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cCEREMADE, Université Paris Dauphine, Place du Marechal de Lattre de Tassigny,

75016, PARIS, FRANCE

Abstract

We consider a two period model in which a continuum of agents trade
in a context of costly information acquisition and systematic heterogeneous
expectations biases. We show that under very weak technical assumptions a
market equilibrium exists and the supply and demand functions are strictly
monotonic with respect to the price. The equilibrium price is also shown
to be the price that maximizes the trading volume. We prove additional
properties such as the anti-monotony of the trading volume with respect to
the marginal information price.
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1. Introduction

We consider a continuum of agents that act in a two-period (t = 0 and
t = T ) market consisting of a single asset of value V . The value V is con-
stant, deterministic but unknown to the agents. Each agent constructs an
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estimation for V in the form of a normal variable with known mean and
variance. The numerical value of the mean, which is not necessarily V and
as such can be interpreted as a systematic bias, is given by their estimation
method and cannot be changed. However, the variance can be reduced at
time t = 0 against a cost, which is a known deterministic function of the
target variance to be attained. Each agent uses a CARA utility function and
constructs the functional mapping each triplet of market price, estimation
mean and estimation variance to the optimal number of units to trade. The
sum of all such functions from all agents results at time t = 0 in aggregate
market demand and supply functions; the price of the asset is chosen to clear
the market (we prove in particular that except trivial settings such a price
exists and is unique). This price can be different from the real value V and
in practice it will. The agents close their position at final time t = T . This
paper investigates the following questions: existence of an equilibrium, conti-
nuity of supply and demand functions, and interpretation of the equilibrium
price as the price maximizing the liquidity (trading volume).

The paper is organized as follows. The rest of this section presents a
literature overview. In Section 2 the model is explained and the fundamental
hypothesis 2 is introduced. In Sections 3 and 4 we prove the existence of
an equilibrium and important properties of the liquidity (here defined as
the transaction volume) among which the fact that the market price also
maximizes the trading volume. We apply our results to a Grossmann-Stiglitz
framework in Section 4.1. Finally, in Section 5 we show that the liquidity is
inversely correlated with the marginal price of information.

1.1. Literature overview

The model has two several ingredients : the existence of heterogeneous
beliefs (or expectations) biases among a continuum of agents and the fact that
the information is costly (the literature speaks of “information acquisition”
cost).

The literature is rich with approaches to model how disagreements be-
tween agent estimations’ generates investment decisions and trading volume.
The importance of the heterogeneity of opinions on the future value of a
financial instrument and its use in speculation has been recognized as early
as Keynes (see Keynes (1936)) that invokes the ”beauty contest” metaphor
to explain how speculators would like to predict the future consensus price.

A model of speculative trading in a large economy with a continuum of
agents with heterogeneous beliefs was presented in Wu & Guo (2003, 2004)
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(see also the references within). They demonstrate the existence of price
amplification effects and show that the equilibrium prices can be different
from the rational expectation equilibrium price. It is also shown that trading
volume is positively related to the directions of price changes and they explain
the recurrent presence of diverse beliefs. We also refer to Scheinkman &
Xiong (2004) and references within for a survey on how heterogeneous beliefs
among agents generate speculation and trading.

The difference-of-opinion approach (see Varian (1985); Harris & Raviv
(1993)) does not consider noise agents but on the contrary obtain diverse
posterior beliefs from the differences in the way agents interpret common
information. The primary focus is on the implications of dispersion in beliefs
on the price level or direction. Yet another different method explains di-
verse posterior beliefs by relaxing the assumption of common prior (see Mor-
ris (1996)); the authors also model the learning process which enables a
convergence towards a common estimation when more information is avail-
able. Such a framework was invoked for modeling asset pricing during ini-
tial public offerings, but not for other speculative circumstances. Finally,
see also Pagano (1989) that analyses the implications of low liquidity in a
market and propose appropriate incentive schemes to shift the market to a
equilibrium characterized by a higher number of transactions.

An important advance has been to recognize that the dynamics of the
information gathering is important; it was thus established how the presence
of private information and noise (liquidity) agents interact with market price
and volume (see, for example Grossman & Stiglitz (1980); Long et al. (1990)
and Wang (1994) for recent related endeavors). It was thus in particular
recognized (the so called ”Grossman-Stiglitz paradox”) that is not always
optimal for the agents to obtain all the information on a particular asset.
This remark is important in the following because, as explained in Section 2,
our model allows for each agent to choose his level of precision concerning
the information to acquire on a given asset. In the classical paper of Ver-
recchia (1982) and in subsequent related works Jackson (1991); Veldkamp
(2006); Ko & Huang (2007); Krebs (2007); Litvinova & Ou-Yang (2003);
Peng (2005) a framework is proposed where the information is costly and
agents can pay more to lower their uncertainty on the future value of the
risky asset. Verrecchia derives a close form solution which requires some par-
ticular assumptions, among which the convexity of the cost as function of the
precision (inverse of the variance of the estimate). On the contrary our cost
function is here only lower semi-continuous. Our approach also differs in a
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more fundamental way in that we suppose that heterogeneity of estimations
is given but arbitrary, i.e. not centered around the correct price. Moreover,
the Verrecchia model relies on the heterogeneity of risk tolerances in the
CARA utility function while here the price formation mechanism does not
require such an assumption, the heterogeneity in estimations being enough.
Also, in this model the endowments of the agents do not play any role and in
particular are not required to obtain an equilibrium. The paper also extends
a previous work Shen & Turinici (2012) where stronger technical hypothesis
were invoked.

2. The model

We consider a two-period model, t = 0 and t = T in which a risky
security of value V is traded. The value V is unknown to the agents and
each participant x in the market constructs at t = 0 an estimate Ãx for
V , Ãx being a random variable. For simplicity, we suppose that Ãx has a
normal distribution, and that Ãx1 and Ãx2 are independent if x1 and x2 are
two distinct agents. Also, we assume that the mean and the variance of
Ãx are respectively given by Ax and (σx)2, both mean and variance being
known to the agent x. As in Verrecchia (1982) we work with the precision
Bx = 1/(σx)2 instead of the variance (σx)2.

Note that we do not model here the riskless security but everything works
as if the numeraire was the riskless security; from a technical point of view
this allows to set the interest rate to zero.

An important remark is that each agent has his own bias attached to his
estimate Ãx because he has his own procedure to interpret the available in-
formation. It may be due to personal optimism or pessimism or be correlated
with some exogenous factors, such as overall economic outlooks, commodi-
ties evolution, geopolitic factors, that each agent interprets with a specific
systematic bias. See also the cited references for additional discussion on
how agents interpret the information they obtain. We assume that the bias
Ax − V of agent x does not depend on the precision Bx to be attained and
only depends on the agent; the value Ax associated to an agent is known only
by himself. The agent does not influence Ax in any way during the process of
forecasting. Hence, two different agents x1 and x2 have generically different
biases Ax1 − V and Ax2 − V and thus different estimation averages Ax1 and
Ax2 . This is not a collateral property of the model. It is instead the mere
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reason for which the agents trade. They trade because they have different
(heterogeneous) expectations on the final value of the security.

We define ρ(A) to be the distribution of Ax among the agents; neither
the law of the distribution ρ(A) nor any moments or statistics are known by
the agents. We also introduce the expected value with respect to ρ(·), which
is denoted EA; also see Abarbanell et al. (1995) for related works on how to
empirically estimate such a ρ. We do not consider the law of ρ to be normal
or have particular properties (except technical hypothesis 8 below).

From a theoretical point of view it is interesting to explore the situation
when EA(A) = V . This means that the average estimate is V , so that the
agents are neither overpricing nor underpricing the security with respect to
its (unknown) value. However, we will see that this does not necessarily
indicate that the market price is V .

The only parameter the agent can control is the accuracy of the result,
i.e. the precision Bx. However, this has a cost: they need to pay f(b) to
obtain precision b. The precision cost function f : R+ → R+ is defined on
positive numbers. By convention, we can assume that f(b) = ∞ for any
b < 0. See also Peng & Xiong (2003) for an example involving a power
function and Peng (2005) for a structural model to motivate such a function.

Such a model is relevant in the case of high expense for information
sources, for instance news broadcasting fees. The expense also involves the
reward of research personnel or the need for more accurate numerical com-
putations.

Based on his estimations the agent x decides at time t = 0 to trade a
quantity of θx security units. When θx is positive, the agent is long, so he
buys the security, whereas when θx is negative, he is short: he sells it.

Hence, each agent is characterized by three parameters: his mean estimate
Ax, the precision Bx of the estimate (that comes at a cost f(Bx)) and the
quantity of traded units, θx.

The agents buys of sells the security at time t = 0 by formulating demand
and supply functions depending on the price. The market price at time
t = 0 is chosen to clear the aggregate total demand/supply, no other different
category of participants in the market exists.

We set the investment horizon of all agents to be the final time t = T
which is the time at which each agent sells / buys back the initial position.
Each agent supposes that this final transaction takes place at a price in
agreement with his initial estimation.

In order to describe the model for the market price, we introduce the basic
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notions of respectively total supply and demand at price p ≥ 0. Namely the
total demand and supply at time t = 0 are respectively denoted by D(p) and
S(p) and are defined as follows:

D(p) = EA(θ+), S(p) = EA(θ−), (1)

where for any real number a we define a+ = max{a, 0}, a− = max{−a, 0}.
A price p∗ such that S(p∗) = D(p∗) is said to clear the market. Indeed,

from definitions of D(·) and S(·) this is equivalent to say that EA(θ) = 0 i.e.,
at the price p∗, the overall (signed) demand is zero. Note that such a price
may not exist or may not be unique. Hence, one of the goals of the paper is
to prove existence and uniqueness of p∗.

The transaction volume at some price p is the number of units that can
be exchanged at that price and it is defined as follows

TV (p) = min{S(p), D(p)}. (2)

A price p∗ for which TV (·) reaches its maximum is of particular interest
because it maximizes the total number of security units being exchanged.
Note that such a price may not exist, and may also be non-unique.

Let us recall the following result (see Shen & Turinici (2012) for the
proof):

Theorem 1. Suppose that functions S(p), D(p) are continuous and positive,
S(0) = 0 and limp→∞D(p) = 0.

A/ if S(p) is increasing, not identically null, and D(p) is decreasing then
there exists at least a p∗ <∞ such that S(p∗) = D(p∗); moreover TV (p∗) ≥
TV (p) for all p ≥ 0;

B/ Suppose now that in addition S(p) is strictly increasing and limp→∞ S(p) >
0, whereas D(p) is strictly decreasing and such that D(0) > 0. Then the fol-
lowing statements are true.

1/ There exists a unique p∗1 such that S(p∗1) = D(p∗1);
2/ There exists a unique p∗2 such that TV (p∗2) ≥ TV (p) for all p ≥ 0;
3/ Moreover p∗1 = p∗2.

Recall that F : R+ → R+ ∪ {+∞} is called lower semi-continuous (de-
noted “l.s.c.”) if for any x ∈ R+

F (x) ≤ lim inf
y→x

F (y). (3)
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A function G such that −G is l.s.c. is called upper semi-continuous (denoted
“u.s.c.”).

For any function ζ : R+ → R+ ∪ {+∞} we define

ζ(x) = lim inf
y→x

ζ(y), ζ ′(x) = lim inf
y→x

ζ(y)− ζ(x)

y − x
(4)

In particular f ′(0) = lim infy→0
f(y)−f(0)

y
. Denote by

(
f ′(0)

)
+

its positive

part.
Let us introduce the fundamental hypothesis.

Hypothesis 2. We say that a function f : R+ → R+ ∪ {+∞} satisfies
hypothesis 2 if f(0) <∞, f is lower semi-continuous and there exists β > 0
such that

lim inf
x→∞

f(x)

x1+β
> 0. (5)

Remark 3. The quantity f(0) < ∞ represents the residual cost, when pre-
cision approaches zero, to enter the market. It is not related to the precision
(because there is none in the limit) but to the fixed costs to trade on the
market (independent of the quantity). If the fixed costs are infinite then the
market is surely particular.

The assumption f(0) <∞ implies, by lower semi-continuity, that f(0) <
∞ and is realistic in that it demands that the price of zero precision be fi-
nite. In fact one can hardly imagine why someone will pay anything for zero
precision (it suffices to do nothing to have zero precision) so in practice one
should set f(0) = 0.

In order to model the choices of the agents, we consider that the agents
maximize a CARA-type expected utility function (see Arrow (1965)) i.e.,
if the output is the random variable X they maximize E(−e−λX); note
that if X is normal with mean E(X) and variance var(X) then maximiz-
ing E(−e−λX) is equivalent to maximizing the mean-variance utility function
E(X) − λ

2
var(X). We will make more explicit in equation (6) what will be

the convention for degenerate normal variables with infinite variance. The
parameter λ ∈ R+ is called the risk aversion coefficient. Note that all agents
have here the same utility function (cf. also Grossman (1977, 1978) that
argue that differences in preferences are not a major factor in explaining the
magnitude of trade in speculative markets).
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Of course, the expected wealth of the agent at time t = T is a function
of θx and Bx. It is computed under the assumption that each agent enters
the transaction (buys or sells) at time t = 0 at the market price and exits
the transaction (sells or buys) at time t = T at a price coherent with his
estimation, i.e. we condition on the available information at time t = 0.
Thus, for a given price p, which is not necessarily the market equilibrium
price P , the average expected wealth at time t = T of the agent x denoted
by ux is given by: ux = θx(Ax − p) − f(Bx). The variance of the wealth,

denoted by vx is given by: vx = (θx)2

Bx
.

Thus, for a given price p (not necessarily the market equilibrium price P)
the fact that agent x optimizes his CARA utility function is equivalent to
say that he optimizes with respect to θx and Bx his mean-variance utility:

J(θx, Bx) =

 θx(Ax − p)− f(Bx)− λ
2
(θx)2

Bx
if Bx, θx > 0

−∞ if Bx = 0, θx > 0
−f(0) if Bx = θx = 0

. (6)

3. Existence of the transaction volume

Each agent x is characterized by his own bias Ax. The agents consider the
market price as being fixed, which means they cannot influence it directly.
They do not know any statistics on ρ so the market price is not informative
directly, but the acquired information is. Therefore, their strategy depend
on two values: the bias A and the market price p.

Under hypothesis 2, the agent chooses the optimal pair of precisionBopt(p,A; f)
and demand / supply θopt(p,A; f), i.e. the value of the pair maximizing the
following expression:

J (y, z) =

 y(A− p)− f(z)− λ
2
y2

z
if y, z > 0

−∞ if z = 0, y > 0
−f(0) if y = z = 0

, (7)

so that:

J (θopt(p,A; f), Bopt(p,A; f)) ≥ J (y, z), ∀y, z ≥ 0. (8)

Let gp,A;f (X) = (p−A)2
2λ

X−f(X) and α be the function defined by α(p,A) =
(p−A)2

2λ
. To ease the notations we sometimes write only gp,A, gp or g instead
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of gp,A;f and θopt(p,A)/Bopt(p,A) instead of θopt(p,A; f)/Bopt(p,A; f); same
for α instead of α(p,A) .

Lemma 4. Under hypothesis 2, for any p and A, there exists a pair (Bopt(p,A),
θopt(p,A)) such that (8) is satisfied.

Proof. Since f satisfies hypothesis 2 then there exists x1 and some
constant C1 such that f(x) ≥ C1x

1+β for all x ≥ x1. In particular for

x > max

{(
α

2C1

)1/β
,
(
f(0)
2C1

)1/(1+β)}
: g(x) < −f(0) = g(0). Since f is l.s.c.

then g is u.s.c.; it follows that g attains its maximum on R+ in the inter-

val

[
0,max

{(
α

2C1

)1/β
,
(
f(0)
2C1

)1/(1+β)}]
. We set Bopt(p,A) to be one such

maximum (it may not be unique) and set θopt(p,A) = (A−p)Bopt(p,A)
λ

.
Note that Bopt(p,A) = 0 implies θopt(p,A) = 0 thus

∀y > 0 : J (θopt(p,A), Bopt(p,A)) > −∞ = J (y, 0). (9)

When y = z = 0 one has:

J (0, 0) = g(0) ≤ g(Bopt(p,A)) = J (θopt(p,A), Bopt(p,A)). (10)

Let y, z > 0. Since J as function of the first argument is a parabola with
negative coefficient it follows that:

J (y, z) ≤ J (
(A− p)z

λ
, z) = g(z) ≤ g(Bopt(p,A)) = J (θopt(p,A), Bopt(p,A)).

(11)

Remark 5. Note that the formula θopt(p,A) = (A−p)Bopt(p,A)
λ

is completely
compatible with previous works, see Grossman (1976) p575, although here
we have no hypothesis on budget constraints and the riskless interest rate is
neglected.

In order to prove the existence of an equilibrium we need the following
auxiliary results.
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Lemma 6. Under hypothesis 2, let (p1, A1), (p2, A2) be such that α1 ≤ α2,
where αk = α(pk, Ak). Then Bopt(p1, A1) ≤ Bopt(p2, A2). We say that
Bopt(p,A) is increasing with respect to α. In particular, for fixed A, we
have:

- Bopt(p,A) is increasing with respect to p on the interval ]A,∞[;
- Bopt(p,A) is decreasing with respect to p on the interval ]0, A[.

Proof. Let, for k = 1, 2: Bk = Bopt(pk, Ak). Recall that Bk optimizes
αkB − f(B) with respect to B. Then:

α1B1 − f(B1) ≥ α1B2 − f(B2) = α2B2 − f(B2) + (α1 − α2)B2

≥ α2B1 − f(B1) + (α1 − α2)B2. (12)

Thus, α1B1 ≥ α2B1 + (α1−α2)B2 and hence (α1−α2)(B1−B2) ≥ 0, which
gives the conclusion.

Lemma 7. Under hypothesis 2, let αn = α(pn, An), n ≥ 0, be a sequence
such that αn →

n→+∞
α0 but Bopt(pn, An) does not converge to Bopt(p0, A0). The

set of such α0 is at most countable. In particular, if p is fixed, then the set
of A such that Bopt(p,A) is discontinuous with respect to A is countable. An
analogous result holds if A is fixed.

Proof. Let Bn = Bopt(pn, An), for n ≥ 0. Without loss of generality,
we only investigate the case when αn ↘

n→+∞
α0. Then, we have Bn ≥ B0,

∀n ≥ 0.

Since Bn does not converge to B0, let η =

(
lim

n→+∞
Bn

)
− B0. Note that

η > 0 and Bn ≥ B0 + η, ∀n ≥ 0. Also recall that:

αnBn − f(Bn) ≥ αnB − f(B), ∀B. (13)

Yet, since −f is u.s.c.,

α0(B0 + η)− f(B0 + η) ≥ lim sup
n→∞

αnBn − f(Bn), (14)

and for fixed B, αnB − f(B) →
n→+∞

α0B − f(B). In the limit when n→∞,

it holds that

α0(B0 + η)− f(B0 + η) ≥ α0B − f(B), ∀B. (15)
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This implies that B0 + η is also a maximum for α0B − f(B). From this we
deduce that gα0 has at least two distinct maximums, B0 and B0 + η.

Let α be such that gα has at least two distinct minimums x1α and x2α with
x1α < x2α; we associate to α a rational number qα such that qα ∈]x1α, x

2
α[. Take

α and α̃ such that α 6= α̃, to fix notations suppose α < α̃. Then by the
previous result x2α ≤ x1α̃; moreover qα < x2α ≤ x1α̃ < qα̃ i.e. qα 6= qα̃. Thus the
set of α such that gα has at least two distinct minimums is of cardinality less
than the cardinality of Q, i.e., at most countable. Since continuity can only
fail when gα has non-unique maximum the conclusion follows

Hypothesis 8. We say that ρ(A) satisfies hypothesis 8 if ρ is absolutely
continuous with respect to the Lebesgue measure and :∫ ∞

0

A1+2/βρ(A)dA <∞. (16)

Lemma 9. Let S(f, p) and D(f, p) (or in short notation S(p) and D(p)
when function f is implicit) be defined by:

S(f, p) =
1

2λ

∫ ∞
0

(A− p)−Bopt(p,A; f)ρ(A)dA, (17)

D(f, p) =
1

2λ

∫ ∞
0

(A− p)+Bopt(p,A; f)ρ(A)dA. (18)

Then under hypothesis 2 and 8 S(p) and D(p) are finite, continuous and
monotonic. Moreover S(0) = 0 = limp→∞D(p).

Proof. To prove that S(p) and D(p) are finite we recall that maximum

of gp,A is attained on

[
0,max

{(
α

2C1

)1/β
,
(
f(0)
2C1

)1/(1+β)}]
, i.e., Bopt(p,A) ≤

max

{(
α

2C1

)1/β
,
(
f(0)
2C1

)1/(1+β)}
. Recalling that α = (A−p)2

2λ
it follows that

both integrals are bounded (modulo some constant) by
∫∞
0
A1+2/βρ(A)dA

i.e., S(p) and D(p) are finite for all p ≥ 0.
Let pn ↗

n→+∞
p. For any X, the set of A such that Bopt(X,A) is discon-

tinuous is at most countable. Denote it by BX . Let B = Bp ∪
(⋃+∞

n=1 Bpn
)
. B

is also clearly countable and thus ρ(B) = 0 .
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Let ζn(A) = (A− pn)−Bopt(pn, A) and ζ(A) = (A− p)−Bopt(p,A). Then
lim

n→+∞
ζn(A) = ζ(A), for all A except at the most for A in the null set B. Also,

the sequence ζn is increasing.
Then from the Beppo-Levi theorem, it holds:

lim
n→+∞

S(pn) = lim
n→+∞

1

2λ

∫ +∞

0

(A− pn)−Bopt(pn, A)ρ(A)dA

=
1

2λ

∫ +∞

0

(A− p)−Bopt(p,A)ρ(A)dA = S(p). (19)

This proves sequential continuity of S(p) and thus its continuity. The mono-
tonicity is a consequence of the monotonicity of Bopt(p,A). This result also
holds for the demand D(p), noting that −D(p) is increasing and lower-
bounded.

The property S(0) = 0 is trivial; to prove limp→∞D(p) = 0 it suffices to
use the above upper bound for Bopt(p,A) and limp→∞

∫∞
p
A1+2/βρ(A)dA = 0

Recall that S(p) is increasing on [0,+∞[ but to use Theorem 1 we need
to prove its strict monotonicity.

Lemma 10. Under hypothesis 2 and 8 and supposing
(
f ′(0)

)
+
< ∞ the

following hold:

1. S(p) is strictly increasing on ]

√
2λ
(
f ′(0)

)
+

+ inf(supp(ρ)),+∞[;

2. S(0) = 0;

3. lim
p→+∞

S(p) > 0.

4. D(p) is strictly decreasing on [0, sup(supp(ρ))−
√

2λ
(
f ′(0)

)
+

];

5. if sup(supp(ρ)) >

√
2λ
(
f ′(0)

)
+

then D(0) > 0 ;

6. lim
p→+∞

D(p) = 0.
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Remark 11. The hypothesis
(
f ′(0)

)
+
<∞ will be relaxed in Section 4, cf.

Theorem 17.

Proof. Note that
(
f ′(0)

)
+
<∞ implies in particular continuity of f(B)

at B = 0. Let p and p′ be such that p > p′ > A ≥ 0:

S(p)− S(p′) =
1

2λ

∫ ∞
0

[(A− p)−Bopt(p,A)− (A− p′)−Bopt(p
′, A)] ρ(A)dA

=
1

2λ

∫ ∞
0

[(A− p)−Bopt(p,A)− (A− p′)−Bopt(p,A)] ρ(A)dA

+
1

2λ

∫ ∞
0

[(A− p′)−Bopt(p,A)− (A− p′)−Bopt(p
′, A)] ρ(A)dA. (20)

Since Bopt is increasing if p > A,

1

2λ

∫ ∞
0

(A− p′)−(Bopt(p,A)−Bopt(p
′, A))ρ(A)dA ≥ 0. (21)

Hence,

S(p)− S(p′) ≥ 1

2λ

∫ ∞
0

((A− p)− − (A− p′)−)Bopt(p,A)ρ(A)dA (22)

Note that A < p′ < p implies that ((A− p)− − (A− p′)−) > 0. So, for strict
inequality it is sufficient to prove that Bopt(p,A) > 0 with A in the support
of ρ. Yet

Bopt(p,A) = arg max
B

gp(B) = arg max
B

(αB − f(B)). (23)

Therefore we only need to prove that there exists B such that αB−f(B) > 0
with A in the support of ρ. A sufficient condition is that the upper limit of
derivative of αB − f(B) at B = 0 be strictly positive. This means α −(
f ′(0)

)
+
> 0 which is equivalent to: (p−A)2

2λ
>
(
f ′(0)

)
+

. Recalling that

p > A, the latter condition can be rewritten as p − A >

√
2λ
(
f ′(0)

)
+

or

else p > A+

√
2λ
(
f ′(0)

)
+

, for at least one A in the support of ρ. Therefore

S(p)−S(p′) > 0 as soon as p is in ]

√
2λ
(
f ′(0)

)
+

+ inf(supp(ρ)),+∞[. This

13



implies strict monotony for S(p) on ]

√
2λ
(
f ′(0)

)
+

+inf(supp(ρ)),+∞[, and

hence also on the interval [

√
2λ
(
f ′(0)

)
+

+ inf(supp(ρ)),+∞[.

We already seen that S(0) = 0. Moreover since the supply is strictly

increasing on [

√
2λ
(
f ′(0)

)
+

+ inf(supp(ρ)),+∞[ and increasing on [0,+∞[,

it holds that lim
p→+∞

S(p) > 0.

For the monotony of the demand, let p and p′ be such that A > p > p′.
Then:

D(p)−D(p′) =
1

2λ

∫ ∞
0

[(A− p)+Bopt(p,A)− (A− p′)+Bopt(p
′, A)] ρ(A)dA

=
1

2λ

∫ ∞
0

[(A− p)+Bopt(p,A)− (A− p′)+Bopt(p,A)] ρ(A)dA

+
1

2λ

∫ ∞
0

[(A− p′)+Bopt(p,A)− (A− p′)+Bopt(p
′, A)] ρ(A)dA. (24)

Since Bopt is decreasing for A > p > p′, we have:

1

2λ

∫ ∞
0

(A− p′)+(Bopt(p,A)−Bopt(p
′, A))ρ(A)dA ≤ 0. (25)

Hence,

D(p)−D(p′) ≤ 1

2λ

∫ ∞
0

((A− p)+ − (A− p′)+)Bopt(p,A)ρ(A)dA. (26)

Note that A > p > p′ implies that (A−p)+−(A−p′)+ < 0. For strict inequal-
ity it is sufficient to prove that Bopt(p,A) > 0. Using the same arguments as

in Lemma 10, we have strict monotony as soon as (p−A)2
2λ

>
(
f ′(0)

)
+

.

Recalling that p < A, the latter condition can be written as A − p >√
2λ
(
f ′(0)

)
+

or else p < A−
√

2λ
(
f ′(0)

)
+

for at least one A in the support

of ρ. Therefore, D(p) − D(p′) < 0 as soon as p is in ]0, sup(supp(ρ)) −√
2λ
(
f ′(0)

)
+

[. This yields strict monotony of D(p) on ]0, sup(supp(ρ)) −√
2λ
(
f ′(0)

)
+

[. Monotony also holds on [0, sup(supp(ρ)) −
√

2λ
(
f ′(0)

)
+

]

by continuity.
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Since sup(supp(ρ))−
√

2λ
(
f ′(0)

)
+
> 0, we haveBopt(0, A) > 0 soD(0) >

0.
Hence, demand is strictly decreasing. We also saw before that lim

p→+∞
D(p) =

0.
The previous results can be summarized as:

Theorem 12. Under hypothesis 2 and 8 and supposing
(
f ′(0)

)
+
< ∞ the

following hold:
A/ there exists at least a p∗ ≥ 0 such that TV (p∗) ≥ TV (p), ∀p ≥ 0,

moreover D(p∗) = S(p∗).

B/ suppose that diam(supp(ρ)) > 2

√
2λ
(
f ′(0)

)
+

then:

1. The functions Bopt and θopt are well defined.

2. There exists a unique p∗ > 0 such that TV (p∗) ≥ TV (p), ∀p ≥ 0.
Moreover p∗ is the unique solution of the equation D(p∗) = S(p∗).

Note that the results of Shen & Turinici (2012) are a particular case of this
Theorem (any convex C2 function is in particular l.s.c.).

Remark 13. If diam(supp(ρ)) ≤ 2

√
2λ
(
f ′(0)

)
+

then TV ≡ 0 and S(p) =

D(p) = 0, ∀p (see Figure 1).

Remark 14. Since we assume the distribution ρ to be absolutely continuous
with respect to the Lebesgue measure, it holds that diam(supp(ρ)) > 0. Thus
one can always find a critical value λ∗ defined as

λ∗ =


diam(supp(ρ))2

8(f ′(0))
+

if
(
f ′(0)

)
+
> 0

0 if
(
f ′(0)

)
+

= 0
(27)

such that for any λ < λ∗, the hypothesis of Theorem 12 are satisfied, i.e.
there exists a market price maximizing the volume and clearing the market.
On the contrary there exists no such market price for λ ≥ λ∗. The results
of Shen & Turinici (2012) are a particular case of this remark. In fact, under

15



price

nu
m

be
r 

of
 s

ha
re

s

price

nu
m

be
r 

of
 s

ha
re

s
S(p)
D(p)

TV=0,S(p)=D(p)=0

Figure 1: Illustration of Remark 13.

the hypothesis given in Shen & Turinici (2012),
(
f ′(0)

)
+

= f ′(0) = 0 and

thus λ∗ = 0.
The critical value λ∗ can be interpreted as the maximum risk aversion

allowing the market to function. If the risk aversion becomes larger than the
critical value, the market stops and a liquidity crisis occurs. In the latter
case, several actions can be proposed to stop the liquidity crisis:

- lower the perception of risk, i.e. lower the λ of the agents;

- make λ∗ higher by lowering
(
f ′(0)

)
+

, i.e. lower the marginal cost of

information around zero precision. In other words eliminate any entry bar-
riers for new agents on that market by largely spreading information about
the real situation of the asset V ;

- make λ∗ higher by increasing diam(supp(ρ)). This means inviting to the
market agents with new, different evaluation procedures. This can be carried
out for instance by eliminating any entry barrier for newcomers when they

16



have a different background and different evaluation procedures.

4. Necessary and sufficient results for general functions

We relax in this section the hypothesis
(
f ′(0)

)
+
<∞. For any function

f we denote by h∗ the Legendre-Fenchel transform (cf. Rockafellar (1970))
of h, by h∗∗ the Legendre-Fenchel transform applied twice and so on. We
show in this section that the twice Legendre-Fenchel transform f ∗∗ of the
cost function f has remarkable properties i.e., we can replace f by f ∗∗ for
any practical means. In particular this means that from a technical point of
view one can suppose f is convex even if the actual function is not.

Theorem 15. Let f be a function satisfying hypothesis 2. Then

1. f ∗∗ also satisfies hypothesis 2;

2. except for a countable set of values α(p,A) we have

Bopt(p,A; f) = Bopt(p,A; f ∗∗), θopt(p,A; f) = θopt(p,A; f ∗∗). (28)

3. as a consequence

S(f, p) = S(f ∗∗, p), D(f, p) = D(f ∗∗, p), ∀p ≥ 0. (29)

Proof. To prove point 1 we recall that f ∗∗ is a convex function and ∀b ≥ 0:
f ∗∗(b) ≤ f(b). In particular f ∗∗ is l.s.c. and continuous in 0. Let us now
check the growth condition and take β that satisfies hypothesis 2 for f . Take
also C1 as the constant in Lemma 4, i.e., f(x) ≥ C1x

1+β for all x ≥ x1.
Consider now the function

f1(x) =

{
0 if x ≤ x1

C1x
1+β if x > x1

. (30)

Then it is straightforward to see that

f ∗∗1 (x) =


0 if x ≤ x1

C1(1 + β)xβ2 (x− x1) if x1 ≤ x ≤ x2
C1x

1+β if x ≥ x2

. (31)
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where x2 = 1+β
β
x1; of course f1 ≤ f and is l.s.c. Then also f ∗∗1 ≤ f ∗∗. But

obviously lim infx→∞
f∗∗1 (x)

x1+β
= C1 > 0 hence also lim infx→∞

f∗∗(x)
x1+β

> 0.
To prove point 2 we recall that the cost function f is used only as a part

of the function gα. Let us take a point α0 and x0 a minimum of gα0 . This
implies

α0x0 − f(x0) ≥ α0x− f(x) ∀x (32)

which can also be written

f(x) ≥ f(x0) + α0(x− x0), (33)

i.e., in terms of Rockafellar (1970), the function f has a supporting hyper-
plane at x0. Since f has a supporting hyperplane at x0 this implies that
f(x0) = f ∗∗(x0); recall that f ∗∗ is the convex hull of f i.e., the largest convex
function such that f ∗∗ ≤ f . Hence, recalling that for any function f ∗∗∗ = f ∗ :

α0x0−f ∗∗(x0) = α0x0−f(x0) = f ∗(α0) = f ∗∗∗(α0) = max
x

α0x−f ∗∗(x). (34)

We thus obtained that x0 is a maximum of α0x− f ∗∗(x).
Therefore, if one replaces f by f ∗∗ the minimization problem involving

gα gives the same solution, except possibly a countable set of values α where
the maximum is attained (either for f or f ∗∗) in more than one point.

Point 3 is a mere consequence of point 2.
For all purposes of calculating aggregate supply and demand we can thus

replace f by f ∗∗ i.e. replace f by its convex hull. Therefore one can work as
if f was convex.

Remark 16. This result is particularly useful when f(0) 6= f(0) because in

this situation
(
f ′(0)

)
+

= ∞ thus one cannot use the previous results that

guarantee the uniqueness of the market price. When one replaces f by f ∗∗

it can be shown that
(
f ′(0)

)
+

becomes finite and the results apply for f ∗∗;

but the Theorem 15 allows to come back to the function f and obtain the full
information on the supply and demand functions and on the market price.

We obtain the following:

Theorem 17. Suppose hypothesis 2 and 8 are satisfied. Then at least a price
P ≥ 0 exists such that

TV (P) ≥ TV (p),∀p ≥ 0. (35)
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For this value we also have

D(P) = S(P). (36)

Furthermore

I If there exists B > 0 such that f(B) < f(0) then D(p; f) and S(p; f) are
always strictly positive and strictly monotonic, S(0) = 0 = limp→∞D(p).
Moreover P that satisfies (35) is unique.

II Suppose now that f(B) ≥ f(0), ∀B ≥ 0; then the following hold:

a (alternative 1) suppose that diam(supp(ρ)) > 2

√
2λ
(

(f ∗∗)′(0)
)
+

then:

i The functions Bopt and θopt are well defined.

ii The value P that satisfies (35) is unique and TV (P) > 0; P is
also the unique solution of (36).

b (alternative 2) if on the contrary we suppose that

diam(supp(ρ)) ≤ 2

√
2λ
(

(f ∗∗)′(0)
)
+
, (37)

then TV (p) = 0, ∀p ≥ 0.

Proof. We prove point I. If f(B∗) < f(0) then for all α ≥ 0 : αB∗ −
f(B∗) > α ·0−f(0) thus Bopt(p,A) > 0 for all p,A. As a first consequence we
obtain D(p; f) > 0 for all p and the same for S(p; f). For strict monotonicity
it suffices to use same arguments as in the proof of Lemma 10. Of course,
S(0) = 0 = limp→∞D(p) due to Lemma 9.

We continue to proving point II. The point IIa follows from the discussion
above.

To prove IIb we need to analyze more in detail the values of D(p) and
S(p). Let us now inquire when Bopt(p,A; f ∗∗) > 0: when this is the case
then αBopt(p,A; f ∗∗) − f ∗∗(Bopt(p,A; f ∗∗)) > α · 0 − f ∗∗(0) (we exclude the
null measure set of α where more than one maximum can exists i.e., we can
suppose the inequality to be strict); hence

f ∗∗(Bopt(p,A; f ∗∗)) < f ∗∗(0) + αBopt(p,A; f ∗∗), (38)
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or again for some α1 < α

f ∗∗(Bopt(p,A; f ∗∗)) ≤ f ∗∗(0) + α1Bopt(p,A; f ∗∗). (39)

Since f ∗∗ is convex we have for arbitrary B ∈ [0, Bopt(p,A; f ∗∗)]: f ∗∗(B) ≤
f ∗∗(0) + α1B. But this means

(
(f ∗∗)′(0)

)
+
≤ α1 < α i.e., |A − p| >√

2λ
(

(f ∗∗)′(0)
)
+

.

If D(p) is always null the conclusion is reached. Suppose now p exists
such that D(p) > 0; then at least some A in the support of ρ exists such that
Bopt(p,A; f ∗∗) > 0 and (A− p)+ > 0; the three conditions imply

sup(supp(ρ))−
√

2λ
(

(f ∗∗)′(0)
)
+
> 0. (40)

Moreover we have D(p) = 0 for p ≥ sup(supp(ρ))−
√

2λ
(

(f ∗∗)′(0)
)
+

.

From (40) and (37) we conclude that

0 < sup(supp(ρ))−
√

2λ
(

(f ∗∗)′(0)
)
+
≤
√

2λ
(

(f ∗∗)′(0)
)
+

+ inf(supp(ρ)).

(41)

A similar reasoning as above shows that S(p) = 0 for p ≤
√

2λ
(

(f ∗∗)′(0)
)
+

+

inf(supp(ρ)). Therefore for any p either D(p) = 0 or S(p) = 0 and the
conclusion follows.

In general, the price P has an implicit dependence on the cost function
f(·) with no particular properties. But when the distribution ρ is completely
symmetric around some particular value p1 we obtain the following result:

Theorem 18. Suppose hypothesis 2 and 8 are satisfied and there exists p1 >
0 such that

∀y ∈ R : ρ(p1 − y) = ρ(p1 + y), (42)

(with the convention that ρ is null on R− ); then we can take in Thm. 17
P = p1.

Proof. The proof results from the remark that, except possibly for a null
measure set of values α(p,A), the function Bopt(p,A; f) is symmetric around
p, i.e., Bopt(p,A; f) = Bopt(p, 2p−A; f); thus θopt(p,A; f) is anti-symmetric.
Since the distribution ρ is symmetric then D(p1) = S(p1).
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4.1. An application: the Grossman-Stiglitz framework

We follow Grossman & Stiglitz (1980) to analyze a classical situation
where costly information can be used to lower the uncertainty of the estima-
tion. Please however note that in the cited work the equilibrium is realized
without modeling the variations in supply and in the absence of the distri-
bution ρ(A).

In the Grossman-Stiglitz model agents can either pay nothing and have
a precision B1 or pay a fixed cost cb to gain precision up to level B2 > B1.
Thus we know that f(B) = 0 for any B ≤ B1 and f(B2) = cb. Taking into
account the result of Theorem 17 we can thus propose the following convex
function

fGS(B) =


0 if B ≤ B1

cb
B−B1

B2−B1
if B1 ≤ B ≤ B2

+∞ if B > B2

. (43)

Since fGS fulfills the hypothesis 2 (with arbitrary β ≥ 0) the results above
apply provided that the distribution ρ(A) also fulfills requirements in hypoth-
esis 8: absolute continuity with respect to Lebesgue measure and a moment
of order 1 + ε (with arbitrary small ε) has to exist. Then a (equilibrium)
market price exists and is unique. Note that f ′GS(0) = 0 thus λ∗GS = 0.

The unsigned demand is

θopt(p,A) =

{
(A−p)B1

λ
if |A− p| < 2λcb

(B2−B1)
(A−p)B2

λ
if |A− p| ≥ 2λcb

(B2−B1)

. (44)

The optimal precision is either B1 in the first alternative of equation (44) or
B2 for the second alternative.

5. Transaction volume and marginal costs

We describe in the following the relationship between the cost function f
and the trading volume.

Theorem 19. Suppose that f1 and f2 both satisfy hypothesis 2 and that ρ
satisfies hypothesis 8.

A/ Assume that

f2(y)− f2(x)

y − x
≥ f1(y)− f1(x)

y − x
, ∀x, y ≥ 0, x 6= y. (45)
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Then TVf1 ≥ TVf2.
B/ In particular if f1 and f2 are such that

f ′1(X
+) ≤ f ′2(X

+), f ′1(X
−) ≤ f ′2(X

−), ∀X ≥ 0, (46)

(all are lateral derivatives) then TVf1 ≥ TVf2.

Remark 20. Note that if f1 and f2 are convex, both lateral derivatives are
defined at each point and A/ implies B/; thus for practical purposes (cf. also
section 4) the point B/ is not weaker than point A/.

Remark 21. If f ′1(X) and f ′2(X) exist at some point X, then (46) implies
that f ′1(X) ≤ f ′2(X). Thus, the above result is a generalization of the analo-
gous theorem in Shen & Turinici (2012).

Proof. A/ We first show that, except for a countable set of values
α(p,A) we have Bopt(p,A; f1) ≥ Bopt(p,A; f2). Fix p,A and denote Bk =
Bopt(p,A; fk) for k = 1, 2. Suppose, by contradiction, that B1 < B2; recall
that, by the optimality of B1:

αB1 − f1(B1) > αB2 − f1(B2), (47)

thus
f1(B2)− f1(B1)

B2 −B1

> α. (48)

Note that we wrote strict inequality in (47) because we exclude the countable
set of values α(p,A) where the maximum of gp,A(B) = αB − f1(B) is not
unique. We do the same for B2:

αB2 − f2(B2) > αB1 − f2(B1),

thus

α >
f2(B2)− f2(B1)

B2 −B1

. (49)

Combining equations (48) and (49) we obtain that

f1(B2)− f1(B1)

B2 −B1

>
f2(B2)− f2(B1)

B2 −B1

. (50)

But this contradicts (45) for y = B2 and x = B1. Thus, with the possi-
ble exception of a countable set of values α(p,A) we have Bopt(p,A; f1) ≥
Bopt(p,A; f2).
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The demand and supply of the agents are monotonic and given for k = 1, 2
by the formulas:

D(fk, p) =
1

2λ

∫ ∞
0

(A− p)+Bopt(p,A; fk)ρ(A)dA (51)

S(fk, p) =
1

2λ

∫ ∞
0

(A− p)−Bopt(p,A; fk)ρ(A)dA. (52)

Denote by PA
fk

the market price for which supply equals demand for the
cost function fk i.e., D(fk, P

A
fk

) = S(fk, P
A
fk

). We further take PA
f2

= min{P :
D(f2, P ) = S(f2, P )} and PA

f1
= min{P : D(f1, P ) = S(f1, P )}

It has been proved that Bopt(p,A; f1) ≥ Bopt(p,A; f2). Thus, D(f1, p) ≥
D(f2, p) and S(f1, p) ≥ S(f2, p), ∀p. In particular, D(f2, P

A
f2

) ≤ D(f1, P
A
f2

).
Let P1 be the solution of D(f1, P1) = S(f2, P1). Let us prove that P1 ≥

PA
f2

; in fact suppose on the contrary that P1 < PA
f2

. Then

D(f1, P
A
f2

) ≥ D(f2, P
A
f2

) = S(f2, P
A
f2

) ≥ S(f2, P1) = D(f1, P1) ≥ D(f1, P
A
f2

),(53)

which means that all inequalities in (53) are in fact equalities, in particular
S(f2, P

A
f2

) = S(f2, P1) and D(f1, P1) = D(f2, P
A
f2

). But we also have

D(f1, P1) ≥ D(f2, P1) ≥ D(f2, P
A
f2

) = D(f1, P1) (54)

which means again that all are equalities, in particularD(f2, P1) = D(f2, P
A
f2

).
Thus

D(f2, P1) = D(f2, P
A
f2

) = S(f2, P
A
f2

) = S(f2, P1), (55)

which means that P1 is a member of {P : D(f2, P ) = S(f2, P )}. But PA
f2

is
the minimum of such elements hence we arrive at a contradiction. It follows
that P1 ≥ PA

f2
.

Similarly we prove that P1 ≥ PA
f1

(see Figure 2). Hence it holds that

TVf2 = S(f2, P
A
f2

) ≤ S(f2, P1) = D(f1, P1) ≤ D(f1, P
A
f1

) = TVf1 ,

which concludes the proof.
B/ We prove that (46) implies (45). Of course, it is enough to consider

x < y. Denote

G(y, x) =
f2(y)− f2(x)

y − x
− f1(y)− f1(x)

y − x
, ∀x, y ≥ 0, x 6= y. (56)
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Suppose that x0 and y0 > x0 exist such that ξ := G(y0, x0) < 0. Note
that

G(y, x) =
1

2
G(y,

x+ y

2
) +

1

2
G(
x+ y

2
, x). (57)

Then G(y0,
x0+y0

2
) ≤ ξ < 0 or G(x0+y0

2
, x0) ≤ ξ < 0. Iterating the argument

we obtain two convergent sequences xn and yn with lim
n→+∞

yn = lim
n→+∞

xn = x∞,

xn < yn and G(yn, xn) ≤ ξ < 0. Up to extracting sub-sequences only three
alternatives exist:

1/ x∞ ≤ xn < yn for all n
2/ xn < yn ≤ x∞ for all n
3/ xn ≤ x∞ ≤ yn for all n
Alternative 3/ can be reduced to 1/ or 2/ by noting that since G(yn, xn) =

yn−x∞
yn−xn G(yn, x∞) + x∞−x

yn−xnG(x∞, x) then either G(yn, x∞) ≤ ξ or G(x∞, xn) ≤
ξ < 0.

We only prove 1/, the proof of 2/ being completely similar. When x∞ ≤
xn < yn we obtain

0 > ξ ≥ lim
n→+∞

G(yn, xn) = f ′2(x
+
∞)− f ′1(x+∞) ≥ 0, (58)

which is a contradiction. Thus (46) implies (45).

6. Concluding remarks

The main focus of this work is to establish the existence of an equilibrium
and its optimality in terms of trading volumes for the model in the Section 2.
The results are proved under minimalistic hypothesis on the cost function and
a relationship with the convex hull of the cost function is proved. The model
can be used to investigate the determinants of the trading volume and may
give hints on how to exit a situation when the volume is abnormally low.
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