗) > 0 then αBopt(p,A; f

∗∗)−f∗∗(Bopt(p,A; f
∗∗)) >

α·0−f∗∗(0) (we exclude the null measure set of α where more than one maximum
can exists i.e., we can suppose the inequality to be strict); hence

f∗∗(Bopt(p,A; f
∗∗)) < f∗∗(0) + αBopt(p,A; f

∗∗), (38)

or, for some α1 < α

f∗∗(Bopt(p,A; f
∗∗)) ≤ f∗∗(0) + α1Bopt(p,A; f

∗∗). (39)

Since f∗∗ is convex we have for arbitrary B ∈ [0, Bopt(p,A; f
∗∗)]: f∗∗(B) ≤

f∗∗(0)+α1B. But this means
(

(f∗∗)′(0)
)

+
≤ α1 < α i.e., |A−p| >

√

2λ
(

(f∗∗)′(0)
)

+
.

If D(p) is always null the conclusion is reached. Suppose now p exists such
that D(p) > 0; then at least some A in the support of ρ exists such that
Bopt(p,A; f

∗∗) > 0 and (A− p)+ > 0; the three conditions imply

sup(supp(ρ))−

√

2λ
(

(f∗∗)′(0)
)

+
> 0. (40)

Moreover we have D(p) = 0 for p ≥ sup(supp(ρ))−

√

2λ
(

(f∗∗)′(0)
)

+
.

From (40) and (37) we conclude that

0 < sup(supp(ρ))−

√

2λ
(

(f∗∗)′(0)
)

+
≤

√

2λ
(

(f∗∗)′(0)
)

+
+ inf(supp(ρ)).

(41)

A similar reasoning as the above shows that S(p) = 0 for p ≤

√

2λ
(

(f∗∗)′(0)
)

+
+

inf(supp(ρ)). Therefore for any p eitherD(p) = 0 or S(p) = 0 and the conclusion
follows.

In general, the price P has an implicit dependence on the cost function
f(·) with no particular properties. But when the distribution ρ is completely
symmetric around some particular value p1 we obtain the following result:
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Theorem 19 Suppose assumptions 3 and 9 are satisfied and there exists p1 > 0
such that

∀y ∈ R : ρ(p1 − y) = ρ(p1 + y), (42)

(with the convention that ρ is null on R− ); then we can take in Thm. 18 P = p1.

Proof. The proof follows from the remark that, except possibly for a null
measure set of values α(p,A), the function Bopt(p,A; f) is symmetric around
p, i.e., Bopt(p,A; f) = Bopt(p, 2p − A; f); thus θopt(p,A; f) is anti-symmetric.
Since the distribution ρ is symmetric then D(p1) = S(p1).

4 An application: the Grossman-Stiglitz frame-

work

We follow [7] to analyze a classical situation where costly information can be
used to lower the uncertainty of the estimation. Note however that in the cited
work the equilibrium is reached without modeling the variations in supply and
in the absence of the distribution ρ(A).

In the Grossman-Stiglitz model agents can either pay nothing and have a
precision B1 or pay a fixed cost cb to gain precision up to level B2 > B1. This
leads to the function

f(B) =







0 if B ≤ B1

cb if B1 < B ≤ B2

+∞ if B > B2

. (43)

The function f does not satisfy assumption in [21] and as such the result therein
cannot be used. It however satisfies the assumption 3; thus using the Theorem 18
we can replace f with the following convex function fGS = f∗∗ defined as:

fGS(B) =







0 if B ≤ B1

cb
B−B1

B2−B1
if B1 ≤ B ≤ B2

+∞ if B > B2

. (44)

Note that fGS fulfills assumption 3 with an arbitrary β ≥ 0. Suppose that the
distribution ρ(A) fulfills the requirements in assumption 9: absolute continuity
with respect to Lebesgue measure and a moment of order 1 + ǫ (with arbitrary
small ǫ) has to exist. Then a (equilibrium) market price exists and is unique.
Note that f ′

GS(0) = 0 thus λ∗

GS = 0.
The unsigned demand is

θopt(p,A) =

{

(A−p)B1

λ if |A− p| < 2λcb
(B2−B1)

(A−p)B2

λ if |A− p| ≥ 2λcb
(B2−B1)

. (45)

The optimal precision is either B1 (first case of equation (45)) or B2 (second
case).

5 Transaction volume and marginal costs

We describe in the following the relationship between the cost function f and
the trading volume.
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Theorem 20 Suppose that f1 and f2 both satisfy assumption 3 and that ρ sat-
isfies assumption 9.

A/ Assume that

f2(y)− f2(x)

y − x
≥

f1(y)− f1(x)

y − x
, ∀x, y ≥ 0, x 6= y. (46)

Then TVf1 ≥ TVf2 .
B/ In particular if f1 and f2 are such that

f ′

1(X
+) ≤ f ′

2(X
+), f ′

1(X
−) ≤ f ′

2(X
−), ∀X ≥ 0, (47)

(all are lateral derivatives) then TVf1 ≥ TVf2 .

Remark 21 Note that if f1 and f2 are convex, both lateral derivatives are de-
fined at each point and A/ implies B/; thus for practical purposes (cf. also
section 3.1) the point B/ is not weaker than point A/.

Remark 22 If f ′

1(X) and f ′

2(X) exist at a certain point X, then (47) implies
that f ′

1(X) ≤ f ′

2(X). Thus, the above result is a generalization of the analogous
theorem in [21].

Proof. A/ We first show that, except for a countable set of values α(p,A)
we have Bopt(p,A; f1) ≥ Bopt(p,A; f2). Fix p,A and denote Bk = Bopt(p,A; fk)
for k = 1, 2. Suppose, by contradiction, that B1 < B2; recall that, since B1 is
optimal,

αB1 − f1(B1) > αB2 − f1(B2), (48)

thus
f1(B2)− f1(B1)

B2 −B1
> α. (49)

Note that we wrote strict inequality in (48) because we exclude the countable
set of values α(p,A) where the maximum of gp,A(B) = αB−f1(B) is not unique.
We do the same for B2:

αB2 − f2(B2) > αB1 − f2(B1),

thus

α >
f2(B2)− f2(B1)

B2 −B1
. (50)

Combining equations (49) and (50) we obtain

f1(B2)− f1(B1)

B2 −B1
>

f2(B2)− f2(B1)

B2 −B1
. (51)

This, however, contradicts (46) for y = B2 and x = B1. Thus, with the pos-
sible exception of a countable set of values α(p,A) we have Bopt(p,A; f1) ≥
Bopt(p,A; f2).

The demand and supply of the agents are monotonic and given for k = 1, 2
by the formulas:

D(fk, p) =
1

2λ

∫

∞

0

(A− p)+Bopt(p,A; fk)ρ(A)dA (52)

S(fk, p) =
1

2λ

∫

∞

0

(A− p)−Bopt(p,A; fk)ρ(A)dA. (53)
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Let PA
fk

be the market price for which supply equals demand for the cost

function fk i.e., D(fk, P
A
fk
) = S(fk, P

A
fk
). We further take PA

f2
= min{P :

D(f2, P ) = S(f2, P )} and PA
f1

= min{P : D(f1, P ) = S(f1, P )}
It has been proved that Bopt(p,A; f1) ≥ Bopt(p,A; f2). Thus, D(f1, p) ≥

D(f2, p) and S(f1, p) ≥ S(f2, p), ∀p. In particular, D(f2, P
A
f2
) ≤ D(f1, P

A
f2
).

Let P1 be the solution of D(f1, P1) = S(f2, P1). Let us prove that P1 ≥ PA
f2
.

Suppose, on the contrary, that P1 < PA
f2
. Then

D(f1, P
A
f2) ≥ D(f2, P

A
f2) = S(f2, P

A
f2) ≥ S(f2, P1) = D(f1, P1) ≥ D(f1, P

A
f2), (54)

which means that all inequalities in (54) are in fact equalities, in particular
S(f2, P

A
f2
) = S(f2, P1) and D(f1, P1) = D(f2, P

A
f2
). But we also have

D(f1, P1) ≥ D(f2, P1) ≥ D(f2, P
A
f2) = D(f1, P1) (55)

which means again that all terms are equal, in particularD(f2, P1) = D(f2, P
A
f2
).

Thus
D(f2, P1) = D(f2, P

A
f2) = S(f2, P

A
f2) = S(f2, P1), (56)

which means that P1 is a member of {P : D(f2, P ) = S(f2, P )}. However as
PA
f2

is the minimum of such elements we arrive at a contradiction. It follows

that P1 ≥ PA
f2
.

Similarly we prove that P1 ≥ PA
f1

(see Figure 2). Hence it holds that

TVf2 = S(f2, P
A
f2) ≤ S(f2, P1) = D(f1, P1) ≤ D(f1, P

A
f1) = TVf1 ,

which concludes the proof.
B/ We prove that (47) implies (46). Of course, it is enough to consider

x < y. Denote

G(y, x) =
f2(y)− f2(x)

y − x
−

f1(y)− f1(x)

y − x
, ∀x, y ≥ 0, x 6= y. (57)

Suppose that x0 and y0 > x0 exist such that ξ := G(y0, x0) < 0. Note that

G(y, x) =
1

2
G(y,

x+ y

2
) +

1

2
G(

x+ y

2
, x). (58)

Then G(y0,
x0+y0

2 ) ≤ ξ < 0 or G(x0+y0

2 , x0) ≤ ξ < 0. Iterating the argument we
obtain two convergent sequences xn and yn with lim

n→+∞

yn = lim
n→+∞

xn = x∞,

xn < yn and G(yn, xn) ≤ ξ < 0. Up to extracting sub-sequences only three
alternatives exist:

1/ x∞ ≤ xn < yn for all n
2/ xn < yn ≤ x∞ for all n
3/ xn ≤ x∞ ≤ yn for all n
Alternative 3/ can be reduced to 1/ or 2/ by noting that since G(yn, xn) =

yn−x∞

yn−xn
G(yn, x∞) + x∞−x

yn−xn
G(x∞, x) then either G(yn, x∞) ≤ ξ or G(x∞, xn) ≤

ξ < 0.
We only prove 1/, the proof of 2/ being completely similar. When x∞ ≤

xn < yn we obtain

0 > ξ ≥ lim
n→+∞

G(yn, xn) = f ′

2(x
+
∞
)− f ′

1(x
+
∞
) ≥ 0, (59)

which is a contradiction. Thus (47) implies (46).
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D(f2, p)

Figure 2: Illustration of the proof of Theorem 20.

6 Concluding remarks

The main focus of this work is to establish the existence of an equilibrium
and its optimality in terms of trading volumes for the model in the Section 2.
The results are proved under minimal assumptions on the cost function and a
relationship with the convex hull of the cost function is proved. The model can
be used to investigate the determinants of the trading volume and may give
hints on how to exit a situation when the volume is abnormally low.
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